JP3774353B2 - 金属化合物薄膜の形成方法およびその形成装置 - Google Patents

金属化合物薄膜の形成方法およびその形成装置 Download PDF

Info

Publication number
JP3774353B2
JP3774353B2 JP2000050256A JP2000050256A JP3774353B2 JP 3774353 B2 JP3774353 B2 JP 3774353B2 JP 2000050256 A JP2000050256 A JP 2000050256A JP 2000050256 A JP2000050256 A JP 2000050256A JP 3774353 B2 JP3774353 B2 JP 3774353B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
film
reactive gas
process zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000050256A
Other languages
English (en)
Other versions
JP2001234338A (ja
Inventor
繁治 松本
亦周 宋
武 桜井
和彦 丸田
和宏 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Priority to JP2000050256A priority Critical patent/JP3774353B2/ja
Publication of JP2001234338A publication Critical patent/JP2001234338A/ja
Application granted granted Critical
Publication of JP3774353B2 publication Critical patent/JP3774353B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金属化合物薄膜の形成方法およびその形成装置に係り、特にスパッタリング法により、基板に、安定して、かつ高速に金属化合物薄膜を形成する方法およびその形成装置に関する。
【0002】
【従来の技術】
スパッタリングで、酸化物・窒化物・弗化物等の金属化合物の薄膜を形成することが広く行われている。これらの金属化合物の薄膜を形成するには、以下の代表的な方法がある。
1.高周波(RF)電源を用いて、金属化合物ターゲット(絶縁性)、または金属ターゲット(導電性)に、反応性ガス(例えば酸素、窒素、弗素ガス)を導入して、反応性スパッタリングにより薄膜形成する方法(以下、RF反応性スパッタリング法と称する)。
2.直流(DC)電源を用いて、金属ターゲット(導電性)に、反応性ガス(例えば酸素、窒素、弗素ガス)を導入して、反応性スパッタリングにより薄膜形成する方法(以下、DC反応性スパッタリング法と称する)。
これらの方法は、金属化合物薄膜の形成方法として、最も一般的に用いられている方法である。
【0003】
しかし、これらの方法には、図10に示すように、薄膜の堆積速度が遅いという問題点がある。ここで、図10は、成膜レート(薄膜の形成速度)と反応性ガス流量/全ガス流量比との関係を示す図である。この反応性ガス流量および全ガス流量は、ターゲット付近における各々のガス流量をいう。
ターゲットの配置された領域に反応性ガスを導入する上記RF,DC反応性スパッタリング法は、グラフのD領域に該当し、反応性ガスの流量比が小さいときよりも、成膜レートが低くなることが分かる。
例えば、RF,DC反応性スパッタリング法による金属化合物薄膜の付着速度は、スパッタリングにより金属薄膜を付着させる場合の速度と比べて、1/5〜1/10である。また、RF,DC反応性スパッタリング法による金属化合物薄膜の付着速度は、イオンビーム加熱方式、抵抗加熱方式による真空蒸着と対比すると、1/2〜1/10程度の成膜速度となってしまう。したがって、RF,DC反応性スパッタリング法は、大量生産を行うには問題がある。
【0004】
そこで、成膜レートを高めるために、RF,DC反応性スパッタリング法において、導入する反応性ガス(例えば酸素、窒素、弗素ガス)の量を減少することもできる。
しかし、導入する反応性ガス(例えば酸素、窒素、弗素ガス)の量を減少すると、構成元素である酸素・窒素・弗素が欠乏した不完全な金属化合物薄膜となりやすいという問題点が生じる。
【0005】
たとえば、光学膜、絶縁膜、保護膜などに使用される代表的な酸化物薄膜であるSiO薄膜を作成するには、SiOターゲット(絶縁性)を用い、高周波電源を使用してRF反応性マグネトロンスパッタリングを行うか、または、シリコン(Si)ターゲット(導電性)を用い、DC電源を使用して、酸素ガスを導入し、DC反応性マグネトロン・スパッタリングを行うのが一般的である。
このとき、スパッタリングの動作ガス(例えばアルゴンガス)と同時に導入される反応性ガスである酸素ガスが不充分であると、形成される薄膜の組成はSiO(x<2)となってしまう。
【0006】
また、RF,DC反応性スパッタリング法には、アーク放電(異常放電)が発生しやすいという問題点もある。
このアーク放電により以下の問題点が生じる。
1.ターゲット材料が基板に飛散し、形成されつつある薄膜に欠陥が生じる。
2.ターゲット表面にアーク痕が残り、アーク痕周辺で絶縁部であるSiOの蓄積が進み、さらなる異常放電が生じる。
【0007】
ここで、ターゲットにおけるアーク放電(異常放電)発生のメカニズムは、以下の通りである。
すなわち、RF,DC反応性スパッタリング法において、ターゲットの配置された領域に導入された反応性ガスが、ターゲットの表面で反応し、SiOを形成する。このSiOに、プラズマのアルゴンイオン、酸素イオンの電荷の蓄積が生じる。このプラスに帯電した電荷が、ターゲット表面に大量に蓄積する。この電荷が、SiO膜の絶縁限界を越えたときに、絶縁破壊が起きる。そして、この電荷が、ターゲットの導電性の部分、アースシールド(アノード)に対してアーク放電をおこすのである。アーク放電が起こると、蓄積された電荷は、ターゲット表面から逃げる。
【0008】
また、RF,DC反応性スパッタリングでは、通常、プラズマを利用して成膜するため、電荷を持った粒子(イオン、電子)の衝突により、装置の構成部品、基板ホルダー、基板等が加熱される。したがって、100℃以下でのスパッタリングを行うことが困難であり、プラスチック等の耐熱性の低い材料への成膜が困難であるという問題点もある。この問題点は、特に、高周波電源を用いるRFマグネトロンスパッタリングにおいて顕著であり、低温でのスパッタリングが可能な方法の開発が望まれている。
【0009】
そこで、上記問題点を解決するため、近年、ドラム回転形の金属モード(例えばMeta Mode),ツイン・マグネトロンスパッタリングと呼ばれる新しいスパッタリングによる金属化合物薄膜の成膜方法が開発されている。
ドラム回転形の金属モード(例えばMeta Mode)とは、真空容器内に配設された円筒状の基板ホルダの外側に、ターゲットおよびプラズマ発生手段を備えた成膜室と、反応性ガス導入手段およびプラズマ発生手段を備えた反応室と、を分離して設けた装置を用い、基板ホルダを回転させて、成膜室におけるスパッタリングによる基板上への金属超薄膜の堆積と、反応室における反応性ガスを導入して発生させたプラズマによる金属超薄膜から金属化合物への変換と、を繰り返し行う方法をいう。この方法では、RF,DC反応性スパッタリングと異なり、ターゲットの配置された成膜室内に反応性ガスを導入しないため、アーク放電が起こりにくいと共に、金属化合物薄膜の成膜を高速で行うことが可能である。
すなわち、このドラム回転形の金属モード(例えばMeta Mode)によってスパッタリングをする場合は、成膜レート(薄膜の形成速度)と反応性ガス流量/全ガス流量比との関係は、図10の点A(反応性ガス流量/全ガス流量比=0%)に該当し、従来最もよく用いられてきた上記RF反応性スパッタリング法,DC反応性スパッタリング法(領域D)と対比して、酸化物薄膜等の成膜を高速に行うことが可能である。
【0010】
また、ツイン・マグネトロンスパッタリングとは、デュアル・マグネトロンスパッタリングの一種である。
ここで、デュアル・マグネトロンスパッタリングとは、接地電位から電気的に絶縁された一対の同種または異種のターゲットに、プラスとマイナスに交互に交流電圧を印加することにより、常に一方のターゲットがカソード(マイナス極)となり必ず他方のターゲットがアノード(プラス極)となるようにして、反応性ガスを導入しながらマグネトロンスパッタリングを行う方法をいう。
【0011】
このデュアル・マグネトロンスパッタリングでは、一対のスパッタリングターゲットのうち、一方をカソード、他方をアノードとし、交番電界により、両ターゲットをアノードとカソードとに交互にそれぞれ変化させてスパッタリングを行うため、交番電界によりアノードがカソードに変換されたときに、ターゲット表面にアノード時に付着した不完全反応物金属がスパッタされて元の正常な状態となる。したがって、安定したアノード電位状態が常に得られ、プラズマ電位(通常はアノード電位とほぼ等しい)の変化が防止でき、酸化物薄膜等の高速成膜と、アーク放電の発生防止が可能である。
すなわち、従来のRF,DC反応マグネトロンスパッタリング法ではアノードとなるターゲットシールド、装置部品、装置本体が、非導電性あるいは導電性の低い不完全金属に被われてアノード電位が低化していた現象を防止できるのである。
【0012】
ツイン・マグネトロンスパッタリングは、上述の通り、上記デュアル・マグネトロンスパッタリングの一種である。このツイン・マグネトロンスパッタリングは、ターゲットの非エロージョン部分に絶縁物を用いる点、スパッタ電極に、スパッタリング用電源から交流電圧を印加すると共に、スパッタ電圧よりも格段に高い周波数の交流電圧を発振回路から印加する点、ターゲット付近の反応性ガス流量/全ガス流量比により、スパッタリング電圧をフィードバック制御し、この電圧により成膜速度を制御する点に、特徴がある。
ターゲットの非エロージョン部分に絶縁物を用いることによりアーク発生が低減される。また、発振回路は、電荷の蓄積によりアークが発生しようとしているときに発振し、カソードの付加的な極***番を発生させ、アークを消滅させるものである。
【0013】
また、フィードバック制御について説明すると、スパッタリング電圧と成膜速度との間には相関があるため、電圧を、成膜速度制御のパラメータとして用いることにより、成膜速度の制御が可能である。そして、このパラメータとなる電圧と反応性ガス流量/全ガス流量比との間には、図10の成膜速度と反応性ガス流量/全ガス流量比との関係とほぼ同様の関係があるため、電圧の値は、反応性ガスの流量によりフィードバック制御することが可能である。そこで、このツイン・マグネトロンスパッタリングでは、反応性ガス流量を調整することにより、電圧の値をパラメータとして、成膜速度を所望の値に調整する。
【0014】
このツイン・マグネトロンスパッタリングは、金属モード,化合物モードによる金属化合物薄膜形成方法それぞれの問題点を補う方法である。すなわち、この方法によれば、金属モードと化合物モードの転移領域(図10の領域C)で、基板上に化合物薄膜を直接堆積でき、しかも異常放電が低減される。従来最もよく用いられてきた上記RF反応性スパッタリング法,DC反応性スパッタリング法(領域D)と対比して、高速で安定した成膜が可能となる。
ツイン・マグネトロンスパッタリングについては、例えば、特開平4−325680号公報、特開平5−222531号公報、特許第2574636号公報などにも報告されている。
【0015】
しかし、上記ドラム回転形の金属モード(例えばMeta Mode),ツイン・マグネトロンスパッタリングでは、形成した金属化合物薄膜に強い応力が発生し、薄膜の光学的な吸収を減少させることが困難であるという問題点がある。また、従来のツイン・マグネトロンスパッタリングでは、金属化合物の成膜を行う場合に、一対のターゲットを配置した真空容器内に反応性ガスを導入しているが、この方法によると、異常放電防止のためにターゲット付近に充分な反応性ガスを導入できないため、反応性ガスである酸素が不充分となり、薄膜の組成がSiO(x<2)のような不完全な反応物となるという問題点がある。
【0016】
【発明が解決しようとする課題】
本発明は、上記各従来のスパッタリング成膜方法が有するそれぞれの問題点を解決するものであり、本発明の目的は、金属不完全反応物を含まない安定した特性の金属化合物薄膜を高速で形成することが可能な金属化合物薄膜の形成方法およびその形成装置を提供することにある。
また、本発明の他の目的は、より小さな応力で、光学的な吸収の少ない良質の金属化合物薄膜を高速で形成することが可能な金属化合物薄膜の形成方法およびその形成装置を提供することにある。
【0017】
上記課題は、請求項1に係る発明によれば、接地電位から電気的に絶縁された複数のスパッタリングターゲットに、各ターゲットがカソードおよびアノードに交互になると同時に常にいずれかのターゲットがカソードとなりいずれかのターゲットがアノードとなるように、交流電圧を印加し、空槽内の成膜プロセスゾーンにおいて、不活性ガスおよび前記成膜プロセスゾーンの全ガス流量の3%以上であって20%以下の流量の反応性ガスを、前記成膜プロセスゾーン内に接続された配管を通じて前記成膜プロセスゾーン内に導入するガス導入手段により導入して、基板上に金属の不完全反応物からなる金属不完全反応物超薄膜を形成する工程と、前記真空槽内の前記成膜プロセスゾーンと空間的,圧力的に分離された反応プロセスゾーンで、前記金属不完全反応物超薄膜に電気的に中性な反応性ガスの活性種を接触させ、前記金属不完全反応物超薄膜と前記反応性ガスの活性種とを反応させて金属化合物超薄膜に変換させる工程と、前記金属不完全反応物超薄膜を形成する工程と前記金属化合物超薄膜に変換させる工程とを順次繰り返し行う工程と、により、前記金属化合物超薄膜を複数層形成して堆積して、目的とする膜厚の前記金属化合物薄膜を基板上に形成することにより解決される。
【0018】
このように、金属不完全反応物超薄膜を形成した後、これを金属化合物超薄膜にシーケンシャルに変換させる反応機構を採用しているため、より小さな応力の薄膜を形成でき、光学的な吸収の少ない良質の金属化合物薄膜を高速で形成することが可能となる。
【0019】
また、金属不完全反応物超薄膜を形成する工程で、各ターゲットがカソードおよびアノードに交互になると同時に常にいずれかのターゲットがカソードとなりいずれかのターゲットがアノードとなるように、交流電圧を印加しているため、各ターゲットがアノードであるときにターゲット表面に付着した非導電性または導電性の低い金属化合物が、このターゲットがカソードになったときにターゲット表面から取り除かれる。したがって、各ターゲット表面への金属化合物の蓄積が防止され、安定したアノード部を確保して、アノード電位の変化を防止して再現性の良い良質の薄膜を形成することが可能となる。
【0020】
このとき、前記電気的に中性な反応性ガスの活性種が、ラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子のうち少なくとも一つを含むように構成すると好適である。
このラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子は、金属の不完全反応物から金属化合物を得る反応性の成膜行程の化学反応において、イオン、電子等の荷電粒子よりも、決定的に重要な働きをする。また、荷電粒子のように薄膜にダメージを与えないという特質を有する。
したがって、本発明では、上記の特質を有するラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子のうち少なくとも一つを含む電気的に中性な反応性ガスの活性種を利用するため、効率的に金属化合物超薄膜に変換させる工程を行うことが可能となる。
【0021】
また、前記電気的に中性な反応性ガスの活性種は、反応性ガスを導入して反応性ガスプラズマを発生させ、電気的に中性の活性種を選択的に通過させるグリッドを介して真空槽内に導入するように構成すると好適である。
【0022】
上記課題は、請求項4に係る発明によれば、スパッタリングにより基板上に金属化合物薄膜を形成する装置において、接地電位から電気的に絶縁されると共に交流電源に接続されて該交流電源により正電位と負電位とに交互に印加可能な複数のスパッタリングターゲットが配設され、前記基板上に、金属不完全反応物超薄膜を形成する工程を行う真空槽内に形成された成膜プロセスゾーンと、不活性ガスおよび前記成膜プロセスゾーンの全ガス流量の3%以上であって20%以下の流量の反応性ガスを、前記成膜プロセスゾーン内に接続された配管を通じて前記成膜プロセスゾーンに導入するガス導入手段と、電気的に中性な反応性ガス活性種の発生手段を備え、前記金属不完全反応物超薄膜と前記反応性ガスの活性種とを反応させて金属化合物超薄膜に変換させる工程を行う真空槽内に形成された反応プロセスゾーンと、前記成膜プロセスゾーンと前記反応プロセスゾーンとの間で前記基板を搬送する基板ホルダーと、前記成膜プロセスゾーンと前記反応プロセスゾーンとを空間的、圧力的に分離する遮蔽手段とを備えたことにより解決される。
【0023】
このように、遮蔽手段により成膜プロセスゾーンと反応プロセスソーンとが区切られているため、成膜プロセスゾーンで金属不完全反応物超薄膜を成膜し、反応プロセスゾーンで金属化合物超薄膜への変換を行うことが可能となり、金属不完全反応物超薄膜を形成した後、これを金属化合物超薄膜にシーケンシャルに変換させる反応機構を採用でき、より小さな応力の薄膜を形成でき、光学的な吸収の少ない良質の金属化合物薄膜を高速で形成することが可能となる。
また、遮蔽手段により成膜プロセスゾーンと反応プロセスソーンとが区切られているため、成膜プロセスゾーンと反応プロセスソーンとを、完全には仕切られていないものの、ほぼ独立した真空雰囲的に別個の空間として形成することができる。
【0024】
その結果、各ゾーンは、個別に他のゾーンからの影響が抑えられた真空雰囲気を有することができ、それぞれ最適の条件を設定することができる。例えば、スパッタリングによる放電と、反応性ガスの活性種発生による放電とは個別に制御でき互いに影響を与えることがないので、安定した放電をすることができ、不慮の事故を招くことがなく信頼性を高めることが可能となる。また、成膜プロセスゾーン内の反応性ガス流量を容易に制御でき、異常放電を防止することが可能となる。さらに、遮蔽手段を備えているため、特に、成膜プロセスゾーンごとに異なる種類のターゲットを用いる場合に、蒸着材料が他の成膜プロセスゾーンに混入することを防止することができる。
このとき、前記成膜プロセスゾーンと前記反応プロセスゾーンとは、同じ真空槽内に形成されると好適である。
【0025】
また、前記活性種の発生手段は、反応性ガスを導入する反応性ガス導入手段を備えて、電圧を印加する電源に接続された反応性ガスプラズマ発生手段と、該反応性ガスプラズマ発生手段で発生した反応性ガスプラズマ中の電気的に中性の活性種を、選択的に通過させるグリッドとを備えると好適である。
このように、反応性ガスプラズマ発生手段と、該反応性ガスプラズマ発生手段で発生した反応性ガスプラズマ中の電気的に中性の活性種を、選択的に通過させるグリッドとを備えているため、金属の不完全反応物を金属化合物に変換する反応において、イオン、電子等の荷電粒子よりも決定的に重要な働きをするラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子を利用でき、効率的に金属化合物超薄膜に変換させる工程を行うことが可能となる。
【0026】
また、前記基板ホルダーは、前記真空槽から電気的に絶縁されていると好適である。
これにより、基板における異常放電を防止することが可能となる。
【0027】
また、前記成膜プロセスゾーンと前記反応プロセスゾーンとは、同じ真空槽内に形成され、前記基板ホルダーへの前記基板の装着を行う基板ロード室と、前記基板ホルダーからの前記基板の離脱を行う基板アンロード室とを備え、前記基板ロード室と前記真空槽、および前記基板アンロード室と前記真空槽が、それぞれ圧力的に分離可能な遮断手段を介して連結され、前記基板ロード室と前記真空槽と前記基板アンロード室とは、各々独自の排気手段を有し、前記基板ロード室と前記真空槽と前記基板アンロード室との間で、前記基板ホルダーを搬送する基板ホルダー搬送手段が配設されていると好適である。
【0028】
【発明の実施の形態】
本発明は、スパッタリングで、金属化合物超薄膜を複数層形成して堆積することにより、目的とする膜厚の金属化合物薄膜を基板上に形成する金属化合物薄膜の形成方法に関する発明である。
【0029】
本発明でいう超薄膜とは、超薄膜が複数回堆積されて最終的な薄膜となることから、この最終的な薄膜との混同を防止するために用いた用語であり、最終的な薄膜よりもかなり薄いという意味である。超薄膜の平均厚さは、任意であるが、0.1〜15オングストローム程度とすると好ましい。
本発明は、2極スパッタ,3極スパッタ,4極スパッタ,マグネトロンスパッタ,ECRスパッタ,バイアススパッタ等、公知の種々のスパッタリングにより実施することが可能である。
【0030】
本発明は、接地電位にある真空槽11から電気的に絶縁された複数の同種または異種のスパッタリングターゲット29a,29b、49a,49bに、各ターゲット29a,29b、49a,49bがカソードおよびアノードに交互になると同時に常にいずれかのターゲット29a,29b、49a,49bがカソードとなりいずれかのターゲット49a,49b、29a,29bがアノードとなるように、1KHz以上100KHz以下の交流電圧を印加し、動作ガスである不活性ガスおよび反応性ガスを導入して、真空槽11内の成膜プロセスゾーン20,40で、基板上に金属の不完全反応物からなる金属不完全反応物超薄膜を形成する工程と、前記真空槽11内の前記成膜プロセスゾーン20,40と空間的,圧力的に分離された反応プロセスゾーン60で、前記金属不完全反応物超薄膜に電気的に中性な反応性ガスの活性種を接触させ、前記金属不完全反応物超薄膜と前記反応性ガスの活性種とを反応させて金属化合物超薄膜に変換させる工程と、前記金属不完全反応物超薄膜を形成する工程と金属化合物超薄膜に変換させる工程とを順次繰り返し行う工程と、により、金属化合物超薄膜を複数層形成して堆積し、金属化合物薄膜を形成する。
【0031】
本発明では、金属不完全反応物超薄膜を形成する工程と金属化合物超薄膜に変換させる工程とを順次繰り返し行えばよく、ドラム式の基板ホルダを回転することによりこれらの工程を繰り返し行う方法のみならず、
成膜プロセスゾーン20,40を複数設け、各成膜プロセスゾーン20,40のターゲット29a,29b、49a,49bとして異なる組成のターゲットを用いることにより、複合金属化合物薄膜を形成することもできる。
【0032】
成膜プロセスゾーン20,40の圧力は、1.0×10−1〜1.3Paとすると好適である。
成膜プロセスゾーン20,40に導入する反応性ガスの流量比率は、導入する反応性ガスの種類によって多少異なるが、成膜プロセスゾーン20,40の全ガス流量中の約20%以下,好ましくは約8%以下とするとよい。この比率とすることにより、成膜プロセスゾーン20,40のターゲット表面で、異常放電が発生することを防止することができる。
また、成膜プロセスゾーン20,40に導入する反応性ガスの流量比率は、導入する反応性ガスの種類によって多少異なるが、成膜プロセスゾーン20,40の全ガス流量中の約3%以上,好ましくは約5%以上とするとよい。この比率とすることにより、小さな応力で、光学的な吸収の少ない良質の金属化合物薄膜を高速で形成することが可能となる。
【0033】
複合金属酸化物薄膜を形成する場合を例として、基板上に複合金属の化合物の薄膜が形成されるプロセスを、図11に基づいて説明する。
まず、基板を、第1の金属ターゲット29a,29bに対向するように、成膜プロセスゾーン20におく。そして、反応性ガスとしての酸素ガスを導入しながら、第1の金属ターゲット29a,29bをスパッタリングして、非常に薄い第1の金属不完全酸化物超薄膜を形成する(図11左)。
【0034】
次に、基板を、第2の金属ターゲット49a,49bに対向するように、成膜プロセスゾーン40におく。この位置で、反応性ガスとしての酸素ガスを導入しながら、第2の金属ターゲット49a,49bをスパッタリングして、非常に薄い第2の金属不完全酸化物超薄膜を形成する(図11中央)。このとき、第1の金属不完全酸化物超薄膜と第2の金属不完全酸化物超薄膜は基板上に均質に成膜される。つまり基板上に、複合金属の不完全酸化物からなる超薄膜を形成する。
【0035】
そして基板上に形成された超薄膜に、電気的に中性な反応性ガスとしての酸素ガスの活性種を照射し、上記超薄膜を、酸素ガスの活性種と反応させて、複合金属の酸化物に変換する(図11右)。具体的には、ラジカル源のある反応プロセスゾーン60で酸化する。
上記の超薄膜を形成する工程と、複合金属の化合物に変換する工程とを、順次繰返し、所望の膜厚の複合金属の化合物薄膜を基板に形成する。なお本実施の形態では、超薄膜を形成する工程と複合金属の化合物に変換する工程を順次繰返し、所望膜厚の複合金属の化合物薄膜を基板に形成すればよく、基板を搬送してもよいし、基板を固定してもよい。
【0036】
金属化合物超薄膜に変換させる工程では、電気的に中性な反応性ガスの活性種として、ラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子のうち少なくとも一つを含むものを用いる。
この電気的に中性な反応性ガスの活性種は、反応性ガスを導入して反応性ガスプラズマを発生させ、荷電粒子である電子およびイオンを選択的にトラップし、電気的に中性の活性種を選択的に通過させるグリッド81を通すことにより発生させる。このグリッド81を介して、電気的に中性な反応性ガスの活性種を、真空槽11内に導入する。
【0037】
また、本発明は、スパッタリングによる金属化合物薄膜の形成装置に関する発明である。
