JP2006281215A - Apparatus for treating organic waste water and method therefor - Google Patents

Apparatus for treating organic waste water and method therefor Download PDF

Info

Publication number
JP2006281215A
JP2006281215A JP2006201994A JP2006201994A JP2006281215A JP 2006281215 A JP2006281215 A JP 2006281215A JP 2006201994 A JP2006201994 A JP 2006201994A JP 2006201994 A JP2006201994 A JP 2006201994A JP 2006281215 A JP2006281215 A JP 2006281215A
Authority
JP
Japan
Prior art keywords
anaerobic
organic wastewater
sludge
treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006201994A
Other languages
Japanese (ja)
Inventor
Yasuhiro Honma
康弘 本間
Toshihiro Tanaka
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006201994A priority Critical patent/JP2006281215A/en
Publication of JP2006281215A publication Critical patent/JP2006281215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method therefor for an ascending flow anaerobic sludge bed treatment of high performance for treating organic waste water containing a substance inhibiting an anaerobic treatment process. <P>SOLUTION: An anaerobic treatment apparatus for the organic waste water comprises an anaerobic treatment tank which contains granular sludge and a solid material capable of adsorbing or depositing the substance inhibiting the anaerobic treatment process. The solid material is preferably able to separate from the granular sludge, more specifically, powder or granular activated carbon. The anaerobic treatment tank is the ascending flow anaerobic sludge bed treatment device preferably having baffle plates in a multistage fashion on the side wall of the tank body, each of the plates having an angle of 35° or less with respect to the side wall and an occupying area of the half or more of the cross-sectional area of the tank. The method for the organic waste water treatment is also disclosed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種工場、下水、し尿、畜産業施設等より排出される有機性の廃水又は有機性の廃棄物等を対象とし、これを無害化する嫌気性汚泥床処理装置及び方法に関し、更に詳しくは嫌気性処理に阻害を及ぼす物質を含む有機性廃水の処理に際して該物質の影響を少なくした有機性廃水の上向流嫌気性汚泥床処理装置及び方法に関する。   The present invention relates to an anaerobic sludge bed treatment apparatus and method for detoxifying organic waste water or organic waste discharged from various factories, sewage, human waste, livestock industry facilities, etc. More specifically, the present invention relates to an apparatus and method for treating an upstream anaerobic sludge bed of organic waste water in which the influence of the substance is reduced during the treatment of organic waste water containing a substance that inhibits anaerobic treatment.

有機性の廃水あるいは有機性の廃棄物等は、嫌気性処理によって分解処理されることがある。こうした分解処理方法として、例えば上向流嫌気性汚泥床法(以後、UASBとも記す)や、グラニュール汚泥膨張床(以後、EGSBとも記す)がある。これは近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。例えば、この方法を具体化した装置では、重クロム酸カリウムを酸化剤として測定したCODcr(以後CODと記す)の容積負荷が20〜30kg/m/dの廃水、廃棄物でも効率よく運転できるという特徴がある。 Organic wastewater or organic waste may be decomposed by anaerobic treatment. As such a decomposition treatment method, for example, there are an upflow anaerobic sludge bed method (hereinafter also referred to as UASB) and a granular sludge expansion bed (hereinafter also referred to as EGSB). This is a method that has become widespread in recent years. It is characterized by maintaining a high concentration of methane bacteria in the reactor by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of the organic matter in it is considerably high, it can be processed efficiently. For example, in an apparatus embodying this method, COD cr (hereinafter referred to as COD) measured using potassium dichromate as an oxidizing agent operates efficiently even in waste water and waste having a volume load of 20 to 30 kg / m 3 / d. There is a feature that you can.

嫌気性処理工程に阻害を及ぼす物質としては、高級脂肪酸、クロロフェノールやニトロフェノールなどの芳香族化合物、紙パルプ廃水に含まれるテルペン類や樹脂酸などが知られている。ここで阻害とは、嫌気性菌の活性度を低下させる、あるいは嫌気性菌を死滅させることを意味する。嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を嫌気性処理する手法としては、以下の手法が挙げられる。
(a)予め阻害物質を除去した後、嫌気性処理を行う。
(b)系外から供給する希釈水等により希釈を行い、阻害の影響の無い濃度に下げた後、嫌気性処理を行う。
(c)嫌気性菌を阻害物質に馴養させた後、低負荷で嫌気性処理を行う。
Known substances that inhibit the anaerobic treatment process include higher fatty acids, aromatic compounds such as chlorophenol and nitrophenol, terpenes and resin acids contained in paper pulp wastewater. Here, inhibition means reducing the activity of anaerobic bacteria or killing anaerobic bacteria. The following method is mentioned as a method for anaerobically treating organic wastewater containing a substance that inhibits the anaerobic treatment step.
(A) Anaerobic treatment is performed after removing the inhibitor in advance.
(B) Dilution is performed with dilution water supplied from outside the system, and the concentration is reduced to a level without any influence of inhibition, and then anaerobic treatment is performed.
(C) After anaerobic bacteria are acclimatized to the inhibitory substance, anaerobic treatment is performed with a low load.

しかしながら、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を嫌気性処理する方法には、以下に示すような課題がある。
(イ)予め阻害物質を除去した後、嫌気性処理を行う場合には前処理設備が必要となる。
(ロ)系外から供給する希釈水等により希釈を行い、阻害の影響の無い濃度に下げた後、嫌気性処理を行う場合、希釈倍率が高い時には、大量の希釈水により嫌気性処理装置などの設備が過大となる。
(ハ)嫌気性菌を阻害物質に馴養させた後、低負荷で嫌気性処理を行う場合には嫌気性処理装置の設備が過大となる。
However, the method for anaerobically treating organic wastewater containing substances that inhibit the anaerobic treatment process has the following problems.
(A) When an anaerobic treatment is performed after removing the inhibitor in advance, a pretreatment facility is required.
(B) When anaerobic treatment is performed after diluting with dilution water supplied from outside the system and reducing to a concentration that does not affect the inhibition, anaerobic treatment equipment with a large amount of dilution water, etc. when the dilution ratio is high The facilities are excessive.
(C) When anaerobic bacteria are acclimatized to an inhibitory substance and then anaerobic treatment is performed at a low load, the equipment of the anaerobic treatment apparatus becomes excessive.

このような欠点を解消すべく、本発明は、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を対象とした、高性能な上向流嫌気性汚泥床処理装置及び方法の提供を目的とする。   In order to eliminate such drawbacks, the present invention aims to provide a high-performance upflow anaerobic sludge bed treatment apparatus and method for organic wastewater containing substances that inhibit the anaerobic treatment process. And

本発明は、以下に記載する手段によって前記課題を解決した。
(1)有機性廃水の嫌気性処理装置において、槽内にグラニュール汚泥と嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させることができる固形物が存在している嫌気反応槽を具備することを特徴とする有機性廃水の処理装置。
(2)前記固形物は、グラニュール汚泥より分離できるものであることを特徴とする前記(1)記載の有機性廃水の処理装置。
(3)前記固形物は、粉状又は粒状の活性炭であることを特徴とする前記(1)又は(2)記載の有機性廃水の処理装置。
The present invention has solved the above problems by the means described below.
(1) An anaerobic treatment apparatus for organic wastewater includes an anaerobic reaction tank in which solid matter capable of adsorbing or adhering granular sludge and substances that inhibit the anaerobic treatment process is present in the tank. An organic wastewater treatment apparatus characterized by that.
(2) The organic wastewater treatment apparatus according to (1), wherein the solid matter is separable from granular sludge.
(3) The organic wastewater treatment apparatus according to (1) or (2), wherein the solid is powdered or granular activated carbon.

(4)前記嫌気性反応槽は、上向流嫌気性汚泥処理装置であり、該装置の本体側壁に、該側壁との角度が35度以下、かつ各占有面積が該装置の横断面積の2分の1以上の邪魔板を多段に有することを特徴とする前記(1)〜(3)のいずれか1項に記載の有機性廃水の処理装置。
(5)前記嫌気性反応槽の前段に酸発酵槽を設けたことを特徴とする前記(1)〜(4)のいずれか1項に記載の有機性廃水の処理装置。
(6)前記嫌気性反応槽により処理された処理水を前記酸発酵槽及び/又は前記嫌気性反応槽の流入部又は原液送液管に循環させる配管を設けたことを特徴とする前記(1)〜(5)のいずれか1項に記載の有機性廃水の処理装置。
(4) The anaerobic reaction tank is an upward-flow anaerobic sludge treatment device, and the main body side wall of the device has an angle of 35 degrees or less with respect to the side wall, and each occupation area is 2 of the cross-sectional area of the device. The apparatus for treating organic wastewater according to any one of (1) to (3), wherein the baffle plates are provided in multiple stages.
(5) The organic wastewater treatment apparatus as set forth in any one of (1) to (4), wherein an acid fermentation tank is provided upstream of the anaerobic reaction tank.
(6) The above-mentioned (1), characterized in that a pipe for circulating the treated water treated in the anaerobic reaction tank to the acid fermentation tank and / or the inflow part of the anaerobic reaction tank or the stock solution feeding pipe is provided. The processing apparatus of the organic waste water of any one of (5)-(5).

(7)有機性廃水の嫌気性処理方法において、槽内にグラニュール汚泥と嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させることができる固形物が存在している嫌気反応槽に有機性廃水を導入し嫌気性処理することを特徴とする有機性廃水の処理方法。   (7) In the anaerobic treatment method of organic wastewater, organic matter is contained in the anaerobic reaction tank in which the solid matter that can adsorb or adhere the granular sludge and substances that inhibit the anaerobic treatment process exists. An organic wastewater treatment method characterized by introducing wastewater and anaerobically treating it.

本発明の骨子は、「嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させることができ、かつ、嫌気性汚泥よりも沈降速度の小さい固形物を添加し、原水を処理水の循環液や系外から供給する希釈水により必要に応じて適宜希釈を行う」ことにより、一貫して、流入水のリアクター内部における装置断面積基準の通水速度が1〜5m/hとなるように調節することができるようにして、添加した固形物はリアクター内にとどまることなく処理水とともに系外に流出し、さらにその際の嫌気性処理装置として、「ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置」を用いることで、リアクター内のガス・液・固分離性能が高まるため、リアクター内にグラニュール汚泥を高濃度に保持することが可能となり、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を対象とした、高性能な上向流嫌気性汚泥床処理が達成できるようにしたことにある。   The essence of the present invention is that “a substance capable of adsorbing or adhering a substance that inhibits the anaerobic treatment process and having a lower sedimentation rate than anaerobic sludge is added, and the raw water is treated with a circulating solution of treated water or By appropriately diluting with dilution water supplied from outside the system as needed, consistently adjust the flow rate based on the cross-sectional area of the apparatus inside the reactor of the influent water to be 1 to 5 m / h. In addition, the added solid matter flows out of the system together with the treated water without staying in the reactor, and as an anaerobic treatment device at that time, a “gas / liquid / solid separation section is provided in multiple stages”. By using the `` counterflow anaerobic sludge bed treatment device '', the gas, liquid and solid separation performance in the reactor is increased, so it becomes possible to keep the granular sludge in the reactor at a high concentration, and the anaerobic treatment work In the organic wastewater containing substances on the inhibition targeting is that the high performance upflow anaerobic sludge blanket process is to be achieved.

本発明において、固形物は、その目的からして、原水中に含まれる嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着し、かつ、グラニュール汚泥より分離できるものでなければならない。その点からもグラニュール汚泥より沈降速度が小さいものがよく、好ましくは流入水のリアクター2内部の通水速度1〜5m/hよりも沈降速度の小さいものである。これらの点を考慮すると、使用する固形物としては、具体的には、活性炭や好気性処理工程で発生する微生物である活性汚泥などが適用できる。活性炭の場合、その大きさとしては、粉状、粒状などで、粒径が1mm以下、好ましくは0.2mm以下の範囲のものが好ましい。   In the present invention, the solid material must be capable of adsorbing or adhering substances that inhibit the anaerobic treatment process contained in the raw water and separating it from the granular sludge. From this point of view, it is preferable that the sedimentation rate is lower than that of the granular sludge. Considering these points, specifically, activated sludge, which is a microorganism generated in an aerobic treatment process, or the like can be applied as the solid used. In the case of activated carbon, the size is preferably in the form of powder, granules, etc., and the particle size is 1 mm or less, preferably 0.2 mm or less.

本発明によれば、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水の処理において、「嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させる固形物を添加し、」、かつ「添加した固形物はリアクター内にとどまることなく処理水とともに系外に流出する」ことにより、嫌気性処理工程に阻害を及ぼす物質による悪影響を無くしてし、有機性廃水を高効率で処理をすることができる。
さらに、高いCOD負荷で処理をすることができる。また、その際の嫌気性処理装置として、特定の構造を有する「ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置」を用いることで、リアクター内のガス・液・固分離性能が高まるため、リアクタ一内にグラニュール汚泥を高濃度に保持することが可能となり、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を対象とした、高性能な上向流嫌気性汚泥床処理が可能で、高いCOD除去能力を示す。
According to the present invention, in the treatment of organic wastewater containing substances that inhibit the anaerobic treatment process, "add solids that adsorb or adhere substances that inhibit the anaerobic treatment process," and "addition The solid matter that flows out of the system together with the treated water without staying in the reactor can eliminate the adverse effects of substances that inhibit the anaerobic treatment process and treat organic wastewater with high efficiency. it can.
Furthermore, processing can be performed with a high COD load. In addition, as an anaerobic treatment device at that time, by using a “upward flow anaerobic sludge bed treatment device having multiple stages of gas, liquid, and solid separation sections” having a specific structure, the gas, liquid, Since solid separation performance is enhanced, it is possible to maintain a high concentration of granular sludge in the reactor, and a high-performance upward flow intended for organic wastewater containing substances that impede the anaerobic treatment process. Anaerobic sludge bed treatment is possible and high COD removal ability is shown.

以下、実施の形態を説明するが、本発明はこれに限定されない。
図1は、嫌気性処理方法を実施するのに好ましい本発明の上向流嫌気性処理装置の一形態の概要を例示した図である。
Hereinafter, although an embodiment is described, the present invention is not limited to this.
FIG. 1 is a diagram illustrating an outline of an embodiment of the upward flow anaerobic treatment apparatus of the present invention that is preferable for carrying out the anaerobic treatment method.

原水送液管1が連通し、上下を閉塞した筒状のリアクター(嫌気反応槽)2内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延ばしている邪魔板3が設置されている。邪魔板3は、上下方向に2箇所左右交互に設けてあって、リアクター側壁との間にそれぞれ鋭角の区分スラッジゾーン4a〜4bを形成している。リアクター2側壁と邪魔板3のなす角度θは35度以下の鋭角であり、占有面積は装置断面積の1/2以上である。35度を越える角度の場合には、スラッジゾーン4a,4bの邪魔板3にグラニュール汚泥が堆積し、流動性が不十分となり、デッドスペースが形成される。また、邪魔板3の占有面積が1/2以下であると、発生ガスの捕捉が不十分となり、気・液・固の分離に不具合を生じる。すなわち、リアクター2の中心よりガスが上方へ抜けてしまい、後記のGSS部5にガスを十分に集積することができなくなる。   The left and right side walls inside the tubular reactor (anaerobic reaction tank) 2 in which the raw water supply pipe 1 communicates and is closed at the top and bottom are respectively fixed to one end and the other end to the opposite side wall. A baffle plate 3 extending while descending in the direction is installed. The baffle plates 3 are provided alternately at two left and right locations in the vertical direction, and form acute slanted section sludge zones 4a to 4b between the reactor side walls. The angle θ formed between the side wall of the reactor 2 and the baffle plate 3 is an acute angle of 35 degrees or less, and the occupied area is ½ or more of the apparatus sectional area. In the case of an angle exceeding 35 degrees, granular sludge accumulates on the baffle plates 3 of the sludge zones 4a and 4b, resulting in insufficient fluidity and formation of dead spaces. Further, when the area occupied by the baffle plate 3 is 1/2 or less, the trapping of the generated gas becomes insufficient, causing a problem in separation of gas, liquid and solid. That is, the gas escapes upward from the center of the reactor 2, and the gas cannot be sufficiently accumulated in the GSS unit 5 described later.

区分スラッジゾーン4a、4b上部はGSS部5を形成している。反応が開始すると発生ガスが集まる気相部5aには、外部と通じる発生ガス回収配管6の排出口を設けてある。
なお、気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は水圧が異なる適宜な水深位にあり、水封槽7には発生ガス回収配管6から吐き出されたガス流量を測定するガスメータ8を設けてある。ガスメータ8の先には、ガスホルダー11が設けられている。また、リアクター2上端には上澄み液を排出する処理水配管9が開口している。
The upper part of the divided sludge zones 4a and 4b forms a GSS portion 5. In the gas phase part 5a where the generated gas collects when the reaction starts, an outlet of the generated gas recovery pipe 6 communicating with the outside is provided.
In addition, the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is opened in the water of the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressure, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A gas holder 11 is provided at the tip of the gas meter 8. Further, a treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2.

リアクター2は、嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など、全ての温度範囲の嫌気性処理を対象としている。リアクター2に嫌気性菌からなるグラニュール汚泥を投入し、有機性廃棄物などを含んだ原水を送液管1からリアクター2へ導入する。原水を処理水の循環液や系外から供給する希釈水等により必要に応じて適宜希釈を行い、流入水のリアクター2内部での通水速度が1〜5m/hとなるように調節する。   The reactor 2 is used by introducing granular sludge made of anaerobic bacteria. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in all temperature ranges such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. It is intended for sex processing. Granule sludge composed of anaerobic bacteria is introduced into the reactor 2, and raw water containing organic waste and the like is introduced into the reactor 2 from the liquid feeding pipe 1. The raw water is appropriately diluted with the circulating water of the treated water or diluted water supplied from outside the system as necessary, and adjusted so that the water flow rate inside the reactor 2 of the influent water is 1 to 5 m / h.

固形物を原水に予めリアクター2への流入部に固形物流入配管15より加え、原水は、原水中の嫌気性処理工程に阻害を及ぼす物質が固形物に吸着あるいは付着した状態で、リアクター2内を通り抜ける。そのため、原水は嫌気性処理工程に阻害を及ぼす物質の影響を受けずに、嫌気性処理をすることが可能となる。固形物は、原水中に含まれる嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着し、かつ、グラニュール汚泥よりも沈降速度が小さく、好ましくは流入水のリアクター2内部の通水速度1〜5m/hよりも沈降速度の小さいものとする。具体的には、活性炭や好気性処理工程で発生する微生物である活性汚泥などが適用できる。原水の性状によっては、リアクターに流入する前に酸発酵槽で酸発酵処理を行う。酸発酵処理は4時間〜4日程度が妥当である。この場合には、固形物を酸発酵槽に供給することで、原水中に含まれる嫌気性処理工程に阻害を及ぼす物質の吸着あるいは付着の効果が大きくなる。   Solid material is added to the raw water in advance from the solid material inflow pipe 15 at the inflow portion to the reactor 2, and the raw water is in the reactor 2 in a state where substances that inhibit the anaerobic treatment process in the raw water are adsorbed or adhered to the solid material. Go through. Therefore, raw water can be subjected to anaerobic treatment without being affected by substances that inhibit the anaerobic treatment process. The solid matter adsorbs or adheres substances that inhibit the anaerobic treatment process contained in the raw water, and has a lower sedimentation rate than that of the granular sludge. The settling velocity is assumed to be lower than 5 m / h. Specifically, activated sludge, which is a microorganism generated in activated carbon or an aerobic treatment process, can be applied. Depending on the properties of the raw water, an acid fermentation treatment is performed in an acid fermenter before flowing into the reactor. About 4 hours to 4 days is appropriate for the acid fermentation treatment. In this case, by supplying the solid matter to the acid fermenter, the effect of adsorbing or adhering substances that inhibit the anaerobic treatment step contained in the raw water is increased.

リアクター2内では、嫌気性菌からなるグラニュール汚泥の介在によって有機性廃棄物が分解し、分解ガスが発生する。発生したガスは、各区分スラッジゾーン4a〜4b上端のGSS部5に別れて集まり、それぞれに気相部5aを形成し、発生ガス回収配管6を通じて水封槽7に至る。こうした発生ガスは、ガスメータ8でその排出量が記録され、ガスホルダー11に送られる。発生ガスの一部は、区分スラッジゾーン4a〜4b内でグラニュール汚泥に付着し、その見かけ比重を軽減させるとともに、グラニュール汚泥を同伴してGSS部5の水面に達する。こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した気泡はやがて破裂し、発生ガスとグラニュール汚泥とが分離され、グラニュール汚泥はもとの比重を回復して水中に潜り、発生ガスは発生ガス回収配管6から水封槽7を経由して、系外に排出される。有機物が分解して清澄になって水はリアクター上端から、処理水配管9を経由して系外に排出される。   In the reactor 2, organic waste is decomposed by the presence of granule sludge composed of anaerobic bacteria, and decomposed gas is generated. The generated gas is collected separately in the GSS part 5 at the upper end of each of the divided sludge zones 4a to 4b, forms a gas phase part 5a in each, and reaches the water seal tank 7 through the generated gas recovery pipe 6. The amount of such generated gas is recorded by the gas meter 8 and sent to the gas holder 11. A part of the generated gas adheres to the granular sludge in the divided sludge zones 4a to 4b, reduces the apparent specific gravity, and accompanies the granular sludge and reaches the water surface of the GSS section 5. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and granulated sludge are separated, and the granular sludge recovers its original specific gravity and is submerged in the water. It is discharged out of the system via the sealing tank 7. The organic matter is decomposed and clarified, and water is discharged from the upper end of the reactor to the outside of the system via the treated water pipe 9.

各GSS部5の気相部5aのガス圧は異なるので、その差圧は水封槽7で調整するとよい。原水送液側に近い順に水封圧は高く保つ必要がある。ガス回収の圧調整は水封槽7を使う方法以外にも多くの方法がある。例えば圧力弁等を使用してもよい。本発明の嫌気性処理方法では、各区分スラッジゾーン毎にそこで発生する発生ガスを回収できるため、リアクター単位断面積当たりの発生ガス量が少なくなる。特に処理水を流出させる処理水配管9に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなる。そのため、グラニュール汚泥の系外流出量は非常に少なくすることができる。   Since the gas pressure in the gas phase part 5 a of each GSS part 5 is different, the differential pressure may be adjusted in the water-sealed tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery in addition to the method using the water-sealed tank 7. For example, a pressure valve or the like may be used. In the anaerobic treatment method of the present invention, the generated gas generated in each sludge zone can be recovered, so that the generated gas amount per reactor unit cross-sectional area is reduced. In particular, at the place closest to the treated water pipe 9 through which treated water flows out, the amount of gas per unit cross-sectional area of the reactor becomes small. Therefore, the outflow amount of granule sludge can be very reduced.

GSS部を多段に設置したリアクターでは通水速度を1〜5m/hとすることにより、グラニュール汚泥層の流動状態が良好となり、また、リアクター内の90%以上のグラニュール汚泥は粒径が0.5〜1.5mm、沈降速度が5〜40m/hとなる。そのため、固形物の沈降速度が5〜40m/h以下、好ましくはリアクター内の通水速度よりも小さい1〜5m/h以下であれば、固形物はリアクター内に堆積することなく処理水とともに流出する。一方、固形物よりも沈降速度の大きいグラニュール汚泥はリアクター内にとどまる。   In a reactor with multiple stages of GSS, the flow rate of 1-5 m / h improves the flow state of the granular sludge layer, and more than 90% of the granular sludge in the reactor has a particle size. 0.5 to 1.5 mm, and the sedimentation speed is 5 to 40 m / h. Therefore, if the sedimentation rate of the solid is 5 to 40 m / h or less, preferably 1 to 5 m / h or less, which is smaller than the water flow rate in the reactor, the solid will flow out with the treated water without accumulating in the reactor. To do. On the other hand, granular sludge having a larger sedimentation rate than solids remains in the reactor.

発泡性の原水の場合には、GSS部5内の気相部5a及び発生ガス回収配管6が閉塞し、発生ガスの回収が困難となる。このような場合、リアクター2流入水に予め消泡剤10を加えることで、GSS部5内での発泡を抑えることができる。GSS部5内に消泡剤を滴下、噴霧する方法に比べ、本手法は密閉空間での消泡に効果的である。消泡剤10は原水性状に応じた消泡効果を有し、発酵液の消泡に適した、中温(30〜35℃)あるいは高温(50〜55℃)において消泡効果をなくすことのない消泡剤を使用する。消泡剤の種類としてはシリコーン系消泡剤、アルコール系消泡剤の何れも適用が可能である。   In the case of foaming raw water, the gas phase part 5a and the generated gas recovery pipe 6 in the GSS part 5 are blocked, making it difficult to recover the generated gas. In such a case, foaming in the GSS part 5 can be suppressed by adding the antifoaming agent 10 to the reactor 2 inflow water in advance. Compared with the method in which an antifoaming agent is dropped and sprayed into the GSS section 5, this method is effective for defoaming in a sealed space. The antifoaming agent 10 has an antifoaming effect corresponding to the raw aqueous state, and does not lose the antifoaming effect at medium temperature (30 to 35 ° C.) or high temperature (50 to 55 ° C.) suitable for defoaming the fermentation broth. Use antifoam. As a kind of antifoaming agent, any of a silicone type antifoaming agent and an alcohol type antifoaming agent can be applied.

原水が高SS等の理由により、スカムを形成しやすい場合には、GSS部5内の気泡部5b表面及び内部にスカムを形成し、発生ガスの回収が困難となる。このような場合には、発生ガス吹き込み配管13を発生ガス回収配管6あるいは散気管12に接続し、ガスホルダー11内の発生ガスをGSS部5内に供給することで、スカムの破壊あるいはスカムの形成防止が可能となる。   When the raw water is likely to form scum due to high SS or the like, scum is formed on the surface and inside of the bubble portion 5b in the GSS portion 5 and it becomes difficult to recover the generated gas. In such a case, the generated gas blow-in pipe 13 is connected to the generated gas recovery pipe 6 or the diffuser pipe 12, and the generated gas in the gas holder 11 is supplied into the GSS unit 5 to destroy the scum or Formation prevention is possible.

発生ガス吹き込み配管13を発生ガス回収配管6に接続し、GSS部5−1内に発生ガスを吹き込むことにより、GSS部5−1内のスカムを破壊・除去する場合は、吹き込バルブ14aを閉じ、発生ガス吹き込み配管13から発生ガスを発生ガス回収配管6に送り、GSS部5−1内に発生ガスを入れてGSS部5−1内全体を気相部5−1−aとすることにより、GSS部5−1からスカムを排出する。この排出されたスカムは上昇してその上にあるGSS部5−2内に入って、そこにとどまるため、次いでバルブ14bを閉じて、発生ガスをGSS部5−2内に入れることによりGSS部5−2内全体を気相部5−2−aとし、GSS部5−2からスカムを排出し、これを処理水とともに流出させる。   When the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 and the generated gas is blown into the GSS section 5-1, the scum in the GSS section 5-1 is destroyed and removed. The generated gas is sent from the generated gas blowing pipe 13 to the generated gas recovery pipe 6, and the generated gas is put into the GSS section 5-1, so that the entire GSS section 5-1 is used as the gas phase section 5-1-a. Thus, the scum is discharged from the GSS unit 5-1. This discharged scum rises into the GSS section 5-2 above it and stays there, and then closes the valve 14b and puts the generated gas into the GSS section 5-2. The entire interior of 5-2 is a gas phase section 5-2a, scum is discharged from the GSS section 5-2, and this is discharged together with the treated water.

また、発生ガス吹き込み配管13を散気管12に接続する場合は、散気管12から吹き込まれる気泡によりスカムが破壊され、破壊されたスカムはリアクター2内の液の流れとともに処理水として排出される。本手法の場合にはバルブ14(14a、14bのいずれかをいうため、単に「14」という。以下同様)の開閉は問わない。バルブ14を開けて操作する場合は、散気管12から吹き込まれた気体は発生ガス回収配管6より回収される。バルブ14を閉じて操作する場合は、散気管12から吹き込まれる気泡によるスカムの破壊効果に加え、前記発生ガス吹き込み配管13を発生ガス回収配管6に接続した場合のスカム排出効果も期待できる。なお、GSS部5内部のスカムを破壊・除去するために、GSS部5内に吹き込む気体は窒素ガス等の酸素を含まない、メタン発酵等の生物処理に影響を与えない気体を適用できるが、嫌気性処理によって発生したガスを使用することが望ましい。GSS部5内にガスを吹き込む頻度は廃水の性状にもよるが、1日に1回から1週間に1回とすることでGSS部5内部のスカムの破壊・除去の効果がある。   Further, when the generated gas blowing pipe 13 is connected to the diffuser pipe 12, the scum is broken by the bubbles blown from the diffuser pipe 12, and the broken scum is discharged as treated water together with the flow of the liquid in the reactor 2. In the case of this method, opening and closing of the valve 14 (referred to as either “14a” or “14b”, simply referred to as “14”, hereinafter the same)) may be performed. When the valve 14 is opened and operated, the gas blown from the air diffuser 12 is recovered from the generated gas recovery pipe 6. When the valve 14 is closed and operated, in addition to the effect of destroying the scum due to the bubbles blown from the air diffuser 12, the effect of discharging the scum when the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 can be expected. In addition, in order to destroy and remove the scum in the GSS unit 5, the gas blown into the GSS unit 5 does not contain oxygen such as nitrogen gas, and can apply a gas that does not affect biological treatment such as methane fermentation. It is desirable to use gas generated by anaerobic treatment. The frequency of blowing the gas into the GSS unit 5 depends on the properties of the wastewater, but once a day to once a week, the scum inside the GSS unit 5 is effectively destroyed and removed.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例及び比較例
図1に実験に用いた上向流式嫌気性汚泥床装置の概要を示す。
A〜C系列の装置は同一構造であり、傾斜する邪魔板を2ヶ取り付け、装置側壁と邪魔板との角度を30度とし、原水に消泡剤を添加し、散気管から発生ガスを吹き込むスカムの破壊・除去機能を付加した。発生ガスの散気管からの吹き込みは1日当たり1回とした。
Example and Comparative Example FIG. 1 shows an outline of an upflow anaerobic sludge bed apparatus used in the experiment.
The A to C series devices have the same structure, two sloping baffle plates are attached, the angle between the device side wall and the baffle plate is 30 degrees, an antifoaming agent is added to the raw water, and the generated gas is blown from the air diffuser. Added scum destruction / removal function. The generated gas was blown from the diffuser once per day.

液層部の容量は1mである。リアクター内の水温は35℃になるように温度制御されている。原水には、糖質系廃水(COD:約20000mg/リットル、SS約500mg/リットル)に無機栄養塩類(窒素、リンなど)を添加し、嫌気性処理工程に阻害を及ぼす物質としてテルペン類を1000mg/リットル添加したものを用いた。テルペン類の阻害濃度を第1表に示す(R.Sierra−Alvarez and G.Lettinga, Biological Wastes,33(3),211−226(1990))。A系列では原水を酸発酵処理した後、リアクターに供給した。B系列では原水を酸発酵処理した後、テルペン類の阻害の影響が無いように系外から希釈水により酸発酵処理水を20倍希釈し、これをリアクターに供給した。C系列では原水に活性汚泥処理設備の余剰汚泥(MLSS約20000mg/リットル)を加え、SS 5000mg/リットルに調整し、酸発酵処理した後、リアクターに供給した。C系列では流出液を酸発酵処理水とともにリアクターに流入させ、通水速度を2m/hに設定した。C系列は本発明に基づく系列である。 The capacity of the liquid layer portion is 1 m 3 . The temperature of the water in the reactor is controlled to 35 ° C. In raw water, inorganic nutrients (nitrogen, phosphorus, etc.) are added to carbohydrate wastewater (COD: about 20000 mg / liter, SS about 500 mg / liter), and 1000 mg of terpenes as substances that inhibit the anaerobic treatment process. / Liter added was used. Inhibitory concentrations of terpenes are shown in Table 1 (R. Sierra-Alvarez and G. Lettinga, Biological Wastes, 33 (3), 211-226 (1990)). In the A series, the raw water was subjected to an acid fermentation treatment and then supplied to the reactor. In the B series, the raw water was acid-fermented, and then the acid-fermented water was diluted 20 times with dilution water from outside the system so as not to be affected by the inhibition of terpenes, and this was supplied to the reactor. In series C, surplus sludge (MLSS of about 20000 mg / liter) from the activated sludge treatment facility was added to the raw water, adjusted to SS 5000 mg / liter, subjected to acid fermentation, and then supplied to the reactor. In Series C, the effluent was introduced into the reactor together with the acid fermentation treated water, and the water flow rate was set to 2 m / h. The C series is a series based on the present invention.

図2〜5に実験経過を、第2表に処理成績結果を示す。A〜Cの各系列では、処理の馴らしの関係で、COD負荷を図2に示すように段々大きくなるように設定する。
A系列ではCOD負荷を1kg/m/dで実験を開始したが、テルペン類の阻害により、CODはほとんど除去されなかった。このため、実験は30日で停止した。(図3参照)
2 to 5 show the course of the experiment, and Table 2 shows the results of the processing results. In each of the series A to C, the COD load is set so as to increase gradually as shown in FIG.
In the A series, the experiment was started at a COD load of 1 kg / m 3 / d, but COD was hardly removed due to inhibition of terpenes. For this reason, the experiment was stopped after 30 days. (See Figure 3)

B系列では、80日目までは、COD負荷15kg/m/d、酸発酵処理水の溶解性CODが18000mg/リットル、処理水の溶解性CODが400mg/リットル、溶解性COD除去率53%の処理であった。80日後以降にCOD負荷を20kg/m/dとしたところ、リアクター内の通水速度が高くなり、グラニュール汚泥が大量に流出し、処理水の溶解性COD860mg/リットルとなり、希釈水により濃度は低くなっているが、CODは除去されなかった。実験は100日行った。(図4参照)
C系列では120日後以降にCOD負荷30kg/m/dで酸発酵処理水の溶解性COD13500mg/リットル、処理水の溶解性CODが2000mg/リットル以下、溶解性COD除去率85%の処理が可能であった。(図5参照)
本発明法であるC系列ではCOD負荷30kg/m/dの高負荷時においても、従来法のA、B系列に比べ、高いCOD除去性能を示した。
In the B series, until the 80th day, the COD load is 15 kg / m 3 / d, the solubility COD of acid fermentation treated water is 18000 mg / liter, the solubility COD of treated water is 400 mg / liter, and the soluble COD removal rate is 53%. It was processing of. After 80 days, when the COD load was set to 20 kg / m 3 / d, the water flow rate in the reactor was increased, a large amount of granulated sludge was discharged, and the treated water became soluble COD 860 mg / liter. Was lower, but COD was not removed. The experiment was conducted for 100 days. (See Figure 4)
In C series, after 120 days, COD load of 30 kg / m 3 / d can be processed with acid fermentation treated water soluble COD of 13500 mg / liter, treated water soluble COD of 2000 mg / liter or less, and soluble COD removal rate of 85%. Met. (See Figure 5)
The C series, which is the method of the present invention, showed higher COD removal performance than the conventional A and B series even when the COD load was 30 kg / m 3 / d.

Figure 2006281215
Figure 2006281215

Figure 2006281215
Figure 2006281215

本発明の有機性廃水の処理装置の構成の一形態を例示した模式図である。It is the schematic diagram which illustrated one form of the structure of the processing apparatus of the organic waste water of this invention. 実験に用いたA〜C系列のCOD負荷と経過日数の関係を示す図である。It is a figure which shows the relationship between COD load of the AC series used for experiment, and elapsed days. 従来(A系列)の溶解性CODと経過日数の関係を示す図である。It is a figure which shows the relationship between the soluble COD of the former (A series) and elapsed days. 従来(B系列)の溶解性CODと経過日数の関係を示す図である。It is a figure which shows the relationship between the soluble COD of the past (B series), and elapsed days. 本発明(C系列)の溶解性CODと経過日数の関係を示す図である。It is a figure which shows the relationship between the soluble COD of this invention (C series), and elapsed days.

符号の説明Explanation of symbols

1 原液送液管
2 リアクター
3 邪魔板
4a 区分スラッジゾーン
4b 区分スラッジゾーン
5−1a 気相部
5−2a 気相部
5−1b 液相部
5−2b 液相部
6 発生ガス回収配管
7 水封槽
8 ガスメータ
9 処理水配管
10 消泡剤注入配管
11 ガスホルダー
12 散気管
13 発生ガス吸込配管
14a バルブ
14b バルブ
15 固形物流入配管
DESCRIPTION OF SYMBOLS 1 Stock solution feed pipe 2 Reactor 3 Baffle plate 4a Division sludge zone 4b Division sludge zone 5-1a Gas phase part 5-2a Gas phase part 5-1b Liquid phase part 5-2b Liquid phase part 6 Generated gas recovery piping 7 Water seal Tank 8 Gas meter 9 Treated water pipe 10 Defoamer injection pipe 11 Gas holder 12 Aeration pipe 13 Generated gas suction pipe 14a Valve 14b Valve 15 Solid matter inflow pipe

Claims (7)

有機性廃水の嫌気性処理装置において、槽内にグラニュール汚泥と嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させることができる固形物が存在している嫌気反応槽を具備することを特徴とする有機性廃水の処理装置。   In anaerobic treatment equipment for organic wastewater, the tank is equipped with an anaerobic reaction tank in which solid sludge and solid substances capable of adsorbing or adhering substances that inhibit the anaerobic treatment process are present. Organic wastewater treatment equipment. 前記固形物は、グラニュール汚泥より分離できるものであることを特徴とする請求項1記載の有機性廃水の処理装置。   2. The organic wastewater treatment apparatus according to claim 1, wherein the solid matter is separable from granule sludge. 前記固形物は、粉状又は粒状の活性炭であることを特徴とする請求項1又は請求項2記載の有機性廃水の処理装置。   The organic wastewater treatment apparatus according to claim 1 or 2, wherein the solid matter is powdered or granular activated carbon. 前記嫌気性反応槽は、上向流嫌気性汚泥処理装置であり、該装置の本体側壁に、該側壁との角度が35度以下、かつ各占有面積が該装置の横断面積の2分の1以上の邪魔板を多段に有することを特徴とする請求項1〜3のいずれか1項に記載の有機性廃水の処理装置。   The anaerobic reaction tank is an upflow anaerobic sludge treatment apparatus, and the main body side wall of the apparatus has an angle of 35 degrees or less with respect to the side wall, and each occupied area is a half of the cross-sectional area of the apparatus. The organic wastewater treatment apparatus according to any one of claims 1 to 3, wherein the baffle plate is provided in multiple stages. 前記嫌気性反応槽の前段に酸発酵槽を設けたことを特徴とする請求項1〜4のいずれか1項に記載の有機性廃水の処理装置。   The apparatus for treating organic wastewater according to any one of claims 1 to 4, wherein an acid fermentation tank is provided upstream of the anaerobic reaction tank. 前記嫌気性反応槽により処理された処理水を前記酸発酵槽及び/又は前記嫌気性反応槽の流入部又は原液送液管に循環させる配管を設けたことを特徴とする請求項1〜5のいずれか1項に記載の有機性廃水の処理装置。   The pipe | tube which circulates the treated water processed by the said anaerobic reaction tank to the inflow part of the said acid fermentation tank and / or the said anaerobic reaction tank, or a undiluted | stock solution sending pipe is provided. The organic wastewater treatment apparatus according to any one of the above. 有機性廃水の嫌気性処理方法において、槽内にグラニュール汚泥と嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させることができる固形物が存在している嫌気反応槽に有機性廃水を導入し嫌気性処理することを特徴とする有機性廃水の処理方法。
In the anaerobic treatment method for organic wastewater, organic wastewater is introduced into the anaerobic reaction tank where solid sludge and substances that can inhibit the anaerobic treatment process are present in the tank. A method for treating organic wastewater, which comprises anaerobic treatment.
JP2006201994A 2006-07-25 2006-07-25 Apparatus for treating organic waste water and method therefor Pending JP2006281215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201994A JP2006281215A (en) 2006-07-25 2006-07-25 Apparatus for treating organic waste water and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201994A JP2006281215A (en) 2006-07-25 2006-07-25 Apparatus for treating organic waste water and method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002140070A Division JP4001507B2 (en) 2002-05-15 2002-05-15 Method and apparatus for treating organic wastewater

Publications (1)

Publication Number Publication Date
JP2006281215A true JP2006281215A (en) 2006-10-19

Family

ID=37403662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201994A Pending JP2006281215A (en) 2006-07-25 2006-07-25 Apparatus for treating organic waste water and method therefor

Country Status (1)

Country Link
JP (1) JP2006281215A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment
CN104876330A (en) * 2015-05-15 2015-09-02 中国科学院城市环境研究所 Aerobic granular sludge system construction and operation method for treating culture biogas slurry
CN106219909A (en) * 2016-09-22 2016-12-14 东莞市联洲知识产权运营管理有限公司 A kind of low-cost processes method of high-concentration salt-containing wastewater
CN106517503A (en) * 2016-10-18 2017-03-22 佛山慧创正元新材料科技有限公司 Sludge activated carbon anaerobic granular sludge and preparation method thereof
CN106219909B (en) * 2016-09-22 2019-07-16 广州高迪环境服务有限公司 A kind of low-cost processes method of high-concentration salt-containing wastewater
CN110182945A (en) * 2019-06-12 2019-08-30 河南小威环境科技有限公司 A kind of combined U ASB anaerobic reaction method and apparatus
CN111362402A (en) * 2020-03-18 2020-07-03 山东大学 Method for reinforcing anaerobic dynamic membrane bioreactor by combining GAC and PAC and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148705A (en) * 2007-12-20 2009-07-09 Ebara Corp Method and apparatus for anaerobic treatment
CN104876330A (en) * 2015-05-15 2015-09-02 中国科学院城市环境研究所 Aerobic granular sludge system construction and operation method for treating culture biogas slurry
CN104876330B (en) * 2015-05-15 2017-11-24 中国科学院城市环境研究所 A kind of aerobic particle mud system constructing and operation method for handling cultivation biogas slurry
CN106219909A (en) * 2016-09-22 2016-12-14 东莞市联洲知识产权运营管理有限公司 A kind of low-cost processes method of high-concentration salt-containing wastewater
CN106219909B (en) * 2016-09-22 2019-07-16 广州高迪环境服务有限公司 A kind of low-cost processes method of high-concentration salt-containing wastewater
CN106517503A (en) * 2016-10-18 2017-03-22 佛山慧创正元新材料科技有限公司 Sludge activated carbon anaerobic granular sludge and preparation method thereof
CN106517503B (en) * 2016-10-18 2019-06-04 兴业环保股份有限公司 A kind of active sludge carbon anaerobic grain sludge and preparation method thereof
CN110182945A (en) * 2019-06-12 2019-08-30 河南小威环境科技有限公司 A kind of combined U ASB anaerobic reaction method and apparatus
CN111362402A (en) * 2020-03-18 2020-07-03 山东大学 Method for reinforcing anaerobic dynamic membrane bioreactor by combining GAC and PAC and application thereof
CN111362402B (en) * 2020-03-18 2021-04-06 山东大学 Method for reinforcing anaerobic dynamic membrane bioreactor by combining GAC and PAC and application thereof

Similar Documents

Publication Publication Date Title
JP5043671B2 (en) Biological denitrification method and apparatus
WO2006041128A1 (en) Organic wastewater treatment method and apparatus
JP3999036B2 (en) Method and apparatus for treating organic wastewater
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP4001507B2 (en) Method and apparatus for treating organic wastewater
JP4080046B2 (en) Anaerobic treatment method and apparatus
KR20100089637A (en) Cleaning system for waste-water purifier
CN111747605A (en) Multistage physicochemical-biochemical combined domestic sewage treatment system and treatment method
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
US20210188681A1 (en) Wastewater Treatment Method and System for Removal of Phosphorus, Nitrogen and Coliforms
JP4162234B2 (en) Anaerobic treatment equipment
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
JP2006142302A (en) Anaerobic treatment method and apparatus
CN213141734U (en) Domestic sewage treatment system combining multistage physicochemical and biochemical treatment
CN105254123B (en) Coking advanced waste treatment system and its reuse technology
KR100661074B1 (en) The biological contact media-chungi environment technologies
CN106745708A (en) A kind of compound type sludge bed reactor and its application
CN207811366U (en) A kind of sewage disposal system
CN207227212U (en) A kind of fermented pharmaceutical waste water Treated sewage reusing device
JP3700935B2 (en) Anaerobic treatment method and apparatus
JP4001514B2 (en) Biological denitrification method and apparatus
CN105084636B (en) A kind of crushed coal pressure gasifying wastewater treatment and reclaiming system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428