JP2008221181A - Anaerobic treatment device and treatment method - Google Patents

Anaerobic treatment device and treatment method Download PDF

Info

Publication number
JP2008221181A
JP2008221181A JP2007066697A JP2007066697A JP2008221181A JP 2008221181 A JP2008221181 A JP 2008221181A JP 2007066697 A JP2007066697 A JP 2007066697A JP 2007066697 A JP2007066697 A JP 2007066697A JP 2008221181 A JP2008221181 A JP 2008221181A
Authority
JP
Japan
Prior art keywords
liquid
solid separation
gas
anaerobic
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066697A
Other languages
Japanese (ja)
Inventor
Minako Tanaka
美奈子 田中
Yasuhiro Honma
康弘 本間
Kazumasa Kamaike
一将 蒲池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007066697A priority Critical patent/JP2008221181A/en
Publication of JP2008221181A publication Critical patent/JP2008221181A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an upflow type anaerobic treatment device with high driving efficiency where production of the stagnation part (the dead space) and short circuit flow of a carrier or granule sludge is suppressed, and a gas collection rate is increased, thus, even when a COD load is high, an increase in the scale of the device is suppressed. <P>SOLUTION: In the upflow type anaerobic sludge blanket treatment device having gas-liquid-solid separation parts in a multistage, at least two or more inflow ports are provided at the part lower than the lowest stage gas-liquid-solid separation part, and the inflow ports are installed in the projection plane part of the lowest stage gas-liquid-solid separation part. In the case a plurality of the lowest stage gas-liquid-separation parts are present, the inside of the projection plane part in each lowest stage gas-liquid-solid separation part is provided with at least one or more inflow ports. The installing positions of the inflow ports in the horizontal direction in the device are preferably set to ≤3/4 of the length from the top of the lowest stage gas-liquid-solid separation part to the tip part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種の工場、下水、し尿、畜産業施設等から排出される有機性の廃水又は有機性の廃棄物等を対象として、これ等の廃棄物等を無害化する嫌気性汚泥床処理装置に関し、更に詳しくは、特に、ガス・液・固分離部(以下、「GSS」とも記す)を多段に有し、複数の流入口を備えた上向流式嫌気性汚泥床処理装置と処理方法に関する。   The present invention is intended for organic wastewater or organic waste discharged from various factories, sewage, human waste, livestock industry facilities, etc., and anaerobic sludge bed treatment that renders these wastes harmless. More specifically regarding the apparatus, in particular, an upward flow type anaerobic sludge bed processing apparatus having a plurality of inlets and having multiple stages of gas / liquid / solid separation sections (hereinafter also referred to as “GSS”). Regarding the method.

排水の嫌気性処理法の一つとして、グラニュール状の汚泥を充填し、被処理水、希釈水、処理水の循環水などの流入水(以下、「流入水」とも記す)を上向流で通水して処理を行う、上向流式嫌気性汚泥床処理装置が公知である。この方式は、以下に示すような利点がある。
(1)従来の嫌気性処理と比較して、高負荷での処理が可能である。
(2)固定床式の嫌気性処理と比較して、充填材の閉塞が起きにくい。
しかし、嫌気性処理では、分解する有機物の負荷量が高くなると(例えば、重クロム酸カリウムを酸化剤として用いて測定したCODCr容積負荷が15kg/m/d以上)、発生するバイオガス量が多くなる。この際、処理装置内からのガス抜きを随時確実に行わないと、ガス排出時の吹き出し等により、グラニュール汚泥の流出が目立つようになり、処理装置内にグラニュール汚泥を留めておくことが難しくなる。
As one method of anaerobic treatment of wastewater, it is filled with granular sludge, and inflow water (hereinafter also referred to as “inflow water”) such as treated water, dilution water, and circulated water of the treated water flows upward. An upward-flow type anaerobic sludge bed treatment apparatus that performs treatment by passing water through is known. This method has the following advantages.
(1) Compared with the conventional anaerobic process, a process with a high load is possible.
(2) Compared with the fixed-bed type anaerobic treatment, the filler is less likely to be blocked.
However, in the anaerobic treatment, when the load of the organic substance to be decomposed becomes high (for example, the volume load of COD Cr measured using potassium dichromate as an oxidizing agent is 15 kg / m 3 / d or more), the amount of biogas generated Will increase. At this time, if the degassing from inside the processing apparatus is not performed at any time, the outflow of granulated sludge becomes noticeable due to blow-out at the time of gas discharge, etc., and the granular sludge may be retained in the processing apparatus. It becomes difficult.

この問題点を解決するためには、「特許文献1」に記載された、多段の気液固分離装置(以下、GSSとも記す)を装置内部に備えた、上向流式の嫌気性処理装置が有効である。
また、「特許文献2」に記載された装置は、装置本体側壁との角度が35度以下となる邪魔板により形成されるガス・液・固分離部を多段に有する上向流式嫌気性汚泥床処理装置において、消泡剤を添加することで、このガス・液・固分離部内部での発泡及びスカムの形成を防止することを特徴とする有機性廃水または廃棄物の嫌気性処理方法及び装置、及び、ガス・液・固分離部内部に酸素を含有しない気体を吹き込みこのガス・液・固分離部内部でのスカムの形成を防止することを特徴とする嫌気性処理方法及び装置である。
In order to solve this problem, an upward-flow type anaerobic treatment apparatus provided with a multistage gas-liquid solid separation apparatus (hereinafter also referred to as GSS) described in “Patent Document 1”. Is effective.
In addition, the apparatus described in “Patent Document 2” is an upflow anaerobic sludge having gas, liquid, and solid separation portions formed in multiple stages by baffle plates whose angle with the side wall of the apparatus main body is 35 degrees or less. An anaerobic treatment method for organic wastewater or waste characterized by preventing foaming and scum formation inside the gas / liquid / solid separation part by adding an antifoaming agent in the floor treatment apparatus, and An anaerobic treatment method and apparatus characterized by blowing an oxygen-free gas into the gas / liquid / solid separation part to prevent the formation of scum inside the gas / liquid / solid separation part .

この装置の効果は、装置本体側壁との角度が35度以下となる邪魔板により形成されるガス・液・固分離部を有し、原水を直接、あるいは希釈操作を施すことにより流入水の通水速度を1〜5m/hとすることで、汚泥層の良好な流動状態即ち汚泥と基質の良好な接触を妨げず、汚泥層全体を処理に対して有効に使うことで、高いCOD負荷においても安定した処理を行うことの出来る嫌気性処理方法とそのような装置を提供することができ、高い有機物負荷のUASBの運転において安定した有機物処理成績が得られる、というものである。   The effect of this device is that it has a gas / liquid / solid separation part formed by a baffle plate whose angle with the side wall of the device main body is 35 degrees or less. By setting the water speed to 1 to 5 m / h, the sludge layer has a good flow state, i.e., good contact between the sludge and the substrate. In addition, an anaerobic treatment method capable of performing stable treatment and such an apparatus can be provided, and stable organic matter treatment results can be obtained in the operation of a high organic matter UASB.

このように、「特許文献2」に記載された上向流式嫌気性汚泥床処理装置では、グラニュール汚泥の良好な流動状態、すなわち、グラニュール汚泥と基質の良好な接触を妨げず、汚泥層全体を処理に対して有効に使うことで、高いCODCr負荷においても安定した処理を行うことが出来る。
なお、「特許文献2」に記載された上向流式嫌気性汚泥床処理装置ではグラニュール汚泥を使用しているが、近年は、グラニュール汚泥の安定保持が困難な、難分解性成分を含む排水の処理に、上向流式嫌気性処理装置を適用する機会も増えている。このような場合、グラニュール汚泥の代わりに担体を使用することによって、グラニュール汚泥の安定保持が困難な排水でも槽内の生物保持が可能となり、安定した処理が行われる。「特許文献2」に記載された処理装置は、担体を充填して処理を行う上向流式嫌気性処理装置においても、グラニュール汚泥を使用した場合と同様の利点を有する。
As described above, in the upward flow type anaerobic sludge bed treatment apparatus described in “Patent Document 2”, the sludge does not hinder the good flow state of the granule sludge, that is, the good contact between the granule sludge and the substrate. by effective use of the entire layer to the processing can be performed even stable processing at high COD Cr load.
In addition, in the upward flow type anaerobic sludge bed treatment apparatus described in “Patent Document 2”, granular sludge is used. However, in recent years, it is difficult to stably maintain granular sludge. Opportunities to apply an up-flow type anaerobic treatment device for the treatment of wastewater contained are also increasing. In such a case, by using a carrier instead of the granule sludge, it is possible to hold the organism in the tank even with wastewater in which it is difficult to stably hold the granule sludge, and a stable treatment is performed. The processing apparatus described in “Patent Document 2” has the same advantage as that in the case of using granular sludge even in an upward flow type anaerobic processing apparatus that performs processing by filling a carrier.

このような上向流式嫌気性処理装置では、一般的に、流入口での流入水の吐出速度は、充填物性状にもよるが、0.3〜10m/secとすることが望ましい。また、流入水の装置内部の通水速度は、装置断面の平均液線速度(以下、「装置液線速度」とも記す)として0.5〜10m/hとなるように調整する。流入口の管径は、内径10mm〜80mm、好ましくは18mm〜54mm、より好ましくは20mm〜30mmとすることが望ましい。吐出速度や通水速度が低い場合、被処理水に、希釈水、処理水の循環水等を加えることで、速度を上げることが可能である。   In such an upward flow type anaerobic treatment apparatus, in general, the discharge speed of the inflow water at the inflow port is preferably 0.3 to 10 m / sec, although it depends on the packing properties. Moreover, the water flow rate inside the apparatus of inflow water is adjusted so that it may become 0.5-10 m / h as an average liquid-line speed (henceforth "apparatus liquid-line speed") of an apparatus cross section. The tube diameter of the inlet is desirably 10 mm to 80 mm, preferably 18 mm to 54 mm, more preferably 20 mm to 30 mm. When the discharge speed or the water flow speed is low, the speed can be increased by adding dilution water, circulating water of the treated water, or the like to the water to be treated.

しかし、近年は、装置のスケールアップに伴い底面積が増大している。流入口が1箇所の場合、底面積が増大すると、装置断面の平均液線速度を維持するために、吐出速度が高くなることになる。また、流入口が1箇所の場合、流入水が流入口付近に集中し装置底部全面に分散しない、という弊害が発生する。このような理由から、一定面積以上の底面積を持つ上向流嫌気性処理装置においては、流入口が2箇所以上必要となる。
図2の(a)は、底面積16m、装置液線速度5m/h、流入口径22mmの装置における、流入口の数と流入口吐出速度の関係を示した例である。流入口が6箇所未満の場合、流入口の吐出速度が10m/secを超えることが分かる。
However, in recent years, the bottom area has increased with the scale-up of the apparatus. When the number of inlets is one, when the bottom area increases, the discharge speed increases in order to maintain the average liquid linear velocity of the apparatus cross section. Further, when there is one inflow port, there is a problem that the inflow water is concentrated near the inflow port and is not dispersed over the entire bottom of the apparatus. For these reasons, in an upward flow anaerobic treatment apparatus having a bottom area of a certain area or more, two or more inlets are required.
FIG. 2A shows an example of the relationship between the number of inlets and the inlet discharge speed in an apparatus having a bottom area of 16 m 2 , an apparatus liquid linear velocity of 5 m / h, and an inlet diameter of 22 mm. It can be seen that when the number of inlets is less than six, the discharge speed of the inlet exceeds 10 m / sec.

図2の(b)は、流入口径22mm、吐出速度10m/secにおける、装置底面積と装置液線速度の関係を示した例である。装置底面積の値と装置液線速度の値が、図中の曲線の上側に位置する場合は、流入口が2箇所以上必要であることを示す。例としては、底面積5m、装置液線速度2m/hの装置では流入口は1箇所でよいが、底面積10m、装置液線速度4m/hの装置では、流入口は2箇所以上必要になる。
特開平11−207384号公報 特開2002−79291号公報
FIG. 2B is an example showing the relationship between the apparatus bottom area and the apparatus liquid linear velocity when the inlet diameter is 22 mm and the discharge speed is 10 m / sec. When the value of the apparatus bottom area and the value of the apparatus liquid linear velocity are located on the upper side of the curve in the figure, it indicates that two or more inflow ports are required. As an example, in an apparatus having a bottom area of 5 m 2 and an apparatus liquid linear velocity of 2 m / h, one inlet may be used. However, in an apparatus having a bottom area of 10 m 2 and an apparatus liquid linear velocity of 4 m / h, two or more inlets are provided. I need it.
JP-A-11-207384 JP 2002-79291 A

しかしながら、上記の嫌気性処理装置においてもなお、流入配管配置の不備によっては、以下に示すような問題点が起きる可能性がある。
(a)装置内にGSS等の内部構造を備えており、装置内の均一な流動が困難なため、担体あるいはグラニュール汚泥(以下、充填物とも記す)の滞留部(デッドスペース)あるいは短絡流が発生することがある。
(b)上向流式嫌気性処理装置では一般的に、流入口近傍において、基質濃度が高くガス発生量も多いため、発生ガスの上昇に同伴され、液の流速が大きくなりやすい。一方、充填物の上昇流速は均一ではないため、流入口近傍で充填物の滞留部(デッドスペース)あるいは短絡流が発生しやすい。
However, even in the above-described anaerobic treatment apparatus, the following problems may occur depending on the inflow piping arrangement.
(A) Since the device has an internal structure such as GSS, and it is difficult to flow uniformly in the device, the retention part (dead space) or short circuit flow of the carrier or granular sludge (hereinafter also referred to as packing) May occur.
(B) In an upward flow type anaerobic treatment apparatus, generally, the substrate concentration is high and the amount of gas generated is large in the vicinity of the inflow port. On the other hand, since the ascending flow rate of the packing is not uniform, a staying portion (dead space) of the packing or a short-circuit flow tends to occur near the inlet.

このような場合、装置内の充填物と流入水の接触が不十分となることが多く、充分な処理能力を発揮できない恐れがある。また、嫌気性処理装置は一般的に、内部の状態を確認しにくい構造となっているため、滞留部(デッドスペース)や短絡流のような問題点の把握が困難である。滞留部(デッドスペース)や短絡流による処理能力不足を改善するには、充填物の充填高さ、すなわち充填量の増大が挙げられるが、この手段は処理費用の増加につながる。また、滞留部(デッドスペース)を減じるために撹拌羽根等の装置内構造物を新たに設置する方法もあるが、この場合、装置の維持管理が困難になるといった弊害がある。   In such a case, the contact between the filler in the apparatus and the influent water often becomes insufficient, and there is a possibility that sufficient processing capability cannot be exhibited. Moreover, since an anaerobic processing apparatus generally has a structure in which it is difficult to check the internal state, it is difficult to grasp problems such as a staying part (dead space) and a short-circuit flow. In order to improve the shortage of processing capacity due to the staying part (dead space) or short-circuit flow, an increase in the filling height of the packing material, that is, the filling amount can be mentioned, but this means leads to an increase in processing cost. In addition, there is a method of newly installing an internal structure of the apparatus such as a stirring blade in order to reduce the staying portion (dead space).

また、2箇所以上の流入口を設ける場合、通常は、図3のように、流入口9の配置は底面積を流入口数で等分割した面中に配置することが多い。そのような場合、最下段GSS8を逸れる流入口9が存在することがあり、その流入口からの流入水は、最下段GSS8の下部を通過しないため、最下段GSS8の下部に充填物の滞留部が発生することがある。
従って、本発明の課題は、担体あるいはグラニュール汚泥の滞留部(デッドスペース)ならびに短絡流の発生を抑制し、ガス捕集率を高めることによりCOD負荷が高くても、装置の大型化を抑えた運転効率の高い上向流式嫌気性処理装置を提供することである。
When two or more inlets are provided, the inlet 9 is usually arranged in a plane where the bottom area is equally divided by the number of inlets as shown in FIG. In such a case, there may be an inlet 9 that escapes from the lowermost stage GSS8, and the inflow water from the inlet does not pass through the lower part of the lowermost stage GSS8. May occur.
Therefore, the object of the present invention is to suppress the occurrence of a stagnant portion (dead space) of carrier or granule sludge and the occurrence of short-circuit flow and increase the gas collection rate, thereby suppressing an increase in the size of the apparatus even when the COD load is high. Another object of the present invention is to provide an upward flow type anaerobic treatment device with high operating efficiency.

本発明は、担体あるいはグラニュール汚泥を充填して上向流式で処理を行い、少なくとも2つ以上の流入口を有し多段の気液固分離装置を備え、円形または矩形の嫌気性処理装置において、図1の(a)〜(f)に示すような流入口9の配置を持ち、流入水の上昇流が、最下段の気液固分離装置の投影面積部に流入することを特徴とした嫌気性処理装置及びそれによる処理方法、すなわち、下記(1)〜(4)の手段によりその課題を解決した。(イ)は縦断面図、(ロ)は上面図である。
(1)ガス・液・固分離部を多段に有する上向流式嫌気性汚泥床処理装置において、最下段ガス・液・固分離部より下方に少なくとも二つ以上の流入口を有し、該流入口は該最下段ガス・液・固分離部の投影面部内に設置されていることを特徴とする嫌気性処理装置。
(2)前記最下段ガス・液・固分離部が複数ある場合は、各々の最下段ガス・液・固分離部の該投影面部内に少なくとも1つ以上の前記流入口を有することを特徴とする前記(1)記載の嫌気性処理装置。
(3)前記流入口の装置内横方向における設置位置は、前記最下段ガス・液・固分離部の頂部から先端部までの長さの4分の3以内に設置したことを特徴とする前記(1)又は(2)記載の嫌気性処理装置。
(4)ガス・液・固分離部を多段に有する上向流式嫌気性汚泥床処理装置を使用した有機性廃水の嫌気性処理方法において、最下段ガス・液・固分離部の下部に流入水の上昇流が流入するように該最下段ガス・液・固分離部の投影面部内に少なくとも二つ以上の流入口を設け、流入水が前記最下段ガス・液・固分離部を経て上向に流れるようにしたことを特徴とする嫌気性処理方法。
The present invention is a circular or rectangular anaerobic treatment device which is filled with a carrier or granule sludge and is treated in an upward flow type, has a multistage gas-liquid solid separation device having at least two inlets. 1 has the arrangement of the inlet 9 as shown in FIGS. 1A to 1F, and the rising flow of the inflowing water flows into the projected area of the gas-liquid solid separation device in the lowermost stage. The subject was solved by the anaerobic processing apparatus and the processing method by it, ie, the means of following (1)-(4). (A) is a longitudinal sectional view, and (B) is a top view.
(1) In an upward flow type anaerobic sludge bed treatment apparatus having gas, liquid, and solid separation sections in multiple stages, the apparatus has at least two inlets below the lowermost stage gas, liquid, and solid separation section, An anaerobic treatment apparatus, wherein an inflow port is installed in a projection surface portion of the lowermost gas / liquid / solid separation portion.
(2) When there are a plurality of the lowermost gas / liquid / solid separation portions, at least one or more inlets are provided in the projection surface portion of each lowermost gas / liquid / solid separation portion. The anaerobic treatment apparatus according to (1).
(3) The installation position in the lateral direction in the apparatus of the inflow port is set within 3/4 of the length from the top to the tip of the lowermost gas / liquid / solid separation part. The anaerobic treatment apparatus according to (1) or (2).
(4) In the anaerobic treatment method of organic wastewater using an upflow type anaerobic sludge bed treatment device with multiple stages of gas, liquid and solid separation, it flows into the lower part of the bottom gas, liquid and solid separation. At least two or more inlets are provided in the projection surface portion of the lowermost gas / liquid / solid separation portion so that an upward flow of water flows in, and the incoming water passes through the lowermost gas / liquid / solid separation portion. An anaerobic treatment method characterized by flowing in the opposite direction.

担体あるいはグラニュール汚泥を充填して上向流式で処理を行う嫌気性処理装置において、本発明の嫌気性処理装置は、流入水の上昇流が、最下段の気・液・固分離部の投影面部に流入することで、担体あるいはグラニュール汚泥の滞留部(デッドスペース)ならびに短絡流の発生を抑制し、ガス捕集率を高めることができる。これによって、担体あるいはグラニュール汚泥の流出量を減らし、槽内汚泥量を多く維持することができ、処理装置の小型化が得られ、処理の効率化ならびにコストの低減が可能となる。   In the anaerobic treatment device that performs the upflow treatment by filling the carrier or granule sludge, the anaerobic treatment device of the present invention is configured so that the rising flow of the inflowing water is the lowest gas / liquid / solid separation part. By flowing into the projection surface part, it is possible to suppress the retention part (dead space) of the carrier or granule sludge and the occurrence of a short-circuit flow and increase the gas collection rate. Accordingly, the outflow amount of the carrier or granule sludge can be reduced and the amount of sludge in the tank can be maintained, and the processing apparatus can be downsized, and the processing efficiency and cost can be reduced.

以下に、本発明の実施の形態を説明するが、本発明はこれに限定されない。
本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など、全ての温度範囲の嫌気性処理である。
Embodiments of the present invention will be described below, but the present invention is not limited thereto.
The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. It is sex processing.

本発明のガス・液・固分離部を多段に有する上向流式嫌気性汚泥床処理装置は、最下段GSSの投影面部内の下方に少なくとも二つ以上の流入口を有するが、図1の縦断面図と上面図において、GSSと流入口配置の関係の具体例をモデル的に例示する。
本発明の嫌気性処理装置の概略図は、図4の(a)に示す。図中に実線域7で示した箇所が、最下段GSS8の下部である。この実線域7に流入水の上昇流が流入するように、流入口9(太い矢印で示す)を設けるのが望ましい。破線域10で示した箇所は、最下段GSS8の下部ではないため、上昇流がこの域に流入するような流入口設置位置は、望ましくない。
The upward flow type anaerobic sludge bed treatment apparatus having gas, liquid and solid separation parts of the present invention in multiple stages has at least two inlets below the projection surface part of the lowermost stage GSS. In the longitudinal sectional view and the top view, a specific example of the relationship between the GSS and the inlet arrangement is illustrated as a model.
A schematic diagram of the anaerobic treatment apparatus of the present invention is shown in FIG. A portion indicated by a solid line area 7 in the drawing is a lower portion of the lowermost stage GSS8. It is desirable to provide an inlet 9 (indicated by a thick arrow) so that the rising flow of the inflowing water flows into the solid line area 7. Since the portion indicated by the broken line area 10 is not the lower part of the lowermost stage GSS8, the inlet installation position where the upward flow flows into this area is not desirable.

流入水が最下段GSS8の下部に流入した場合の、流動状態の概略図を図4の(b)に示す。この場合、流入水は、流路a11(実線)のように、最下段GSS8を経て上向きに流れる。その際、流入水はGSS8下部で分散され、充填物の滞留部(デッドスペース)の発生、あるいは、短絡流の発生が抑制される。これによって、装置内の充填物と流入水の充分な接触が可能となる。   FIG. 4B shows a schematic diagram of the flow state when the inflowing water flows into the lower part of the lowermost stage GSS8. In this case, the inflowing water flows upward through the lowermost stage GSS8 as in the flow path a11 (solid line). In that case, inflow water is disperse | distributed by GSS8 lower part, generation | occurrence | production of the stay part (dead space) of a packing, or generation | occurrence | production of a short circuit flow is suppressed. This allows for sufficient contact between the filling in the device and the incoming water.

これに対して、流入水が最下段GSS8の下部を逸れて流入した場合の、流動状態の概略図を図4の(c)に示す。このとき、流入水は、流路b12(破線)のように、最下段GSS8を通過せずに上向に流れる。流入水が最下段GSS8で分散されないため、流路a11に比べて短絡流が発生しやすい。また、流入水が流路b12を通過した場合、最下段GSS8の下部は、充填物の滞留部13(デッドスペース)となりやすい。この結果、流入水と充填物との接触時間が短くなるため、装置内の充填物と流入水の接触が不充分となりやすい。   On the other hand, FIG. 4C shows a schematic diagram of the flow state when the inflowing water flows away from the lower part of the lowermost stage GSS8. At this time, the inflowing water flows upward without passing through the lowest stage GSS8 as in the flow path b12 (broken line). Since the inflow water is not dispersed in the lowermost stage GSS8, a short-circuit flow is likely to occur compared to the flow path a11. In addition, when the inflowing water passes through the flow path b12, the lower part of the lowermost stage GSS8 tends to become the staying part 13 (dead space) of the filling. As a result, the contact time between the inflow water and the filling is shortened, and the contact between the filling in the apparatus and the inflowing water tends to be insufficient.

このように、流入水が、その上昇流が最下段GSS8の下部に流入するように流入した場合(図4(b))、充填物の滞留部13(デッドスペース)あるいは短絡流の発生が抑制されるため、流入水の上昇流が最下段GSS8の下部から逸れる位置に流入した場合(図4(c))と比較して、充填物量が同じである場合に、高い処理性能を得ることができる。   In this way, when the inflowing water flows in such a way that the upward flow flows into the lower part of the lowermost stage GSS8 (FIG. 4 (b)), the occurrence of the stagnant portion 13 (dead space) or the short-circuit flow is suppressed. Therefore, it is possible to obtain high processing performance when the amount of packing is the same as in the case where the rising flow of the inflowing water flows into a position deviating from the lower part of the lowermost stage GSS8 (FIG. 4C). it can.

流入水が最下段GSS8の下部に流入した場合の、発生ガス捕捉状態の概略図を図4の(d)に示す。上昇流が最下段GSS8の下部に流入するように流入した場合、上昇流が最下段GSS8の下部から逸れる位置に流入した場合(図4の(c))に比べて、最下段GSS8で多くのガス捕集が可能となるため、中段GSS14及び最上段GSS15の発生ガスの捕捉割合を小さくすることが出来る。これにより、装置上部での発生ガス上昇に同伴される充填物が少なくなり、充填物の流出防止効果が高まる。その結果、安定した処理を継続することが可能となる。   FIG. 4D shows a schematic diagram of the generated gas trapping state when the inflowing water flows into the lower part of the lowermost stage GSS8. When the upward flow flows in so as to flow into the lower part of the lowermost stage GSS8, when the upward flow flows into a position deviating from the lower part of the lowermost stage GSS8 ((c) of FIG. 4), the lower stage GSS8 has more Since gas can be collected, the capture ratio of the generated gas in the middle stage GSS 14 and the uppermost stage GSS 15 can be reduced. Thereby, the packing accompanying the rise of the generated gas in the upper part of the apparatus is reduced, and the effect of preventing the packing from flowing out is enhanced. As a result, stable processing can be continued.

一方、流入水が最下段GSS8の下部を逸れて流入した場合の、ガス発生状態の概略図を図4の(e)に示す。上昇流が最下段GSS8の下部から逸れる位置に流入した場合、装置内でのガス発生量、ならびに、装置内のGSS位置が同じであれば、最下段GSS8でのガス捕集量が少なくなり、中段GSS14、上段GSS15でのガス捕集量が高まる。これにより、装置上部での発生ガス上昇に同伴される充填物量が多くなり、充填物の系外への流出の可能性が高まる。その結果、装置内の充填物量が減少し、処理の悪化を招くこととなる。   On the other hand, FIG. 4E shows a schematic diagram of the gas generation state when the inflowing water flows away from the lower part of the lowermost stage GSS8. When the upward flow flows into a position deviating from the lower part of the lowermost stage GSS8, if the amount of gas generated in the apparatus and the GSS position in the apparatus are the same, the amount of gas collected in the lowermost stage GSS8 decreases. The amount of gas collected in the middle stage GSS14 and the upper stage GSS15 increases. As a result, the amount of the packing accompanying the increase in the generated gas at the upper part of the apparatus increases, and the possibility of the outflow of the packing out of the system increases. As a result, the amount of filler in the apparatus is reduced, leading to deterioration of processing.

流入口9の数は、1箇所あるいは2箇所以上とする。流入口9の数は、流入口の口径、吐出速度、装置の底面積、装置断面の平均液線速度、等を許に決定することが望ましい。また、全ての流入口を、上昇流が最下段GSS8の下部に流入するように設置する。流入口9の設置数を増やすことによって、装置底部へ流入水を均一に分散させる効果が期待できる。ただし、流入口あたりの流入水量が減少し、流速による充填物の撹拌効果が弱まるため、過度に多数の流入口を設置することは望ましくない。   The number of inflow ports 9 is one or two or more. The number of the inlets 9 is desirably determined by allowing the inlet diameter, the discharge speed, the bottom area of the apparatus, the average liquid linear velocity of the apparatus cross section, and the like. Moreover, all the inflow ports are installed so that the upward flow flows into the lower part of the lowest stage GSS8. By increasing the number of installed inflow ports 9, it is possible to expect the effect of uniformly distributing the inflow water to the bottom of the apparatus. However, it is not desirable to install an excessive number of inflow ports because the amount of inflow water per inflow port decreases and the stirring effect of the packing due to the flow rate is weakened.

全ての流入口について、それぞれの流入口からの流入を必要に応じて停止できるようにする。一部の流入口が、閉塞等の原因によって流入不可能になった場合、一時的に他の流入口からの流入を停止し、閉塞した流入口のみで流入を行うことで、閉塞部が開通し、再び流入が可能となる。これによって、片流れを防ぎ、先に述べた滞留部13(デッドスペース)ならびに短絡流の発生を回避することができる。具体的な方策としては、各流入口を別配管によって設置する、といった方法や、バルブ切替によって流入を制御する方法、等があげられる。   For all inlets, the inflow from each inlet can be stopped as needed. If some of the inlets are unable to flow due to a blockage, etc., temporarily stop the flow from the other inlets, and flow only through the blocked inlets, opening the blockage. Inflow again becomes possible. Thus, it is possible to prevent a single flow and avoid the occurrence of the stay portion 13 (dead space) and the short-circuit flow described above. Specific measures include a method of installing each inlet by a separate pipe, a method of controlling inflow by switching valves, and the like.

流入口9での吐出速度は、充填物性状にもよるが、0.3〜10m/secとすることが望ましい。また、流入水の装置内部の通水速度は、装置断面の平均液線速度として0.5〜10m/hとなるように調整する。吐出速度や通水速度は、被処理水に、希釈水、処理水の循環水等を加えることで、調整が可能である。流入口の管径は、内径10mm〜80mm、好ましくは18mm〜54mm、より好ましくは20mm〜30mmとすることが望ましい。   The discharge speed at the inlet 9 is preferably 0.3 to 10 m / sec, although it depends on the properties of the packing. Moreover, the water flow rate inside the apparatus of inflow water is adjusted so that it may become 0.5-10 m / h as an average liquid linear velocity of an apparatus cross section. The discharge speed and the water flow speed can be adjusted by adding dilution water, circulating water for the treated water, and the like to the treated water. The tube diameter of the inlet is desirably 10 mm to 80 mm, preferably 18 mm to 54 mm, more preferably 20 mm to 30 mm.

嫌気性処理装置底部および流入口の概略図を、図5に示す。流入口9の方向は、図5の(a)、(b)に示すように、上向き又は下向きが望ましい。最下段GSS8が処理装置本体側壁に接していない場合は、流入口の装置内横方向における設置位置は、GSS登頂部からGSS先端部までの長さの4分の3以内、好ましくは3分の2以内、より好ましくは2分の1以内の範囲とする(図6のA部)。
最下段GSSが壁に接している場合は、投影部のGSS登頂部より壁側については、原水流入口9の設置位置に制限はない(図6のB部)。又、GSSと装置本体側壁との角度は35度以下であることが好ましい。
A schematic diagram of the anaerobic treatment apparatus bottom and inlet is shown in FIG. The direction of the inflow port 9 is preferably upward or downward as shown in FIGS. When the lowermost stage GSS8 is not in contact with the processing apparatus main body side wall, the installation position of the inflow port in the lateral direction within the apparatus is within 3/4, preferably 3 minutes, of the length from the GSS top to the GSS tip. The range is within 2 and more preferably within 1/2 (part A in FIG. 6).
When the lowermost stage GSS is in contact with the wall, the installation position of the raw water inlet 9 is not limited on the wall side from the GSS ascending part of the projection part (B part in FIG. 6). The angle between the GSS and the apparatus main body side wall is preferably 35 degrees or less.

以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
図7は、本発明の実施形態による、上向流式嫌気性処理装置を示す断面図である。
図7(イ)において、嫌気性処理装置1は角型の容器からなり、3段のGSS2、3、4を備えている。底面積は20mである。流入水16は、底部に設けられた流入配管5より下向きに流入し、上向流によって担体充填部6を通り、処理水流出口7より処理水17として流出する。担体充填部6には、平均粒径0.4mm、充填密度0.5g/cmの担体と、植種のための種汚泥を投入した。図7の(ロ)は、図のa−a’断面の上面図であり、最下段のGSS2の形状を示している。GSS2は樋型の構造となっている。図7の(ハ)は、図のb−b’断面の上面図であり、流入配管5の形状を示している。流入配管5は口径22mmの流入口を6箇所に備えており、図7の(ニ)に示すように、いずれも流入水の上昇流がGSS2の下部に流入するように配置されている。流入水は、6箇所の流入口より下向きに流入し、上向流によって担体充填部6を通り、嫌気性処理される。
Example 1
FIG. 7 is a cross-sectional view illustrating an upward flow anaerobic treatment apparatus according to an embodiment of the present invention.
In FIG. 7A, the anaerobic treatment apparatus 1 is formed of a rectangular container and includes three stages of GSSs 2, 3, and 4. The bottom area is 20 m 2 . The inflow water 16 flows downward from the inflow pipe 5 provided at the bottom, passes through the carrier filling portion 6 by an upward flow, and flows out as the treated water 17 from the treated water outlet 7. A carrier having an average particle diameter of 0.4 mm and a packing density of 0.5 g / cm 3 and seed sludge for seeding were introduced into the carrier filling unit 6. (B) of FIG. 7 is a top view of a cross section along the line aa ′ in FIG. 7 and shows the shape of the lowest GSS 2. GSS2 has a saddle type structure. (C) in FIG. 7 is a top view of the bb ′ cross section of the drawing and shows the shape of the inflow pipe 5. The inflow pipe 5 is provided with six inflow ports having a diameter of 22 mm, and as shown in FIG. 7D, all of the inflow pipes 5 are arranged so that the upward flow of the inflow water flows into the lower part of the GSS 2. The inflowing water flows downward from the six inlets, passes through the carrier filling portion 6 by the upward flow, and is anaerobically treated.

この嫌気性処理装置において、流入配管5より流入した流入水は、GSS2まで上昇し、GSS2の下端で分散する。その後、GSS3まで上昇し、さらにGSS3の下端で分散する。これによって、装置内の担体が充分に撹拌され、滞留部(デッドスペース)ならびに短絡流の発生が抑制される。嫌気性処理によって発生したガスは、GSS2、3、4で効率よく捕集され、取り出される。   In this anaerobic treatment device, the inflow water flowing in from the inflow pipe 5 rises to GSS2 and is dispersed at the lower end of GSS2. Then, it rises to GSS3 and further disperses at the lower end of GSS3. Thereby, the support | carrier in an apparatus is fully stirred and generation | occurrence | production of a retention part (dead space) and a short circuit flow is suppressed. The gas generated by the anaerobic treatment is efficiently collected and taken out by the GSSs 2, 3, and 4.

図8は、対照系列(比較例)の、上向流式嫌気性処理装置を示す断面図である。図7に示す嫌気性処理装置とほぼ同じ構造を有しており、流入配管5の形状のみが異なる。図8の(ハ)において、流入配管5は6箇所の流入口を備えており、図8の(ニ)に示すように、いずれも流入水の上昇流がGSS2の投影面から逸れるように配置されている。   FIG. 8 is a cross-sectional view showing an upflow anaerobic treatment apparatus of a control series (comparative example). 7 has substantially the same structure as the anaerobic treatment apparatus shown in FIG. 7, and only the shape of the inflow pipe 5 is different. In FIG. 8C, the inflow pipe 5 is provided with six inflow ports, and as shown in FIG. 8D, all are arranged so that the upward flow of the inflow water deviates from the projection surface of the GSS2. Has been.

第1表は、本発明の実施形態による上向流式嫌気性処理装置と、対照系列(比較例)の上向流式嫌気性処理装置の、運転条件並びに処理成績である。排水原水としては、メタノール排水を使用した。原水CODCr濃度は3000mg/L、CODCr容積負荷は25kg/m/d、各流入口の流入水吐出速度は7.2m/sec、装置内の通水速度は3m/hであった。運転期間は4ヶ月間であった。 Table 1 shows operating conditions and processing results of the upflow anaerobic treatment apparatus according to the embodiment of the present invention and the upflow anaerobic treatment apparatus of the control series (comparative example). Methanol waste water was used as raw waste water. The raw water COD Cr concentration was 3000 mg / L, the COD Cr volumetric load was 25 kg / m 3 / d, the inflow water discharge speed at each inlet was 7.2 m / sec, and the water flow speed in the apparatus was 3 m / h. The operation period was 4 months.

Figure 2008221181
Figure 2008221181

本発明の実施形態による上向流式嫌気性処理装置の処理成績は、処理水SS濃度11mg/L、処理水CODCr濃度72mg/L、CODCr除去率98%であり、良好な処理を示した。汚泥増加率は3%であった。一方、対照系列の上向流式嫌気性処理装置の処理成績は、処理水SS濃度138mg/L、処理水CODCr濃度270mg/L、CODCr除去率91%であり、本発明の実施形態による上向流式嫌気性処理装置の処理成績と比較して、処理水への流出SSが多く、CODCr除去率が低い値であった。また、汚泥増加率は−13%であり、多量のSS流出による汚泥量の減少が見られた。(いずれも平均値) The treatment results of the upward flow type anaerobic treatment apparatus according to the embodiment of the present invention are a treated water SS concentration of 11 mg / L, a treated water COD Cr concentration of 72 mg / L, and a COD Cr removal rate of 98%. It was. The sludge increase rate was 3%. On the other hand, the treatment results of the control type upward flow anaerobic treatment apparatus are treated water SS concentration of 138 mg / L, treated water COD Cr concentration of 270 mg / L, and COD Cr removal rate of 91%, which is according to the embodiment of the present invention. compared to treatment performance of upflow anaerobic treatment apparatus, outlet SS of the treated water is much, were COD Cr removal rate is low value. Moreover, the sludge increase rate was -13%, and a decrease in the sludge amount due to a large amount of SS spill was observed. (Both are average values)

本発明の上向流式嫌気性処理装置は、撹拌羽等の処理装置の内部構造物を大幅に更新する必要がなく装置の維持管理も容易であり、改良に伴う費用を抑えることができる。従って、本発明による処理装置と処理方法は、工場汚水処理場、畜産施設の汚水処理場あるいは生活排水の処理場等での採用が期待される。   The upward flow type anaerobic treatment apparatus of the present invention does not require significant renewal of the internal structure of the treatment apparatus such as a stirring blade, and is easy to maintain and manage the apparatus, and can reduce the cost associated with the improvement. Therefore, the treatment apparatus and the treatment method according to the present invention are expected to be adopted in a factory sewage treatment plant, a sewage treatment plant of livestock facilities, a domestic wastewater treatment plant, or the like.

本発明の嫌気性処理装置のGSSと流入口配置の関係をモデル的に例示した図であり、(a)〜(f)の態様を示し、(イ)は縦断面図、(ロ)は上面図を示す。It is the figure which illustrated the relationship between GSS of an anaerobic processing apparatus of this invention, and inflow port arrangement | positioning, showing the aspect of (a)-(f), (A) is a longitudinal cross-sectional view, (B) is an upper surface. The figure is shown. (a)は底面積16m、装置液線速度5m/h、流入口径22mmとした場合、設計上必要な流入口の数と流入口吐出速度の関係を示す図である。(b)は流入口径22mm、吐出速度10m/secとした場合、装置底面積と装置液線速度の関係を示す図である。(A) is a figure which shows the relationship between the number of inflow ports required for a design, and an inflow port discharge speed when the bottom area is 16 m 2 , the apparatus liquid linear velocity is 5 m / h, and the inflow port diameter is 22 mm. (B) is a diagram showing the relationship between the apparatus bottom area and the apparatus liquid linear velocity when the inlet diameter is 22 mm and the discharge speed is 10 m / sec. 2箇所以上の流入口を設ける場合、流入口の配置を底面積を流入口数で等分割した面中に配置する場合に想定される例を示す図であり、(a)〜(c)の3つの態様を示し、(イ)は縦断面図、(ロ)〜(ホ)は上面図を示す。When two or more inlets are provided, it is a figure which shows the example assumed when arrangement | positioning of the inlets is arrange | positioned in the surface which divided | segmented the bottom area by the number of inlets equally, (a)-(c) 3 One embodiment is shown, (A) is a longitudinal sectional view, and (B) to (E) are top views. 本発明の嫌気性処理装置の側面概略図を示し、(a)〜(e)の態様を示している。The side surface schematic of the anaerobic processing apparatus of this invention is shown, and the aspect of (a)-(e) is shown. 本発明の嫌気性処理装置底部及び流入口の方向を示す概略図であり、(a)は流入口が上向きのもの、(b)は流入口が下向きのものを示す。It is the schematic which shows the direction of the anaerobic processing apparatus bottom part of this invention, and an inflow port, (a) shows that an inflow port faces upward, (b) shows that an inflow port faces downward. 本発明の嫌気性処理装置のGSSにおいて、流入口の位置を示す概念図であり、(a)〜(c)の3つの態様を示し、(イ)は縦断面図、(ロ)〜(ハ)は上面図を示す。In GSS of the anaerobic processing apparatus of this invention, it is a conceptual diagram which shows the position of an inflow port, shows three aspects of (a)-(c), (a) is a longitudinal cross-sectional view, (b)-(c) ) Shows a top view. 本発明の実施形態による上向流式嫌気性処理装置の縦断面図と上面図である。It is the longitudinal cross-sectional view and top view of the upward flow type anaerobic processing apparatus by embodiment of this invention. 対照系列(比較例)の上向流式嫌気性処理装置の縦断面図と上面図である。It is the longitudinal cross-sectional view and top view of an upflow type anaerobic processing apparatus of a control series (comparative example).

符号の説明Explanation of symbols

1 嫌気性処理装置
2 最下段GSS
3 中段GSS
4 上段GSS
5 流入配管
6 担体充填部
7 流入口設置に適した位置(実線域)
8 最下段GSS
9 流入口
10 流入口設置に適さない位置(破線域)
11 流路a(実線)
12 流路b(破線)
13 充填物の滞留部
14 中段GSS
15 上段GSS
16 流入水
17 処理水
18 発生ガス
1 Anaerobic treatment device 2 Bottom GSS
3 Middle GSS
4 Upper GSS
5 Inflow piping 6 Carrier filling part 7 Position suitable for inflow installation (solid line area)
8 Bottom GSS
9 Inlet 10 Position that is not suitable for inflow installation (dashed line area)
11 Channel a (solid line)
12 Channel b (dashed line)
13 Retaining part of packing 14 Middle stage GSS
15 Upper GSS
16 Inflow water 17 Treated water 18 Generated gas

Claims (4)

ガス・液・固分離部を多段に有する上向流式嫌気性汚泥床処理装置において、最下段ガス・液・固分離部より下方に少なくとも二つ以上の流入口を有し、該流入口は該最下段ガス・液・固分離部の投影面部内に設置されていることを特徴とする嫌気性処理装置。   In the upward flow type anaerobic sludge bed treatment apparatus having gas, liquid, and solid separation sections in multiple stages, it has at least two or more inlets below the lowermost gas, liquid, and solid separation section. An anaerobic treatment apparatus, wherein the anaerobic treatment apparatus is installed in a projection surface portion of the lowermost gas / liquid / solid separation portion. 前記最下段ガス・液・固分離部が複数ある場合は、各々の最下段ガス・液・固分離部の該投影面部内に少なくとも1つ以上の前記流入口を有することを特徴とする請求項1記載の嫌気性処理装置。   When there are a plurality of the lowermost gas / liquid / solid separation portions, at least one or more inflow ports are provided in the projection surface of each lowermost gas / liquid / solid separation portion. The anaerobic treatment apparatus according to 1. 前記流入口の装置内横方向における設置位置は、前記最下段ガス・液・固分離部の頂部から先端部までの長さの4分の3以内に設置したことを特徴とする請求項1又は請求項2記載の嫌気性処理装置。   The installation position in the lateral direction in the apparatus of the inflow port is set within 3/4 of the length from the top to the tip of the lowermost gas / liquid / solid separation part. The anaerobic processing apparatus according to claim 2. ガス・液・固分離部を多段に有する上向流式嫌気性汚泥床処理装置を使用した有機性廃水の嫌気性処理方法において、最下段ガス・液・固分離部の下部に流入水の上昇流が流入するように該最下段ガス・液・固分離部の投影面部内に少なくとも二つ以上の流入口を設け、流入水が前記最下段ガス・液・固分離部を経て上向に流れるようにしたことを特徴とする嫌気性処理方法。   In the anaerobic treatment method of organic wastewater using an upflow anaerobic sludge bed treatment device with multiple stages of gas, liquid and solid separation, the inflow of water rises below the bottom gas, liquid and solid separation. At least two or more inlets are provided in the projection surface of the lowermost gas / liquid / solid separation part so that the flow flows in, and the inflowing water flows upward through the lowermost gas / liquid / solid separation part. The anaerobic processing method characterized by doing it.
JP2007066697A 2007-03-15 2007-03-15 Anaerobic treatment device and treatment method Pending JP2008221181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066697A JP2008221181A (en) 2007-03-15 2007-03-15 Anaerobic treatment device and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066697A JP2008221181A (en) 2007-03-15 2007-03-15 Anaerobic treatment device and treatment method

Publications (1)

Publication Number Publication Date
JP2008221181A true JP2008221181A (en) 2008-09-25

Family

ID=39840383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066697A Pending JP2008221181A (en) 2007-03-15 2007-03-15 Anaerobic treatment device and treatment method

Country Status (1)

Country Link
JP (1) JP2008221181A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241433A (en) * 2010-05-11 2011-11-16 泰州康泰环保科技有限公司 Efficient combined three-phase separator
JP2013059731A (en) * 2011-09-14 2013-04-04 Swing Corp Method and device for anaerobic treatment of pulp mill waste water
JP2020025901A (en) * 2018-08-09 2020-02-20 オルガノ株式会社 Anaerobic fluid bed type biological treatment apparatus and anaerobic fluid bed type biological treatment method

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279899A (en) * 1986-05-30 1987-12-04 Ebara Infilco Co Ltd Method and apparatus for treating sewage of excretion system
JPH0240292A (en) * 1988-07-27 1990-02-09 Japan Organo Co Ltd Apparatus for anaerobically treating upward flow
JPH07308686A (en) * 1994-05-20 1995-11-28 Mitsubishi Kakoki Kaisha Ltd Upward flow anaerobic treatment device
JPH081186A (en) * 1994-06-23 1996-01-09 Kurita Water Ind Ltd Waste water treatment apparatus
JPH1128497A (en) * 1997-07-11 1999-02-02 Ishikawajima Harima Heavy Ind Co Ltd Startup method of upflow anaerobic sludge bed reactor and granule formation promoting device in upflow anaerobic sludge bed reactor
JPH11290887A (en) * 1998-04-14 1999-10-26 Kurita Water Ind Ltd Anaerobic treatment apparatus for organic waste water
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2000117285A (en) * 1998-10-16 2000-04-25 Kurita Water Ind Ltd Anaerobic treatment device for organic wastewater
JP2001259681A (en) * 2000-03-21 2001-09-25 Mitsubishi Kakoki Kaisha Ltd Upward flow anaerobic treating device
JP2002079291A (en) * 2000-09-08 2002-03-19 Ebara Corp Anaerobic treatment method and apparatus
JP2002219486A (en) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Anaerobic treatment equipment with upward flow
JP2003181208A (en) * 2001-09-07 2003-07-02 Paques Water Systems Bv Three-phase separator and installation for biological purification of effluent
JP2003340487A (en) * 2002-05-22 2003-12-02 Mitsubishi Kakoki Kaisha Ltd Method for supplying water to be treated of upflow anaerobic treatment apparatus
JP2006095421A (en) * 2004-09-29 2006-04-13 Mitsubishi Kakoki Kaisha Ltd Up flow anaerobic treatment method
JP2006142302A (en) * 2006-03-02 2006-06-08 Ebara Corp Anaerobic treatment method and apparatus
JP2007144401A (en) * 2005-11-07 2007-06-14 Kurita Water Ind Ltd Biological reactor
WO2007078194A1 (en) * 2006-01-05 2007-07-12 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
JP2008036529A (en) * 2006-08-04 2008-02-21 National Institute For Environmental Studies Method and apparatus for treating wastewater by methane fermentation

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279899A (en) * 1986-05-30 1987-12-04 Ebara Infilco Co Ltd Method and apparatus for treating sewage of excretion system
JPH0240292A (en) * 1988-07-27 1990-02-09 Japan Organo Co Ltd Apparatus for anaerobically treating upward flow
JPH07308686A (en) * 1994-05-20 1995-11-28 Mitsubishi Kakoki Kaisha Ltd Upward flow anaerobic treatment device
JPH081186A (en) * 1994-06-23 1996-01-09 Kurita Water Ind Ltd Waste water treatment apparatus
JPH1128497A (en) * 1997-07-11 1999-02-02 Ishikawajima Harima Heavy Ind Co Ltd Startup method of upflow anaerobic sludge bed reactor and granule formation promoting device in upflow anaerobic sludge bed reactor
JPH11290887A (en) * 1998-04-14 1999-10-26 Kurita Water Ind Ltd Anaerobic treatment apparatus for organic waste water
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2000117285A (en) * 1998-10-16 2000-04-25 Kurita Water Ind Ltd Anaerobic treatment device for organic wastewater
JP2001259681A (en) * 2000-03-21 2001-09-25 Mitsubishi Kakoki Kaisha Ltd Upward flow anaerobic treating device
JP2002079291A (en) * 2000-09-08 2002-03-19 Ebara Corp Anaerobic treatment method and apparatus
JP2002219486A (en) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Anaerobic treatment equipment with upward flow
JP2003181208A (en) * 2001-09-07 2003-07-02 Paques Water Systems Bv Three-phase separator and installation for biological purification of effluent
JP2003340487A (en) * 2002-05-22 2003-12-02 Mitsubishi Kakoki Kaisha Ltd Method for supplying water to be treated of upflow anaerobic treatment apparatus
JP2006095421A (en) * 2004-09-29 2006-04-13 Mitsubishi Kakoki Kaisha Ltd Up flow anaerobic treatment method
JP2007144401A (en) * 2005-11-07 2007-06-14 Kurita Water Ind Ltd Biological reactor
WO2007078194A1 (en) * 2006-01-05 2007-07-12 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
JP2006142302A (en) * 2006-03-02 2006-06-08 Ebara Corp Anaerobic treatment method and apparatus
JP2008036529A (en) * 2006-08-04 2008-02-21 National Institute For Environmental Studies Method and apparatus for treating wastewater by methane fermentation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241433A (en) * 2010-05-11 2011-11-16 泰州康泰环保科技有限公司 Efficient combined three-phase separator
JP2013059731A (en) * 2011-09-14 2013-04-04 Swing Corp Method and device for anaerobic treatment of pulp mill waste water
JP2020025901A (en) * 2018-08-09 2020-02-20 オルガノ株式会社 Anaerobic fluid bed type biological treatment apparatus and anaerobic fluid bed type biological treatment method
JP7207894B2 (en) 2018-08-09 2023-01-18 オルガノ株式会社 Anaerobic fluidized bed biological treatment apparatus and anaerobic fluidized bed biological treatment method

Similar Documents

Publication Publication Date Title
AU2007203833B2 (en) Process and reactor for anaerobic waste water purification
CN103755007B (en) Fenton fluidized bed treatment device and waste water treatment method thereof
CN101781059B (en) Novel anaerobic membrane bioreactor
EP1984305B1 (en) Process and reactor for anaerobic waste water purification
JP5114780B2 (en) Anaerobic treatment method and apparatus
US9771286B2 (en) Apparatus for biological sewage treatment
CN203866098U (en) High-efficiency anaerobic and aerobic integrated reactor
JP2008029993A (en) Methane fermenter
CN105000666A (en) Wastewater biological membrane reactor based on filler and folding plates
CN114314835B (en) Short-cut nitrification and denitrification coupling anaerobic ammonia oxidation denitrification reactor and integrated equipment
CN103288229B (en) A kind of settler for sewage three phase separation
JP2008221181A (en) Anaerobic treatment device and treatment method
CN110510815A (en) Integrated sewage treating apparatus and sewage water treatment method based on simultaneous nitrification-denitrification
CN201433134Y (en) Improved UASB reactor
CN210012649U (en) Aerobic biological reaction tank with sectional filler
JP7262332B2 (en) Water treatment method and water treatment equipment
JP2006142302A (en) Anaerobic treatment method and apparatus
JP2012086109A (en) Wastewater treatment apparatus
CN103936140A (en) MBBR pretreatment method and system for high-ammonia nitrogen micro-polluted raw water
JP7144999B2 (en) Water treatment method and water treatment equipment
CN107344806B (en) Coal-to-oil RO concentrated water treatment system and treatment method thereof
CN104211173A (en) Modularized intelligent anaerobic reaction system
WO2020026924A1 (en) Water treatment method and water treatment device
CN219860845U (en) A2O-MBR integrated low-concentration organic wastewater treatment system
JP7444643B2 (en) Water treatment equipment and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911