本発明に係る装置は、反応性ガスおよび不活性ガスを導入するガス導入手段25,45と、成膜プロセスゾーン20,40と、反応プロセスゾーン60と、成膜プロセスゾーン20,40と反応プロセスゾーン60との間で基板を搬送する基板ホルダー13と、成膜プロセスゾーン20,40と反応プロセスゾーン60とを空間的、圧力的に分離する遮蔽手段12,14,16とを備える。
【0038】
成膜プロセスゾーン20,40は、真空槽11内に形成されている。成膜プロセスゾーン20,40には、接地電位から電気的に絶縁されると共に交流電源に接続されて該交流電源により正電位と負電位とに交互に印加可能な複数のスパッタリングターゲットとが配設されている。このゾーンでは、基板上に、金属不完全反応物超薄膜を形成する工程を行う。
また、反応プロセスゾーン60は、真空槽11内に形成され、電気的に中性な反応性ガス活性種の発生手段61を備えている。このゾーン60では、金属不完全反応物超薄膜と反応性ガスの活性種とを反応させて金属化合物超薄膜に変換させる工程を行う。
【0039】
このとき、特に成膜プロセスゾーン20,40の圧力を、反応プロセスゾーン60より高くする。これにより、反応プロセスゾーン60に導入された反応性ガスが、成膜プロセスゾーン20,40に流入されることが防止され、成膜プロセスゾーン20,40における反応性ガスの流量を、所定流量に維持することが可能となる。
本例では、成膜プロセスゾーン20,40と反応プロセスゾーン60とは、同じ真空槽11内に形成されている。
【0040】
電気的に中性な反応性ガス活性種の発生手段61は、ラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子のうち少なくとも一つを含むものを発生させる装置である。
この活性種の発生手段61は、反応性ガスを導入する反応性ガス導入手段77を備え、電圧を印加する1KHz以上100KHz以下の交流電源69に接続された反応性ガスプラズマ発生手段63と、反応性ガスプラズマ発生手段63で発生した反応性ガスプラズマ中の電気的に中性の活性種を、選択的に通過させるグリッド81とを備える。
【0041】
活性種発生装置61の反応性ガスプラズマ発生室63で放電により生じたプラズマは、プラズマイオン、電子、ラジカル、励起状態のラジカル、原子、分子等を構成要素とする。
本発明では、グリッド81により、反応性ガスプラズマ中の活性種であるラジカル、励起状態のラジカル、原子、分子などが選択的ないし優先的に反応プロセスゾーン60に導かれるように構成されている。そして、荷電粒子である電子、イオンはグリッド81の通過を阻止され反応プロセスゾーン60に漏出しない。
【0042】
したがって、反応プロセスゾーン60において、金属不完全反応物物超薄膜は、荷電粒子に曝露されることなく、電気的に中性な反応性ガスの活性種に曝露されて反応し、金属不完全酸化物超薄膜から金属化合物に変換されることとなる。ここで、ラジカルとは、遊離基(ratical)であり、一個以上の不対電子を有する原子または分子である。また、励起状態(excite state)とは、エネルギーの最も低い安定な基底状態に対して、それよりもエネルギーの高い状態のことをいう。
このグリッド81には、マルチ・アパーチャ・グリッド101またはマルチ・スリット・グリッド111等を用いる。
【0043】
前記活性種の発生手段61の反応性ガスプラズマ発生室63としては、円筒状の誘電体の大気側周面にコイル状の電極を配置し、このコイル状電極に100KHz以上50MHz以下の高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源を用いることができる。
また、円盤状の誘電体の大気側に渦巻き状コイルの電極を配置し、この渦巻き状コイル電極に100KHz以上50MHz以下の高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源を用いることもできる。
【0044】
さらに、反応性ガスプラズマ発生部内部に平板状の電極を配置し、この平板状電極に100KHz以上50MHz以下の高周波電力を印加してプラズマを発生させる容量結合型プラズマ発生源を用いることもできる。
反応性ガス発生部内部にコイル状の電極または渦巻き状のコイル電極を配置し、これら電極に100KHz以上50MHz以下の高周波電力を印加して誘導結合型プラズマと容量結合型プラズマとが混存するプラズマ発生源を用いることもできる。
【0045】
反応性ガスプラズマ発生室63では、ヘリコン波プラズマを発生させるようにすることもできる。また、反応性ガスプラズマ発生室63に、20〜300ガウスの磁場を形成する外部コイル71あるいは内部コイル73を配設することもできる。これらのように構成すると、前記活性種発生手段61の活性種の発生効率を高めることが可能となる。
【0046】
前記基板ホルダー13は、真空槽11から電気的に絶縁されている。
これにより、基板における異常放電を防止することが可能となる。
また、成膜プロセスゾーン20,40に配設された部材,例えば、前記遮蔽手段12,14,ターゲットを覆うターゲットシールド等は、水冷等による冷却手段を備えている。これにより、プラズマによる基板の温度上昇が防止でき、高品質の薄膜を形成することが可能となる。
【0047】
また、本発明では、図9に示すように、成膜プロセスゾーン20,40と反応プロセスゾーン60とは、同じ真空槽121内に形成され、基板ホルダー143への基板141の装着を行う基板ロード室123と、基板ホルダー143からの基板の離脱を行う基板アンロード室125とを備えるように構成される。基板ロード室123と真空槽121、および基板アンロード室125と真空槽121が、それぞれ圧力的に分離可能な遮断手段131,135を介して連結される。
【0048】
基板ロード室123と真空槽121と基板アンロード室125とは、各々独自の排気手段ロータリーポンプ(RP)を有し、基板ロード室123と真空槽121と基板アンロード室125との間で、基板ホルダー143を搬送する基板ホルダー搬送手段が配設されている。
基板ロード室123と基板アンロード室125では、必要により、その他の前処理,後処理を行うようにすることもできる。
【0049】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。なお、以下に説明する部材,配置等は本発明を限定するものでなく、本発明の趣旨の範囲内で種々改変することができるものである。
【0050】
図1および図2は、本発明の薄膜形成方法および装置について示す説明図であり、図1が理解の容易のために一部断面を取った上面図、図2が図1の線A−B−Cに沿った側面図である。
本例では、スパッタリングの一例であるマグネトロンスパッタリングを用いているが、これに限定されるものでなく、マグネトロン放電を用いない2極スパッタ等、他の公知のスパッタリングを用いることもできる。
【0051】
本例の金属化合物薄膜の形成装置は、真空槽11と、真空槽11内に遮蔽手段としての遮蔽板12,14で形成された成膜プロセスゾーン20,40と、成膜プロセスゾーン20,40内に配置されたスパッタリングターゲットとしてのマグネトロンスパッタリングターゲット29a,b,49a,bと、真空槽11内に遮蔽手段としての遮蔽板16で形成された反応プロセスゾーン60と、成膜プロセスゾーン20,40,反応プロセスゾーン60に基板が対向するように配置された基板ホルダ13と、を主要構成要素としている。
【0052】
真空槽11は、スパッタリングで通常用いられるステンレス製の略直方体状の中空体からなる。真空槽11の底面には、排気用の配管が接続され、この配管には、図2に示すように、真空槽11内を排気可能な真空ポンプ15が接続されている。この真空ポンプ15と図示しないコントローラとにより、真空槽11内の真空度が調整可能に構成されている。
【0053】
成膜プロセスゾーン20,40は、図1に示すように、真空槽11内に設けられている。成膜プロセスゾーン20は、遮蔽板12と基板ホルダー13とに囲繞され、成膜プロセスゾーン40は、遮蔽板14と基板ホルダー13とに囲繞されている。
本例では、成膜プロセスゾーンを2つ設けているが、これに限定されるものでなく、成膜プロセスゾーンを1つ,または3つ以上設けるように構成してもよい。本例では、成膜プロセスゾーンを2つ設けているため、成膜プロセスゾーンごとに異なる2種類の物質をスパッタリングすることも可能である。
【0054】
遮蔽板12は、ステンレス製の平面板状体からなり、成膜プロセスゾーン20を囲繞して4枚の遮蔽板12が、真空槽11の壁面に垂直に立設されている。遮蔽板12には、不図示の水冷用の配管が取り付けられ、遮蔽板12は、冷却可能に構成されている。
また、遮蔽板14の構成は、成膜プロセスゾーン40を囲繞する点を除いては、遮蔽板12と同様である。
【0055】
成膜プロセスゾーン20,40のそれぞれには、ガス導入手段としてのマスフローコントローラ25,45が、配管を介して配設されている。このマスフローコントローラ25,45は、不活性ガスとしてのアルゴンガスを貯留するスパッタガスボンベ27,47、反応性ガスとしての酸素ガス,窒素ガス,弗素ガス等を貯留する反応性ガスボンベ79に接続されている。この反応性ガスは、反応性ガスボンベ79から、マスフローコントローラ25,45で制御して、配管を通して成膜プロセスゾーン20,40に導入可能に構成されている。
【0056】
成膜プロセスゾーン20には、マグネトロンスパッタ電極21a,bが配置されている。このマグネトロンスパッタ電極21a,bは、不図示の絶縁部材を介して接地電位にある真空槽11に固定されている。したがって、スパッタリング電極21a,ターゲット29aと、スパッタリング電極21b、ターゲット29bとは、互いに電気的に分離されている。マグネトロンスパッタ電極21a,bはトランス24を介して、交流電源23に接続され、交番電界が印加可能に構成されている。マグネトロンスパッタ電極21a,bの基板ホルダー13側の面には、薄膜材料金属からなる複数としての2つのターゲット29a,bが固定されている。
また、成膜プロセスゾーン40には、ターゲット49a,49bが、上記ターゲット29a,29bと同様に、配置されている。ターゲット29a,29b,49a,49bは、蒸着材料からなる略円盤状体として形成されている。
【0057】
ターゲット29a,29b,49a,49bと基板ホルダー13との間には、ターゲット29a,29b,49a,49bと基板ホルダー13との間を遮断または開放するように可動可能な不図示のターゲットシールドが配置されている。このターゲットシールドは、スパッタリング開始時に、スパッタリングが安定するまでターゲット29a,29b,49a,49bと基板ホルダー13との間を遮断し、スパッタリングが安定した後にターゲット29a,29b,49a,49bと基板ホルダー13との間を開放することにより、スパッタリングが安定してから基板へ堆積することを可能にするものである。
このターゲットシールド等の成膜プロセスゾーン20,40の周辺部材には、基板の温度上昇等、発熱による悪影響を防止するため、水冷等による冷却手段が配設されている。
【0058】
反応プロセスゾーン60は、図1に示すように、真空槽11内に設けられている。反応プロセスゾーン60は、遮蔽板16と基板ホルダー13とに囲繞されている。遮蔽板16の構成は、反応プロセスゾーン60を囲繞する点を除いては、遮蔽板12と同様である。
反応プロセスゾーン60の真空槽11の壁面には、開口が形成され、この開口には、反応性ガスプラズマ発生手段としての活性種発生装置61が連結されている。
【0059】
活性種発生装置61は、ラジカル源とも呼ばれ、反応性ガスプラズマを発生させる石英管からなる反応性ガスプラズマ発生室63と、反応性ガスプラズマ発生室63に巻回されたコイル状の電極65と、マッチングボックス67と、マッチングボックス67を介してコイル状の電極65に接続された高周波電源69と、マスフローコントローラ77と、マスフローコントローラ77を介して接続された反応性ガスボンベ79と、を備える。
【0060】
反応性ガスプラズマ発生室63と真空槽11との間には、グリッド81が配設されている。
このグリッド81は、電気的に中性な活性種粒子のみを選択的に通過せしめて反応プロセスゾーン60に導き、一方、荷電粒子は通過させない機能を有する。この機能は、グリッド81の表面で、プラズマ中のイオンと電子との間に電荷交換が行なわれて中和されることにより生じるものである。
【0061】
グリッド81としては、マルチ・アパーチャ・グリッド、マルチ・スリット・グリッドを用いることができる。
図6は、マルチ・アパーチャ・グリッド101を示す平面図である。マルチ・アパーチャ・グリッド101は、金属あるいは絶縁物からなる平板からなり、直径0.1〜3.0mm程度の穴103が無数に穿設されている。
【0062】
図7は、マルチ・スリット・グリッドを示す平面図である。マルチ・スリット・グリッド111は、金属あるいは絶縁物からなる平板からなり、幅0.1〜1.0mm程度のスリットが無数に設けられている。グリッド101,111には、冷却管105,115が配設され、水冷による冷却可能に構成されている。
【0063】
反応性ガスボンベ79からマスフローコントローラ77を介して酸素ガスなどの反応性ガスが、反応性ガスプラズマ発生室63に供給され、マッチングボックス67を介して高周波電源69からの高周波電力が、コイル状の電極65に印加されると、反応性ガスのプラズマが反応性ガスプラズマ室63内に発生するように構成されている。
【0064】
また、図1、図2に示したように、外部磁石71が、反応性ガスプラズマ発生室63の外側に配置され、また内部磁石73が、反応プロセスゾーン60内のグリッド81の外側に配置されている。この外部磁石71,内部磁石73は、プラズマ発生部に20〜300ガウスの磁場を形成することにより高密度プラズマを発生させ、活性種発生効率を高めるという機能を有する。
なお、本例では、外部磁石71,内部磁石73の双方を配設しているが、外部磁石71,内部磁石73のいずれか一方を配設するように構成してもよい。
【0065】
本例では、反応性ガスプラズマ部として、図1,図2に示すように、反応性ガスプラズマ発生室の外部または内部に電極を設けた誘導結合型プラズマ源を用いているが、次に説明するように、反応性ガスプラズマ発生室内にコイル電極を配置した誘導結合型プラズマ源(下記(1))、容量結合型プラズマ源(下記(2))、誘導結合・容量結合混在型プラズマ源(下記(3))などを用いることもできる。
【0066】
すなわち、
(1)図3に示したプラズマ源:円盤状の石英ガラス等の誘電体からなる反応性ガスプラズマ発生室63の大気側に渦巻き状(蚊取り線香状)のコイル電極91を配置し、この渦巻き状コイル電極91に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる誘導結合型プラズマ発生源。図3(B)は渦巻状コイル電極91の平面の概略説明図である。
(2)図4に示したプラズマ源:反応性ガスプラズマ発生室63の内部に平板状の電極93を配置し、この平板状電極93に100KHz〜50MHzの高周波電力を印加してプラズマを発生させる容量結合型プラズマ発生源。
(3)図5に示したプラズマ源:反応性ガス発生室63の内部にコイル状電極95または渦巻き状コイル電極を配置し、これら電極に100KHz〜50MHzの高周波電力を印加して誘導結合型プラズマと容量結合型プラズマとが混存するプラズマを発生されるプラズマ発生源。
等を用いることができる。
また、コイルの形状等を調整することにより、ヘリコン波プラズマ源とし、プラズマ中における活性種の発生効率を高めることもできる。
【0067】
以下、本例の装置を用いて多層反射防止膜を形成する場合の手順について、酸化シリコンと酸化チタンが積層した多層反射防止膜を形成する場合を例として説明する。
基板ホルダ13に基板をセットする。ターゲット29a,bとして、酸化物が低屈折率であるシリコンターゲットを、マグネトロンスパッタ電極21a,21bに固定する。ターゲット49a,bとして、酸化物が高屈折率であるチタンターゲットを、マグネトロンスパッタ電極41a,41bに固定する。真空槽11内を所定の圧力に減圧する。
【0068】
その後、成膜プロセスゾーン20内の圧力を、1.0×10−1〜1.3Paに調整する。
モータ17を作動させて、基板ホルダ13の回転を開始する。
成膜プロセスゾーン20内に、スパッタリング用の不活性ガスであるアルゴンガスおよび反応性ガスとしての酸素ガスを、スパッタガスボンベ27、反応性ガスボンベ79からマスフローコントローラ25で流量調整して導き、成膜プロセスゾーン20内のスパッタリング雰囲気を調整する。
このときの成膜プロセスゾーン20に導入する各ガスの流量は、アルゴンガスを約300sccm,酸素ガスを15〜24sccmとする。
【0069】
そして、交流電源23からトランス24を介して、スパッタリング電極21a,21bに周波数1〜100KHzの交流電圧を印加し、ターゲット29a,29bに、交番電界が掛かるようにする。
これにより、ある時点においてはターゲット29aがカソード(マイナス極)となり、その時ターゲット29bは必ずアノード(プラス極)となる。次の時点において交流の向きが変化すると、今度はターゲット29bがカソード(マイナス極)となり、ターゲット29aがアノード(プラス極)となる。このように一対のターゲット29a,29bが、交互にアノードとカソードとなることにより、プラズマが形成され、カソード上のターゲットがスパッタされる。
【0070】
この時、アノード上には非導電性あるいは導電性の低いシリコン不完全酸化物,酸化シリコン等が付着する場合もあるが、このアノードが交番電界によりカソードに変換された時に、これらシリコン不完全酸化物等がスパッタされ、ターゲット表面は元の清浄な状態となる。
そして、これを繰り返すことにより、常に安定なアノード電位状態が得られ、プラズマ電位(通常アノード電位とほぼ等しい)の変化が防止され、安定してシリコン不完全酸化物超薄膜が形成される。
このように、スパッタ用交流電源23から電力を投入し、シリコンをスパッタリングして、基板上へのSiO(x<2)等の金属不完全酸化物超薄膜の堆積を行う。
【0071】
成膜プロセスゾーン20におけるスパッタリングを行うと同時に、反応プロセスゾーン60には、反応性ガスボンベ79から反応性ガスとしての酸素ガスを導入する。コイル状電極65に、100KHz〜50MHzの高周波電力を印加し、活性種発生装置61によりプラズマを発生させる。なお、反応プロセスゾーン60の圧力は、0.7×10−1〜1.0Paに維持する。
反応性ガスプラズマ発生室63内のプラズマ中には、荷電粒子である酸素ガスイオン,電子と、電気的に中性な反応性ガスの活性種であるラジカル・励起状態のラジカル,原子,分子とが存在する。そのうち、後者の電気的に中性な反応性ガスの活性種を、グリッド81により、選択的ないし優先的に反応プロセスゾーン60に導く。
【0072】
そして、基板ホルダ13が回転して、基板が成膜プロセスゾーン20にあるときに、金属不完全酸化物超薄膜SiO(x<2)が形成された基板が、反応プロセスゾーン60に入ったときに、超薄膜が、酸素ガスの活性種により完全に酸化されてSiOに変換される。
このように、基板を搭載した基板ホルダ13を回転することにより、成膜プロセスゾーン20における金属不完全酸化物超薄膜SiO(x<2)の形成と、反応プロセスゾーン60におけるSiOへの変換が繰り返され、基板上に所望膜厚のSiOが形成される。
なお、ターゲット21にSiOを用いてもよい。従来の化合物ターゲットによるRF,DC反応性スパッタリング法とは異なり、本発明では、ターゲット21にSiOを用いても、反応プロセスゾーン60で酸素の欠損が補われるため、安定したSiOの成膜を行うことが可能である。
その後、スパッタ用交流電源23をオフにする。
【0073】
成膜プロセスゾーン240内の圧力を、1.0×10−1〜1.3Paに調整する。
マスフローコントローラ45で流量を調整しながら、スパッタリングガスボンベ47から不活性ガスとしてのアルゴンガスを、反応性ガスボンベ79から反応性ガスとしての酸素ガスを、成膜プロセスゾーン40に導入する。
このときの成膜プロセスゾーン20に導入する各ガスの流量は、アルゴンガスを約300sccm,酸素ガスを15〜24sccmとする。
スパッタ用交流電源43から周波数1〜100KHzの交流電圧を印加し、ターゲット49a,49bに、交番電界が掛かるようにする。チタンをスパッタリングして、基板上へのTiO(x<2)等の金属不完全酸化物超薄膜の堆積を開始する。
【0074】
同時に、反応プロセスゾーン60に反応性ガスボンベ79から、反応性ガスとしての酸素ガスを導入し、活性種発生装置61を作動させて、酸素ガスの活性種を発生させる。
そして、基板ホルダ13が回転すると、成膜プロセスゾーン40で、基板上に金属不完全酸化物超薄膜TiO(x<2)が形成され、反応プロセスゾーン60で、超薄膜が、酸素ガスの活性種により完全に酸化されてTiOに変換される。
【0075】
このように、基板を搭載した基板ホルダ13を回転することにより、成膜プロセスゾーン40における金属不完全酸化物超薄膜TiO(x<2)の形成と、反応プロセスゾーン60におけるTiOへの変換が繰り返され、基板上に所望膜厚のTiOが形成される。
このSiOを形成する工程と、TiOを形成する工程とを繰り返し、基板上に、SiO薄膜と、TiO薄膜とが積層した多層反射防止膜が形成される。
【0076】
ターゲット29a,b,49a,49bとして、本例では、シリコンおよびチタンを用いているが、これに限定されるものでなく、アルミニウム(Al),チタン(Ti),ジルコニウム(Zr),スズ(Sn),クロム(Cr),タンタル(Ta),シリコン(Si),テルル(Te),ニッケル・クロム(Ni−Cr),インジウム・スズ(In−Sn)などの金属ターゲットを用いることができる。また、これらの金属の化合物,例えば、Al,TiO,ZrO,Ta,SiO,Nb等を用いることもできる。
【0077】
これらのターゲットを用いた場合、反応プロセスゾーン60における反応性ガスの活性種の曝露により、Al,TiO,ZrO,Ta,SiO,Nb等の光学膜ないし絶縁膜、ITO等の導電膜、Feなどの磁性膜、TiN,CrN,TiCなどの超硬膜とされる。
TiO,ZrO,SiOのような絶縁性の金属化合物は、金属(Ti,Zr,Si)に比べスパッタリング速度が極端に遅く生産性が悪いので、特に本発明のデュアル・マグネトロンスパッタリング法が有効である。
【0078】
なお、ターゲット29a,29bとターゲット49a,49bに、異なる金属又は金属化合物のターゲットを用いることにより、異なる金属化合物が積層された多層反射防止膜,例えば、SiOとZrOとの多層反射防止膜,SiOとTaとの多層反射防止膜,SiOとNbとの多層反射防止膜等を形成することも可能である。
【0079】
なお、本例では、図11に示すように、成膜プロセスゾーン20,40と反応プロセスゾーン60とに、同一の反応性ガスボンベ79から反応性ガスを導入するように構成しているが、これに限定されるものでなく、成膜プロセスゾーン20,40と、反応プロセスゾーン60とに、異なるガスボンベを連結し、同じ元素を有する異なるガスを導入することも可能である。
【0080】
また、ターゲット29aと29bとは同一の金属ターゲットでも異種の金属ターゲットでもよい。同一の金属ターゲットを用いた場合は、単一金属からなる金属不完全酸化物超薄膜が形成され、異種の金属ターゲットを用いた場合は合金からなる金属不完全酸化物超薄膜が形成される。ターゲット49aと49bについても同様である。
【0081】
成膜プロセスゾーン20,40,反応プロセスゾーン60に導入する反応性ガスとしては、本例で導入している酸素の他に、オゾン,一酸化二窒素(NO)等の酸化性ガス、窒素等の窒化性ガス、メタン等の炭化性ガス、弗素,四弗化炭素(CF)等の弗化性ガスなどを用いることができる。
なお、成膜プロセスゾーン20,40に、窒素ガスを導入する場合、成膜プロセスゾーン20,40に導入するガス流量は、不活性ガスとしてのアルゴンガス300sccm,窒素ガス9〜60sccmとするとよい。
【0082】
以下に、本例により、SiOと、TaまたはNbとの多層反射防止膜を形成した場合の作動条件を示す。
(1)スパッタリング条件(Si)投入電力:7.0kW
基板温度:室温
成膜プロセスゾーン内圧力:1.3Pa
印加交流電圧周波数 40KHz
基板ホルダ回転数:100rpm
超薄膜の厚さ:2〜6オングストローム
(2)スパッタリング条件(Ta/Nb)
投入電力:5.0kW
基板温度:室温
成膜プロセスゾーン内圧力:1.3Pa
印加交流電圧周波数 40KHz
基板ホルダ回転数:100rpm
超薄膜の厚さ:1〜4オングストローム
(3)活性種発生装置の駆動条件(O
装置:図1,2に示した誘導結合型プラズマ発生源
投入電力:2.0kW
圧力:6.5×10−1Pa
【0083】
本例の金属化合物薄膜の形成方法により形成した薄膜の減衰係数と成膜速度との関係を示すグラフを図8に示す。
図8のサンプルA(O有)は、図1に示す金属化合物薄膜の形成装置を用いて本例の金属化合物薄膜の形成方法により形成した薄膜についてのグラフであり、具体的には、上記作動条件(1)〜(3)により形成したものである。
また、図8のサンプルB(O無)は、対比例であって、具体的には、図1に示す金属化合物薄膜の形成装置の成膜プロセスゾーン20,40に反応性ガスを導入せずに、形成した金属化合物薄膜についてのグラフである。サンプルBの薄膜形成装置,形成方法のその他の構成は、サンプルAに係る本例の構成と同様であり、作動条件も、上記作動条件(1)〜(3)による。
【0084】
図8より、サンプルAに係る本例の金属化合物薄膜の形成方法によれば、サンプルBに係る対比例の金属化合物薄膜の形成方法と対比して、同じ成膜速度であっても、減衰係数が低い薄膜が形成されることが分かった。すなわち、本例の金属化合物薄膜の形成方法によれば、成膜プロセスゾーンに反応性ガスを導入しない対比例の方法と対比して、同じ成膜速度であっても、光学的な吸収の少ない薄膜を得ることができることが分かった。
さらに、図10に示すように、本例の金属化合物薄膜の形成方法によれば、従来のツイン・マグネトロンスパッタリング法と略同様の成膜レートが得られることが分かっている。
【0085】
図9は本発明の他の実施例を示す平面図である。装置構成は全体として真空槽としての成膜室121、その前後の基板ロード室123、および基板アンロード室125から構成される。各室はそれぞれ個別の排気系を有し、RPはロータリーポンプを、TMPはターボモレキュラーポンプを示す。各室間はゲートバルブ131,133を介して連結されている。基板ロード室123はゲートバルブ135ないしは開閉扉により大気に開放可能であり、基板アンロード室125はゲートバルブ137ないしは開閉扉により大気に開閉可能である。すなわち、各室は圧力的に隔離され各々独自の排気系を有し、また、ゲートバルブ131,133を通して基板ホルダー143を搬送することができる。
【0086】
基板141を搭載した基板ホルダー143がゲートバルブ135を介して基板ロード室123に搬入され、基板ロード室123がロータリーポンプにより真空に引かれて、加熱等の必要による前処理を受ける。すなわち、基板ロード室123は、基板ホルダーの脱着・排気・必要による前処理の機能を行う室である。この処理終了後に、基板ホルダー143は、成膜室121に搬送される。成膜室121で、基板141に薄膜が形成される。なお、煩雑を避けるべく図面上では、成膜室121における基板ホルダー143のみを一点鎖線で示し、基板141の図示を省略した。
【0087】
成膜処理が終了した基板ホルダー143は基板アンロード室125に搬送され、必要に応じて後処理を受けた後、ゲートバルブ137を介して外部に取り出される。すなわち、基板アンロード室125は、基板ホルダーの脱着・排気・必要による後処理を行う室である。成膜室121における成膜処理は、基板ホルダーが水平板状である点を除いて図1、図2に示した実施例と同様である。
【0088】
【発明の効果】
以上のように本発明によれば、簡単な構成および操作で、安定した特性の金属化合物薄膜を高速で形成することができる。
金属薄膜には、強い応力が発生することが知られているが、本発明に係る金属化合物薄膜の形成方法では、まず、金属不完全反応物超薄膜を形成した後、これを金属化合物超薄膜にシーケンシャルに変換させる反応機構を採用しているため、従来の金属超薄膜を金属化合物超薄膜に変換する方法による場合と対比して、より小さな応力の薄膜を形成することが可能となる。さらに、光学的な吸収の少ない良質の金属化合物薄膜を高速で形成することが可能となる。
【0089】
また、金属不完全反応物超薄膜の形成と、金属化合物超薄膜への変換とを繰り返して行うことにより、金属化合物超薄膜を複数回堆積するので、目的とする膜厚の薄膜を、低い基板温度で高速に形成できる。
金属不完全反応物超薄膜の形成方法としてデュアル・マグネトロンスパッタリング法を採用することにより、安定したアノード部を確保して、アノード電位の変化を防止して再現性の良い良質の薄膜が形成できる。
【0090】
金属不完全反応物超薄膜を金属化合物超薄膜に変換するに際し、ラジカル、励起状態にあるラジカル、原子あるいは分子等の活性種を利用することにより、荷電粒子を用いた場合と対比して、薄膜がダメージを受けることが防止できるとともに、基板温度の上昇が防止でき、効率的に良好な特性の薄膜を得ることができる。
遮蔽手段により成膜プロセスゾーンと反応プロセスゾーンとが区切られており、スパッタリングのための放電と、反応性ガスの活性種発生の放電とを個別に制御できるため、安定した放電が可能となり、安定した薄膜形成を行うことができる。
また、成膜プロセスゾーンに導入する反応性ガスの流量比率は、成膜プロセスゾーンの全ガス流量中の約3%以上であって約20%以下とすることにより、成膜プロセスゾーンのターゲット表面で、異常放電が発生することを防止することができる。
【図面の簡単な説明】
【図1】本発明で用いられる装置の実施例を示す説明上面図である。
【図2】本発明で用いられる装置の実施例を示す、図1の線A−B−Cに沿った断面図である。
【図3】プラズマ源の構成例を示す説明図である。
【図4】プラズマ源の構成例を示す説明図である。
【図5】プラズマ源の構成例を示す説明図である。
【図6】マルチ・アパーチャ・グリッドを示す平面図である。
【図7】マルチ・スリット・グリッドを示す平面図である。
【図8】本例の金属化合物薄膜の形成方法により形成した薄膜の減衰係数と成膜速度との関係を示すグラフである。
【図9】本発明で用いる装置の実施例を示す説明平面図である。
【図10】反応性ガス比と成膜レートの関係を示す説明図である。
【図11】基板上に複合金属の化合物薄膜を形成するときの説明図である。
【符号の説明】
11 真空槽
12,14,16 遮蔽板
13 基板ホルダー
15 真空ポンプ
17 モータ
20,40 成膜プロセスゾーン
21a,21b、41a,41b スパッタ電極
23、43 スパッタ用交流電源
24 トランス
25,45 マスフローコントローラ
27,47 スパッタガスボンベ
29a,29b、49a,49b ターゲット
60 反応プロセスゾーン
61 活性種発生装置
63 反応性ガスプラズマ発生室
65 電極
67 マッチングボックス
69 高周波電源
71 外部コイル
73 内部コイル
77 マスフローコントローラ
79 反応性ガスボンベ
81 グリッド
91 渦巻き状電極
93 平板電極
95 コイル状電極
101 マルチ・アパーチャ・グリッド
103 穴
105 冷却管
111 マルチ・スリット・グリッド
113 スリット
115 冷却管
121 成膜室
123 基板ロード室
125 基板アンロード室
131,133,135,137 ゲートバルブ
141 基板
143 基板ホルダー
151,161,171 遮蔽板
153,163 成膜プロセスゾーン
155a,155b、165a,165b ターゲット
173 反応プロセスゾーン
175 活性種発生装置

Claims (8)

  1. 接地電位から電気的に絶縁された複数のスパッタリングターゲットに、各ターゲットがカソードおよびアノードに交互になると同時に常にいずれかのターゲットがカソードとなりいずれかのターゲットがアノードとなるように、交流電圧を印加し、真空槽内の成膜プロセスゾーンにおいて、不活性ガスおよび前記成膜プロセスゾーンの全ガス流量の3%以上であって20%以下の流量の反応性ガスを、前記成膜プロセスゾーン内に接続された配管を通じて前記成膜プロセスゾーン内に導入するガス導入手段により導入して、基板上に金属の不完全反応物からなる金属不完全反応物超薄膜を形成する工程と、
    前記真空槽内の前記成膜プロセスゾーンと空間的,圧力的に分離された反応プロセスゾーンで、前記金属不完全反応物超薄膜に電気的に中性な反応性ガスの活性種を接触させ、前記金属不完全反応物超薄膜と前記反応性ガスの活性種とを反応させて金属化合物超薄膜に変換させる工程と、
    前記金属不完全反応物超薄膜を形成する工程と前記金属化合物超薄膜に変換させる工程とを順次繰り返し行う工程と、により、
    前記金属化合物超薄膜を複数層形成して堆積して、目的とする膜厚の前記金属化合物薄膜を基板上に形成することを特徴とする金属化合物薄膜の形成方法。
  2. 前記電気的に中性な反応性ガスの活性種が、ラジカル、励起状態にあるラジカル、励起状態にある原子、励起状態にある分子のうち少なくとも一つを含むものである請求項1記載の金属化合物薄膜の形成方法。
  3. 前記電気的に中性な反応性ガスの活性種は、反応性ガスを導入して反応性ガスプラズマを発生させ、電気的に中性の活性種を選択的に通過させるグリッドを介して真空槽内に導入することを特徴とする請求項1記載の金属化合物薄膜の形成方法。
  4. スパッタリングにより基板上に金属化合物薄膜を形成する装置において、
    接地電位から電気的に絶縁されると共に交流電源に接続されて該交流電源により正電位と負電位とに交互に印加可能な複数のスパッタリングターゲットが配設され、前記基板上に、金属不完全反応物超薄膜を形成する工程を行う真空槽内に形成された成膜プロセスゾーンと、
    不活性ガスおよび前記成膜プロセスゾーンの全ガス流量の3%以上であって20%以下の流量の反応性ガスを、前記成膜プロセスゾーン内に接続された配管を通じて前記成膜プロセスゾーン内に導入するガス導入手段と、
    電気的に中性な反応性ガス活性種の発生手段を備え、前記金属不完全反応物超薄膜と前記反応性ガスの活性種とを反応させて金属化合物超薄膜に変換させる工程を行う真空槽内に形成された反応プロセスゾーンと、
    前記成膜プロセスゾーンと前記反応プロセスゾーンとの間で前記基板を搬送する基板ホルダーと、
    前記成膜プロセスゾーンと前記反応プロセスゾーンとを空間的、圧力的に分離する遮蔽手段とを備えたことを特徴とする金属化合物薄膜の形成装置。
  5. 前記成膜プロセスゾーンと前記反応プロセスゾーンとは、同じ真空槽内に形成されることを特徴とする請求項4記載の金属化合物薄膜の形成装置。
  6. 前記活性種の発生手段は、
    反応性ガスを導入する反応性ガス導入手段を備えて、電圧を印加する電源に接続された反応性ガスプラズマ発生手段と、
