JP4080046B2 - Anaerobic treatment method and apparatus - Google Patents

Anaerobic treatment method and apparatus Download PDF

Info

Publication number
JP4080046B2
JP4080046B2 JP1273998A JP1273998A JP4080046B2 JP 4080046 B2 JP4080046 B2 JP 4080046B2 JP 1273998 A JP1273998 A JP 1273998A JP 1273998 A JP1273998 A JP 1273998A JP 4080046 B2 JP4080046 B2 JP 4080046B2
Authority
JP
Japan
Prior art keywords
liquid
gas
solid
raw water
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1273998A
Other languages
Japanese (ja)
Other versions
JPH11207384A (en
Inventor
秀樹 原田
晶良 大橋
一晃 珠坪
豊 米山
隆幸 鈴木
晋 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1273998A priority Critical patent/JP4080046B2/en
Publication of JPH11207384A publication Critical patent/JPH11207384A/en
Application granted granted Critical
Publication of JP4080046B2 publication Critical patent/JP4080046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種工場、下水、し尿、畜産業施設等より排出される有機性の廃水又は有機性の廃棄物等を対象とし、これを無害化する嫌気性汚泥床処理方法及び装置に関し、更に詳しくは特にガス、液、固液分離部(以後、GSS部とも記す)を多段に有する上向流嫌気性汚泥床処理方法及び装置に関する。
【0002】
【従来の技術】
有機性の廃水あるいは有機性の廃棄物等は、嫌気性処理によって分解処理されることがある。こうした分解処理方法として、例えば上向流嫌気性汚泥床法(以後UASBとも記す)がある。これは近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。例えば、この方法を具体化した装置では、重クロム酸カリウムを酸化剤として測定したCODcr(以後CODと記す)の容積負荷が10〜15kg/m3.dの廃水、廃棄物でも効率よく運転できるという特徴がある。
【0003】
有機性廃水および有機性廃棄物を対象とした嫌気性処理の嫌気性菌には、環境温度により大きく分けて2種類ある。例えば、環境温度30〜35℃の中温域を至適温度とする中温嫌気性菌、50〜55℃の高温域を至適温度とする高温嫌気性菌などがある。一方、これら嫌気性菌の働きを利用したUASB法の場合、分解する有機物の負荷量が高くなると(例えばCOD容積負荷が15kg/m3.d以上)、発生するガス量が多くなる。この際リアクター内からのガス抜きを随時確実に行っていかないと、ガス排出時の吹き出し等によりグラニュール状の汚泥の流出が目立つようになり、リアクター内にグラニュール汚泥を留めておくことが難しくなる。
【0004】
こうした場合の処理対策として、処理装置そのものを多段にし、発生ガスを分散して系外に排出する方法が提案されている。図2は、多段にした嫌気性処理装置の模式図である(引用文献:G. Lettinga(1995) Anaerrobic digestion and wastewater treatment system. Antonie van Leeuwenhoek 67:3-28)。下端に原水流入管1を接続した筒状のリアクター2内部に複数の邪魔板3を設け、スラッジゾーンを区分した区分スラッジゾーン4a〜4eをそれぞれの箇所に多段に形成している。区分スラッジゾーン4a〜4eの各上端コーナーはGSS部5を形成し、その内で反応が開始すると反応ガスが集合する気相部5aには発生ガス回収配管6が接続している。発生ガス回収配管6は外部の水封槽7に通じている。
多段化したUASB装置では、分解反応で発生するガスを複数のGSS部5より分割して系外に排出できるため、リアクター2上部のGSS部5でのグラニュール汚泥の流出を防ぐことができる。このため、リアクター2内で高濃度にグラニュール汚泥を維持でき、高いCOD容積負荷(15kg/m3.d以上)の廃水、廃棄物処理も可能となっている。
【0005】
【発明が解決しようとする課題】
しかしながら、多段化したUASB装置は、いまなお以下に示すような課題がある。
(1) 流入水の有機物濃度が高くなった時はリアクター前段で、アルカリ剤あるいは処理水循環によるpH調整が必要となる。
(2) 有機物濃度が高くなればなるほど、pH調整時のアルカリ量が多く必要になる。
(3) ガスを分散して系外に排出しているが各GSS毎の液線流速は同一であるため、一定負荷条件下で流入有機物濃度が低くなった時、液線流速が高くなるため、リアクター内のグラニュール汚泥量を安定して維持できない。
こうしたことから本発明は、有機物濃度が高くなった時に必要になるpH調整用のアルカリ剤の消費量を軽減し、流入有機物濃度が低下し、供給廃水量が増大した時でも安定したメタン発酵処理を行うことのできる嫌気性処理方法とそのような装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的は以下の手段で達成される。
(1)有機性排水をガス、液、固液分離部を多段に有する上向流嫌気性汚泥床装置により処理する方法において、各ガス、液、固液分離部の下部に原水の送液管を接続し、該送液管は、グラニュール汚泥中に位置し、該送液管により原水の一部を一番下のガス、液、固液分離部に供給し、原水の残りの部分を上の各ガス、液、固液分離部に供給するように分配し、その分配割合は原水の基質組成、有機物の濃度により調整して、各ガス、液、固液分離部の下部に通水することにより、pH調整用のアルカリ剤の消費量を軽減し、安定したメタン発酵を行わせることを特徴とする嫌気性処理方法。
(2)前記有機性排水のCOD濃度は3000mg/L〜10000mg/Lであることを特徴とする前記(1)に記載の嫌気性処理方法。
(3)原水を、同時または間欠的に各ガス、液、固液分離部へ通水することを特徴とする前記(1)又は(2)に記載の嫌気性処理方法。
(4)ガス、液、固液分離部を多段に有する上向流嫌気性汚泥床処理装置において、該ガス、液、固液分離部には各々発生ガスをガス利用設備に接続する配管を有し、各ガス液、固液分離部の下部に原水を導入する送液管が接続されていて、該送液管により原水の一部を一番下のガス、液、固液分離部に供給し、原水の残りの部分を上の各ガス、液、固液分離部に供給するように分配し、その分配割合は原水の基質組成、有機物の濃度によりその分配割合を調整して供給し、該送液管はグラニュール汚泥中に位置することにより、pH調整用のアルカリ剤の消費量を軽減し、安定したメタン発酵を行わせることを特徴とする上向流嫌気性処理装置。
【0007】
【発明の実施の形態】
以下、実施の形態を説明するが、本発明はこれに限定されない。
図1は、嫌気性処理方法を実施するのに好ましい本発明の上向流嫌気性処理装置の一形態の概要を例示した図である。
原水送液管1が連通し、上下を閉塞した筒状のリアクター2を設けてある。リアクター2内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延ばしている邪魔板3を設けてある。邪魔板3は、上下方向に5箇所左右交互に設けてあって、リアクター側壁との間にそれぞれ鋭角の区分スラッジゾーン4a〜4eを多段に形成している。
リアクター2側壁と邪魔板3との間にできた区分スラッジゾーン4a〜4eには、図示外のポンプとつながっていてそれぞれの区分スラッジゾーン4a〜4eに原水を分注する分注管1a〜1eの吐出口が開口している。区分スラッジゾーン4a〜4e上部はGSS部5を形成し、反応が開始すると発生ガスが集まる気相部5aには、外部と通じる発生ガス回収配管6の排出口を設けてある。
【0008】
なお、気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は水圧が異なる適宜な水深位にあり、水封槽7には発生ガス回収配管6から吐き出されたガス流量を測定するガスメータ8を設けてある。ガスメータ8の先には、こうしたガスを利用する所定の利用設備が設けられている。
また、リアクター2上端には上澄み液を排出する処理水配管9が開口している。
【0009】
リアクター2は嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など全ての温度範囲の嫌気性処理を対象としている。嫌気性菌からなるグラニュール汚泥を投入し、有機性廃棄物などを含んだ原水を分注管1a〜1eからリアクター2の各区分スラッジゾーン4a〜4eに分注して導入する。これによって原水はGSS部5の下部に導入される。原水の導入は、各区分スラッジゾーン4a〜4eに同時に行うか、あるいは間欠的に行う。間欠注入は図示外の一台のポンプを用い、タイマーで流入弁を制御しながら行う。各区分スラッジゾーン4a〜4eへの通水割合は、流入水の基質組成、有機物の濃度等に応じて調整する。
【0010】
リアクター2内では嫌気性菌からなるグラニュール汚泥の介在によって有機性廃棄物が分解し、分解ガスが発生する。発生したガスは、各区分スラッジゾーン4a〜4e上端のGSS部5に別れて集まり、それぞれに気相部5aを形成し、発生ガス回収配管6を通じて水封槽7に至る。こうした発生ガスは、ガスメータ8でその排出量が記録され、必要なガス利用設備に送られる。発生ガスの一部は、区分スラッジゾーン4a〜4e内でグラニュール汚泥に付着し、その見かけ比重を軽減させるとともに、グラニュール汚泥を同伴してGSS部5の水面に達する。こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した気泡はやがて破裂し、発生ガスとグラニュール汚泥とが分離され、グラニュール汚泥はもとの比重を回復して水中に潜り、発生ガスは発生ガス回収配管6から水封槽7を経由して、系外に排出される。有機物が分解して清澄になって水はリアクター上端から、処理水配管9を経由して系外に排出される。
【0011】
各GSS部5の気相部5aのガス圧は異なるので、その差圧は水封槽7で調整するとよい。原水送液側に近い順に水封圧は高く保つ必要がある。ガス回収の圧調整は水封槽7を使う方法以外にも多くの方法がある。例えば圧力弁等を使用してもよい。
本発明の嫌気性処理方法では、各区分スラッジゾーン毎にそこで発生する発生ガスを回収できるため、リアクターの単位断面積当たりの発生ガス量が少なくなる。同時に、流入原水を分注するため、各GSSの液線流速も小さくなる。特に上澄み液として処理水を流出させる処理水配管9に最も近い側の最上段のGSS部5におけるリアクターの単位断面積当たりのガス量、液線速度が小さくなる。そのため、グラニュール汚泥の系外流出量は非常に少なくすることができる。
【0012】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
図3,図4に、多段型嫌気性処理方法の実験に用いた装置の概要を示す。A系列は原水を分注しない系列(従来法)、B系列は原水を分注する系列(本発明に基づく案)である。
ここで使用した実験装置は、A系列、B系列共に8つの区分スラッジゾーン4a〜4hを有する多段UASB装置である。リアクター2内には傾斜する邪魔板3を、区分スラッジゾーン4a〜4hごとに設けてある。区分スラッジゾーン4a〜4hの上部は、反応が開始すると気泡及び発生ガスが集まるGSS部5を有し、その上端には外部と通じる発生ガス回収配管6の排出口を設けてある。リアクター2上部には、上澄み液を放出する処理水管9が接続している。
A系列ではリアクター2下端に原水送液管1が接続し、B系では複数の区分スラッジゾーン4a〜4hに原水を分注する分注管1a〜1dがそれぞれポンプを備えて接続している。
【0013】
液槽部の有効容量は8リットルある。各GSS部5より発生したガスの量は、水封槽7に設けたガスメータ8で計測した。
リアクター2は55℃になるように温度制御されている。なお、B系の原水分注箇所は4箇所あり、分注比率は流入側から順に4:3:2:1とした。
原水には、アルコール蒸留廃水原液(COD420g/リットル)を水道水で希釈し、COD3000mg/リットルに調整したものに、さらに無機栄養塩(窒素、リン、マグネシウム、カルシウムなど)を添加したものを用いた。アルカリ度の補給としてNaHCO3を1500mg/リットル添加した。流入COD濃度は連続実験期間中3000、6000、8000、10000mg/リットルの4段階に設定した。
リアクター2への植種は、中温UASB汚泥を種汚泥とした。
【0014】
図5に実験経過とCOD処理成績の変化を示す。両系列とも処理水COD濃度、処理水有機酸濃度を見ながら有機物負荷量を徐々に上げた。実験経過後100日目まではほぼ同じ負荷で処理ができた。約100日目以降、COD負荷が100kg/m3.dとなると、A系列では、処理水COD、処理水有機酸濃度が高くなると同時に、処理水pHの低下が起こった。原水を分注しないA系列では、高負荷になると、流入側のGSSで酸発酵により、アルカリが多く消費されるため、後段のGSSのpHも低くなり、メタン発酵処理が不安定となることが分かった。このため、COD容積負荷を75kg/m3.dに下げた。一方、B系列ではCOD負荷が100kg/m3.dにおいて、安定した処理ができた。
表1に定常状態における処理成績の比較を示す。
【0015】
【表1】

Figure 0004080046
【0016】
本発明に基づくB系列ではCOD負荷100kg/m3.d、COD除去率95%、処理水VSS200〜300mg/リットル処理水pH7.5であった。一方、A系列の従来法ではCOD負荷75kg/m3.d、COD除去率85〜90%、処理水VSS400〜500mg/リットル、処理水pH6.5であった。このように、本発明に基づく方法では、従来法に比べて高いCOD負荷で安定したCOD除去率を得ることができた。
B系列の本発明に基づく方法では、従来法より高いCOD容積負荷で運転しているにもかかわらず、処理水COD処理成績が安定していた。また、処理水VSS濃度も従来法より低く、UASB槽内におけるグラニュール汚泥量も安定して維持できていた。
【0017】
【発明の効果】
本発明では、原水を二つ以上に分配し、各ガス、液、固液分離部の下部にそれを通水するから、有機物濃度が高くなった時に必要になるpH調整用のアルカリ剤の消費量を軽減し、一定負荷条件下で流入有機物濃度が低くなり供給廃水量が増加した時でも安定したメタン発酵処理を行うことのできる嫌気性処理方法とそのような装置を提供することができる。高い有機物負荷のUASBの運転においても安定した有機物処理成績が得られる。
【図面の簡単な説明】
【図1】本発明の上向流嫌気性処理装置の一形態を例示した模式図である。
【図2】従来の上向流嫌気性処理装置を例示した模式図である。
【図3】実験に用いた従来の上向流嫌気性処理装置の概要を示した図である。
【図4】実験に用いた本発明の上向流嫌気性処理装置の概要を示した図である。
【図5】実験経過とCOD処理成績の変化を示す図である。
【符号の説明】
1 原水送液管
1a〜1d 分注管
2 リアクター
3 邪魔板
4a〜4h 区分スラッジゾーン
5 GGS部
5a 気相部
5b 気泡部
6 発生ガス回収配管
7 水封槽
8 ガスメータ
9 処理水配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic sludge bed treatment method and apparatus for detoxifying organic waste water or organic waste discharged from various factories, sewage, human waste, livestock industry facilities, etc. More specifically, the present invention relates to an upward flow anaerobic sludge bed processing method and apparatus having multiple stages of gas, liquid, and solid-liquid separation sections (hereinafter also referred to as GSS sections).
[0002]
[Prior art]
Organic wastewater or organic waste may be decomposed by anaerobic treatment. As such a decomposition treatment method, for example, there is an upward flow anaerobic sludge bed method (hereinafter also referred to as UASB). This is a method that has become widespread in recent years. It is characterized by maintaining a high concentration of methane bacteria in the reactor by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of the organic matter in it is considerably high, it can be processed efficiently. For example, in an apparatus embodying this method, COD cr (hereinafter referred to as COD) measured with potassium dichromate as an oxidizing agent operates efficiently even with wastewater and waste with a volumetric load of 10 to 15 kg / m 3 .d. There is a feature that you can.
[0003]
There are two types of anaerobic bacteria that are anaerobically treated for organic wastewater and organic waste, depending on the environmental temperature. For example, there are mesophilic anaerobic bacteria whose optimum temperature is an intermediate temperature range of 30 to 35 ° C., and high temperature anaerobic bacteria whose optimum temperature is a high temperature range of 50 to 55 ° C. On the other hand, in the case of the UASB method using the action of these anaerobic bacteria, the amount of gas generated increases as the load of organic matter to be decomposed increases (for example, the COD volumetric load is 15 kg / m 3 .d or more). At this time, unless the gas is surely removed from the reactor at any time, the outflow of granulated sludge becomes noticeable due to the blowing out of the gas, and it is difficult to keep the granular sludge in the reactor. Become.
[0004]
As a countermeasure against such a case, a method has been proposed in which the processing apparatus itself is multi-staged and the generated gas is dispersed and discharged out of the system. FIG. 2 is a schematic diagram of a multi-stage anaerobic treatment apparatus (cited reference: G. Lettinga (1995) Anaerrobic digestion and wastewater treatment system. Antonie van Leeuwenhoek 67: 3-28). A plurality of baffle plates 3 are provided inside a cylindrical reactor 2 having a raw water inflow pipe 1 connected to the lower end, and divided sludge zones 4a to 4e each having a sludge zone are formed in multiple stages. Each upper end corner of each of the divided sludge zones 4a to 4e forms a GSS portion 5, and a generated gas recovery pipe 6 is connected to the gas phase portion 5a in which the reaction gas collects when the reaction starts. The generated gas recovery pipe 6 leads to an external water seal tank 7.
In the multistage UASB apparatus, the gas generated by the decomposition reaction can be divided from the plurality of GSS units 5 and discharged out of the system, so that the granular sludge can be prevented from flowing out of the GSS unit 5 above the reactor 2. For this reason, the granular sludge can be maintained at a high concentration in the reactor 2, and wastewater and waste can be treated with a high COD volumetric load (15 kg / m 3 .d or more).
[0005]
[Problems to be solved by the invention]
However, the multistage UASB apparatus still has the following problems.
(1) When the organic matter concentration of the influent water becomes high, it is necessary to adjust the pH by circulating an alkali agent or treated water at the upstream of the reactor.
(2) The higher the concentration of organic matter, the greater the amount of alkali required during pH adjustment.
(3) Since the gas is dispersed and discharged out of the system, the liquid flow velocity for each GSS is the same, so the liquid flow velocity increases when the concentration of inflowing organic matter decreases under a constant load condition. The amount of granular sludge in the reactor cannot be stably maintained.
Therefore, the present invention reduces the consumption of alkaline agent for pH adjustment required when the organic matter concentration becomes high, reduces the inflow organic matter concentration, and stabilizes the methane fermentation treatment even when the supply wastewater amount increases. It is an object of the present invention to provide an anaerobic treatment method and an apparatus capable of performing the above.
[0006]
[Means for Solving the Problems]
The above object can be achieved by the following means.
(1) In a method of treating organic wastewater with an upflow anaerobic sludge bed apparatus having multiple stages of gas, liquid, and solid-liquid separation units, a feed pipe for raw water is provided below each gas, liquid, and solid-liquid separation unit The liquid feed pipe is located in the granular sludge, and a part of the raw water is supplied to the lowest gas, liquid, and solid-liquid separation part by the liquid feed pipe , and the remaining part of the raw water is supplied. Distribute the gas, liquid, and solid / liquid separation unit to supply the water, and adjust the distribution ratio according to the substrate composition of raw water and the concentration of organic matter. An anaerobic treatment method characterized by reducing consumption of an alkaline agent for pH adjustment and causing stable methane fermentation .
(2) The anaerobic treatment method according to (1), wherein the organic waste water has a COD concentration of 3000 mg / L to 10000 mg / L.
(3) The anaerobic treatment method according to (1) or (2), wherein raw water is passed simultaneously or intermittently to each gas, liquid, and solid-liquid separation unit.
(4) In an upflow anaerobic sludge bed treatment apparatus having gas, liquid, and solid-liquid separation sections in multiple stages, each of the gas, liquid, and solid-liquid separation sections has piping for connecting the generated gas to gas utilization equipment. In addition, a liquid supply pipe for introducing raw water is connected to the lower part of each gas liquid and solid-liquid separation section, and a part of the raw water is supplied to the lowest gas, liquid, and solid-liquid separation section by the liquid supply pipe. Then, the remaining portion of the raw water is distributed so as to be supplied to each gas, liquid, and solid-liquid separation section above, and the distribution ratio is adjusted by adjusting the distribution ratio according to the substrate composition of the raw water and the concentration of organic matter, An upflow anaerobic treatment apparatus characterized in that the liquid feed pipe is located in granular sludge, thereby reducing consumption of an alkaline agent for pH adjustment and allowing stable methane fermentation to be performed .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an embodiment is described, the present invention is not limited to this.
FIG. 1 is a diagram illustrating an outline of an embodiment of the upward flow anaerobic treatment apparatus of the present invention that is preferable for carrying out the anaerobic treatment method.
A cylindrical reactor 2 in which the raw water feed pipe 1 communicates and is closed at the top and bottom is provided. The left and right side walls inside the reactor 2 are provided with baffle plates 3 that are fixed to one end and extend while descending toward the opposite side wall. The baffle plates 3 are alternately provided at five locations in the vertical direction on the left and right sides, respectively, and acute-angled divided sludge zones 4a to 4e are formed in multiple stages between the baffle plates 3 and the reactor side walls.
Dispensing pipes 1a to 1e, which are connected to a pump (not shown) and dispense raw water to the respective sludge zones 4a to 4e, are provided between the side walls of the reactor 2 and the baffle plate 3. The discharge port is open. The upper part of each of the divided sludge zones 4a to 4e forms a GSS section 5, and an outlet of the generated gas recovery pipe 6 communicating with the outside is provided in the gas phase section 5a where the generated gas collects when the reaction starts.
[0008]
In addition, the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is opened in the water of the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressure, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A predetermined utilization facility for utilizing such gas is provided at the tip of the gas meter 8.
Further, a treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2.
[0009]
The reactor 2 is used by introducing granular sludge made of anaerobic bacteria. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C. and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. Intended for processing. Granule sludge composed of anaerobic bacteria is introduced, and raw water containing organic waste is dispensed from the pipes 1a to 1e to the respective sludge zones 4a to 4e of the reactor 2 for introduction. As a result, the raw water is introduced into the lower part of the GSS unit 5. The raw water is introduced into each of the divided sludge zones 4a to 4e simultaneously or intermittently. Intermittent injection is performed using a single pump (not shown) while controlling the inflow valve with a timer. The ratio of water flow to each sludge zone 4a-4e is adjusted according to the substrate composition of inflow water, the density | concentration of organic substance, etc.
[0010]
In the reactor 2, organic waste is decomposed by the presence of granule sludge made of anaerobic bacteria, and decomposed gas is generated. The generated gas is gathered separately in the GSS section 5 at the upper end of each of the divided sludge zones 4a to 4e, forms a gas phase section 5a in each, and reaches the water seal tank 7 through the generated gas recovery pipe 6. The amount of such generated gas is recorded by the gas meter 8 and sent to the necessary gas utilization facility. A part of the generated gas adheres to the granular sludge in the divided sludge zones 4a to 4e, reduces the apparent specific gravity, and accompanies the granular sludge and reaches the water surface of the GSS section 5. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and granulated sludge are separated, and the granular sludge recovers its original specific gravity and is submerged in the water. It is discharged out of the system via the sealing tank 7. The organic matter is decomposed and clarified, and water is discharged from the upper end of the reactor to the outside of the system via the treated water pipe 9.
[0011]
Since the gas pressure in the gas phase part 5 a of each GSS part 5 is different, the differential pressure may be adjusted in the water-sealed tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery in addition to the method using the water-sealed tank 7. For example, a pressure valve or the like may be used.
In the anaerobic treatment method of the present invention, the generated gas generated in each divided sludge zone can be recovered, so that the amount of generated gas per unit cross-sectional area of the reactor is reduced. At the same time, since the inflow raw water is dispensed, the liquid flow velocity of each GSS is also reduced. In particular, the gas amount per unit cross-sectional area of the reactor and the liquid linear velocity in the uppermost GSS section 5 on the side closest to the treated water pipe 9 through which treated water flows out as a supernatant liquid are reduced. Therefore, the outflow amount of granule sludge can be very reduced.
[0012]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
3 and 4 show an outline of the apparatus used for the experiment of the multi-stage anaerobic treatment method. The A series is a series that does not dispense raw water (conventional method), and the B series is a series that dispenses raw water (plan based on the present invention).
The experimental apparatus used here is a multistage UASB apparatus having eight divided sludge zones 4a to 4h for both the A series and the B series. An inclined baffle plate 3 is provided in the reactor 2 for each of the divided sludge zones 4a to 4h. The upper part of each of the divided sludge zones 4a to 4h has a GSS part 5 where bubbles and generated gas collect when the reaction starts, and a discharge port of the generated gas recovery pipe 6 communicating with the outside is provided at the upper end thereof. A treated water pipe 9 for discharging the supernatant liquid is connected to the upper part of the reactor 2.
In the A series, the raw water feed pipe 1 is connected to the lower end of the reactor 2, and in the B system, the pipes 1a to 1d for dispensing the raw water to the plurality of divided sludge zones 4a to 4h are respectively connected with a pump.
[0013]
The effective capacity of the liquid tank is 8 liters. The amount of gas generated from each GSS unit 5 was measured with a gas meter 8 provided in the water-sealed tank 7.
The temperature of the reactor 2 is controlled to 55 ° C. In addition, there were four places of B-type raw water injection, and the dispensing ratio was 4: 3: 2: 1 in order from the inflow side.
The raw water used was an alcohol distillation wastewater stock solution (COD 420 g / liter) diluted with tap water and adjusted to COD 3000 mg / liter, and further added with inorganic nutrient salts (nitrogen, phosphorus, magnesium, calcium, etc.). . As a replenishment of alkalinity, NaHCO 3 was added at 1500 mg / liter. The inflow COD concentration was set in four stages of 3000, 6000, 8000, and 10,000 mg / liter during the continuous experiment.
For seeding into the reactor 2, medium temperature UASB sludge was used as seed sludge.
[0014]
FIG. 5 shows changes in the experimental process and COD treatment results. In both systems, the organic substance load was gradually increased while observing the treated water COD concentration and the treated water organic acid concentration. The treatment was possible under almost the same load until the 100th day after the experiment. After about 100 days, when the COD load became 100 kg / m 3 .d, the treated water COD and treated water organic acid concentrations increased and the treated water pH decreased in the A series. In the A series in which raw water is not dispensed, when the load is high, a large amount of alkali is consumed by acid fermentation in the inflow side GSS, so the pH of the subsequent GSS also becomes low, and the methane fermentation treatment may become unstable. I understood. For this reason, the COD volumetric load was lowered to 75 kg / m 3 .d. On the other hand, in the B series, stable treatment was possible at a COD load of 100 kg / m 3 .d.
Table 1 shows a comparison of processing results in steady state.
[0015]
[Table 1]
Figure 0004080046
[0016]
In the B series based on the present invention, the COD load was 100 kg / m 3 .d, the COD removal rate was 95%, and the treated water VSS was 200 to 300 mg / liter treated water pH 7.5. On the other hand, in the conventional method of the A series, the COD load was 75 kg / m 3 .d, the COD removal rate was 85 to 90%, the treated water VSS was 400 to 500 mg / liter, and the treated water pH was 6.5. Thus, the method based on the present invention was able to obtain a stable COD removal rate with a higher COD load than the conventional method.
In the method based on the present invention of the B series, the COD treatment result of the treated water was stable even though the COD volumetric load was higher than that of the conventional method. Moreover, the treatment water VSS density | concentration was also lower than the conventional method, and the granular sludge amount in a UASB tank was able to be maintained stably.
[0017]
【The invention's effect】
In the present invention, raw water is divided into two or more, and water is passed through the lower part of each gas, liquid, and solid-liquid separation unit. Therefore, consumption of alkaline agent for pH adjustment that is required when the concentration of organic substances becomes high It is possible to provide an anaerobic treatment method and such an apparatus that can reduce the amount and perform a stable methane fermentation treatment even when the inflow organic matter concentration becomes low under a constant load condition and the amount of supplied wastewater increases. Stable organic matter processing results can be obtained even in the operation of UASB with high organic matter load.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an embodiment of an upward flow anaerobic treatment apparatus of the present invention.
FIG. 2 is a schematic view illustrating a conventional upward flow anaerobic treatment apparatus.
FIG. 3 is a diagram showing an outline of a conventional upward flow anaerobic treatment apparatus used in an experiment.
FIG. 4 is a diagram showing an outline of the upward flow anaerobic treatment apparatus of the present invention used in the experiment.
FIG. 5 is a diagram showing a change in experimental progress and COD processing results.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water feed pipe 1a-1d Dispensing pipe 2 Reactor 3 Baffle plates 4a-4h Division sludge zone 5 GGS part 5a Gas phase part 5b Bubble part 6 Generated gas recovery piping 7 Water seal tank 8 Gas meter 9 Treated water piping

Claims (4)

有機性排水をガス、液、固液分離部を多段に有する上向流嫌気性汚泥床装置により処理する方法において、各ガス、液、固液分離部の下部に原水の送液管を接続し、該送液管は、グラニュール汚泥中に位置し、該送液管により原水の一部を一番下のガス、液、固液分離部に供給し、原水の残りの部分を上の各ガス、液、固液分離部に供給するように分配し、その分配割合は原水の基質組成、有機物の濃度により調整して、各ガス、液、固液分離部の下部に通水することにより、pH調整用のアルカリ剤の消費量を軽減し、安定したメタン発酵を行わせることを特徴とする嫌気性処理方法。In a method of treating organic wastewater with an upflow anaerobic sludge bed system having multiple stages of gas, liquid, and solid-liquid separation units, a feed pipe for raw water is connected to the lower part of each gas, liquid, and solid-liquid separation unit. The liquid feed pipe is located in the granular sludge, and a part of the raw water is supplied to the lowermost gas, liquid, and solid-liquid separation part by the liquid feed pipe , and the remaining part of the raw water is supplied to each of the above. Distribute the gas, liquid, and solid-liquid separation unit so that the distribution ratio is adjusted according to the substrate composition of raw water and the concentration of organic matter, and pass through each gas, liquid, and solid-liquid separation unit. An anaerobic treatment method characterized by reducing consumption of an alkaline agent for pH adjustment and causing stable methane fermentation . 前記有機性排水のCOD濃度は3000mg/L〜10000mg/Lであることを特徴とする請求項1に記載の嫌気性処理方法。  2. The anaerobic treatment method according to claim 1, wherein a COD concentration of the organic waste water is 3000 mg / L to 10000 mg / L. 原水を、同時または間欠的に各ガス、液、固液分離部へ通水することを特徴とする請求項1又は請求項2に記載の嫌気性処理方法。  The anaerobic treatment method according to claim 1 or 2, wherein raw water is passed through each gas, liquid, and solid-liquid separation section simultaneously or intermittently. ガス、液、固液分離部を多段に有する上向流嫌気性汚泥床処理装置において、該ガス、液、固液分離部には各々発生ガスをガス利用設備に接続する配管を有し、各ガス液、固液分離部の下部に原水を導入する送液管が接続されていて、該送液管により原水の一部を一番下のガス、液、固液分離部に供給し、原水の残りの部分を上の各ガス、液、固液分離部に供給するように分配し、その分配割合は原水の基質組成、有機物の濃度によりその分配割合を調整して供給し、該送液管はグラニュール汚泥中に位置することにより、pH調整用のアルカリ剤の消費量を軽減し、安定したメタン発酵を行わせることを特徴とする上向流嫌気性処理装置。In the upward flow anaerobic sludge bed treatment apparatus having gas, liquid, and solid-liquid separation sections in multiple stages, each of the gas, liquid, and solid-liquid separation sections has pipes that connect the generated gas to gas utilization equipment, A liquid feed pipe for introducing raw water is connected to the lower part of the gas liquid and solid-liquid separation part, and a part of the raw water is supplied to the lowermost gas, liquid and solid-liquid separation part by the liquid feed pipe. The remaining portion is distributed so as to be supplied to each gas, liquid, and solid-liquid separation unit, and the distribution ratio is adjusted by adjusting the distribution ratio according to the substrate composition of the raw water and the concentration of organic substances, An upflow anaerobic treatment apparatus characterized by reducing the consumption of alkaline agent for pH adjustment and allowing stable methane fermentation to be performed by positioning the pipe in the granular sludge.
JP1273998A 1998-01-26 1998-01-26 Anaerobic treatment method and apparatus Expired - Lifetime JP4080046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273998A JP4080046B2 (en) 1998-01-26 1998-01-26 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273998A JP4080046B2 (en) 1998-01-26 1998-01-26 Anaerobic treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH11207384A JPH11207384A (en) 1999-08-03
JP4080046B2 true JP4080046B2 (en) 2008-04-23

Family

ID=11813807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273998A Expired - Lifetime JP4080046B2 (en) 1998-01-26 1998-01-26 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4080046B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955431B2 (en) * 2000-09-08 2007-08-08 株式会社荏原製作所 Anaerobic treatment method and apparatus
JP2003320390A (en) * 2001-06-29 2003-11-11 Asahi Beer Eng:Kk Wastewater treatment apparatus
JP5055669B2 (en) * 2001-07-23 2012-10-24 栗田工業株式会社 Biological denitrification method
WO2003042116A1 (en) * 2001-11-15 2003-05-22 Ebara Corporation Anaerobic treatment apparatus
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus
EP1806324A1 (en) 2006-01-05 2007-07-11 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
EP1806323A1 (en) * 2006-01-05 2007-07-11 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
JP5114780B2 (en) * 2008-08-12 2013-01-09 水ing株式会社 Anaerobic treatment method and apparatus
JP5260422B2 (en) * 2009-07-03 2013-08-14 オルガノ株式会社 Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP5600525B2 (en) * 2010-08-31 2014-10-01 株式会社神鋼環境ソリューション Upflow type reaction tank, water treatment method using the reaction tank, and water treatment apparatus provided with the reaction tank

Also Published As

Publication number Publication date
JPH11207384A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP0900178B1 (en) Process and apparatus for the treatment of flowable waste
JP5114780B2 (en) Anaerobic treatment method and apparatus
US6063279A (en) Waste water treatment method and equipment being able to treat hydrogen peroxide, phosphorus, fluorine and organic-matters with high efficiency
JP5043671B2 (en) Biological denitrification method and apparatus
CN111807608A (en) Medical sewage treatment system and treatment method thereof
WO2006041128A1 (en) Organic wastewater treatment method and apparatus
JP4080046B2 (en) Anaerobic treatment method and apparatus
CN112479476A (en) Advanced sewage treatment equipment
JP3999036B2 (en) Method and apparatus for treating organic wastewater
CN110482801B (en) Integrated biological synchronous denitrification and decalcification device for wastewater and method thereof
CN101618908A (en) Denitrification processing method and denitrification processing device
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
JP2006142302A (en) Anaerobic treatment method and apparatus
JP4162234B2 (en) Anaerobic treatment equipment
JP3955431B2 (en) Anaerobic treatment method and apparatus
JP7144999B2 (en) Water treatment method and water treatment equipment
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
CN104860469B (en) Oil refining sewage integrated combination treatment system and oil refining sewage integrated combination treatment method
CN210825858U (en) Integrated waste water biological synchronous denitrification and calcium removal device
JP2003334585A (en) Treatment method for organic wastewater and treatment apparatus therefor
CA2251890C (en) Process and apparatus for the treatment of flowable waste
JP3700935B2 (en) Anaerobic treatment method and apparatus
CN220887238U (en) Coupling removes hard device based on normal position system alkali
CN107344806A (en) A kind of coal liquifaction RO concentrated waters processing system and its processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term