JP3790238B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP3790238B2
JP3790238B2 JP2003302974A JP2003302974A JP3790238B2 JP 3790238 B2 JP3790238 B2 JP 3790238B2 JP 2003302974 A JP2003302974 A JP 2003302974A JP 2003302974 A JP2003302974 A JP 2003302974A JP 3790238 B2 JP3790238 B2 JP 3790238B2
Authority
JP
Japan
Prior art keywords
layer
strained
channel
substrate
sige layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003302974A
Other languages
English (en)
Other versions
JP2004221530A (ja
Inventor
宏治 臼田
信一 高木
勉 手塚
直治 杉山
敏典 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003302974A priority Critical patent/JP3790238B2/ja
Publication of JP2004221530A publication Critical patent/JP2004221530A/ja
Application granted granted Critical
Publication of JP3790238B2 publication Critical patent/JP3790238B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、半導体チャネルが形成される層に歪みを加えることによって高性能の半導体素子を実現する技術に係わり、特に歪みSi層を用いた半導体装置に関する。
Si−LSI半導体素子、とりわけMOSFETの性能は、LSIの進歩と共に年々向上している。しかしながら、近年のプロセス技術の観点からはリソグラフィ技術の限界、素子物理の観点からは移動度の飽和などが指摘され、高性能化への困難度が増している。
Si−MOSFETの高性能化の指標の一つである電子移動度を向上させる方法として、素子形成のための活性層に歪みを印加する技術が注目されている。活性層に歪みを印加すると、そのバンド構造が変化し、チャネル中のキャリアの散乱が抑制されるため、移動度の向上が期待できる。具体的には、Si基板上にSiよりも格子定数の大きな材料からなる混晶層、例えばGe濃度20%の歪み緩和SiGe混晶層(以下、単にSiGe層と記す)を形成し、このSiGe層上にSi層を形成すると、格子定数の差によって歪みが印加された歪みSi層が形成される。このような歪みSi層を半導体デバイスのチャネルに用いると、無歪みSiチャネルを用いた場合の約1.76倍と大幅な電子移動度の向上を達成できることが報告されている(例えば、非特許文献1参照)。
本発明者らは、上述の歪みSiチャネルをSOI構造上に形成するため、埋め込み酸化層上の歪み緩和SiGe層上に歪みSi層を作製する方法でデバイス構造を実現した(例えば、非特許文献2参照)。この構造のトランジスタは、ショートチャネル効果(Short Channel Effect:SCE)の抑制が期待でき、高性能な素子を実現可能である。
しかし、更なる微細化を進めると、チャネル周りに関連する移動度低下が生じることが予想される。例えば、微細化に伴ってソースとドレインの間隔が狭くなり、歪みSi層とその下のSiGe層の合計膜厚は、益々薄くせざるを得なくなる。将来的に、例えば35nmノードの素子を作製する場合、歪みSiチャネルの厚さは、経験的にゲート長の1/3〜1/4、即ち数nm程度と薄くなる。ここで、上記の歪みSi層の実現には、通常、歪みを印加するストレッサー層としてSiGe層が必須であり、チャネル膜厚がSiGe層の厚み分だけ厚くなる。このため、今後の微細化における歪みSiチャネルの薄膜化に対応することが困難である。
また、歪みSiチャネルがSiとは異なる半導体材料と接している場合、例えば歪みSiチャネルが下地のSiGe層と接していると、SiGe層から歪みSi層へGeの拡散が生じるおそれがある。これによって、歪みの変化,キャリア輸送の変化,或いは界面準位の増大などが、素子作製プロセス中やデバイス動作時に生じる可能性があり、素子特性劣化が懸念される。
一方、従来のプラナー型MOS構造では、集積化に伴う電源電圧低減による駆動電流:Ionの低下が著しい。これは、高速化,高集積化の追求によってより顕著となるため、今後の回路設計において支障を来す場合があることが懸念される。
J.Welser, J.L.Hoyl,S.Tagkagi, and J.F.Gibbons, IEDM 94-373 T.Mizuno et al., 11-3, 2002 Symposia on VLSI Tech.