    該反応性ガスプラズマ発生手段で発生した反応性ガスプラズマ中の電気的に中性の活性種を、選択的に通過させるグリッドとを備えることを特徴とする請求項4記載の金属化合物薄膜の形成装置。
  7. 前記基板ホルダーは、前記真空槽から電気的に絶縁されたことを特徴とする請求項4記載の金属化合物薄膜の形成装置。
  8. 前記成膜プロセスゾーンと前記反応プロセスゾーンとは、同じ真空槽内に形成され、
    前記基板ホルダーへの前記基板の装着を行う基板ロード室と、前記基板ホルダーからの前記基板の離脱を行う基板アンロード室とを備え、
    前記基板ロード室と前記真空槽、および前記基板アンロード室と前記真空槽が、それぞれ圧力的に分離可能な遮断手段を介して連結され、
    前記基板ロード室と前記真空槽と前記基板アンロード室とは、各々独自の排気手段を有し、
    前記基板ロード室と前記真空槽と前記基板アンロード室との間で、前記基板ホルダーを搬送する基板ホルダー搬送手段が配設されたことを特徴とする請求項4記載の金属化合物薄膜の形成装置。
JP2000050256A 2000-02-25 2000-02-25 金属化合物薄膜の形成方法およびその形成装置 Expired - Fee Related JP3774353B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050256A JP3774353B2 (ja) 2000-02-25 2000-02-25 金属化合物薄膜の形成方法およびその形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050256A JP3774353B2 (ja) 2000-02-25 2000-02-25 金属化合物薄膜の形成方法およびその形成装置

Publications (2)

Publication Number Publication Date
JP2001234338A JP2001234338A (ja) 2001-08-31
JP3774353B2 true JP3774353B2 (ja) 2006-05-10

Family

ID=18572062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050256A Expired - Fee Related JP3774353B2 (ja) 2000-02-25 2000-02-25 金属化合物薄膜の形成方法およびその形成装置

Country Status (1)

Country Link
JP (1) JP3774353B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015162A1 (ja) * 2002-08-09 2004-02-19 Kabushiki Kaisha Kobe Seiko Sho α型結晶構造主体のアルミナ皮膜の製造方法
DE10347521A1 (de) 2002-12-04 2004-06-24 Leybold Optics Gmbh Verfahren zur Herstellung Multilayerschicht und Vorrichtung zur Durchführung des Verfahrens
WO2004050944A2 (de) * 2002-12-04 2004-06-17 Leybold Optics Gmbh Verfahren zur herstellung einer multilayerschicht und vorrichtung zur durchführung des verfahrens
JP4486838B2 (ja) 2003-04-25 2010-06-23 旭硝子株式会社 酸化ケイ素膜の製造方法および光学多層膜の製造方法
EP1637624B1 (en) * 2003-06-02 2012-05-30 Shincron Co., Ltd. Thin film forming apparatus
EP1680527B1 (en) * 2003-10-07 2012-03-21 Deposition Sciences, Inc. Apparatus and process for high rate deposition of rutile titanium dioxide
JP4540369B2 (ja) * 2004-03-09 2010-09-08 株式会社シンクロン 薄膜形成装置
JP4491262B2 (ja) * 2004-03-19 2010-06-30 株式会社シンクロン スパッタ装置及び薄膜形成方法
JP4766846B2 (ja) * 2004-07-09 2011-09-07 株式会社シンクロン 薄膜形成方法
JP3986513B2 (ja) * 2004-08-05 2007-10-03 株式会社シンクロン 薄膜形成装置
JP4876619B2 (ja) * 2006-02-21 2012-02-15 ソニー株式会社 反応性スパッタリング装置及び成膜方法
JP2009035788A (ja) * 2007-08-02 2009-02-19 Ulvac Japan Ltd 成膜装置
JP2010538157A (ja) * 2007-08-30 2010-12-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ スパッタシステム
JP4753973B2 (ja) * 2008-06-26 2011-08-24 株式会社シンクロン 成膜方法及び成膜装置
JP4688230B2 (ja) * 2008-10-09 2011-05-25 株式会社シンクロン 成膜方法
JP5126909B2 (ja) * 2010-10-08 2013-01-23 株式会社シンクロン 薄膜形成方法及び薄膜形成装置
JP2013125851A (ja) * 2011-12-14 2013-06-24 Ulvac Japan Ltd 成膜装置及び成膜方法
KR101287694B1 (ko) * 2012-02-16 2013-08-07 신크론 컴퍼니 리미티드 투광성 경질 박막
CN103946417A (zh) 2012-10-23 2014-07-23 株式会社新柯隆 薄膜形成装置、溅射阴极以及薄膜形成方法
JP6131145B2 (ja) 2013-08-06 2017-05-17 株式会社神戸製鋼所 成膜装置
JP2017201651A (ja) * 2016-05-02 2017-11-09 株式会社神戸製鋼所 酸化物半導体の製造方法
CN113718213A (zh) * 2021-04-26 2021-11-30 深圳市新邦薄膜科技有限公司 一种分光薄膜真空磁控镀膜方法

Also Published As

Publication number Publication date
JP2001234338A (ja) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3774353B2 (ja) 金属化合物薄膜の形成方法およびその形成装置
US6103320A (en) Method for forming a thin film of a metal compound by vacuum deposition
EP1637624B1 (en) Thin film forming apparatus
JP3735461B2 (ja) 複合金属の化合物薄膜形成方法及びその薄膜形成装置
WO2006013968A1 (ja) 薄膜形成装置
JP3824993B2 (ja) 薄膜の製造方法およびスパッタリング装置
JPH08176821A (ja) 薄膜形成方法および装置
JPH11256327A (ja) 金属化合物薄膜の形成方法および成膜装置
JP3779317B2 (ja) 薄膜の形成方法
JP3735462B2 (ja) 金属酸化物光学薄膜の形成方法および成膜装置
JP4993368B2 (ja) 成膜方法及び成膜装置
JP5156041B2 (ja) 薄膜形成方法
JP5372223B2 (ja) 成膜方法及び成膜装置
JP3738154B2 (ja) 複合金属化合物の薄膜形成方法及びその薄膜形成装置
JP5312138B2 (ja) スパッタリング方法
JP4480336B2 (ja) 誘電体薄膜の製造方法及び製造装置
KR20060031611A (ko) 박막형성장치 및 박막형성 방법
JP2010202890A (ja) 成膜方法及び成膜装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Ref document number: 3774353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees