JP3932445B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3932445B2
JP3932445B2 JP2001156831A JP2001156831A JP3932445B2 JP 3932445 B2 JP3932445 B2 JP 3932445B2 JP 2001156831 A JP2001156831 A JP 2001156831A JP 2001156831 A JP2001156831 A JP 2001156831A JP 3932445 B2 JP3932445 B2 JP 3932445B2
Authority
JP
Japan
Prior art keywords
layer
substrate
semiconductor device
manufacturing
energy absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001156831A
Other languages
English (en)
Other versions
JP2002057164A (ja
Inventor
パル ゴサイン ダラム
和正 野本
暁夫 町田
美弥子 中越
節夫 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001156831A priority Critical patent/JP3932445B2/ja
Publication of JP2002057164A publication Critical patent/JP2002057164A/ja
Application granted granted Critical
Publication of JP3932445B2 publication Critical patent/JP3932445B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体層に導入した不純物をエネルギービームにより活性化する工程を含む半導体装置の製造方法に係り、特に、低耐熱性の基板上にトップゲート型薄膜トランジスタ(Thin Film Transistor;TFT)を製造するのに用いて好適な半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、ガラス基板上に形成された多結晶シリコン(Si)TFTは、スイッチング機能素子として液晶表示装置の画素およびドライバに用いられており、またそれ以外にも半導体メモリとしての開発が進められている。このTFT等の半導体装置においては、軽量、耐衝撃性、多少の応力が加えられても破損しない柔軟性などが基板に要求されるため、基板には従来よりガラス基板あるいはシリコン基板等が用いられてきた。このうち、ガラス基板は耐熱性が低く(耐熱温度400℃)、レーザや赤外ランプ等のエネルギービームを用いて局所加熱することにより、基板温度を比較的低温に抑えて半導体層などの熱処理が行われていた。
【0003】
最近では、これらの基板よりも軽量で衝撃に強いプラスチック基板が用いられるようになっている。ところが、ポリエチレンテレフタレート(polyethylene terephthalate;PET)などのプラスチック基板の耐熱温度は200℃程度であり、ガラス基板と比べてもさらに低い。
【0004】
【発明が解決しようとする課題】
そのため、プラスチック基板を用いる場合には、半導体装置の全ての製造工程が200℃以下の温度において行われる必要がある。つまり、結晶化や不純物の活性化などの目的で行われる熱処理はもとより、ゲート絶縁膜や層間絶縁膜等に用いられる二酸化ケイ素(SiO2 )膜などの一般には200℃より高温で行われる薄膜の形成における温度条件が200℃以下となる。
【0005】
しかしながら、一般的に、半導体層に注入された不純物を温度200℃以下で活性化することは不可能である。また、SiO2 膜を200℃以下の温度で形成すると、得られるSiO2 膜は多量の欠陥を含み、半導体層との界面にも欠陥が多く存在する。なお、このSiO2 膜を成膜した後に熱処理して欠陥を除去する方法は、少なくとも400℃以上であることが条件であり、プラスチック基板に適用することができなかった。
【0006】
また、上述の熱処理にエネルギービームを用いて、素子の表面を局所加熱するようにしても、エネルギービームは瞬時に高温加熱を行うため、絶縁層以下の層は急激に温度が上昇し、その結果、照射されたビームの熱によって耐熱性が非常に低いプラスチック基板が損傷する場合があった。
【0007】
本発明はかかる問題点に鑑みてなされたもので、その目的は、低耐熱性の基板上に良好な特性を持つ半導体装置を製造することができる半導体装置の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明に係る半導体装置の製造方法は、基板上に半導体層を形成する工程と、この半導体層上に絶縁層を介して選択的に金属層を形成する工程と、この金属層をマスクとして半導体層に選択的に不純物を導入する工程と、絶縁層および金属層を覆うように、窒化アルミニウム(AlN)を堆積してエネルギー吸収層を形成する工程と、このエネルギー吸収層の側からパルスレーザビームを照射し、前記半導体層に導入された不純物を活性化する工程とを含むものである。
【0009】
本発明に係る半導体装置の製造方法では、照射されたエネルギービームは、一旦エネルギー吸収層に吸収され、このエネルギー吸収層を介して、プラスチック等の低耐熱性の基板に損傷を与えることなく、間接的にその下層の金属層、絶縁層および半導体層を加熱する。これにより、半導体層中の不純物の活性化および絶縁層中の欠陥の除去が行われる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0011】
〔第1の実施の形態〕
図1は、本発明の第1の実施の形態に係るトップゲート型TFTの断面構成を表すものである。このTFTには、例えば、基板10の上にバッファ層11を介してチャネル領域13a,ソース領域13bおよびドレイン領域13cを備えた多結晶シリコン(Si)層13が設けられている。これらソース領域13bおよびドレイン領域13cは、互いに離間しかつチャネル領域13aに隣接して形成されている。チャネル領域13aの上には絶縁層14を介してゲート電極15が形成されており、ソース領域13bにはソース電極17,ドレイン領域13cにはドレイン電極18がそれぞれ電気的に接続されている。
【0012】
このようなTFTの製造方法を、以下、図1乃至図5を参照して説明する。
【0013】
まず、図2に示したように、例えば耐熱温度が200℃程度以下の基板10の上に、断熱効果により基板10を熱から保護するためのバッファ層11を、基板10の耐熱温度以下の温度で形成する。
【0014】
基板10としては、例えば有機材料が用いられる。具体的には、ポリエチレンサルフォン(PES),ポリエチレンテレフタレート(PET),ポリエチレンナフタレートあるいはポリカーボネートなどのポリエステル類、ポリプロピレンなどのポリオレフィン類、ポリフェニリンスルフィドなどのポリフェニリンスルフィド類、ポリアミド類、芳香族ポリアミド類、ポリエーテルケトン類またはポリイミド類などの高分子材料が好ましく、これらのうちいずれか1種以上を含んで構成されていてもよい。基板10の厚さは例えば200μmであるが、TFTに柔軟性を付与すると共に小型化するためには薄い方がより好ましい。なお、このような有機材料の軟化点は250℃以下であり、そのうちPESおよびPETの耐熱温度は、それぞれ200℃,100℃程度である。また、バッファ層11としては、例えば二酸化ケイ素(SiO2 )を用いる。その他にも、酸化ケイ素(SiOx ),窒化ケイ素(SiNx ),酸化窒化ケイ素(SiOx y )あるいはこれらの積層膜を用いることができる。バッファ層11の厚みは例えば300nmとする。
【0015】
次に、バッファ層11の上に非晶質シリコン層12を基板10の耐熱温度以下の温度で形成する。非晶質シリコン層12は膜厚を例えば30nmとする。これらバッファ層11および非晶質シリコン層12の形成には、例えば反応性スパッタリング法,プラズマエンハンストCVD(Plasma Enhanced Chemical Vapor Deposition ;PECVD)法,減圧CVD(Low Pressure CVD;LPCVD)法,蒸着法などを用いることができる。なお、ここではシリコン(Si)を用いて非晶質シリコン層12を形成するようにしたが、Siを含めたシリコンゲルマニウム(SiGe),ゲルマニウム(Ge),炭化ケイ素(SiC)のうちの1種以上の半導体を用いることができる。
【0016】
次に、非晶質シリコン層12を例えばパルスレーザビームを照射して加熱する。これにより非晶質シリコン層12が結晶化して、図3に示したように、多結晶シリコン層13となる。パルスレーザビームとしては、非晶質シリコン層12に吸収されやすい波長すなわち紫外域の波長を持つレーザを用いることが好ましい。具体的には、XeClエキシマレーザ(波長308nm),KrFエキシマレーザ(波長248nm),ArFエキシマレーザ(波長193nm),XeFエキシマレーザ(波長351nm)、あるいはNd:YAGレーザの第3高調波(355nm),Nd:YAGレーザの第4高調波(266nm)などを用いることができ、このレーザの波長,エネルギー密度,パルス幅および照射パルス数などの条件は、非晶質シリコン層12の層厚などに応じて適宜選択される。但し、非晶質シリコン層12を十分に加熱し、結晶性の良い多結晶シリコン層13を得るためには、ビームのパルス幅を100ps以上300ns以下の範囲内とすることが好ましい。
【0017】
照射されたパルスレーザビームは、非晶質シリコン層12にほぼ完全に吸収される。従って、基板10はほとんど加熱されることがない。ここで、多結晶シリコン層13が本発明の「半導体層」の一具体例に対応する。なお、「半導体層」は必ずしも全体が多結晶である必要はなく、例えば部分的に結晶性を持つ結晶質領域を有するように形成されてもよい。
【0018】
更に、多結晶シリコン層13を、例えばリソグラフィおよびエッチングにより、所定形状例えば島状にパターニングする。
【0019】
次に、図4に示したように、パターニングされた多結晶シリコン層13を覆うように、この上から例えばSiO2 あるいはSiNx などを用いて絶縁層14を基板10の耐熱温度以下の温度で形成する。この絶縁層14は、例えば、反応性スパッタリング法,PECVD法,蒸着法,JVD(Jet Vapor Deposition) 法などにより形成することができ、その他、多結晶シリコン層13の表面をプラズマ酸化またはプラズマ窒化して得ることもできる。絶縁層14の厚みは例えば50nmとする。
【0020】
次に、絶縁層14の上に、例えばアルミニウム(Al)を用いて、ゲート電極15をスパッタリング法または蒸着法により形成する。ゲート電極15としてはAlの他、銅(Cu),モリブデン(Mo),タンタル(Ta),白金(Pt),あるいはITO(インジウムとスズの酸化物)を用いることができる。ゲート電極15の厚みは例えば240nmとする。ここで、ゲート電極15が本発明の「金属層」の一具体例に対応する。
【0021】
続いて、例えばイオン注入法により、このゲート電極15をマスクとして多結晶シリコン層13に基板10の耐熱温度以下の温度で不純物を導入する。不純物としては、nチャネル型のTFTの場合には、n型不純物として例えばリン(P)を用い、pチャネル型のTFTの場合には、p型不純物として例えばホウ素(B)を用いる。これにより、不純物注入領域であるソース領域13b,ドレイン領域13cと、これらの間の非注入領域であるチャネル領域13aとがゲート電極15に対して自己整合的に形成される(図5参照)。
【0022】
更に、図5に示したように、ゲート電極15と絶縁層14の上から基板10の最表面を覆うように、エネルギー吸収層16を基板10の耐熱温度以下の温度で形成する。エネルギー吸収層16としては、後述するようにエネルギービームの照射エネルギーをよく吸収するために、そのバンドギャップがエネルギービームのエネルギー以下である材料を用いる。具体的には、炭素(C),シリコン(Si),ゲルマニウム(Ge),炭化ケイ素(SiC),窒化ケイ素(SiN),窒化アルミニウム(AlN),シリコンゲルマニウム(SiGe)、および遷移金属であるモリブデン(Mo),タンタル(Ta),タングステン(W),ニッケル(Ni),クロム(Cr)等が挙げられ、これらのうちのいずれか1種または複数種を用いることができる。なお、エネルギービーム照射の後にエネルギー吸収層16を除去する場合には、エネルギー吸収層16は更に、ゲート電極15に対してエッチング選択性を有するものを用いる。例えば、ゲート電極15がAlであれば、エネルギー吸収層16には非晶質シリコンを用いることが好ましい。このエネルギー吸収層16の厚みは、例えば30nmである。
【0023】
次に、このエネルギー吸収層16の側から例えばエキシマレーザによる紫外のパルスレーザビームを照射して、エネルギー吸収層16を加熱する。このパルスレーザビームには、非晶質シリコン層12に照射するものと同様のものを用いることができる。照射されたレーザビームはエネルギー吸収層16にほぼ完全に吸収され、このエネルギー吸収層16から発散される熱により間接的に熱処理が行われる。一旦エネルギー吸収層16に吸収されたエネルギーは、エネルギー吸収層16の層面全体から均一に発散され、ゲート電極15,絶縁層14さらに多結晶シリコン層13へと伝搬する。ゲート電極15は熱伝導性がよく、その周囲、特にゲート電極15の直下の絶縁層14を加熱する。このように、絶縁層14以下の層は比較的均一かつ緩慢に加熱され、基板10はほとんど加熱されない。
【0024】
この熱処理によって、多結晶シリコン層13の不純物が活性化されると共に、ゲート電極15が加熱され、これにより絶縁層14および絶縁層14と多結晶シリコン層13との界面が加熱されて、絶縁層14の内部およびこれと多結晶シリコン層13との界面に存在する欠陥が除去される。ここで、多結晶シリコン層13の不純物は活性化率20%以上まで活性化されることが望ましい。ちなみに、従来のようにレーザビームを直接絶縁層14に照射する場合には、基板10の温度上昇を防ぐために照射量を減少させれば絶縁層14以下の層を十分に加熱できず、更に、ビームエネルギーは局所的に放出されるので、絶縁層14以下の層において層面方向の温度分布が生じ、この場合も例えば多結晶シリコン層13や絶縁層14の一部が十分に熱処理されない虞があった。
【0025】
次に、図1に示したように、エネルギー吸収層16を除去する。更に、ソース領域13bおよびドレイン領域13cの上部に、ソース電極17およびドレイン電極18を形成する。これらソース電極17,ドレイン電極18には例えばAlを用い、スパッタリング法,蒸着法などにより成膜した後にリソグラフィーおよびエッチングによりパターニングする方法などの公知の方法により形成することができる。なお、このようにして形成されるTFTに対し、その表面を例えばSiO2 などの酸化物やSiNx 等で被覆し、保護膜を形成するようにしてもよい。
【0026】
このように、本実施の形態によれば、基板10の上にエネルギー吸収層16を設けた後にパルスレーザビームを照射するようにしたので、レーザビームのような瞬時に局所的に放出されるエネルギーが、一旦、エネルギー吸収層16に吸収され、このエネルギー吸収層16の層面全体から間接的に発散されることにより、基板10は実質的に加熱されないが、エネルギー吸収層16の下層のゲート電極15、絶縁層14および多結晶シリコン層13は均一かつ緩慢に加熱される。従って、レーザビームを直接照射する場合に生じる基板10の損傷を防止しつつ、多結晶シリコン層13の不純物の活性化および絶縁層14の内部や周囲に生じる欠陥の除去を十分に、しかも同時に行うことができる。
【0027】
また、本実施の形態によれば、ゲート電極15をマスクとして多結晶シリコン層13に不純物をイオン注入するようにしたので、マスクを別に形成することなく、一つの工程でチャネル領域13a,ソース領域13bおよびドレイン領域13cを自己整合的に形成することができる。
【0028】
〔第2の実施の形態〕
図6は、本発明の第2の実施の形態に係るトップゲート型TFTの断面構成を表すものである。このTFTは、絶縁層14a,14bの間にゲート電極15aが形成されていること以外は第1の実施の形態と同様の構成を有している。ここで、絶縁層14a,14bおよびゲート電極15a,15bは、第1の実施の形態の絶縁層14およびゲート電極15に対応している。よって、第1の実施の形態と同一の構成要素には同一の符号を付し、その説明を省略する。
【0029】
このようなTFTの製造方法を、以下、図6乃至図9を参照して説明する。
【0030】
まず、第1の実施の形態と同様にして、基板10の上にバッファ層11,非晶質シリコン層12を順に基板10の耐熱温度以下の温度で形成し、非晶質シリコン層12をパルスレーザビームにより加熱する。これにより非晶質シリコン層12が結晶化し、多結晶シリコン層13となる。パルスレーザビームとしては、例えばエキシマレーザなどの第1の実施の形態と同様のものを用いることができる。照射されたパルスレーザビームは、非晶質シリコン層12にほぼ完全に吸収され、基板10はほとんど加熱されることがない。
【0031】
次に、図7に示したように、多結晶シリコン層13の上に絶縁層14aを基板10の耐熱温度以下の温度で形成し、その上にゲート電極15aを形成する。次いで、ゲート電極15aをマスクとしてCF4 とH2 の混合ガス中のECR−RIE(Electron Cyclotron Resonance Reactive Ion Etching) による選択性エッチングを行う。これにより、ソース領域13b,ドレイン領域13cとなる多結晶シリコン層13の上の絶縁層14aが、自己整合的に除去される。
【0032】
更に、このゲート電極15aをマスクとして、プラズマドーピングにより多結晶シリコン層13に不純物を導入する。プラズマドーピングは、例えば、基板10の温度を110℃としてPH3 ,Heの混合ガスのグロー放電プラズマに曝し、多結晶シリコン層13の表面にリン(P)を吸着させて行う。不純物としては、n型不純物であるリン(P)の他、例えばp型不純物であるホウ素(B)を用いることもでき、その場合は基板10をB2 6 プラズマ中に曝してホウ素(B)を吸着させる。なお、吸着した不純物は、そのままでは多結晶シリコン層13の表面(〜1nm)付近にしか拡散しないので、以下のレーザ照射において充分に拡散して多結晶シリコン層13の層内にドープされる。
【0033】
次に、図8に示したように、多結晶シリコン層13およびゲート電極15の上に、絶縁層14bおよびエネルギー吸収層16を順に基板10の耐熱温度以下の温度で形成する。
【0034】
次に、図9に示したように、エネルギー吸収層16の側から例えばエキシマレーザによる紫外のパルスレーザビームを照射し、エネルギー吸収層16を加熱する。エネルギー吸収層16はレーザビームをほぼ完全に吸収して熱を発散し、この熱により、多結晶シリコン層13の不純物(ここではリン(P))が拡散され活性化されると共に、加熱されたゲート電極15aを介して絶縁層14a,14bおよび、絶縁層14a,14bと多結晶シリコン層13との界面が熱処理される。このように、熱処理はこのエネルギー吸収層16を介して間接的に行われ、基板10はほとんど加熱されない。なお、多結晶シリコン層13の不純物は活性化率20%以上まで活性化されることが望ましい。これにより、不純物注入領域であるソース領域13b,ドレイン領域13cと、これらの間の非注入領域であるチャネル領域13aとがゲート電極15aに対して自己整合的に形成される。同時に、絶縁層14a,14bの内部およびこれと多結晶シリコン層13との界面に存在する欠陥が除去される。
【0035】
次に、図6に示したように、エネルギー吸収層16を除去する。更に、チャネル領域13a(正確にはゲート電極15a),ソース領域13bおよびドレイン領域13cの上部に、それぞれゲート電極15b,ソース電極17およびドレイン電極18を形成する。
【0036】
このように本実施の形態においても、基板10の上にエネルギー吸収層16を設けた後にパルスレーザビームを照射するようにしたので、第1の実施の形態と同様に、局所的に放出されるレーザビームのエネルギーが、一旦エネルギー吸収層16に吸収され、このエネルギー吸収層16の層面全体から間接的に発散されることにより、エネルギー吸収層16の下層は均一かつ緩慢に加熱されるが基板10は実質的に加熱されない。従って、レーザビームを直接照射する場合に生じる基板10の損傷を防止しつつ、多結晶シリコン層13の不純物の活性化および絶縁層14の内部や周囲に生じる欠陥の除去を十分に、しかも同時に行うことができる。
【0037】
また、本実施の形態でも第1の実施の形態と同様に、ゲート電極15をマスクとして多結晶シリコン層13に不純物をプラズマドーピングするようにしたので、マスクを別に形成することなく、チャネル領域13a,ソース領域13bおよびドレイン領域13cを自己整合的に形成することができる。
【0038】
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態においては、半導体装置としてTFTについて具体的に製造方法を説明したが、本発明は、基板上に形成された半導体層の上に絶縁層を介して金属層を形成し、金属層をマスクとして半導体層に不純物を注入した後、更に上部にエネルギー吸収層を一面に形成して、この上側からエネルギービームを照射し不純物を活性化する方法で作製できるその他の構成を有する半導体装置についても、広く適用することができる。
【0039】
【発明の効果】
以上説明したように本発明の半導体装置の製造方法によれば、半導体層上に設けた絶縁層および金属層を覆うように、窒化アルミニウム(AlN)を堆積してエネルギー吸収層を形成し、このエネルギー吸収層の側からパルスレーザビームを照射するようにしたので、照射されたエネルギーはエネルギー吸収層を介して下層の金属層、絶縁層および半導体層を加熱するが、基板は実質的に加熱しない。よって、直接エネルギービームが基板に向けて照射されて基板を損傷することを防止することができる。また、このような方法によれば、絶縁層および半導体層を十分に加熱するので、半導体層内の不純物の活性化と同時に、絶縁層とその周囲に存在する欠陥の除去を効果的に行い、特性良好な半導体装置とすることができる。従って、基板として例えば有機材料よりなる低耐熱性の基板を用いることができ、軽量で衝撃に強く、かつ優れた特性を有する半導体装置を製造することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るTFTの構成を表す断面図である。
【図2】図1に示したTFTの製造工程を説明するための断面図である。
【図3】図2の工程に続く製造工程を説明するための断面図である。
【図4】図3の工程に続く製造工程を説明するための断面図である。
【図5】図4の工程に続く製造工程を説明するための断面図である。
【図6】本発明の第2の実施の形態に係るTFTの構成を表す断面図である。
【図7】図6に示したTFTの製造工程を説明するための断面図である。
【図8】図7の工程に続く製造工程を説明するための断面図である。
【図9】図8の工程に続く製造工程を説明するための断面図である。
【符号の説明】
10…基板、12…非晶質シリコン層、13…多結晶シリコン層、13a…チャネル領域、13b…ソース領域、13c…ドレイン領域、14…絶縁膜、15…ゲート電極、16…エネルギー吸収層、17…ソース電極、18…ドレイン電極

Claims (6)

  1. 基板上に半導体層を形成する工程と、
    前記半導体層上に絶縁層を介して選択的に金属層を形成する工程と、
    前記金属層をマスクとして前記半導体層に選択的に不純物を導入する工程と、
    前記絶縁層および前記金属層を覆うように、窒化アルミニウム(AlN)を堆積してエネルギー吸収層を形成する工程と、
    前記エネルギー吸収層の側からパルスレーザビームを照射し、前記半導体層に導入された不純物を活性化する工程と
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記基板として軟化点が250℃以下であるものを用いる
    ことを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記基板を有機高分子材料により形成する
    ことを特徴とする請求項2記載の半導体装置の製造方法。
  4. 前記半導体層を、シリコン(Si),シリコンゲルマニウム(SiGe),ゲルマニウム(Ge),シリコンカーバイド(SiC)のうちの1種以上の半導体により形成する
    ことを特徴とする請求項1記載の半導体装置の製造方法。
  5. 前記半導体層の不純物領域において、前記不純物の活性化率を20%以上とする
    ことを特徴とする請求項1記載の半導体装置の製造方法。
  6. 前記パルスレーザビームのパルス幅を100ps以上300ns以下の範囲内とする
    ことを特徴とする請求項記載の半導体装置の製造方法。
JP2001156831A 2000-05-31 2001-05-25 半導体装置の製造方法 Expired - Fee Related JP3932445B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156831A JP3932445B2 (ja) 2000-05-31 2001-05-25 半導体装置の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-162114 2000-05-31
JP2000162114 2000-05-31
JP2001156831A JP3932445B2 (ja) 2000-05-31 2001-05-25 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2002057164A JP2002057164A (ja) 2002-02-22
JP3932445B2 true JP3932445B2 (ja) 2007-06-20

Family

ID=26593019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156831A Expired - Fee Related JP3932445B2 (ja) 2000-05-31 2001-05-25 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3932445B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506100B2 (ja) * 2003-05-09 2010-07-21 三菱電機株式会社 炭化珪素ショットキーバリアダイオードの製造方法
WO2006098513A1 (ja) * 2005-03-18 2006-09-21 National University Corporation Tokyo University Of Agriculture And Technology 熱処理方法及び半導体の結晶化方法
JP2007115927A (ja) * 2005-10-20 2007-05-10 Tokyo Univ Of Agriculture & Technology 熱処理方法
JP2008300865A (ja) * 2008-07-30 2008-12-11 Mitsubishi Electric Corp 半導体装置の製造方法およびそれに用いられる半導体製造装置並びに液晶表示装置
JP2012069748A (ja) * 2010-09-24 2012-04-05 Sumitomo Heavy Ind Ltd レーザアニール方法及びレーザアニール装置
JP2011223026A (ja) * 2011-07-04 2011-11-04 Getner Foundation Llc 不揮発性記憶装置及びその製造方法

Also Published As

Publication number Publication date
JP2002057164A (ja) 2002-02-22

Similar Documents

Publication Publication Date Title
US7323368B2 (en) Method for manufacturing semiconductor device and heat treatment method
KR100447561B1 (ko) 박막반도체장치의제조방법
JP4376979B2 (ja) 半導体装置の作製方法
JP4802364B2 (ja) 半導体層のドーピング方法、薄膜半導体素子の製造方法、及び半導体層の抵抗制御方法
US20060060848A1 (en) Semiconductor device and method of fabricating a ltps film
JP2005303299A (ja) 電子素子及びその製造方法
KR100857398B1 (ko) 반도체 장치의 제조 방법
KR20020036916A (ko) 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
KR20020089355A (ko) 반도체층의 도핑 방법, 박막 반도체 소자의 제조 방법, 및박막 반도체 소자
KR100615502B1 (ko) 반도체 장치 제조 방법
JP2006041472A (ja) 半導体装置およびその製造方法
JP2003045889A (ja) 電界効果型トランジスタ及びその製造方法並びに該トランジスタを使った液晶表示装置及びその製造方法
JP3932445B2 (ja) 半導体装置の製造方法
JP3840697B2 (ja) 半導体装置の製造方法、アクティブマトリクス基板の製造方法、および液晶表示装置の製造方法
KR100469624B1 (ko) 결정질 활성층을 포함하는 박막트랜지스터의 제조 방법 및반도체 장치
JP4239744B2 (ja) 薄膜トランジスタの製造方法
JP6718638B2 (ja) フレキシブル基板の製造方法
JP2725669B2 (ja) 半導体装置の製法
KR101036749B1 (ko) 금속유도결정화에 의한 액정표시소자 제조방법
JP2531383B2 (ja) 薄膜トランジスタの製法
JPH1187724A (ja) 半導体素子の製造方法
JP2010258258A (ja) 薄膜トランジスタの製造方法
JPH0758341A (ja) 薄膜トランジスタの製法
JPH0750257A (ja) 半導体装置の製法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

LAPS Cancellation because of no payment of annual fees