このように従来、歪みSiチャネルを用いた半導体装置においては、Siチャネルの薄膜化が困難であり、これが今後の更なる微細化を妨げる要因となる。また、Siチャネルの下地層からのGeの拡散により、歪みの変化,キャリア輸送の変化,或いは界面準位の増大などが生じ、素子特性劣化を招く問題があった。
本発明は、上記事情を考慮して成されたもので、その目的とするところは、Siチャネルに十分な歪みを印加しつつ高性能な半導体素子を実現することができ、加えて歪みSiチャネルの薄膜化をはかると共に下地からのGeの拡散を防止することができ、今後の更なる微細化に対応し得る半導体装置を提供することにある。
上記課題を解決するために本発明は、次のような構成を採用している。
即ち本発明は、歪みSiチャネルを利用する半導体装置において、少なくとも表面に歪み緩和SiGe層を有し、該SiGe層の一部が島状に除去された基板と、前記SiGe層上に形成され、かつ一部が前記SiGe層の除去された部分を横断するように形成された歪みSi層と、前記歪みSi層の前記横断部分の一部にゲート絶縁膜を介して形成されたゲート電極と、前記歪みSi層に前記ゲート電極の位置に対応して形成されたソース・ドレイン領域と、を具備してなることを特徴とする。
また本発明は、歪みSiチャネルを利用する半導体装置において、一部が島状に除去された歪み緩和SiGe層と、このSiGe層上に形成され、かつ一部が該SiGe層の除去された部分を横断するように形成された歪みSi層と、が複数組積層された基板と、前記基板の各歪みSi層の前記横断部分の一部にそれぞれゲート絶縁膜を介して形成されたゲート電極と、前記基板の各歪みSi層に前記ゲート電極の位置に対応してそれぞれ形成されたソース・ドレイン領域と、を具備してなることを特徴とする。
ここで、本発明の望ましい実施態様としては次のものが挙げられる。
(1) 表面に歪み緩和SiGe層を有する基板は、Si基板上に絶縁層を介して歪み緩和SiGe層を形成したものである。
(2) 歪み緩和SiGe層と歪みSi層とを数組積層した基板は、Si基板上に絶縁層を介して形成されたものであること。
(3) ゲート電極は、歪みSi層の一部の表面側と裏面側の2箇所に設けられていること。
(4) ゲート電極は、歪みSi層の一部を上下左右から囲むように設けられていること。
(5) 歪み緩和SiGe層の除去された部分の長さは、歪みSi層のチャネル長方向に対して1μm以下であること。
(6) 歪みSi層が、ソース・ドレイン領域により挟まれた架橋構造によって形成され、かつその架橋構造によって歪みを保持すること。
(7) 歪みSi層の一部或いは全面が、ゲート絶縁材料にのみ接すること。
(8) 歪みSi層の厚みが200nm以下、望ましくは60nm以下であること。
(9) 歪みSi層に接するゲート絶縁材料に接するゲート電極材料が、複数に分割され、それぞれに任意のポテンシャル電圧を印加できること。
(10) 歪みSi層は、下地となるSiGe層のGe濃度xが、x<30%の範囲、典型的には30≦x<50%の範囲、望ましくは50≦x≦70%の範囲であること。
(11)歪みSi層は、該層を構成する結晶の格子定数に比べて|Δd|<±3%の範囲で異なり、典型的には|Δd|<±2.5%の範囲、望ましくは|Δd|<±2%の範囲で異なる層であること。
(12)歪みSi層は、エピタキシャル成長にて形成されていること。
(13)歪みSi層は、MOS構造のFET素子のチャネル層として、単体トランジスタのn−MOSFET,p−MOSFETとして、或いはC−MOSFET構造を最小構成単位とする論理素子においてはn−MOSFET,p−MOSFETのいずれか、或いは両方に適用されること。
本発明によれば、MOSFETのチャネルとなる歪みSi層直下の歪み緩和SiGe層を選択的に除去することにより、歪みSiチャネルの膜厚をより薄くすることができ、しかも歪みSiチャネルへのGeの拡散を未然に防止することができる。従って、Siチャネルに十分な歪みを印加しつつ高性能な半導体素子を実現することができ、今後の更なる微細化にも十分に対応することができる。また、結晶成長で一度にMOS構造を形成できるため、コスト低減はもとより、製造プロセスの大幅な簡略化と高性能化との両立も可能である。
以下、本発明の詳細を図示の実施形態によって説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係わるMOSFETの素子構造を示す断面図である。
Si基板10上には、絶縁層(Buried oxide layer:Box層)11が形成され、その上に歪み緩和SiGe層12が積層されている。このとき、SiGe層12の表面側のGe組成は、典型的には3%以上80%未満であり、20%以上50%未満が好ましい。SiGe薄膜は通常、CVD(Chemical Vapor Deposition)やMBE(Molecular Beam Epitaxy)プロセスなどにより形成する。SiGe層12をCVDで形成する場合は、Siの原材料ガスとGeの原材料ガスとを、例えば550℃に加熱したSi基板10上に導入して、例えば30nm厚みのSiGe層12を絶縁層11上に堆積する。
SiGe層12は、該層中に転位を導入するなどして下地層との格子定数差による歪みを緩和せしめ、少なくとも該結晶の表面側では歪み緩和SiGeとなるように歪みを開放する必要がある。そのために、SiGe層12はGe濃度を基板表面に垂直な結晶成長方向に向かって変えることで、格子定数を基板に垂直な方向に変える場合がある。
また、貼り合わせや濃縮法(T.Tezuka et al.,IEDM Tech. Dig.,946(2001))によって歪み緩和が実現されたSiGe層12を、酸化膜等の絶縁層11を介してSi基板10上に形成しても良い。その結果、SiGe層12は、後述する歪みSi層(歪みSiチャネル)へ歪みを印加するストレッサーとしての機能を有することができる。ここに、例えば張り合わせ法では、予め歪み緩和したSiGe層12を形成した基板をSi基板10の面に直接、或いは酸化膜を介して接着し、その後、SiGe層12を形成した支持基板を剥離することで、緩和SiGe層12だけを残す方法がある。
SiGe層12上に、MOSFETのチャネルとなる歪みSi層13が例えば8nmの厚さに形成され、さらにその上にゲート絶縁膜14を介してゲート電極15が形成されている。ゲート絶縁膜14は、通常は熱酸化によって形成されるが、この代わりにCVD酸化膜やTEOS膜を形成しても良い。酸化には、より低温での形成が可能なラジカル酸化や、レーザーアブレーションなども応用が可能である。ここで、ゲート絶縁膜14としては、SiO2 に限らず、近年注目されるHfO2 ,ZrO2 ,Al23 ,SiON,La2 3 、又はRe,Ru,Sr,Th,Tl,N,Na,Nbのいずれかを含む金属酸化膜、或いはそれらの組み合わせで成る組成のHigh-k材料でも適用可能である。
また、例えば分子線エピタキシー法(MBE法)を用いて酸化セリウム膜(CeO2 )膜を形成して良い。この場合は、歪みSi層13上でエピタキシャル成長する絶縁膜であれば良く、Ce,Prなど酸化セリウム膜に代表される希土類酸化物が特に適している。
ゲート電極15は、例えば多結晶シリコンからなるもので、CVD等によって堆積され、所望パターンにパターニングすることによって形成される。そして、ゲート電極15をマスクにイオン注入することにより、歪みSi層13にソース領域16及びドレイン領域17が形成されている。
ソース・ドレイン領域16,17が形成された歪みSi層13上及びゲート電極15上には、層間絶縁膜18が形成されている。層間絶縁膜18にゲート電極15,ソース・ドレイン領域16,17とそれぞれコンタクトするためのコンタクトホールが形成され、これらのコンタクトホールを埋めるように配線19(19a,19b,19c)が形成されている。
ここまでの基本構成は、先に説明した非特許文献2と同様であるが、これに加えて本実施形態では、歪みSi層13の下部のSiGe層12が除去され、歪みSi層13のチャネル部の下部は空洞12’となっている。即ち、歪みSi層13はゲート長方向に沿ってストライプ状に加工され、その下部はSiGe層12が除去されている。そして、SiGe層12が除去され露出した表面には前記ゲート絶縁膜14が形成されている。
本実施形態は、歪みSiチャネル直下のストレッサーの除去プロセスの導入で実現される。具体的には、図1の構造において、歪みSi層13と歪み緩和SiGe層12とのエッチング速度の違いを利用したプロセスである。本発明者らは、Ge濃度が約28%の歪み緩和SiGe層とその上に直接形成された歪みSi層とでは、CDE(Chemical Dry Etching)による選択比がおよそ2:1であることを発見した。この考えを基に、歪みSi層13を形成後、歪みSi層13の上に形成したCVD絶縁膜をパターニングして、チャネル領域の周囲に開口部を設け、CDEにより選択エッチングすることで、歪みSi層13の直下の緩和SiGe層12を選択的に除去できることを見出した。
その結果、例えば図1に示されるように、歪みSiチャネルの下方で絶縁層11の上方に空洞12’を形成することが可能になった。さらに、CDE直後の歪みSi層13は、後にソース・ドレイン領域となる両端の緩和SiGe領域によって支持されつつ、歪みを維持したまま保持することが初めて可能になった。
図2は、このときに用いるCVD絶縁膜からなるマスクパターンを示す図である。図中に実線で示す21はCVD絶縁膜の開口部であり、チャネル領域の両側にストライプ状に設けられている。また、破線で示す22は除去されたSiGe層12の境界であり、22の内側がSiGe層12の除去される領域である。上記の選択エピタキシャルはCDE条件、Si/SiGe膜厚、Ge組成などによって異なり、10:1若しくはそれ以上に大きくすることも可能である。
図3は、歪みSiチャネルのパターンを示す斜視図であり、この図ではゲート電極部を含んで示してある。歪みSi層13がゲートストライプ方向(ゲート幅方向)と直交する方向にストライプ状に加工され、この歪みSi層13のストライプ部分(歪みSiチャネル)では下部の歪み緩和SiGe層12が除去されている。つまり、歪みSiチャネルは両端がSiGe層12で支持された状態になっている。
本プロセスを用いれば、歪みSiチャネルは、歪みが印加されつつも、下地のストレッサーと接することなく10nm以下の所望の厚さを実現することができるので、下地の歪み緩和SiGe層12からのGeの拡散、欠陥の伝搬、チャネル層の厚膜化、或いはGeが存在することによる絶縁膜/歪みチャネル層界面の界面準位低減などのチャネル劣化要因を排除しつつ、所望のチャネル薄膜化を実現可能である。なお、歪みSi層13の下部のSiGe層12を除去する領域は、あまり大きいと歪みSiチャネルの歪みが小さくなる。本発明者らの実験によれば、ゲート長方向に1μm以内であればSiチャネルの歪みを十分維持することができた。
また、後述する実施形態にて詳細に記すが、歪みSiチャネルの周囲をゲートで囲むことによって、SCE効果などをやはり理想的に抑制することが可能となるため、3次元的にチャネルの電界を制御しつつ所望の薄膜チャネルが得られる点で、究極のチャネルが形成可能である。加えて、図に示したように、絶縁層11の上にFETが個別に形成できるため素子分離が十分になされており、クロストークなどの発生が生じ難いことも特徴である。また、歪みSi層13直下の歪み緩和SiGe層12の除去は、トランジスタ形成プロセスにおける熱工程によって生じるであろうGeの拡散、SiGe層12からの欠陥の伝搬などを避けるため、可能な範囲でプロセスの初期に行うべきである。
なお、SiGe層12のエッチングは、溶液ケミカルエッチングでも可能である。また、絶縁層11としての酸化膜形成は、ドライ酸化膜、ウェット酸化膜などの熱酸化、ラジカル酸化、堆積(CVD)、溶液処理によるウェット酸化などの通常用いられる方法で形成できる。従って、Si基板10は、あくまで支持基板であり、熱履歴や化学処理などの素子作製プロセスに耐え得る材質で有ればその役割を妨げない。
このように本実施形態によれば、MOSFETのチャネルに歪みSi層13を用いていることから移動度の向上が期待できることに加え、歪みSi層13直下のSiGe層12を選択的に除去することにより、歪みSiチャネルの膜厚をより薄くすることができ、しかも歪みSiチャネルへのGeの拡散を未然に防止することができる。従って、Siチャネルに十分な歪みを印加しつつ高性能な半導体素子を実現することができる。
即ち、歪みSiチャネルを架橋構造とすることによって、素子の微細化で課題となっていたSCE効果、浮遊容量、或いは下地のストレッサー層からもたらされる欠陥の伝搬、界面準位の増大などの問題を解決することができ、更にチャネルの更なる薄膜化による高速化をはかることができる。このため、高性能、高信頼性、かつ低消費電力MOSFET素子を実現することができる。
また、素子形成プロセス上のメリットとしては、歪みSiチャネルに接するゲート絶縁膜14とゲート電極15とを連続して、場合によっては低温で形成することが可能である。また、上記構造が所謂SOI構造上に形成されるため、低消費電力化にも効果がある。従って、従来は製造できなかったガラスなどの融点の低い基板上での素子形成、所謂ダマシン構造での素子の形成などが実現でき、高品質で高性能な半導体素子を、工程数削減による低コストでの形成が可能であると共に、製造された素子の低消費電力化も可能となる。また、ゲート絶縁膜にチャネル層とは異なる格子定数の結晶絶縁層を用いることにより、ゲート絶縁膜における誘電率を増大させることも可能である。
(第2の実施形態)
図4は、本発明の第2の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態は、図1のゲート電極15が、歪みSiチャネルの周りを上下左右に360°囲むように配置されている例である。この場合のゲート電極15は、下地となるゲート絶縁膜14上に、シラン(SiH4 )やジシラン(Si2 6 )、ジクロクシラン(SiH2 Cl2 )や四塩化シラン(SiCl4 )などの化合物ガスなどのCVD原料を用いた成長法や、MBE法などを使用して、およそ400℃から1000℃の温度範囲の中で、典型的に500℃〜700℃と低温で形成することができる。この結晶成長の際には、不純物の同時添加が可能であり、p型のゲート電極形成にはBやSbが、またn型のゲート電極形成にはAsやPが付加される。
また、予め形成したゲート電極15中にイオン注入によって例えばリンを4×1015cm-2注入し、引き続いておよそ500℃〜1100℃程度の温度で、典型的には950℃、1分以下程度の活性化アニールを施すことでも形成できる。しかしながら、このアニールプロセスが高温のため、歪みSi層13の歪み緩和や結晶欠陥の発生などが生じ、デバイス特性を劣化させる可能性がある。その点では、上記の例を含む気相成長法による低温ゲート電極形成と低温活性化の同時プロセスが、デバイス特性維持と工程数削減によるプロセスコスト低減の両立において有効である。
なお、歪みSiチャネルの周り全体にゲート電極15を形成するには、例えば次のようにすればよい。SiGe層12をエッチングする際に、前記図2に示すマスクの2つの開口部21間の距離をゲート幅程度に設定しておくことにより、歪みSi層13の下部にゲート幅程度の空洞を形成することができる。この後、多結晶シリコンをCVDで成長することにより、空洞内部に多結晶Si層を埋め込むと共に歪みSi層13上にも多結晶Si層を形成することができる。そして、空洞以外の上側の多結晶Si層はゲートパターンに加工すればよい。
このように本実施形態によれば、先の第1の実施形態と同様の効果が得られるのは勿論のこと、ゲート電極15で歪みSiチャネルの周り全体を挟み込むことによって、ソース・ドレイン間の電界分布を制御し、SCE効果を最大限に抑制することができる。その結果として、移動度増加による素子特性の更なる向上が期待できる。
(第3の実施形態)
図5は、本発明の第3の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態は、図4の構造において歪みSiチャネルを囲むように形成したゲート電極を、上下の2層に形成したものである。即ち、歪みSi層13の上側にゲート絶縁膜14を介して上側のゲート電極15が形成され、歪みSi層の下側にゲート絶縁膜14を介して下側のゲート電極55が形成されている。ゲート電極15,55の製造方法は、第2の実施形態と実質的に同様である。
このような構成であれば、上下2層のゲート電極15,55で別個に配線を引き出し、それぞれ独立に電圧を印加することができる。これにより、歪みSiチャネルの反転層分布をより精密に制御できるため、より高性能なFET特性を実現することが可能である。
なお、本実施形態では、上下に独立のゲート電極を形成した場合を示したが、例えば側面も別途制御することによって、形成プロセスが複雑にはなるものの、より理想的なチャネル層制御が可能になる。
(第4の実施形態)
図6は、本発明の第4の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態は、図5の構造において歪み緩和SiGe層12を除去する領域を図1と同様に上側のゲート電極15の幅よりも広くし、下側のゲート電極65の幅(MOSFETとしてはゲート長)を上側のゲート電極15のそれよりも広くしたものである。
このような構成であれば、先の第3の実施形態と同様の効果が得られるのは勿論のこと、例えば電極の引き出しなどのスペースが確保されるのでゲート加工プロセスが簡略化でき、より安価に上下の電極を形成することが可能となる。
(第5の実施形態)
図7は、本発明の第5の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
基本的な構成は図1と同様であるが、この実施形態ではソース・ドレイン領域16,17にシリサイド膜66,67が設けられている。即ち、ソース領域16の上面にシリサイド膜66が形成され、ドレイン領域17の上面にシリサイド膜67が形成されている。
実際の構造ではチャネルの薄膜化が重要ではあるが、一方で、薄膜化はソース・ドレインの接合形成を困難にする。このため、チャネルの薄膜化に伴い接合抵抗が増大し、トランジスタ特性の劣化が生じる。そこで本実施形態では、ソース・ドレイン領域16,17の上面にシリサイド膜66,67を形成している。このような構成であれば、チャネルの薄膜化と低抵抗接合の組み合わせにてより高性能なデバイス特性が得られる。
なお、図には示さないが、シリサイド膜66,67を形成する代わりに、ソース・ドレイン領域16,17上にエピタキシャル成長などで低抵抗層を実現する、エレベーテッド・ソース・ドレイン形成技術を使用しても、高抵抗化を改善することができるので有効である。
(第6の実施形態)
図8は、本発明の第6の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態は、図4の構成において、ソース・ドレイン及びゲート電極と接続するための配線の改良をはかったものである。即ち、電極或いは空洞部の外側に配線19(19a,19b,19c)が形成されている。
このような構成であれば、ソース・ゲート間、ドレイン・ゲート間の間隔が開くため寄生抵抗などの増大は避けられないが、実際の素子作成プロセスが格段に容易であり、より安価に素子を製造、提供することが可能になる。
(第7の実施形態)
図9は、本発明の第7の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態は、第1の実施形態における歪み緩和SiGe層と歪みSi層とを複数組(例えば3組)積層したものである。
Si基板10上には、絶縁層11が形成され、その上に第1の実施形態と同様の構成のひずみ緩和SiGe層12と歪みSi層13のペア(a〜c)が3層積層されている。最上層の歪みSi層13c上には、ゲート絶縁膜14を介してゲート電極15が形成されている。このゲート絶縁膜14の製法,材料,厚さ等の条件は第1の実施形態と同様にすればよい。ゲート電極15は、例えば多結晶シリコンからなるもので、CVD等によって堆積され、所望パターンにパターニングすることによって形成される。そして、最上層の歪みSi層13cに関しては、ゲート電極15をマスクにイオン注入することにより、歪みSi層13cにソース領域16及びドレイン領域17が形成されている。
ソース・ドレイン領域16,17が形成された最上層の歪みSi層13c上及びゲート電極15上には、層間絶縁膜18が形成されている。層間絶縁膜18にゲート電極15,ソース・ドレイン領域16,17とそれぞれコンタクトするためのコンタクトホールが形成され、これらのコンタクトホールを埋めるように配線19(19a,19b,19c)が形成されている。
SiGe層12は、第1の実施形態と同様に、歪みSi層13のチャネル部の下部が空洞12’となっている。即ち、歪みSi層13はゲート長方向に沿ってストライプ状に加工され、その下部はSiGe層12が除去されている。そして、SiGe層12が除去され露出した表面にはゲート絶縁膜14が形成されている。
従って、上記のゲート絶縁膜14及びゲート電極15は、最上層の歪みSi層13cだけでなく、下部の歪みSi層13a,13bに対しても、それぞれを取り囲む様にゲート絶縁膜14、ゲート電極15の順に形成される。図9においては、各ゲート電極材が空洞部を埋めた構造を示しているが、完全に埋めずに空間があっても良い。
最上層の歪みSi層13c以外の層の歪みSi層13a,13bには、上記のゲート電極15をマスクにしたイオン注入法は適さない。しかしながら、上記のストライプ加工後の側壁を利用して(斜め)イオン注入をすることが可能である。その後、熱処理による拡散でソース・ドレイン領域を作製できる。
また、SiGe層の形成には、p型電極を形成する場合はBやSbが、同様にn型の場合はAsやPなどの不純物を高濃度に含むことも可能である。この場合、ゲート絶縁膜が形成される領域は、予めSiGe層が除去されており、ソース・ドレイン領域形成のための拡散用熱処理を行うことが可能である。一方、本方式の場合は、不純物添加に用いる不純物の濃度によってはSiGe層の格子定数が変化する。この変化を抑える不純物濃度としては、1021cm-3であればよく、典型的には1020cm-3以下、望ましくは1019cm-3以下である。
本実施形態は、歪みSiチャネル直下のストレッサーの除去プロセスの導入で実現される。具体的には、最上層の歪みSi層13cまで形成した後に、歪みSi層13cの上に形成したCVD絶縁膜をパターニングして、チャネル領域の周囲に開口部を設け、CDEにより選択エッチングすることで、歪みSi層13の直下の緩和SiGe層12を選択的に除去できる。また、最下層の緩和SiGe層12aまで確実にエッチングするには、前記図府に示すマスクを用いてRIEでエッチングした後にCDEによるサイドエッチングを利用して歪みSi層13下の緩和SiGe層12を一部除去するようにすればよい。
その結果、歪みSiチャネルの下方で絶縁層11の上方に空洞12’を形成することが可能になった。さらに、CDE直後のひずみSi層13は、後にソース・ドレイン領域となる両端の緩和SiGe領域によって支持されつつ、歪みを維持したまま保持することが初めて可能になった。
このように本実施形態によれば、先の第1の実施形態と同様に高性能、高信頼性、かつ低消費電力MOSFET素子を実現できるのは勿論のこと、MOSFETを縦積みすることになるので、より駆動能力の高いMOSFETを実現することができる。
(第8の実施形態)
図10は、本発明の第8の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図9と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態は、第7の実施形態の構成において、第2の実施形態のように、ゲート電極15が、歪みSiチャネルの周りを上下左右に360°囲むように配置されている例である。本実施形態では、最上層のゲート絶縁膜14のソース・ドレイン間間隔と、その下部のゲート絶縁膜14のソース・ドレイン間間隔とが同じ寸法である場合を示す。この場合のゲート電極15は、第2の実施形態と同様の方法で形成することができる。
このように本実施形態によれば、先の第7の実施形態と同様の効果が得られるのは勿論のこと、ゲート電極15で歪みSiチャネルの周り全体を挟み込むことによって、ソース・ドレイン間の電界分布を制御し、SCE効果を最大限に抑制することができる。その結果として、移動度増加による素子特性の更なる向上が期待できる。
(第9の実施形態)
図11は、本発明の第9の実施形態に係わるMOSFETの素子構造を示す断面図である。なお、図9と同一部分には同一符号を付して、その詳しい説明は省略する。
本実施形態も、第7の実施形態の構成において、第2の実施形態のように、歪みSiチャネルを囲むようにゲート電極15を形成したものである。ゲート電極15の製造方法は、第2の実施形態と実質的に同様である。但し、最上層のゲート絶縁膜14及びゲート電極15のソース・ドレイン間間隔は、下層のそれらに対して長くなっている。
このような構成であっても、先の第1の実施形態と同様に高性能、高信頼性、かつ低消費電力MOSFET素子を実現できるのは勿論のこと、MOSFETを縦積みすることになるので、より駆動能力の高いMOSFETを実現することができる。
(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態ではSi基板上に絶縁層を介して歪み緩和SiGe層を形成したものを下地基板として用いたが、下地基板は必ずしもこの構成に限るものではなく、SiGeのバルク基板でも良いし、Si基板の代わりに他の半導体基板を用いたものであってもよい。つまり、下地基板としては少なくとも表面に歪み緩和SiGe層を有するものであればよい。また、歪み緩和SiGe層や歪みSi層の厚さ等は、仕様に応じて適宜変更可能である。
具体的には、チャネルとなる歪みSi層は、SOI構造での寄生容量の低減などを低減し、空乏層の拡がり幅と同じ程度或いはそれよりも小さな幅とすることで、高性能化が期待できる。また、歪みSi形成時の下地SiGe層との格子定数の差:ミスマッチによる歪みSi層の緩和を避けるためには、やはり薄膜化が必須である。従って、例えば下地SiGe層のGe濃度が30%の場合は、歪みSi層の厚みは200nm以下とするのが望ましく、高性能化を実現するには60nm以下が必須である。
また、歪みSiの下地となるSiGe層は、そのGe濃度が高いほど素子性能も上昇する。この傾向はGe濃度30%〜40%でn−MOSFETが飽和し、p−MOSFETでは更に50%位まで素子性能が上昇する。それ以上の濃度では現在検討されていないが、60%位までは素子性能は充分に見込める。従って、70%を上限にGe濃度を規定するのが妥当である。
その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。
第1の実施形態に係わる半導体装置の素子構造を示す断面図。 SiGe層をエッチングする際のマスクパターンを示す平面図。 歪みSiチャネルのパターンを示す斜視図。 第2の実施形態に係わる半導体装置の素子構造を示す断面図。 第3の実施形態に係わる半導体装置の素子構造を示す断面図。 第4の実施形態に係わる半導体装置の素子構造を示す断面図。 第5の実施形態に係わる半導体装置の素子構造を示す断面図。 第6の実施形態に係わる半導体装置の素子構造を示す断面図。 第7の実施形態に係わる半導体装置の素子構造を示す断面図。 第8の実施形態に係わる半導体装置の素子構造を示す断面図。 第9の実施形態に係わる半導体装置の素子構造を示す断面図。
符号の説明
10…Si基板
11…絶縁層(Box層)
12…歪み緩和SiGe層
12’…空洞部
13…歪みSi層
14…ゲート絶縁膜
15,55,65…ゲート電極
16…ソース領域
17…ドレイン領域
18…層間絶縁膜
19…電極
21…開口部
22…エッチング境界
66,67…シリサイド膜

Claims (7)

  1. 少なくとも表面に歪み緩和SiGe層を有し、該SiGe層の一部が島状に除去された基板と、
    前記SiGe層上に形成され、かつ一部が前記SiGe層の除去された部分を横断するように形成された歪みSi層と、
    前記歪みSi層の前記横断部分の一部にゲート絶縁膜を介して形成されたゲート電極と、
    前記歪みSi層に前記ゲート電極の位置に対応して形成されたソース・ドレイン領域と、
    を具備してなることを特徴とする半導体装置。
  2. 一部が島状に除去された歪み緩和SiGe層と、このSiGe層上に形成され、かつ一部が該SiGe層の除去された部分を横断するように形成された歪みSi層と、が複数組積層された基板と、
    前記基板の各歪みSi層の前記横断部分の一部にそれぞれゲート絶縁膜を介して形成されたゲート電極と、
    前記基板の各歪みSi層に前記ゲート電極の位置に対応してそれぞれ形成されたソース・ドレイン領域と、
    を具備してなることを特徴とする半導体装置。
  3. 前記基板は、Si基板上に絶縁層を介して歪み緩和SiGe層を形成したものであることを特徴とする請求項1記載の半導体装置。
  4. 前記基板は、Si基板上に絶縁層を介して、前記複数組の歪み緩和SiGe層と歪みSi層とが積層されたものであることを特徴とする請求項2記載の半導体装置。
  5. 前記ゲート電極は、前記歪みSi層の一部の表面側と裏面側の2箇所に設けられていることを特徴とする請求項1又は2記載の半導体装置。
  6. 前記ゲート電極は、前記歪みSi層の一部を上下左右から囲むように設けられていることを特徴とする請求項1又は2記載の半導体装置。
  7. 前記SiGe層の除去された部分の前記歪みSi層のチャネル長方向に沿った長さは、1μm以下であることを特徴とする請求項1又は2記載の半導体装置。
JP2003302974A 2002-12-27 2003-08-27 半導体装置 Expired - Lifetime JP3790238B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302974A JP3790238B2 (ja) 2002-12-27 2003-08-27 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382262 2002-12-27
JP2003302974A JP3790238B2 (ja) 2002-12-27 2003-08-27 半導体装置

Publications (2)

Publication Number Publication Date
JP2004221530A JP2004221530A (ja) 2004-08-05
JP3790238B2 true JP3790238B2 (ja) 2006-06-28

Family

ID=32911356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302974A Expired - Lifetime JP3790238B2 (ja) 2002-12-27 2003-08-27 半導体装置

Country Status (1)

Country Link
JP (1) JP3790238B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473943B2 (en) * 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
JP4670524B2 (ja) * 2005-07-22 2011-04-13 セイコーエプソン株式会社 半導体装置の製造方法
JP4726120B2 (ja) * 2005-07-22 2011-07-20 セイコーエプソン株式会社 半導体装置の製造方法
JP4940797B2 (ja) * 2005-10-03 2012-05-30 セイコーエプソン株式会社 半導体装置の製造方法
JP4867362B2 (ja) * 2006-01-24 2012-02-01 セイコーエプソン株式会社 半導体装置の製造方法
JP5348916B2 (ja) * 2007-04-25 2013-11-20 株式会社半導体エネルギー研究所 半導体装置
JP5350655B2 (ja) 2007-04-27 2013-11-27 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
JP2004221530A (ja) 2004-08-05

Similar Documents

Publication Publication Date Title
JP3543946B2 (ja) 電界効果型トランジスタ及びその製造方法
US9368411B2 (en) Method for the formation of fin structures for FinFET devices
KR101020811B1 (ko) 개선된 캐리어 이동도를 구비한 finfet과 그 형성방법
JP4546021B2 (ja) 絶縁ゲート型電界効果型トランジスタ及び半導体装置
JP4058751B2 (ja) 電界効果型トランジスタの製造方法
US9461174B2 (en) Method for the formation of silicon and silicon-germanium fin structures for FinFET devices
KR101065049B1 (ko) 변형된 핀펫 채널 제조 방법
CN102593118B (zh) 半导体器件及其制造方法
JP2007536736A (ja) チャネルキャリア移動度向上のための高応力ライナーを備えたSi−Geに基づく半導体デバイス
JP2002237590A (ja) Mos型電界効果トランジスタ
JP3597831B2 (ja) 電界効果トランジスタ及びその製造方法
JP2000031491A (ja) 半導体装置,半導体装置の製造方法,半導体基板および半導体基板の製造方法
JP2004063780A (ja) 半導体装置の製造方法
KR20050110081A (ko) FinFET을 포함하는 반도체 소자 및 그 제조방법
JP3790238B2 (ja) 半導体装置
JP2008085357A (ja) 電界効果型トランジスタの製造方法
JP2004128254A (ja) 半導体装置
JP4322706B2 (ja) 半導体装置の製造方法
JP6022781B2 (ja) 半導体装置及びその製造方法
JP3901957B2 (ja) 半導体基板の製造方法及びその方法により製造された半導体装置
JP2009016423A (ja) 半導体装置及びその製造方法
JP2008160145A (ja) 絶縁ゲート型電界効果型トランジスタ及び半導体装置
JP2010098205A (ja) Mis電界効果トランジスタ及び半導体基板の製造方法
JP2013131616A (ja) 半導体装置の製造方法および半導体装置
KR100569708B1 (ko) 반도체 장치 및 그 제조 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8