JP3706335B2 - 内燃機関の故障判定装置 - Google Patents

内燃機関の故障判定装置 Download PDF

Info

Publication number
JP3706335B2
JP3706335B2 JP2001378662A JP2001378662A JP3706335B2 JP 3706335 B2 JP3706335 B2 JP 3706335B2 JP 2001378662 A JP2001378662 A JP 2001378662A JP 2001378662 A JP2001378662 A JP 2001378662A JP 3706335 B2 JP3706335 B2 JP 3706335B2
Authority
JP
Japan
Prior art keywords
misfire
cylinder
value
failure determination
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001378662A
Other languages
English (en)
Other versions
JP2003184626A (ja
Inventor
克裕 熊谷
真一 北島
俊成 篠原
寛 中畝
太 西岡
篤 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001378662A priority Critical patent/JP3706335B2/ja
Priority to TW091135590A priority patent/TWI259864B/zh
Priority to DE10257869A priority patent/DE10257869B4/de
Priority to CNB021559929A priority patent/CN1330870C/zh
Priority to US10/319,176 priority patent/US6763707B2/en
Publication of JP2003184626A publication Critical patent/JP2003184626A/ja
Application granted granted Critical
Publication of JP3706335B2 publication Critical patent/JP3706335B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • G01M15/104Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases using oxygen or lambda-sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の故障判定装置に関し、特に所定の運転時に少なくとも一部の気筒の動弁系を停止させる可変動弁機構の故障を判定する故障判定装置に関する。
【0002】
【従来の技術】
従来の内燃機関の制御装置として、例えば特許第2507550号公報に記載されたものが知られている。この制御装置は、内燃機関の失火状態に応じて、燃料の供給および停止を制御するものである。具体的には、クランクシャフトの回転変動に基づいて、失火状態を気筒ごとに検知するとともに、失火が発生したと判定された気筒への燃料供給を所定時間、停止する。また、その後は、その気筒への燃料供給を再開するとともに、失火状態を再び検知することによって、実際には失火が解消されたにもかかわらず、失火発生と判定された状態および燃料の供給停止状態が継続されるのを防止するようにしている。
【0003】
【発明が解決しようとする課題】
しかし、上述した従来の制御装置には、以下のような問題がある。すなわち、内燃機関には、車両の減速時に一部の気筒の運転を休止するための可変動弁機構を備えたタイプのものがある。この可変動弁機構は、その気筒の運転時には、吸・排気弁を開閉動作可能な状態に保持する一方、運転休止時には、吸・排気弁を開閉不能な状態に駆動するように構成されている。このため、このタイプの内燃機関では、可変動弁機構が故障した場合、その気筒の運転時に本来は開閉動作すべき吸・排気弁が閉じっ放しになることで、失火に至ることがある。これに対し、従来の制御装置では、失火状態をクランクシャフトの回転変動のみに基づいて検知するので、失火の発生が、可変動弁機構の故障によるものか、あるいは気筒内での不安定な燃焼などによるもの(通常失火)かを、識別することができず、失火の発生原因に応じた適切な対応をとることができない。
【0004】
本発明は、このような課題を解決するためになされたものであり、可変動弁機構の故障を、通常失火と識別しながら適切に判定することができる内燃機関の故障判定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
この目的を達成するために、本発明は、所定の運転時に少なくとも一部の気筒Cの動弁系(吸気弁8a、排気弁8b)を停止させる可変動弁機構9を備えた内燃機関の故障判定装置であって、特定の気筒Cを判別する気筒判別手段(実施形態における(以下、本項において同じ)気筒判別センサ14)と、気筒Cごとに燃料を噴射する燃料噴射弁7と、内燃機関2から排出された排気ガスの酸素濃度VLAFを検出する酸素濃度検出手段(LAFセンサ19)と、内燃機関2の失火状態を気筒Cごとに検知する失火検知手段(クランク角センサ16、ECU3、図3のステップ45、図5)と、失火検知手段により失火が検知された気筒Cへの燃料噴射弁7からの燃料噴射を停止させる燃料噴射停止手段(ECU3、図8のステップ122、図9)と、燃料噴射停止手段により燃料噴射が停止された状態において、酸素濃度検出手段の検出結果に基づく酸素濃度パラメータ(空燃比フィードバック補正係数KAF、平均値KAVCSS)が所定の基準値(判定値KAVCSSH)よりもリッチ側の値を示すときに、可変動弁機構9が故障していると判定する故障判定手段(ECU3、図7のステップ96〜98)と、を備えていることを特徴とする。
【0006】
この内燃機関の故障判定装置によれば、失火状態が気筒ごとに検知されるとともに、失火が検知された気筒への燃料噴射弁からの燃料噴射が停止される。そして、燃料噴射の停止状態において、酸素濃度検出手段の検出結果に基づく酸素濃度パラメータが所定の基準値よりもリッチ側の値を示すときに、可変動弁機構が故障していると判定する。可変動弁機構は、それが正常であれば、所定の運転時以外には動弁系を開閉動作可能な状態に保持しており、失火した気筒への燃料供給の停止により、その気筒には空気のみが供給されることで、排気ガスの酸素濃度パラメータはリーン側の値を示すはずである。したがって、逆に、酸素濃度パラメータが所定の基準値よりもリッチ側の値を示す場合には、失火した気筒の動弁系が閉じっ放しになっていて、可変動弁機構が動弁系を開閉動作可能な状態に制御できない故障状態にあると判定することができる。また、この場合の失火の原因を、可変動弁機構の故障によるものと特定でき、通常失火と明確に識別することができる。
【0007】
また、請求項2に係る発明は、請求項1の内燃機関の故障判定装置において、燃料噴射停止手段は、酸素濃度パラメータが所定の基準値よりもリーン側の値を示すときに、燃料噴射の停止を解除する(図7のステップ96、105)ことを特徴とする。
【0008】
この構成によれば、酸素濃度パラメータが所定の基準値よりもリーン側の値を示す場合、すなわち失火原因が可変動弁機構の故障でない場合に、燃料噴射の停止を解除することによって通常の運転状態に適切かつ速やかに復帰することができる。
【0009】
【発明の実施の形態】
以下、本発明の好ましい実施形態を、図面を参照しながら説明する。図1は、本発明の一実施形態による故障判定装置1、およびこれを適用した内燃機関2の概略構成を示している。
【0010】
この内燃機関(以下「エンジン」という)2は、図示しない車両に搭載された、例えば#1〜#4気筒C(1気筒のみ図示)を備えた4気筒DOHC型エンジンである。エンジン2の吸気管4には、スロットル弁5が設けられている。このスロットル弁5の開度(以下「スロットル弁開度」という)THは、スロットル弁開度センサ6によって検出され、その検出信号は、後述するECU3に出力される。吸気管4のスロットル弁5よりも下流側には、燃料噴射弁(以下「インジェクタ」という)7が気筒Cごとに設けられている(1つのみ図示)。各インジェクタ7は、燃料ポンプ(図示せず)に接続され、その燃料噴射時間(開弁時間)TOUTは、ECU3からの駆動信号によって制御される。
【0011】
また、エンジン2には、減速時に一部の気筒の運転を休止する気筒休止運転を行うための可変動弁機構9が設けられている。この可変動弁機構9は、油路10a、10bを介して、油圧ポンプ(図示せず)に接続されており、油路10a、10bの途中に、吸気弁8aおよび排気弁8b(動弁系)用の電磁弁11a、11bが設けられている。これらの電磁弁11a、11bは、いずれも常閉型のものであり、ECU3からの駆動信号によってONされたときに、油路10a、10bをそれぞれ開放する。
【0012】
エンジン2を気筒休止運転するときには、電磁弁11a、11bがいずれもONされ、油路10a、10bを開放することによって、油圧ポンプから可変動弁機構9に油圧が供給される。これにより、#2〜#4気筒Cにおいて、吸気弁8aと吸気カム(図示せず)の間、および排気弁8bと排気カム(図示せず)の間が遮断されることによって、吸気弁8aおよび排気弁8bが閉弁した停止状態になり、第2〜第4気筒Cの運転が休止される一方、#1気筒Cは通常どおり運転される。また、気筒休止運転のときには、#2〜#4気筒Cへの各インジェクタ8からの燃料噴射は、ECU3の制御によって停止される。
【0013】
一方、全気筒運転のときには、電磁弁11a、11bがともにOFFされ、油路10a、10bを閉鎖することによって、油圧ポンプから可変動弁機構9への油圧の供給が停止される。これにより、#2〜#4気筒Cにおいて、吸気弁8aと吸気カムの間、および排気弁8bと排気カムの間の遮断状態が解除されることによって、吸気弁8aおよび排気弁8bが開閉動作可能な状態になり、#2〜#4気筒Cが#1気筒Cと併せて運転される。なお、可変動弁機構9は、図示しないが、ロッカアーム、シンクロナイズドピストンやスプリングなどで構成された周知のものである。
【0014】
吸気管4のスロットル弁5よりも下流側には、吸気管内絶対圧センサ12が配置されている。この吸気管内絶対圧センサ12は、半導体圧力センサなどで構成されており、吸気管4内の絶対圧である吸気管内絶対圧PBAを検出し、その検出信号をECU3に出力する。また、エンジン2の本体には、サーミスタなどで構成されたエンジン水温センサ13が取り付けられており、エンジン2の本体内を循環する冷却水の温度であるエンジン水温TWを検出し、その検出信号をECU3に出力する。
【0015】
一方、エンジン2のクランクシャフト2aの周囲には、気筒判別センサ14(気筒判別手段)、TDCセンサ15およびクランク角センサ16(失火検知手段)が設けられ、それぞれECU3に接続されている。これらのセンサ14〜16は、マグネットロータやMREピックアップなど(いずれも図示せず)で構成され、それぞれの所定クランク角度位置でパルス信号を発生する。具体的には、気筒判別センサ14は、特定の気筒の所定のクランク角度位置で、気筒判別信号CYL(以下「CYL信号」という)を発生する。TDCセンサ15は、各気筒の吸気行程開始時のTDC(上死点)よりも少し前の所定のクランク角度位置で、TDC信号を発生する。エンジン2が4気筒タイプの本例では、TDC信号はクランク角180゜ごとに出力される。また、クランク角センサ16は、TDC信号よりも短い所定のクランク角度の周期(例えば30゜ごと)で、クランク角信号CRK(以下「CRK信号」という)を発生する。
【0016】
ECU3は、これらのCYL信号、TDC信号およびCRK信号に基づき、気筒Cごとのクランク角度位置を判別するとともに、CRK信号に基づき、エンジン2の回転数(以下「エンジン回転数」という)NEを算出する。
【0017】
また、エンジン2の排気管17には三元触媒18が配置されており、排気ガス中のHC、CO、NOx などの成分の浄化を行う。また、排気管17の三元触媒18よりも上流側には、LAFセンサ19(酸素濃度検出手段)が設けられている。このLAFセンサ19は、理論空燃比よりもリッチなリッチ領域から極リーン領域までの広範囲な空燃比A/Fの領域において、排気ガス中の酸素濃度をリニアに検出し、その酸素濃度VLAFを表す検出信号をECU3に出力する。ECU3にはさらに、車速センサ20から、車両の速度(車速)VPを表す検出信号が出力される。
【0018】
ECU3は、本実施形態において、失火検知手段、燃料噴射停止手段および故障判定手段を構成するものであり、CPU、RAM、ROMおよび入出力インターフェース(いずれも図示せず)などからなるマイクロコンピュータで構成されている。CPUは、上述した各種のセンサで検出されたエンジンパラメータ信号に基づき、ROMに記憶された制御プログラムやRAMに記憶されたデータなどに従って、エンジン2の運転状態を判別する。そして、その判別結果に応じて、燃料噴射時間TOUTを次式(1)に従って演算し、その演算結果に基づく駆動信号をインジェクタ7に出力する。
【0019】
TOUT = TIMAP×KAF×K1+K2 ・・・(1)
ここで、TIMAPは、エンジン回転数NEおよび吸気管内絶対圧PBAに応じ、マップ(図示せず)を検索することによって決定される基本燃料噴射時間である。KAFは、LAFセンサ19で検出された酸素濃度VLAFに応じて設定される空燃比フィードバック補正係数(以下「空燃比F/B係数」という)であり、具体的には、エンジン2に供給される混合気を理論空燃比に制御すべく、酸素濃度VLAFがリッチ側の値を示すときには1.0よりも小さな値に、リーン側の値を示すときには1.0よりも大きな値に、フィードバック制御される。また、K1、K2は、エンジン2の運転状態に応じて設定される他の補正係数および補正項である。
【0020】
また、CPUは、車両の減速時に可変動弁機構9を作動させることによりエンジン2の気筒休止運転を行う。さらに、エンジン2の失火状態を検知するとともに、失火が検知されたときに、可変動弁機構9の故障判定を実行する。図2〜図9は、失火検知および故障判定のための一連の処理を示しており、これらの処理は、TDC信号の発生に同期して実行される。なお、以下の説明では、ROMに記憶されている固定のデータについては、その先頭に「#」の記号を付することで、随時更新される他のデータと区別するものとする。
【0021】
図2に示す失火モニタ処理は、エンジン2のクランクシャフト2aの回転変動に基づき、エンジン2の失火の発生の有無を気筒Cごとに判定する処理である。
まず、ステップ21(「S21」と図示。以下同じ)では、クランクシャフト2aの回転変化量△Mを算出する。この回転変化量△Mは、クランク角センサ16で検出されたCRK信号の発生時間間隔の平均値Mを求めるとともに、その今回値Mnと前回値Mn−1との偏差として算出される。
【0022】
次に、算出した回転変化量ΔMが、その所定値MSLMTよりも大きいか否かを判別する(ステップ22)。この所定値MSLMTは、エンジン回転数NEおよび吸気管内絶対圧PBAに応じ、あらかじめ設定されたマップ(図示せず)から読み出される。このステップ22の答がYESで、ΔM>MSLMTのときには、クランクシャフト2aの回転変動量が大きく、今回点火した気筒Cで失火が発生したとして、失火の発生を表す失火発生フラグF_MFCSを「1」にセットする(ステップ23)とともに、失火の発生を気筒別に表す気筒別失火発生第1および第2フラグF_MFCSn、F_NMFCSn(n=1〜4)を、それぞれ「1」にセットし(ステップ24、25)、本プログラムを終了する。
【0023】
一方、ステップ22の答がNOで、ΔM≦MSLMTのときには、今回点火した気筒Cで失火が発生していないとして、失火発生フラグF_MFCSを「0」にセットする(ステップ26)とともに、気筒別失火発生第1および第2フラグF_MFCSn、F_NMFCSnを、それぞれ「0」にセットし(ステップ27、28)、本プログラムを終了する。
【0024】
図3の失火検知処理は、上述した失火モニタ処理でTDC信号ごとに得られる失火の発生状況を、所定期間、監視することによって、失火の有無を気筒ごとに判定する処理である。まず、ステップ31では、この失火検知の禁止条件が成立しているか否かを判定する。この判定は、図示しないサブルーチンに基づいて行われ、例えばエンジン2が定常的な運転状態にあり、かつエンジン水温TW、エンジン回転数NE、吸気管内絶対圧PBAや車速VPなどがそれぞれの所定範囲内にあるときには、失火検知が許可され、失火検知禁止フラグF_MFCSNGが「0」にセットされる一方、それ以外の場合には、失火検知が禁止され、失火検知禁止フラグF_MFCSNGが「1」にセットされる。
【0025】
次に、失火検知禁止フラグF_MFCSNGが「1」であるか否かを判別し(ステップ32)、この答がYESで、失火検知が禁止されているときには、そのまま本プログラムを終了する。この答がNOで、失火検知が許可されているときには、検知処理回数を表す検知処理カウンタNTDCCSSをインクリメントする(ステップ33)。次いで、失火発生フラグF_MFCSが「1」であるか否かを判別する(ステップ34)。この答がYES、すなわち今回時に失火が発生しているときには、失火無しカウンタCNMFCSRに所定値#NNMFCSR(例えば4)をセットする(ステップ35)とともに、失火発生カウンタNMFCSをインクリメントする(ステップ36)。
【0026】
次いで、気筒別失火カウント処理を実行する(ステップ37)。図4は、この処理のサブルーチンを示している。すなわち、まず#1気筒Cの気筒別失火発生第1フラグF_MFCS1が「1」であるか否かを判別し(ステップ51)、この答がYESのとき、すなわち#1気筒Cで失火が発生しているときには、その気筒別失火発生カウンタNMFCS1をインクリメントする(ステップ52)。
以下同様に、#2〜#4気筒Cの気筒別失火発生第1フラグF_MFCS2〜4が「1」であるか否かをそれぞれ判別し(ステップ53、55、57)、その答がYESのときに、対応する気筒別失火発生カウンタNMFCS2〜4をインクリメントし(ステップ54、56、58)、本プログラムを終了する。すなわち、気筒別失火発生カウンタNMFCS1〜4の値は、#1〜#4気筒Cでの失火の発生回数をそれぞれ表す。
【0027】
図3に戻り、前記ステップ37に続くステップ38では、図2の失火モニタ処理でセットされた気筒別失火発生第2フラグF_NMFCS1〜4を用い、次式(2)によって、失火気筒数CNMFCSを算出する。
CNMFCS = ΣF_NMFCS1〜4 ・・・(2)
この式(2)から明らかなように、この失火気筒数CNMFCSは、#1〜#4気筒Cのうち、今回時を含む直前において失火した気筒Cの数を表す。
【0028】
次いで、失火発生フラグF_MFCSを「0」にリセットする(ステップ39)とともに、気筒別失火発生第1フラグF_MFCS1〜4をそれぞれ「0」にリセットし(ステップ40)、後述するステップ44に進む。
【0029】
一方、前記ステップ34の答がNO、すなわち失火発生フラグF_MFCS=0で、今回時に失火が発生していないときには、前記ステップ35でセットした失火無しカウンタCNMFCSRの値が、0であるか否かを判別する(ステップ41)。そして、この答がNOのときには、失火無しカウンタCNMFCSRをデクリメントした(ステップ42)後、ステップ44に進む。一方、ステップ41の答がYESで、CNMFCSR=0のとき、すなわち所定値#NNMFCSRに相当する回数、失火が連続して発生していないときには、失火気筒数CNMFCSを「0」にリセットした(ステップ43)後、ステップ44に進む。
【0030】
前記ステップ40、42または43に続くステップ44では、検知処理カウンタNTDCCSSの値が、その所定値#NTDCCSSM(例えば400)以上であるか否かを判別する。この答がNOで、NTDCCSS<#NTDCCSSMのとき、すなわち失火の検知処理回数が所定値#NTDCCSSMに達していないときには、そのまま本プログラムを終了する。
【0031】
一方、ステップ44の答がYESで、失火の検知処理回数が所定回数#NTDCCSSMに達したときには、ステップ45において、気筒別失火判定処理を実行する(ステップ45)。図5は、この処理のサブルーチンを示している。すなわち、まずステップ61において、前記ステップ36でカウントした失火発生カウンタNMFCSの値が、その所定値#NFTDCCS(例えば300)以上であるか否かを判別する。このステップ61の答がNOで、NMFCS<#NFTDCCSのときには、エンジン2全体として失火の発生回数が少ないと判定して、失火発生判定フラグF_FSMFCSを「0」にセットする(ステップ62)。一方、ステップ61の答がYESで、NMFCS≧#NFTDCCSのときには、エンジン2全体として失火の発生回数が多いと判定して、失火発生判定フラグF_FSMFCSを「1」にセットする(ステップ63)。
【0032】
次いで、図4のステップ52でカウントした#1気筒Cの気筒別失火発生カウンタNMFCS1の値が、その所定値#NFTDCCS1(例えば50)以上であるか否かを判別する(ステップ64)。この答がNOで、NMFCS1<#NFTDCCS1のときには、#1気筒Cでの失火の発生回数が少なく、#1気筒Cでは失火が発生していないと判定して、その気筒別失火発生判定フラグF_FSMFCS1を「0」にセットする(ステップ65)。一方、ステップ64の答がYESで、NMFCS1≧#NFTDCCS1のときには、#1気筒Cでの失火の発生回数が多く、#1気筒Cで失火が発生していると判定して、気筒別失火発生判定フラグF_FSMFCS1を「1」にセットする(ステップ66)。
【0033】
以下同様に、#2〜#4気筒Cの気筒別失火発生カウンタNMFCS2〜4の値が、それぞれの所定値#NFTDCCS2〜4(それぞれ例えば50)以上であるか否かを判別し(ステップ67、70、73)、それぞれの答に応じ、対応する気筒別失火発生判定フラグF_FSMFCS2〜4を、答がNOのときには「0」にセットする(ステップ68、71、74)一方、答がYESのときには「1」にセットし(ステップ69、72、75)、本プログラムを終了する。
【0034】
図3に戻り、前記ステップ45に続くステップ46では、上記の気筒別失火発生判定フラグF_FSMFCS1〜4を用い、次式(3)によって、失火判定気筒数CFSMFCSを算出する。
CFSMFCS = ΣF_FSMFCS1〜4 ・・・(3)
この式(3)から明らかなように、この失火判定気筒数CFSMFCSは、#1〜#4気筒Cのうち、失火検知処理において失火したと判定された気筒Cの数を表す。
【0035】
次いで、失火発生カウンタNMFCSおよび気筒別失火発生カウンタNMFCS1〜4をそれぞれ「0」にリセットする(ステップ48)とともに、気筒別失火発生第2フラグF_NMFCS1〜4をそれぞれ「0」にリセットし(ステップ49)、本プログラムを終了する。
【0036】
図6は、可変動弁機構9の故障判定処理のメインフローを示している。この処理ではまず、実行条件判定処理を実行する(ステップ81)。この実行条件判定処理は、可変動弁機構9の故障判定の実行条件が成立しているか否かを判定するものであり、図8に示すサブルーチンに従って実行される。すなわち、まず図5のステップ62または63でセットした失火発生判定フラグF_FSMFCSが「1」であるか否かを判別する(ステップ111)。この答がNO、すなわちエンジン2全体として失火の発生回数が少ないときには、故障判定の実行条件が成立していないとして、後述する各種制御停止要求フラグF_CSSMFCS、F/C(フューエルカット)解除要求フラグF_CSSMFCRおよびF/C要求フラグF_CSSMFCを、それぞれ「0」にセットする(ステップ112〜114)。また、ディレイタイマTMCDBに所定時間#TMMCB(例えば2秒)をセットする(ステップ115)とともに、故障判定許可フラグF_MCNDFBを「0」にセットし(ステップ116)、本プログラムを終了する。
【0037】
一方、前記ステップ111の答がYESで、失火発生判定フラグF_FSMFCS=1のとき、すなわちエンジン2全体として失火の発生回数が多いときには、各種制御停止要求フラグF_CSSMFCSを「1」にセットする(ステップ117)。図示しないが、この各種制御停止要求フラグF_CSSMFCSが「1」のときには、排気ガスの一部を吸気管4に再還流するEGR制御、理論空燃比よりもリーンな混合気での燃焼を行うリーンバーン制御や、蒸発燃料を吸気管4にバージするパージ制御などが停止される。次いで、失火警告中フラグF_MILBLKが「1」であるか否かを判別する(ステップ118)。この失火警告中フラグF_MILBLKは、失火の発生を警告灯(図示せず)の点滅などにより警告中であるときに、「1」にセットされるものである。このステップ118の答がNOで、失火の警告中でないときには、前記ステップ113以降に進む。
【0038】
上記ステップ118の答がYESのときには、前記式(3)で算出した失火判定気筒数CFSMFCSが、値1に等しいか否かを判別する(ステップ119)。この答がNOのとき、すなわち失火が発生していると判定された気筒数が2以上のときには、故障判定の実行条件が成立していないとして、前記ステップ113以降に進む。このステップ119の答がYESで、1つの気筒Cのみが失火発生と判定されているときには、#1気筒Cの気筒別失火発生判定フラグF_FSMFCS1が、「1」であるか否かを判別する(ステップ120)。この答がYESで、失火気筒が#1気筒Cであるときには、前述したように#1気筒Cは可変動弁機構9によっては駆動されず、その失火が可変動弁機構9の故障とは無関係であるので、故障判定は行わないものとして、前記ステップ119以降に進む。
【0039】
上記ステップ120の答がNO、すなわち失火気筒が#2〜#4気筒Cのいずれか1つであるときには、F/C解除要求フラグF_CSSMFCRが「1」であるか否かを判別する(ステップ121)。後述するように、このF/C解除要求フラグF_CSSMFCRは、F/C状態で故障判定を行い、故障が発生していないと判定されたときに、F/Cを解除するために「1」にセットされるものである。したがって、ステップ121の答がYESで、F_CSSMFCR=1のときには、故障判定は行わないものとして、前記ステップ119以降に進む。
【0040】
一方、上記ステップ121の答がNOのときには、故障判定の実行条件が成立しているとして、故障判定を実行するために、F/C要求フラグF_CSSMFCを「1」にセットする(ステップ122)。
【0041】
図9は、このF/C要求フラグF_CSSMFCの設定に応じたF/C実行判定処理を示す。この処理では、F/C要求フラグF_CSSMFCが「1」であるか否かを判別する(ステップ131)。この答がYESで、F/C要求があるときには、#2気筒Cの気筒別失火発生判定フラグF_FSMFCS2が「1」であるか否かを判別し(ステップ132)、その答がYES、すなわち失火気筒が#2気筒Cであるときには、#2気筒CのF/C指示フラグF_FCCYL2を「1」にセットする(ステップ133)。これにより、#2気筒Cのインジェクタ7からの燃料噴射が停止されることで、#2気筒CのF/Cが実行される。
【0042】
以下同様に、#3および#4気筒Cの気筒別失火発生判定フラグF_FSMFCS3、4が「1」であるか否かをそれぞれ判別し(ステップ134、136)、その答がYESのときに、対応するF/C指示フラグF_FCCYL3、4を「1」にセットする(ステップ135、137)することで、失火した#3または#4気筒CについてF/Cを実行する。また、前記ステップ131の答がNOで、F/C要求がないときには、#2〜#4気筒CのF/C指示フラグF_FCCYL2〜4をそれぞれ「0」にセットする(ステップ138)ことで、いずれの気筒CについてもF/Cを行わないようにし、本プログラムを終了する。
【0043】
図8に戻り、前記ステップ122に続くステップ123では、前記ステップ115でセットしたディレイタイマTMCDBの値が0であるか否かを判別し(ステップ123)、その答がNOのときには、前記ステップ116に進み、故障判定許可フラグF_MCNDFBを「0」に保持する。一方、ステップ123の答がYESで、F/Cの実行後、所定時間#TMMCBが経過したときには、故障判定を許可すべく、故障判定許可フラグF_MCNDFBを「1」にセットし(ステップ124)、実行条件判定処理を終了する。
【0044】
図6の故障判定処理に戻り、前記ステップ81に続くステップ82では、上記実行条件判定処理で設定された故障判定許可フラグF_MCNDFBが「1」であるか否かを判別する。この答がNOで、故障判定の実行条件が成立していないときには、故障判定タイマTFSCSSおよびそのホールドタイマSTORECSSに、それぞれ所定時間#TMFSCSS(例えば20秒)をセットする(ステップ83)。次いで、始動後タイマTACRSTの値が所定時間#TMKRCSS(例えば60秒)よりも大きいか否かを判別する(ステップ84)とともに、前記式(2)で算出した失火気筒数CNMFCSが値0に等しいか否かを判別する(ステップ85)。
【0045】
これらの答のいずれかがNO、すなわち始動後に所定時間#TMKRCSSが経過していないか、または今回時を含む直前において#1〜#4気筒Cの少なくとも1つに失火が発生しているときには、空燃比F/B補正係数KAFの後述する平均値KAVCSSの初期値を、理論空燃比に相当するそのときの基準値KREFXCSSに設定し(ステップ87)、次いで、通常失火判定タイマTOKCSSに所定時間#TMOKCSS(例えば20秒)をセットし(ステップ88)、本プログラムを終了する。一方、前記ステップ84、85の答がいずれもYESのときには、そのときの空燃比F/B補正係数KAFの学習基準値KREFXを、基準値KREFXCSSとして更新した(ステップ86)後、前記ステップ87に進む。
【0046】
一方、前記ステップ82の答がYESで、故障判定の実行条件が成立しているときには、空燃比F/B制御フラグF_AFFBが「1」であるか否かを判別する(ステップ89)。この答がNO、すなわちLAFセンサ19で検出された酸素濃度VLAFに応じた空燃比F/B補正係数KAFのフィードバック制御中でないときには、そのディレイタイマTCSSDLYに所定時間#TMCSSDLY(例えば2秒)をセットする(ステップ90)とともに、故障判定タイマTFSCSSにそのときのホールドタイマSTORECSSの値をセットした(ステップ91)後、前記ステップ88に進む。
【0047】
前記ステップ89の答がYESで、空燃比F/B補正係数KAFのフィードバック制御中であるときには、ディレイタイマTCSSDLYの値が0であるか否かを判別し(ステップ92)、その答がNOのときには前記ステップ91に進む一方、答がYESで、空燃比フィードバック制御に復帰後、所定時間#TMCSSDLYが経過したときには、空燃比F/B補正係数KAFの平均値KAVCSSを、次式(4)によって算出する(ステップ93)。
Figure 0003706335
ここで、右辺のKAVCSSは前回値である。また、CKAVCSSは、値1.0未満の平均化係数(例えば0.2)である。なお、この平均化係数CKAVCSSは、アイドル運転時とアイドル以外の運転時で互いに異なる値に設定してもよく、その場合、アイドル運転時に、より小さな値(例えば0.1)に設定してもよい。
【0048】
次いで、エンジン回転数NEに応じ、図10に示すテーブルを検索することによって、テーブル値#DKAVCSSNを求め、故障判定用の加算値(かさ上げ値)DKAVCSSとして設定する(ステップ94)。このテーブルでは、後述する理由から、テーブル値#DKAVCSSNは、エンジン回転数NEが小さいいほど、より大きな値に設定されている。
【0049】
次に、前記ステップ86で設定した基準値KREFXCSSに上記ステップ94で設定した加算値DKAVCSSを加算した値を、故障判定用の判定値KAVCSSHとして設定する(ステップ95)。次いで、前記式(4)で算出した平均値KAVCSSがこの判定値KAVCSSH以上であるか否かを判別する(ステップ96)。この答がNOで、平均値KAVCSS<判定値KAVCSSHが成立するときには、故障判定タイマTFSCSSの値が0であるか否かを判別する(ステップ97)。
【0050】
そして、この答がNOのときには、後述するステップ100に進む一方、YESのとき、すなわちKAVCSS<KAVCSSHの状態が所定時間#TMFSCSS継続したときには、可変動弁機構9が故障しており、この場合の失火が、通常失火ではなく、可変動弁機構9の故障によるものと判定して、そのことを表すために、通常失火判定フラグF_OKFBを「0」にセットする(ステップ98)とともに、故障判定フラグF_FSDFBを「1」にセットする(ステップ99)。
【0051】
前記ステップ97または99に続くステップ100では、前記ステップ88と同様、通常失火判定タイマTOKCSSに所定時間#TMOKCSSをセットし(ステップ100)、次いで、ホールドタイマSTORECSSにそのときの故障判定タイマTFSCSSの値をセットし(ステップ101)、本プログラムを終了する。
【0052】
以上のように、本実施形態によれば、まずエンジン2のクランクシャフト2aの回転変動に基づき、図3の失火検知処理によって#1〜#4気筒Cのうち失火した気筒Cを特定し、その失火気筒に対してF/Cを行うとともに、このF/C中にフィードバック制御を実行することにより得られた空燃比F/B補正係数KAFの平均値KAVCSSが、判定値KAVCSSHよりも小さいときに、可変動弁機構9が故障していると判定する。可変動弁機構9は、それが正常であれば、全気筒運転時には吸気弁8aおよび排気弁8bを開閉動作可能な状態に保持しており、失火した気筒CのF/Cによりその気筒Cには空気のみが供給されることで、酸素濃度VLAFがリーン側の値を示すのに応じて、空燃比F/B補正係数KAFはリッチ側(大きな値)に制御されるはずである。したがって、逆に、KAF値の平均値KAVCSSが判定値KAVCSSHよりも小さい場合には、失火した気筒Cの吸・排気弁8a、8bが閉じっ放しになっていて、可変動弁機構9が吸・排気弁8a、8bを開閉動作可能な状態に制御できない故障状態にあると、適切に判定することができる。また、この場合の失火の原因を、可変動弁機構9の故障によるものと特定でき、通常失火と明確に識別することができる。
【0053】
また、F/C中の酸素濃度VLAFの変化の度合は、エンジン回転数NEが低いほど大きくなる傾向にあるので、判定値KAVCSSに適用される加算値DKAVCSSを、エンジン回転数NEに応じて前述したように設定することによって、判定値KAVCSSを適切に設定でき、したがって、可変動弁機構9の故障判定をより適切に行うことができる。
【0054】
一方、前記ステップ96の答がYESで、平均値KAVCSS≧判定値KAVCSSHのときには、通常失火判定タイマTOKCSSの値が0であるか否かを判別する(ステップ102)。この答がNOのときには、後述するステップ107に進む一方、YESのとき、すなわちKAVCSS≧KAVCSSHの状態が所定時間#TMOKCSS継続したときには、故障判定フラグF_FSDFBが「1」であるか否かを判別する(ステップ103)。そして、この答がNOで、可変動弁機構9の故障と判定されていないときには、失火の発生原因が可変動弁機構9の故障ではなく、今回の失火が他の原因による通常失火であると判定して、そのことを表すために、通常失火判定フラグF_OKFBを「1」にセットした(ステップ104)後、後述するステップ105に進む。一方、前記ステップ103の答がYESで、故障判定フラグF_FSDFB=1のときには、前記ステップ104をスキップすることで、今回の失火が通常失火であるとの判定を保留する。以上の制御により、可変動弁機構9の故障による失火と、他の原因による通常失火とを、明確に識別することができる。
【0055】
前記ステップ103または104に続くステップ105では、F/C解除要求フラグF_CSSMFCRを「1」にセットする。これにより、可変動弁機構9が故障と判定されていない場合には、故障判定の終了後、そのためのF/Cが解除され、燃料供給が再開されることで、通常の運転状態に適切かつ速やかに復帰することができる。
【0056】
次いで、ステップ106では、検知処理カウンタNTDCCSS、気筒別失火発生カウンタNMFCS1〜4、失火判定気筒数CFSMFCSおよび失火発生判定フラグF_FSMFCSを、それぞれ「0」にリセットする。次に、前記ステップ83と同様、故障判定タイマTFSCSSおよびホールドタイマSTORECSSに、所定時間#TMFSCSSをそれぞれセットし(ステップ107、108)、本プログラムを終了する。
【0057】
以上のように、本実施形態によれば、エンジン2の失火状態を気筒Cごとに検知し、失火気筒に対してF/Cを行うとともに、このF/C中にフィードバック制御を実行することにより得られた空燃比F/B補正係数KAFの平均値KAVCSSが、判定値KAVCSSHよりも小さいときに、可変動弁機構9が故障していると判定する。したがって、失火した気筒Cの吸・排気弁8a、8bが閉じっ放しになっていて、可変動弁機構9が吸・排気弁8a、8bを開閉動作可能な状態に制御できない故障状態にあると、適切に判定することができる。また、この場合の失火の原因が可変動弁機構9の故障によるものと特定でき、通常失火と明確に識別することができる。
【0058】
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、エンジン2の失火状態の検知を、エンジン2の回転変動に基づいて行っているが、これを他の適当な手段で行ってもよいことはもちろんである。例えば気筒内圧を監視し、その変動状況に基づいて失火状態を検知してもよい。また、実施形態では、酸素濃度パラメータとして、LAFセンサ19で検出された酸素濃度VLAFに応じてフィードバック制御される空燃比F/B補正係数KAFを用いているが、これに代えて、酸素濃度VLAFを直接、用いるようにしてもよい。
【0059】
【発明の効果】
以上のように、本発明の内燃機関の故障判定装置は、可変動弁機構の故障を、通常失火と識別しながら適切に判定することができるなどの効果を有する。
【図面の簡単な説明】
【図1】本発明の一実施形態による故障判定装置、およびこれを適用した内燃機関の概略構成図である。
【図2】失火モニタ処理を示すフローチャートである。
【図3】失火検知処理を示すフローチャートである。
【図4】図3のステップ37で実行される気筒別失火カウント処理のサブルーチンである。
【図5】図3のステップ45で実行される気筒別失火判定処理のサブルーチンである。
【図6】故障判定処理のメインフローを示すフローチャートである。
【図7】図6の故障判定処理の残りの部分を示すフローチャートである。
【図8】図6のステップ81で実行される故障判定の実行条件判定処理のサブルーチンである。
【図9】F/C実行判定処理を示すフローチャートである。
【図10】故障判定用の加算値DKAVCSSを求めるための#DKAVCSSNテーブルの一例である。
【符号の説明】
1 故障判定装置
2 内燃機関
3 ECU(失火検知手段、燃料供給停止手段、故障判定手段)
7 燃料噴射弁
9 可変動弁機構
8a 吸気弁(動弁系)
8b 排気弁(動弁系)
14 気筒判別センサ(気筒判別手段)
16 クランク角センサ(失火検知手段)
19 LAFセンサ(酸素濃度検出手段)
C 気筒
VLAF 酸素濃度
KAF 空燃比フィードバック補正係数(酸素濃度パラメータ)
KAVCSS KAFの平均値(酸素濃度パラメータ)
KAVCSSH 判定値(基準値)

Claims (2)

  1. 所定の運転時に少なくとも一部の気筒の動弁系を停止させる可変動弁機構を備えた内燃機関の故障判定装置であって、
    特定の気筒を判別する気筒判別手段と、
    前記気筒ごとに燃料を噴射する燃料噴射弁と、
    前記内燃機関から排出された排気ガスの酸素濃度を検出する酸素濃度検出手段と、
    前記内燃機関の失火状態を気筒ごとに検知する失火検知手段と、
    当該失火検知手段により失火が検知された気筒への前記燃料噴射弁からの燃料噴射を停止させる燃料噴射停止手段と、
    当該燃料噴射停止手段により燃料噴射が停止された状態において、前記酸素濃度検出手段の検出結果に基づく酸素濃度パラメータが所定の基準値よりもリッチ側の値を示すときに、前記可変動弁機構が故障していると判定する故障判定手段と、
    を備えていることを特徴とする内燃機関の故障判定装置。
  2. 前記燃料噴射停止手段は、前記酸素濃度パラメータが前記所定の基準値よりもリーン側の値を示すときに、前記燃料噴射の停止を解除することを特徴とする、請求項1に記載の内燃機関の故障判定装置。
JP2001378662A 2001-12-12 2001-12-12 内燃機関の故障判定装置 Expired - Fee Related JP3706335B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001378662A JP3706335B2 (ja) 2001-12-12 2001-12-12 内燃機関の故障判定装置
TW091135590A TWI259864B (en) 2001-12-12 2002-12-09 Failure determination system and method for internal combustion engine and engine control unit
DE10257869A DE10257869B4 (de) 2001-12-12 2002-12-11 Störungsbestimmungssystem und Verfahren für einen Verbrennungsmotor und Motorsteuer/regeleinheit
CNB021559929A CN1330870C (zh) 2001-12-12 2002-12-12 用于内燃机的故障判定***和方法以及发动机控制单元
US10/319,176 US6763707B2 (en) 2001-12-12 2002-12-12 Failure determination system and method for internal combustion engine and engine control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378662A JP3706335B2 (ja) 2001-12-12 2001-12-12 内燃機関の故障判定装置

Publications (2)

Publication Number Publication Date
JP2003184626A JP2003184626A (ja) 2003-07-03
JP3706335B2 true JP3706335B2 (ja) 2005-10-12

Family

ID=19186320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378662A Expired - Fee Related JP3706335B2 (ja) 2001-12-12 2001-12-12 内燃機関の故障判定装置

Country Status (5)

Country Link
US (1) US6763707B2 (ja)
JP (1) JP3706335B2 (ja)
CN (1) CN1330870C (ja)
DE (1) DE10257869B4 (ja)
TW (1) TWI259864B (ja)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355335B4 (de) * 2003-11-27 2018-01-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US6999868B2 (en) * 2003-12-10 2006-02-14 Caterpillar Inc. Diagnostic test for variable valve mechanism
DE102004004291B3 (de) * 2004-01-28 2005-01-27 Siemens Ag Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
US7146851B2 (en) * 2004-01-29 2006-12-12 Denso Corporation Diagnostic apparatus for variable valve control system
DE602005006342T2 (de) * 2004-03-18 2009-06-10 Positec Power Tools (Suzhou) Co., Ltd. Kraftbetriebenes Werkzeug
US7072758B2 (en) * 2004-03-19 2006-07-04 Ford Global Technologies, Llc Method of torque control for an engine with valves that may be deactivated
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7079935B2 (en) * 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US7383820B2 (en) * 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7063062B2 (en) * 2004-03-19 2006-06-20 Ford Global Technologies, Llc Valve selection for an engine operating in a multi-stroke cylinder mode
US7021289B2 (en) * 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7017539B2 (en) * 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7555896B2 (en) * 2004-03-19 2009-07-07 Ford Global Technologies, Llc Cylinder deactivation for an internal combustion engine
US7055483B2 (en) * 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7194993B2 (en) * 2004-03-19 2007-03-27 Ford Global Technologies, Llc Starting an engine with valves that may be deactivated
US7028650B2 (en) 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7140355B2 (en) * 2004-03-19 2006-11-28 Ford Global Technologies, Llc Valve control to reduce modal frequencies that may cause vibration
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7031821B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US7032581B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Engine air-fuel control for an engine with valves that may be deactivated
US7066121B2 (en) * 2004-03-19 2006-06-27 Ford Global Technologies, Llc Cylinder and valve mode control for an engine with valves that may be deactivated
JP4165448B2 (ja) * 2004-05-12 2008-10-15 トヨタ自動車株式会社 内燃機関の異常検出装置
JP2006183502A (ja) * 2004-12-27 2006-07-13 Yamaha Motor Co Ltd エンジンの失火検出装置並びに方法、及び鞍乗型車両
US7069911B1 (en) * 2005-01-26 2006-07-04 General Motors Corporation Apparatus and methods for protecting a catalytic converter from misfire
DE102005008180A1 (de) * 2005-02-23 2006-08-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung einer Einspritzvorrichtung einer Brennkraftmaschine
US7047957B1 (en) 2005-04-25 2006-05-23 Delphi Technologies, Inc. Method and apparatus for monitoring a multiple step valve lifter
US7204132B2 (en) * 2005-04-28 2007-04-17 Ford Global Technologies, Llc Method for determining valve degradation
JP2007071174A (ja) * 2005-09-09 2007-03-22 Toyota Motor Corp 内燃機関の制御装置
CN101490383B (zh) * 2006-07-10 2012-01-25 丰田自动车株式会社 内燃机***的故障判断装置及安全装置
FR2903774B1 (fr) * 2006-07-17 2008-09-05 Renault Sas Procede de validation d'un diagnostic de fontionnement d'un dispositif.
GB0615574D0 (en) * 2006-08-05 2006-09-13 Ford Global Tech Llc Monitoring of cam profile switching system in internal combustion engines
US7434452B1 (en) * 2006-08-22 2008-10-14 Johnson Charles E Method of engine calibration
DE102006056326A1 (de) * 2006-11-29 2008-06-05 Robert Bosch Gmbh Verfahren zur Erkennung eines fehlerhaften Betriebszustandes bei einer Zylinderabschaltung einer Brennkraftmaschine
US7562561B2 (en) * 2007-04-13 2009-07-21 Honda Motor Co., Ltd. Intake air leak determination system and method
EP1995436B1 (en) * 2007-05-25 2010-07-07 Magneti Marelli S.p.A. Control method for a motorized vehicle in the case of a fault that advices/imposes driving the vehicle with reduced performance
US7900509B2 (en) * 2008-08-06 2011-03-08 Ford Global Technologies, Llc Methods for variable displacement engine diagnostics
WO2010073369A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 可変動弁機構を有する内燃機関の制御装置
WO2011052035A1 (ja) * 2009-10-27 2011-05-05 トヨタ自動車株式会社 弁停止機構を備える内燃機関の制御装置
JP5617272B2 (ja) * 2009-11-13 2014-11-05 マツダ株式会社 空燃比検出手段の出力特性測定方法及び出力特性測定装置
GB2482875B (en) * 2010-08-17 2015-11-25 Gm Global Tech Operations Inc Identifying a failure of a fuel injection system based on oxygen levels in the exhaust
CN103228891B (zh) * 2010-12-02 2014-05-28 丰田自动车株式会社 内燃机的控制装置
US8495908B2 (en) * 2011-09-21 2013-07-30 GM Global Technology Operations LLC Method and system for simulating various engine operating conditions to evaluate engine emissions test equipment
US8461531B2 (en) * 2011-10-11 2013-06-11 The Boeing Company Detecting volcanic ash in jet engine exhaust
US10161336B2 (en) * 2013-06-05 2018-12-25 Ford Global Technologies, Llc System and method for determining valve operation
KR20150056284A (ko) * 2013-11-15 2015-05-26 주식회사 현대케피코 실린더 디액티베이션 기구의 고착 진단방법
JP6038102B2 (ja) * 2014-11-25 2016-12-07 本田技研工業株式会社 内燃機関の燃焼状態パラメータ算出装置
DE102015216869A1 (de) * 2015-09-03 2017-03-09 Robert Bosch Gmbh Verfahren zum Erkennen eines Fehlers beim Betrieb einer Brennkraftmaschine
WO2018165074A1 (en) 2017-03-08 2018-09-13 Kerdea Technologies, Inc. Sensing combustion misfire events in engines by comparing signals derived from two different types of oxygen sensors
CN106769073B (zh) * 2017-03-15 2023-04-07 西华大学 一种模拟发动机缸内单次燃烧的实验装置及其实验方法
JP6558551B2 (ja) * 2017-05-23 2019-08-14 マツダ株式会社 エンジンの失火検出装置
WO2019073815A1 (ja) * 2017-10-12 2019-04-18 日立オートモティブシステムズ株式会社 内燃機関の制御装置
EP4077900A1 (en) * 2019-12-20 2022-10-26 Volvo Truck Corporation Method for diagnosing a part of a powertrain system
JP7444731B2 (ja) * 2020-08-14 2024-03-06 株式会社トランストロン エンジン試験方法、プログラム、および装置
JP7444732B2 (ja) 2020-08-14 2024-03-06 株式会社トランストロン エンジンモデル構築方法、プログラム、および装置
JP2022098330A (ja) * 2020-12-21 2022-07-01 トヨタ自動車株式会社 多気筒内燃機関の制御装置
CN112963252B (zh) * 2021-03-18 2022-08-23 潍柴动力股份有限公司 一种发动机的排放控制方法、装置及设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964544A (en) * 1975-06-20 1976-06-22 Halliburton Company Pressure operated isolation valve for use in a well testing and treating apparatus, and its method of operation
JP2507550B2 (ja) * 1988-08-29 1996-06-12 三菱電機株式会社 燃料制御装置
JP2770238B2 (ja) * 1989-06-15 1998-06-25 本田技研工業株式会社 内燃エンジンのバルブタイミング切換制御装置の故障検知方法
JP2887641B2 (ja) * 1994-04-28 1999-04-26 株式会社ユニシアジェックス 内燃機関における可変バルブタイミング制御装置の自己診断装置
JP3683300B2 (ja) * 1995-01-27 2005-08-17 本田技研工業株式会社 内燃機関の制御装置
US5626108A (en) * 1995-02-27 1997-05-06 Toyota Jidosha Kabushiki Kaisha Abnormality detecting apparatus for internal combustion engine
JPH0993287A (ja) * 1995-09-22 1997-04-04 Ricoh Co Ltd ゲートウェイ装置
EP0894958B1 (de) * 1997-07-31 2005-02-09 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Fehlererkennungseinrichtung für Brennkraftmaschinen und ein Verfahren zum Betreiben einer Brennkraftmaschine
JP2000154740A (ja) * 1998-11-19 2000-06-06 Nissan Motor Co Ltd 可変動弁エンジンの制御装置
US6101442A (en) * 1998-12-17 2000-08-08 Cummins Engine Co. Inc. System and method for detecting a valve-related fault condition for an internal combustion engine
JP3799851B2 (ja) * 1999-01-11 2006-07-19 株式会社日立製作所 内燃機関の診断方法
JP2001055935A (ja) * 1999-08-17 2001-02-27 Denso Corp 内燃機関の可変バルブタイミング制御装置
KR100406777B1 (ko) * 1999-08-17 2003-11-21 가부시키가이샤 덴소 가변밸브 타이밍 제어장치
JP4235376B2 (ja) * 2000-10-16 2009-03-11 株式会社日立製作所 内燃機関におけるフェールセーフ処理装置
JP4115663B2 (ja) * 2000-11-27 2008-07-09 株式会社日立製作所 可変バルブタイミング装置の診断装置
JP4060087B2 (ja) * 2002-02-04 2008-03-12 株式会社日立製作所 可変バルブタイミング機構の制御装置

Also Published As

Publication number Publication date
DE10257869B4 (de) 2011-06-16
US20030110845A1 (en) 2003-06-19
US6763707B2 (en) 2004-07-20
TW200300815A (en) 2003-06-16
CN1330870C (zh) 2007-08-08
TWI259864B (en) 2006-08-11
JP2003184626A (ja) 2003-07-03
DE10257869A1 (de) 2003-07-10
CN1424495A (zh) 2003-06-18

Similar Documents

Publication Publication Date Title
JP3706335B2 (ja) 内燃機関の故障判定装置
US10330035B2 (en) Method and system for determining air-fuel imbalance
JP4070961B2 (ja) 可変気筒内燃機関の故障判定装置
US7204132B2 (en) Method for determining valve degradation
US9488123B2 (en) Internal combustion engine diagnostic device and internal combustion engine diagnostic method
JP2002317678A (ja) 内燃機関の排気系異常検出装置
US10837384B2 (en) Temperature estimation module, control apparatus for internal combustion engine, and method for operating temperature estimation module
US9026341B2 (en) Apparatus for and method of detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JPH0264249A (ja) 燃料制御装置
JP5240370B2 (ja) 内燃機関の制御装置
CN108468598B (zh) 用于内燃发动机的异常诊断装置及异常诊断方法
JP2907001B2 (ja) 内燃エンジンの希薄燃焼制御および故障判定装置
US6422226B2 (en) Monitoring apparatus for fuel feed system
JPH08121237A (ja) 内燃機関の失火検出装置
JP2012145054A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5267728B2 (ja) 内燃機関の制御装置
JP4306004B2 (ja) エンジンの制御装置
US7614212B2 (en) Engine control apparatus
JP2000170560A (ja) 気筒休止機関の吸排気制御装置
JP2003097340A (ja) 内燃機関の吸気圧検出方法
JPH10121991A (ja) エンジンの吸気制御システムの故障診断装置
JP2014015841A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JPH11141413A (ja) 内燃機関の制御装置及び内燃機関の故障診断装置
JPH07247831A (ja) 内燃機関の触媒劣化診断装置
JP2004293351A (ja) エンジンの燃料カット制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees