JP2002079291A - Anaerobic treatment method and apparatus - Google Patents

Anaerobic treatment method and apparatus

Info

Publication number
JP2002079291A
JP2002079291A JP2000273464A JP2000273464A JP2002079291A JP 2002079291 A JP2002079291 A JP 2002079291A JP 2000273464 A JP2000273464 A JP 2000273464A JP 2000273464 A JP2000273464 A JP 2000273464A JP 2002079291 A JP2002079291 A JP 2002079291A
Authority
JP
Japan
Prior art keywords
liquid
gas
treatment
sludge
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000273464A
Other languages
Japanese (ja)
Other versions
JP3955431B2 (en
Inventor
Yasuhiro Honma
康弘 本間
Toshihiro Tanaka
俊博 田中
Kazuaki Shimamura
和彰 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000273464A priority Critical patent/JP3955431B2/en
Publication of JP2002079291A publication Critical patent/JP2002079291A/en
Application granted granted Critical
Publication of JP3955431B2 publication Critical patent/JP3955431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic treatment method not obstructing the good contact of sludge with a substrate to effectively put the whole of a sludge bed to practical use at the time of treatment and enabling stable treatment even if COD load is high, and an anaerobic treatment apparatus adapted to this treatment method. SOLUTION: In a method for anaerobically treating organic wastewater or waste in an ascending flow anaerobic sludge bed treatment apparatus having gas, liquid, solid-liquid separation parts in a multistage fashion, the gas, liquid and solid-liquid separations parts, which are set to an angle of 35 deg. or less with respect to the side wall of the apparatus main body are attached within a range of 50% of the upper part of the apparatus, and raw water to be treated is supplied directly or after diluted so that the passing speed of inflow water becomes 1-5 m/h. The gas, liquid and solid-liquid separations parts are preferably formed by baffle plates each of which has an occupying area becoming 1/2 or more the cross section of the apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の工場、下
水、し尿、畜産業施設等から排出される有機性の廃水又
は有機性の廃棄物等を対象として、これ等の廃棄物等を
無害化する嫌気性汚泥床処理方法及び装置に関し、更に
詳しくは、特に、ガス・液・固液分離部(以下、「GS
S」とも記す)を多段に有する上向流嫌気性汚泥床処理
方法及び処理装置に関する。
The present invention is directed to organic wastewater or organic waste discharged from various factories, sewage, human waste, livestock facilities, etc., and makes such waste harmless. More specifically, the present invention relates to a method and an apparatus for treating an anaerobic sludge bed which is converted into a gas-liquid-solid-liquid separation section (hereinafter referred to as “GS
S ") in multiple stages.

【0002】[0002]

【従来の技術】有機性の廃水あるいは有機性の廃棄物等
は、嫌気性処理によって分解処理されることがある。こ
のような分解処理方法として、例えば、上向流嫌気性汚
泥床法(以下、「UASB」とも記す)が挙げられ、こ
の処理法は、近年普及してきた方法で、メタン菌等の嫌
気性菌をグラニュール状に造粒化することにより、リア
クター内のメタン菌の濃度を高濃度に維持できるという
特徴があり、このため、廃水中の有機物の濃度が相当程
度に高い場合であっても、効率よく処理することができ
ることが知られている。上記の処理法を具現化した装置
にあっては、重クロム酸カリウムを酸化剤として用いて
測定したCODCr(以下、単に「COD」とも記す)の
容積負荷が10〜15kg/m3 /dの廃水、廃棄物で
あっても、高率よく運転できるという特徴のあることが
認められている。
2. Description of the Related Art Organic wastewater or organic waste may be decomposed by anaerobic treatment. An example of such a decomposition treatment method is an upflow anaerobic sludge bed method (hereinafter, also referred to as “UASB”). This treatment method is a method that has become widespread in recent years and is an anaerobic bacteria such as methane bacteria. By granulating into granules, there is a feature that the concentration of methane bacteria in the reactor can be maintained at a high concentration, so even if the concentration of organic matter in the wastewater is considerably high, It is known that processing can be performed efficiently. In an apparatus embodying the above-described treatment method, the volume load of COD Cr (hereinafter, also simply referred to as “COD”) measured using potassium dichromate as an oxidizing agent is 10 to 15 kg / m 3 / d. It is recognized that even wastewater and waste can be operated at a high efficiency.

【0003】有機性廃水および有機性廃棄物を対象とし
た嫌気性処理に用いる嫌気性菌としては、環境温度によ
り大きく分けて2種類の菌が挙げられる。例えば、環境
温度が30〜35℃の中温度域を至適温度とする中温嫌
気性菌、50〜55℃の高温域を至適温度とする高温嫌
気性菌等が挙げられる。一方、これらの嫌気性菌の機能
を利用した、上向流嫌気性汚泥床法(UASB)の場
合、分解しようとする有機物の負荷量が高くなると(例
えば、COD容積負荷が15kg/m3 /d以上)、発
生するガス量が多くなる。この際、リアクター内からの
ガス抜きを随時確実に行うことが不可欠となり、ガス排
出時の吹き出し等により、グラニュール状の汚泥の流出
が目立つ様になり、リアクター内にグラニュール状の汚
泥を留めておくことが難しくなる。
[0003] As anaerobic bacteria used for anaerobic treatment of organic wastewater and organic waste, there are roughly two types of bacteria depending on the environmental temperature. For example, there are mesophilic anaerobic bacteria whose optimum temperature is in a middle temperature range of 30 to 35 ° C, and high temperature anaerobic bacteria whose optimum temperature is in a high temperature range of 50 to 55 ° C. On the other hand, in the case of the upflow anaerobic sludge bed method (UASB) utilizing the function of these anaerobic bacteria, when the load of the organic substance to be decomposed is increased (for example, the COD volume load is 15 kg / m 3 / d or more), the amount of generated gas increases. At this time, it is essential to release the gas from the reactor at any time, and the outflow of the granular sludge becomes prominent due to the blowout at the time of gas discharge, and the granular sludge is retained in the reactor. It becomes difficult to keep.

【0004】このような状態になった場合の処理対策と
して、処理装置それ自体を多段にし、発生ガスを分散し
て系外に排出する方法が提案されている。図2は、この
ような提案の一例で、多段にした場合の嫌気性処理装置
の例を模式図で示すものである(文献:G.Lettinga(1
995)Anaerrobic digestion and wastewater treatment-
system.Antonie van Leeuwenhoek 67:3-28 )。
[0004] As a countermeasure against such a situation, a method has been proposed in which the processing apparatus itself is multi-staged, and the generated gas is dispersed and discharged out of the system. FIG. 2 is an example of such a proposal, and schematically shows an example of an anaerobic treatment apparatus in a multi-stage configuration (reference: G. Letttinga (1)).
995) Anaerrobic digestion and wastewater treatment-
system.Antonie van Leeuwenhoek 67: 3-28).

【0005】図2において、装置の下端に原水流入管1
を接続した筒状のリアクター2の内部に複数の邪魔板3
を配設し、スラッジゾーンを区分した各スラッジゾーン
4a〜4eを、それぞれの所定の箇所に配して多段に形
成している。各スラッジゾーン4a〜4eの各上端コー
ナには、GSS部5(5a、5b)を形成し、そのGS
S部5の内部で反応が始まると、反応ガスがGSS部5
に集積する。各気相部5aには、発生ガス回収配管6が
接続している。さらに、発生ガス回収配管6は、外部の
水封槽7に通じている。この文献においては、リアクタ
ー2の側壁と邪魔板3の角度、通水速度及び原水の希釈
操作についての記載は無く、リアクター2の側壁と邪魔
板3の角度は、文献の図面では56度となっている。な
お、前記の角度は、邪魔板3が下向きであるから、側壁
に対して上向きの大きい角度と下向きの小さい角度の2
つがあるが、この場合小さい方の角度で表わす。
In FIG. 2, a raw water inflow pipe 1 is provided at the lower end of the apparatus.
Baffle plates 3 inside cylindrical reactor 2
Are arranged, and each of the sludge zones 4a to 4e obtained by dividing the sludge zone is arranged at a predetermined position to form a multi-stage. A GSS portion 5 (5a, 5b) is formed at each upper end corner of each of the sludge zones 4a to 4e, and the GS portion is formed.
When the reaction starts inside the S section 5, the reaction gas is supplied to the GSS section 5.
To accumulate. A generated gas recovery pipe 6 is connected to each gas phase section 5a. Further, the generated gas recovery pipe 6 communicates with an external water seal tank 7. In this document, there is no description about the angle between the side wall of the reactor 2 and the baffle plate 3, the water flow rate, and the dilution operation of the raw water, and the angle between the side wall of the reactor 2 and the baffle plate 3 is 56 degrees in the drawing of the document. ing. In addition, since the baffle plate 3 is downward, the angle is two angles of a large upward angle and a small downward angle with respect to the side wall.
In this case, the smaller angle is used.

【0006】また、特開平11−207384「嫌気性
処理方式および装置」に記載されている、ガス、液、固
液分離部を多段に有する上向流嫌気性汚泥床処理装置
(本明細書の図2参照)においては、区分スラッジゾー
ン4a〜4eに原水を分注し、各区分スラッジゾーン毎
に、そこで発生するガスを回収できるため、リアクター
の単位断面積当たりの発生ガス量が少なくなり、同時
に、流入原水を分注するため、各GSS部の液の線流速
(通水速度)も小さくなり、特に、最上段のGSS部に
おけるリアクターの単位面積当たりのガス量、通水速度
が小さくなるため、グラニュール汚泥の系外への流出量
が非常に少なくなると言うことができる。特開平11−
207384では、リアクター2の側壁と邪魔板3の角
度は図面では約50度であり、通水速度を低くすること
の効果について記載されている。
Also, an upward anaerobic sludge bed treatment apparatus having multiple stages of gas, liquid, and solid-liquid separation units described in Japanese Patent Application Laid-Open No. H11-207384 "Anaerobic treatment method and apparatus" In FIG. 2), raw water is dispensed into the divided sludge zones 4a to 4e, and the gas generated there can be collected for each of the divided sludge zones, so that the amount of gas generated per unit cross-sectional area of the reactor is reduced. At the same time, since the inflowing raw water is dispensed, the linear flow velocity (flow rate) of the liquid in each GSS section also decreases, and in particular, the gas amount per unit area of the reactor and the flow rate in the uppermost GSS section decrease. Therefore, it can be said that the amount of the granular sludge flowing out of the system becomes extremely small. JP-A-11-
In 207384, the angle between the side wall of the reactor 2 and the baffle plate 3 is about 50 degrees in the drawing, and describes the effect of reducing the water flow rate.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、多段化
した上向流嫌気性汚泥床法(UASB)の装置にあって
は、なお、以下に記載するような、問題点がある。 (a)GSSの設置角度が緩やかな場合には、GSS直
上部に堆積汚泥によるデッドスペースが生じ、リアクタ
ー内の汚泥層全体を必ずしも有効に使えない。 (b)GSSを装置下部まで取り付けた場合、汚泥層の
良好な流動を妨げ、汚泥と基質の接触が不十分もしくは
不良となる。 (c)通水速度が低い場合には、短絡流が生じるため
に、また、通水速度が高い場合には、汚泥の流出につな
がるために、処理結果を悪化させる原因となる。
However, the multi-stage apparatus of the upflow anaerobic sludge bed method (UASB) has the following problems. (A) When the installation angle of the GSS is gentle, a dead space due to the accumulated sludge occurs directly above the GSS, and the entire sludge layer in the reactor cannot always be used effectively. (B) When the GSS is attached to the lower part of the apparatus, good flow of the sludge layer is prevented, and the contact between the sludge and the substrate is insufficient or poor. (C) When the water flow rate is low, a short-circuit flow occurs, and when the water flow rate is high, it leads to the outflow of sludge, which deteriorates the treatment result.

【0008】(d)区分スラッジゾーンに原水を分注す
る方法の場合、流入原水を分注することにより、各GS
Sの液の線流速も小さくなり、各区分のスラッジゾーン
における良好な流動状態が得られないため、汚泥と基質
の良好な接触がなされない。このような実情に鑑み、本
発明は、汚泥層の良好な流動状態、即ち、汚泥と基質の
良好な接触を妨げず、汚泥層全体を処理に際して有効に
活用することにより、COD負荷が高い場合にあって
も、安定した処理を行うことのできる嫌気性処理方法
と、この処理方法を効果的に実施することができる処理
装置の提供を目的とする。
(D) In the case of the method of dispensing raw water into the divided sludge zone, each GS is dispensed by distributing inflow raw water.
The linear flow velocity of the S liquid is also low, and a good flow state in the sludge zone of each section cannot be obtained, so that good contact between the sludge and the substrate cannot be made. In view of such circumstances, the present invention provides a good fluidized state of the sludge layer, that is, a high COD load by effectively utilizing the entire sludge layer during treatment without preventing good contact between the sludge and the substrate. However, an object of the present invention is to provide an anaerobic treatment method capable of performing a stable treatment and a treatment apparatus capable of effectively performing the treatment method.

【0009】[0009]

【課題を解決するための手段】本発明は、以下に記載す
る手段によって前記課題を解決した。 (1)有機性廃水または廃棄物をガス、液及び固液分離
部を多段に有する上向流嫌気性汚泥床処理装置により、
嫌気処理する方法において、前記装置本体側壁との角度
が35度以下である該ガス、液及び固液分離部を装置の
上部50%の範囲内に取り付け、かつ、被処理原水を直
接、若しくは希釈処理を行うことを特徴とする有機性廃
水または廃棄物の嫌気性処理方法。
The present invention has solved the above-mentioned problems by the following means. (1) Organic wastewater or waste is treated by an upflow anaerobic sludge bed treatment apparatus having multiple stages of gas, liquid and solid-liquid separation sections.
In the anaerobic treatment method, the gas, liquid, and solid-liquid separation part having an angle of 35 degrees or less with the side wall of the apparatus main body is installed within the upper 50% of the apparatus, and the raw water to be treated is directly or diluted. An anaerobic treatment method for organic wastewater or waste, comprising performing treatment.

【0010】(2)ガス、液及び固液分離部を多段に有
する上向流嫌気性汚泥床処理装置において、装置本体側
壁との角度が35度以下である該ガス、液及び固液分離
部を装置の上部50%の範囲内に取り付け、直接、若し
くは希釈処理を行った被処理原水を流入する供給管を設
けたことを特徴とする嫌気性処理装置。 (3)各占有面積が装置断面積の2分の1以上となる邪
魔板により形成されるガス、液及び固液分離部を有する
ことを特徴とする前記(2)記載の嫌気性処理装置。
(2) In an upward flow anaerobic sludge bed treatment apparatus having multiple stages of gas, liquid and solid-liquid separation sections, the gas, liquid and solid-liquid separation section whose angle with the side wall of the apparatus main body is 35 degrees or less. An anaerobic treatment apparatus characterized in that a supply pipe for inflow of raw water to be treated directly or diluted has been provided within the upper 50% of the apparatus. (3) The anaerobic treatment apparatus according to (2), further including a gas, liquid, and solid-liquid separation section formed by a baffle plate having an occupied area equal to or more than half of the apparatus cross-sectional area.

【0011】本発明においては、上記の文献及び特開平
11−207384の開示とは異なり、「リアクター2
の側壁と邪魔板3のなす角度を35度以下とし、原水を
処理水の循環液や系外から供給する希釈水等により、必
要に応じて適宜希釈を行ない、一貫して、流入水のリア
クター2内部における装置断面積基準の通水速度が1〜
5m/hとなるように調節する」ことにより、汚泥層の
良好な流動状態を創り出すこと、及び、グラニュール汚
泥の増殖に絶大な効果がある。
In the present invention, unlike the above document and the disclosure of JP-A-11-207384, "Reactor 2
The angle between the side wall of the baffle 3 and the baffle plate 3 is 35 degrees or less, and the raw water is appropriately diluted with the circulating liquid of the treated water or the dilution water supplied from outside the system as needed, and the reactor of the inflow water is consistently manufactured. 2 The water flow rate based on the device cross-sectional area inside is 1 to
By adjusting the flow rate to 5 m / h, there is a great effect on creating a good fluidized state of the sludge layer and on the growth of the granular sludge.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を、図面を参
照して説明するが、本発明はこれに限定されない。図1
は、嫌気性処理方法を実施するのに好ましい本発明の上
向流嫌気性処理装置の一形態の概要を例示した図であ
る。図1において、リアクター2の上方部は実質閉塞状
態にあり、下端部には原水送液管1が接続する。リアク
ター2の内部、左右両側壁には、相対向する据え付け位
置を互いにずらした邪魔板3の一方の端部(リアクター
2の側壁側)を固設し、他方の端部を反対側の側壁方向
に向かって斜めに下降しながら伸長する邪魔板3を設置
している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG.
FIG. 1 is a diagram illustrating an outline of an embodiment of an upflow anaerobic treatment apparatus of the present invention, which is preferable for performing an anaerobic treatment method. In FIG. 1, the upper part of the reactor 2 is in a substantially closed state, and the raw water feed pipe 1 is connected to the lower end. One end (side wall of the reactor 2) of the baffle plate 3 whose installation positions facing each other are shifted from each other is fixed to the left and right side walls inside the reactor 2, and the other end is directed toward the opposite side wall. A baffle plate 3 that extends obliquely downward toward is installed.

【0013】この邪魔板3は、上下方向位置に2箇所、
左右交互に設置され、リアクター2の側壁との間に、そ
れぞれ鋭角状となる区分スラッジゾーン4a、4bを形
成する。リアクター2の側壁と邪魔板3との為す角度θ
は、35度以下の鋭角とされ、占有面積が装置断面積の
1/2以上とされている。35度を越える角度の場合に
は、スラッジゾーン4a、4bの邪魔板3にグラニュー
ル汚泥が沈積して流動性が不十分となり、30Kg/m
3 /d以上の高負荷処理は困難となる。なお、邪魔板の
占有断面積がリアクター断面積の1/2以下だと、発生
ガスの捕捉が不十分となり、気液固の分離に不具合が生
じる。つまりリアクターの中心よりガスが上方へ抜けて
しまい、後記のGSS部5にガスを十分に集積させるこ
とができなくなる。区分スラッジゾーン4a、4bの上
部は、GSS部5を形成している。このGSS部5(5
a、5b)は、リアクター2の上部側半分の位置に設置
する。反応が始まると、発生ガスが集積する気相部5a
には、外部と通じる発生ガス回収配管6の排出口を設け
ている。
The baffle plate 3 is provided at two positions in the vertical direction,
The sludge zones 4a and 4b which are alternately installed on the left and right sides and are formed at acute angles are formed between the side walls of the reactor 2 respectively. Angle θ between side wall of reactor 2 and baffle plate 3
Has an acute angle of 35 degrees or less, and the occupied area is 1 / or more of the sectional area of the device. If the angle exceeds 35 degrees, granule sludge will be deposited on the baffle plate 3 in the sludge zones 4a and 4b, and the fluidity will be insufficient.
High load processing of 3 / d or more becomes difficult. If the occupied cross-sectional area of the baffle plate is less than half the cross-sectional area of the reactor, the generated gas will be insufficiently trapped, causing a problem in gas-liquid-solid separation. That is, the gas escapes upward from the center of the reactor, and the gas cannot be sufficiently accumulated in the GSS unit 5 described later. The upper portions of the divided sludge zones 4a and 4b form a GSS section 5. This GSS part 5 (5
a, 5b) are installed in the upper half of the reactor 2. When the reaction starts, the gas phase 5a where the generated gas accumulates
Is provided with an outlet of the generated gas recovery pipe 6 communicating with the outside.

【0014】なお、気相部5aから接続されている発生
ガス回収配管6の吐出口は、水を充填した水封槽7の水
中内で開口している。開口位置は、水圧が異なる適宜な
水深位にあり、水封槽7には発生ガス回収配管6から吐
出されたガス流量を測定するガスメータ8を設けてあ
る。ガスメータ8の先には、斯様に吐出されたガスを再
利用する、図示しない所定の利用施設が設けられてい
る。また、リアクター2の上端には、上澄液を排出する
処理水配管9が開口している。
The discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is open in the water of a water sealing tank 7 filled with water. The opening position is at an appropriate depth of water where the water pressure is different, and a gas meter 8 for measuring the flow rate of gas discharged from the generated gas recovery pipe 6 is provided in the water sealing tank 7. At the end of the gas meter 8, a predetermined utilization facility (not shown) for reusing the gas thus discharged is provided. A treated water pipe 9 for discharging the supernatant is open at the upper end of the reactor 2.

【0015】リアクター2は、嫌気性菌からなるグラニ
ュール汚泥を投入して使用する。本発明の対象となる嫌
気性処理は、30℃〜35℃を至適温度とした中温メタ
ン発酵処理、50℃〜55℃を至適温度とした高温メタ
ン発酵処理など、全ての温度範囲の嫌気性処理を対象と
している。嫌気性菌からなるグラニュール汚泥を投入
し、有機性廃棄物などを含んだ原水を原水送液管1から
リアクター2ヘ導入する。原水を処理水の循環液や系外
から供給する希釈水等により、必要に応じて適宜希釈を
行い、流入水のリアクター2内部における通水速度が、
1〜5m/hとなるように調節する。
The reactor 2 is used by charging granule sludge comprising anaerobic bacteria. The anaerobic treatment targeted by the present invention is anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment at an optimum temperature of 30 ° C to 35 ° C and a high temperature methane fermentation treatment at an optimum temperature of 50 ° C to 55 ° C. It is intended for sexual treatment. Granular sludge composed of anaerobic bacteria is charged, and raw water containing organic waste and the like is introduced from the raw water feed pipe 1 to the reactor 2. The raw water is appropriately diluted with the circulating liquid of the treated water or the dilution water supplied from outside the system as necessary, and the flow rate of the inflow water inside the reactor 2 is reduced as follows.
Adjust so as to be 1 to 5 m / h.

【0016】リアクター2内では、嫌気性菌からなるグ
ラニュール汚泥の介在によって、有機性廃棄物が分解
し、分解ガスが発生する。この発生ガスは、各区分スラ
ッジゾーン4a〜4b上端のGSS部に、それぞれ別れ
て集まり、それぞれ別個に気相部5aを形成し、発生ガ
ス回収配管6を通って水封槽7に至る。こうした発生ガ
スは、気泡を形成して水面気泡部5bに一時的に滞留す
る。水面気泡部5bに集合した前記気泡は、やがて破裂
し、発生ガスとグラニュール汚泥とが分離し、グラニュ
ール汚泥は当初の比重に復帰して水中に潜入し、発生し
たガスは、発生ガス回収配管6から水封槽7を経由し
て、系外に排出される。有機物が分解して清澄になった
水は、リアクター2の上端から処理水配管9を経由して
系外に排出される。
In the reactor 2, organic waste is decomposed by the interposition of granule sludge made of anaerobic bacteria, and decomposed gas is generated. The generated gas is separately collected in the GSS section at the upper end of each of the divided sludge zones 4a to 4b, separately forms a gas phase section 5a, and reaches the water sealing tank 7 through the generated gas recovery pipe 6. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The bubbles gathered in the water-surface bubble portion 5b explode soon, and the generated gas and the granular sludge are separated, and the granular sludge returns to its original specific gravity and infiltrates into the water. It is discharged out of the system from the pipe 6 via the water seal tank 7. The water that has been clarified by the decomposition of the organic matter is discharged from the upper end of the reactor 2 through the treated water pipe 9 to the outside of the system.

【0017】各GSS部5の気相部5aのガス圧は、互
いに異なることから、その差圧は水封槽7で調整すると
よい。原水送液側に近い順に水封圧を高く保持する必要
がある。ガス回収の圧力の調整は、水封槽7を使用する
以外にも、多くの方法があり、例えば、圧力弁等を使用
すること等も挙げられる。本発明の嫌気性処理方法にお
いては、各区分スラッジゾーン毎に、そこで発生する発
生ガスを回収することができるため、リアクターの単位
断面積当たりの発生ガス量が少なくなる。特に、処理水
を流出させる処理水配管9に最も近い所では、リアクタ
ーの単位断面積当たりのガス量が小さくなる。そのた
め、グラニュール汚泥の系外流出量を極く少なくするこ
とが可能となる。
Since the gas pressures of the gas phase portions 5a of the respective GSS portions 5 are different from each other, the pressure difference is preferably adjusted in the water sealing tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water supply side. There are many methods for adjusting the pressure of the gas recovery besides using the water sealing tank 7, and for example, use of a pressure valve or the like can be mentioned. In the anaerobic treatment method of the present invention, since the generated gas generated in each of the divided sludge zones can be recovered, the amount of generated gas per unit sectional area of the reactor is reduced. In particular, the gas amount per unit cross-sectional area of the reactor becomes small at the place closest to the treated water pipe 9 for discharging the treated water. Therefore, it is possible to minimize the amount of granule sludge flowing out of the system.

【0018】[0018]

【実施例】以下において、本発明を実施例により更に具
体的に説明するが、本発明は、この実施例により限定さ
れるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 図4、図5は、多段型嫌気性処理方法の実験に用いた装
置の概要を示す。A系列は、傾斜する邪魔板3を5箇取
り付け、装置側壁と邪魔板3との角度(θ)を45度と
した系列(従来法)を示す。これを図5に示す。B系列
は、傾斜する邪魔板3を2箇取り付け、装置側壁と邪魔
板3との角度(θ)を30度とし、装置の下部1/2の
部所には邪魔板3を取り付けない系列(本発明に基づ
く)を示す。これを図4に示す。A系列、B系列とも、
リアクターの断面積は、0.16m2 、高さ6.25m
(容量1m3 )、GSS断面積は0.112m2 (リア
クター断面積の70%)で実験した。原水は、リアクタ
ー2の下端に接続した原水送液管1より流入し、リアク
ター2上部の処理水管9より処理水を得る。
Embodiment 1 FIGS. 4 and 5 show an outline of an apparatus used in an experiment of a multistage anaerobic treatment method. The A series shows a series (conventional method) in which five inclined baffle plates 3 are attached and the angle (θ) between the device side wall and the baffle plate 3 is 45 degrees. This is shown in FIG. In the B series, two inclined baffle plates 3 are attached, the angle (θ) between the side wall of the device and the baffle plate 3 is 30 degrees, and the baffle plate 3 is not attached to the lower half of the device ( (According to the invention). This is shown in FIG. For both the A and B series,
The reactor has a cross-sectional area of 0.16 m 2 and a height of 6.25 m
(Capacity: 1 m 3 ), GSS cross section: 0.112 m 2 (70% of reactor cross section). Raw water flows in from a raw water feed pipe 1 connected to a lower end of the reactor 2 and obtains treated water from a treated water pipe 9 above the reactor 2.

【0020】リアクター2内には、有機物を分解、浄化
する際に発生したガスが集まるGSS部5を有し、その
上端には外部と通じる発生ガス回収配管6の排出口を設
けてある。液層部の容量は、1m3 である。各GSS部
5より発生したガスの量は、水封槽7に設けたガスメー
タ8で計測した。リアクター2内の水温は、35℃にな
るように温度制御されている。原水には、糖質系廃水の
酸発酵処理水(COD 7000mg/リットル)に、
無機栄養塩類(窒素、リン等)を添加したものを用い
た。処理水を循環液として、原水と共にリアクター2へ
流入させることで、通水速度を2m/hに設定した。原
水流量と処理水循環水量の割合をCOD負荷に応じて設
定した。
The reactor 2 has a GSS section 5 in which gas generated when organic matter is decomposed and purified is collected, and an upper end thereof is provided with an outlet of a generated gas recovery pipe 6 communicating with the outside. The volume of the liquid layer is 1 m 3 . The amount of gas generated from each GSS unit 5 was measured by a gas meter 8 provided in a water sealing tank 7. The temperature of the water in the reactor 2 is controlled so as to be 35 ° C. In the raw water, the acid fermentation treated water (COD 7000 mg / L) of the carbohydrate wastewater,
What added inorganic nutrients (nitrogen, phosphorus, etc.) was used. The flow rate was set to 2 m / h by flowing the treated water into the reactor 2 together with the raw water as a circulating liquid. The ratio between the raw water flow rate and the treated water circulating water amount was set according to the COD load.

【0021】図6に実験経過とCODの処理成績の変化
を示す。両系列とも処理水COD濃度を見ながら、有機
物負荷量を徐々に上げた。実験経過後、約120日目ま
では略々同じ負荷量で処理できた。約120日以降、C
OD負荷が30Kg/m3 /d以上になると、A系列で
は処理水CODが高くなった。傾斜する邪魔板を5個取
り付け、装置側壁と邪魔板との角度を45度としたA系
列では、GSS部5直上部に堆積汚泥によるデッドスペ
ースが生じ、汚泥層全体を有効に使えないこと、また、
GSS部5を装置下部まで取り付けることで、汚泥層の
良好な流動を妨げ、汚泥と基質の接触が不良となるた
め、処理が不安定になった。このため、COD負荷を2
5Kg/m3 /dに下げた。一方、B系列では、COD
負荷が35Kg/m3 /dにおいて、安定した処理がで
きた。第1表に安定状態における処理成績の比較を示
す。
FIG. 6 shows the progress of the experiment and the change in the COD processing results. In both systems, the organic matter load was gradually increased while monitoring the COD concentration of the treated water. After the experiment, it was possible to treat with approximately the same load up to about 120 days. After about 120 days, C
When the OD load was 30 kg / m 3 / d or more, the treated water COD was higher in the A series. In the A series in which five inclined baffle plates are attached and the angle between the device side wall and the baffle plates is 45 degrees, dead space due to accumulated sludge is generated immediately above the GSS unit 5, and the entire sludge layer cannot be used effectively. Also,
By attaching the GSS unit 5 to the lower part of the apparatus, good flow of the sludge layer was prevented, and the contact between the sludge and the substrate became poor, so that the treatment became unstable. Therefore, the COD load is reduced by 2
Reduced to 5 kg / m 3 / d. On the other hand, in the B series, COD
When the load was 35 kg / m 3 / d, stable processing was possible. Table 1 shows a comparison of the processing results in the stable state.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明に基づくB系列では、COD負荷3
5Kg/m3 /d、COD除去率90%、処理水VSS
300〜400mg/リットルであった。一方、A系列
の従来法では、COD負荷25Kg/m3 /d、COD
除去率90%、処理水VSS300〜400mg/リッ
トルであった。このように、本発明に基づく方法では、
従来法に比べて高いCOD除去率を得ることができた。
In the B series according to the present invention, COD load 3
5 kg / m 3 / d, COD removal rate 90%, treated water VSS
It was 300-400 mg / liter. On the other hand, in the conventional method of the A series, the COD load is 25 kg / m 3 / d, and the COD load is 25 kg / m 3 / d.
The removal rate was 90%, and the treated water VSS was 300 to 400 mg / liter. Thus, in the method according to the invention,
A higher COD removal rate than the conventional method could be obtained.

【0024】B系列の本発明に基づく方法では、高いC
OD負荷で運転しているにも拘らず、処理水COD処理
成績は安定していた。また、処理水VSS濃度は、従来
法と略々同じであり、従来法に比べGSS部の数が少な
い場合でも上向流嫌気性汚泥床法(UASB)槽内にお
けるグラニュール汚泥量も安定していた。これは、処理
水を流出させる処理水配管9に最も近い所では、リアク
ターの単位断面積当たりのガス量が小さくなり、グラニ
ュール汚泥の系外流出量が少なかったためである。B系
列を用いて、原水COD濃度7000g/リットル、C
OD負荷30kg/m3 /d、通水速度0.5〜7m/
hで処理を行ったときの定常状態における処理成績の比
較を第2表に示す。
In the method according to the invention for the B series, a high C
Despite the operation at the OD load, the COD treatment results of the treated water were stable. Further, the VSS concentration of the treated water is substantially the same as that of the conventional method, and even when the number of GSS parts is smaller than that of the conventional method, the amount of granular sludge in the upflow anaerobic sludge bed method (UASB) tank is stable. I was This is because the amount of gas per unit cross-sectional area of the reactor was small at the location closest to the treated water pipe 9 for allowing the treated water to flow out, and the amount of granular sludge flowing out of the system was small. Using series B, raw water COD concentration 7000g / liter, C
OD load 30kg / m 3 / d, water flow rate 0.5-7m /
Table 2 shows a comparison of the processing results in the steady state when the processing was performed in h.

【0025】[0025]

【表2】 [Table 2]

【0026】本発明に基づくB系列では、COD除去率
85%以上の安定した処理を行うためには、通水速度を
1〜5m/h、好ましくはCOD除去率90%以上とす
る場合には通水速度を2〜3m/hに設定する必要があ
る。これは、通水速度が1m/hより少ない場合には、
汚泥層で短絡流が生じるため、汚泥層全体を有効に使用
し得ないためである。また、通水速度が5m/hより高
い場合には、処理水のVSSが1500mg/リットル
以上となり、リアクター2内の汚泥量を安定して維持で
きないために、処理性が悪化したことによる。
In the B series according to the present invention, in order to perform a stable treatment with a COD removal rate of 85% or more, when the water flow rate is 1 to 5 m / h, preferably a COD removal rate of 90% or more, It is necessary to set the water flow speed to 2-3 m / h. This means that if the water flow rate is less than 1 m / h,
This is because a short-circuit flow occurs in the sludge layer, so that the entire sludge layer cannot be used effectively. Further, when the water flow rate is higher than 5 m / h, the treated water has a VSS of 1500 mg / liter or more, and the sludge amount in the reactor 2 cannot be stably maintained.

【0027】[0027]

【発明の効果】本発明においては、装置本体側壁との取
り付け角度が35度以下、且つ、各占有面積が装置断面
積の1/2以上となる邪魔板により形成される、ガス・
液・固液分離部を有し、これ等のガス、液および固液分
離部を装置の上部5割の区分に取り付け、原水を直接、
あるいは希釈操作を施すことにより、流入水の通水速度
を1〜5m/hとすることにより、汚泥層の良好な流動
状態、即ち、汚泥と基質の良好な接触を妨げず、汚泥層
全体を処理に対して有効に活用することにより、高いC
OD負荷においても、安定した処理を行うことができる
嫌気性処理方法と、これを実施する処理装置を提供する
ことができ、高い有機物負荷の上向流嫌気性汚泥床法
(UASB)の運転において、常時安定した有機物の処
理成果が得られるので、極めて有益である。
According to the present invention, gas baffles formed by baffles having an angle of attachment to the side wall of the apparatus main body of 35 degrees or less and each occupied area being equal to or more than 1/2 of the cross-sectional area of the apparatus.
It has a liquid / solid-liquid separation section, and attaches these gas, liquid and solid-liquid separation sections to the upper 50% section of the device, and directly feeds raw water.
Alternatively, by performing the diluting operation, the flow rate of the inflow water is set to 1 to 5 m / h, so that the good flow state of the sludge layer, that is, the good contact between the sludge and the substrate is not hindered, and the entire sludge layer is not hindered. By effectively utilizing for processing, high C
It is possible to provide an anaerobic treatment method capable of performing a stable treatment even at an OD load, and a treatment apparatus for performing the same. In the operation of the upflow anaerobic sludge bed method (UASB) with a high organic matter load, This is extremely useful because a stable organic matter processing result can be obtained at all times.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の上向流嫌気性処理装置の一形態を例示
した模式図。
FIG. 1 is a schematic view illustrating one embodiment of an upward anaerobic treatment device of the present invention.

【図2】従来の上向流嫌気性処理装置の一形態を例示し
た模式図。
FIG. 2 is a schematic view illustrating one embodiment of a conventional upward anaerobic treatment device.

【図3】図2の従来の上向流嫌気性処理装置の一形態
に、原水を分注する方式を加味した上向流嫌気性処理装
置の一形態を例示した模式図。
FIG. 3 is a schematic view illustrating an example of an upflow anaerobic treatment apparatus in which a method of dispensing raw water is added to an example of the conventional upflow anaerobic treatment apparatus of FIG. 2;

【図4】実験に用いた本発明の上向流嫌気性処理装置の
概要を例示した模式図。
FIG. 4 is a schematic view illustrating the outline of an upflow anaerobic treatment device of the present invention used in an experiment.

【図5】実験に用いた従来の上向流嫌気性処理装置の概
要を例示した模式図。
FIG. 5 is a schematic view illustrating the outline of a conventional upward flow anaerobic treatment apparatus used in an experiment.

【図6】実験経過とCOD処理成績の変化を示す図。FIG. 6 is a diagram showing a progress of an experiment and a change in COD processing results.

【符号の説明】[Explanation of symbols]

1 原水送液管 1a〜1d 分注管 2 リアクター 3 邪魔板 4a〜4h 区分スラッジゾーン 5 GSS部 5a 気相部 5b 気泡部 6 発生ガス回収配管 7 水封槽 8 ガスメータ 9 処理水配管 DESCRIPTION OF SYMBOLS 1 Raw water feed pipe 1a-1d Dispense pipe 2 Reactor 3 Baffle plate 4a-4h Separated sludge zone 5 GSS part 5a Gas phase part 5b Bubble part 6 Generated gas recovery pipe 7 Water seal tank 8 Gas meter 9 Treatment water pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島村 和彰 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 Fターム(参考) 4D040 AA31  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuaki Shimamura 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa F-term in Ebara Research Institute, Ltd. 4D040 AA31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃水または廃棄物をガス、液及び
固液分離部を多段に有する上向流嫌気性汚泥床処理装置
により、嫌気処理する方法において、前記装置本体側壁
との角度が35度以下である該ガス、液及び固液分離部
を装置の上部50%の範囲内に取り付け、かつ、被処理
原水を直接、若しくは希釈処理を行うことを特徴とする
有機性廃水または廃棄物の嫌気性処理方法。
An anaerobic treatment of an organic wastewater or waste by an upflow anaerobic sludge bed treatment apparatus having gas, liquid and solid-liquid separation sections in multiple stages, wherein an angle of the apparatus body side wall is 35 degrees. Or less, wherein the gas, liquid, and solid-liquid separation sections having a temperature of not more than 50% are attached within the upper 50% of the apparatus, and the raw water to be treated is directly or diluted. Anaerobic treatment method.
【請求項2】 ガス、液及び固液分離部を多段に有する
上向流嫌気性汚泥床処理装置において、装置本体側壁と
の角度が35度以下である該ガス、液及び固液分離部を
装置の上部50%の範囲内に取り付け、直接、若しくは
希釈処理を行った被処理原水を流入する供給管を設けた
ことを特徴とする嫌気性処理装置。
2. An upflow anaerobic sludge bed treatment apparatus having multiple stages of gas, liquid, and solid-liquid separation sections, wherein the gas, liquid, and solid-liquid separation sections having an angle of 35 degrees or less with the side wall of the apparatus main body are used. An anaerobic treatment apparatus, which is provided within a range of 50% of the upper part of the apparatus and provided with a supply pipe through which raw water to be treated, which has been subjected to a diluting treatment, is supplied.
【請求項3】 各占有面積が装置断面積の2分の1以上
となる邪魔板により形成されるガス、液及び固液分離部
を有することを特徴とする請求項2記載の嫌気性処理装
置。
3. An anaerobic treatment apparatus according to claim 2, wherein each of the anaerobic treatment apparatuses has a gas, liquid and solid-liquid separation section formed by a baffle plate having an occupied area equal to or more than half of the cross-sectional area of the apparatus. .
JP2000273464A 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus Expired - Lifetime JP3955431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273464A JP3955431B2 (en) 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273464A JP3955431B2 (en) 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006056467A Division JP2006142302A (en) 2006-03-02 2006-03-02 Anaerobic treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2002079291A true JP2002079291A (en) 2002-03-19
JP3955431B2 JP3955431B2 (en) 2007-08-08

Family

ID=18759402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273464A Expired - Lifetime JP3955431B2 (en) 2000-09-08 2000-09-08 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3955431B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110424A (en) * 2004-10-13 2006-04-27 Ebara Corp Method and apparatus for treating organic waste water
JP2007237055A (en) * 2006-03-07 2007-09-20 Toshiba Corp Organic waste water treatment method and arrangement
JP2008518753A (en) * 2004-11-05 2008-06-05 株式会社荏原製作所 Biological denitrification method and apparatus
CN100412006C (en) * 2001-11-15 2008-08-20 株式会社荏原制作所 Anaerobic treatment apparatus
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427699A (en) * 1987-07-18 1989-01-30 Kubota Ltd Bio-gas reactor
JPH03114594A (en) * 1989-09-27 1991-05-15 Meidensha Corp Apparatus for treating effluent water
JPH04999U (en) * 1990-04-19 1992-01-07
JPH05115709A (en) * 1991-10-28 1993-05-14 Ishikawajima Harima Heavy Ind Co Ltd Device for removing suspended matter
JPH05337490A (en) * 1992-06-03 1993-12-21 Fuji Kasui Kogyo Kk Device for separating fine solid floating in liquid medium with gas stuck to it
JPH07284796A (en) * 1994-04-20 1995-10-31 Toshiba Corp Anaerobic water treatment apparatus
JPH11207385A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerogic treating device
JPH11207384A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerobic treating method and device therefor
JPH11207386A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerobic treating device
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2001137889A (en) * 1999-11-18 2001-05-22 Kurita Water Ind Ltd Method and device for anaerobic treatment
JP2001246396A (en) * 2000-02-07 2001-09-11 Matsumura Masatoshi Method for holding fungus in bioreactor and device therefor
JP2001276896A (en) * 2000-03-28 2001-10-09 Oyo Kagaku Kenkyukai:Kk Gas/solid/liquid separation device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427699A (en) * 1987-07-18 1989-01-30 Kubota Ltd Bio-gas reactor
JPH03114594A (en) * 1989-09-27 1991-05-15 Meidensha Corp Apparatus for treating effluent water
JPH04999U (en) * 1990-04-19 1992-01-07
JPH05115709A (en) * 1991-10-28 1993-05-14 Ishikawajima Harima Heavy Ind Co Ltd Device for removing suspended matter
JPH05337490A (en) * 1992-06-03 1993-12-21 Fuji Kasui Kogyo Kk Device for separating fine solid floating in liquid medium with gas stuck to it
JPH07284796A (en) * 1994-04-20 1995-10-31 Toshiba Corp Anaerobic water treatment apparatus
JPH11207385A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerogic treating device
JPH11207384A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerobic treating method and device therefor
JPH11207386A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerobic treating device
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2001137889A (en) * 1999-11-18 2001-05-22 Kurita Water Ind Ltd Method and device for anaerobic treatment
JP2001246396A (en) * 2000-02-07 2001-09-11 Matsumura Masatoshi Method for holding fungus in bioreactor and device therefor
JP2001276896A (en) * 2000-03-28 2001-10-09 Oyo Kagaku Kenkyukai:Kk Gas/solid/liquid separation device

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
G.LETTINGA: "Anaerobic digestion and wastewater treatment systems", ANTONIE VAN LEEUWENHOEK, vol. 67, JPN4007002300, 1995, pages 3 - 28, ISSN: 0000814300 *
G.LETTINGA: "Anaerobic digestion and wastewater treatment systems", ANTONIE VAN LEEUWENHOEK, vol. 67, JPNX007021361, 1995, pages 3 - 28, ISSN: 0000842195 *
原田秀樹: "新規の多段型高温UASBリアクターによる超高速廃水処理装置の実現化 アルコール蒸留廃水の高速処理特性", 環境工学研究論文集, vol. 第34巻, JPNX006040593, 28 November 1997 (1997-11-28), JP, pages 327 - 336, ISSN: 0000768961 *
原田秀樹: "新規の多段型高温UASBリアクターによる超高速廃水処理装置の実現化 アルコール蒸留廃水の高速処理特性", 環境工学研究論文集, vol. 第34巻, JPNX007021363, 28 November 1997 (1997-11-28), JP, pages 327 - 336, ISSN: 0000842197 *
多川正、原田秀樹、大橋晶良、高橋弘希、田中俊博、安達晋: "多段型UASBリアクターによる固形性有機物、脂質含有廃水の嫌気性処理特性(1)パイロットプラントスタ", 第54回年次学術講演会 講演概要集第7部, JPNX006040594, 1 August 1999 (1999-08-01), JP, pages 404 - 405, ISSN: 0000768962 *
多川正、原田秀樹、大橋晶良、高橋弘希、田中俊博、安達晋: "多段型UASBリアクターによる固形性有機物、脂質含有廃水の嫌気性処理特性(1)パイロットプラントスタ", 第54回年次学術講演会 講演概要集第7部, JPNX007021364, 1 August 1999 (1999-08-01), JP, pages 404 - 405, ISSN: 0000842198 *
須藤隆一ら, 微生物固定化法による排水処理, vol. 第3版, JPN4007002301, 12 December 1995 (1995-12-12), JP, pages 222 - 235, ISSN: 0000814301 *
須藤隆一ら, 微生物固定化法による排水処理, vol. 第3版, JPNX007021362, 12 December 1995 (1995-12-12), JP, pages 222 - 235, ISSN: 0000842196 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412006C (en) * 2001-11-15 2008-08-20 株式会社荏原制作所 Anaerobic treatment apparatus
JP2006110424A (en) * 2004-10-13 2006-04-27 Ebara Corp Method and apparatus for treating organic waste water
JP2008518753A (en) * 2004-11-05 2008-06-05 株式会社荏原製作所 Biological denitrification method and apparatus
JP2007237055A (en) * 2006-03-07 2007-09-20 Toshiba Corp Organic waste water treatment method and arrangement
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method

Also Published As

Publication number Publication date
JP3955431B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
US5733454A (en) Process and apparatus for the treatment of flowable waste
CN202297249U (en) Inner-circulated anaerobic fluidize bed reactor
JP5114780B2 (en) Anaerobic treatment method and apparatus
JP2009148705A (en) Method and apparatus for anaerobic treatment
JP5043671B2 (en) Biological denitrification method and apparatus
JP2008029993A (en) Methane fermenter
CN101234794A (en) Mobile sewage treatment apparatus
JP4428188B2 (en) Organic wastewater treatment method and treatment apparatus
JP3999036B2 (en) Method and apparatus for treating organic wastewater
JP4080046B2 (en) Anaerobic treatment method and apparatus
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
JP2002079291A (en) Anaerobic treatment method and apparatus
JP2004195334A (en) Apparatus and method for anaerobic treatment
JP2006142302A (en) Anaerobic treatment method and apparatus
CN108033558A (en) Strengthen the method for dyeing waste water hydrolysis acidification performance
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
JP4162234B2 (en) Anaerobic treatment equipment
CN104529087B (en) A kind of sewage recycling, energy are processed into complete equipment and technique
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
JP3700935B2 (en) Anaerobic treatment method and apparatus
JP2003334585A (en) Treatment method for organic wastewater and treatment apparatus therefor
CN2920982Y (en) Zone mud-feeding circulating baffling sewage and sludge anaerobic treatment apparatus
CN201224688Y (en) Mobile sewage treating apparatus
KR20060019643A (en) Improvement of high rate anaerobic digestor to treat organic materials
CN109319929A (en) A kind of novel integrated Anammox reaction system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3955431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term