JP3666280B2 - 炭化けい素縦形fetおよびその製造方法 - Google Patents

炭化けい素縦形fetおよびその製造方法 Download PDF

Info

Publication number
JP3666280B2
JP3666280B2 JP01160199A JP1160199A JP3666280B2 JP 3666280 B2 JP3666280 B2 JP 3666280B2 JP 01160199 A JP01160199 A JP 01160199A JP 1160199 A JP1160199 A JP 1160199A JP 3666280 B2 JP3666280 B2 JP 3666280B2
Authority
JP
Japan
Prior art keywords
conductivity type
region
contact
layer
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01160199A
Other languages
English (en)
Other versions
JP2000216407A (ja
Inventor
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP01160199A priority Critical patent/JP3666280B2/ja
Priority to US09/487,169 priority patent/US6303947B1/en
Publication of JP2000216407A publication Critical patent/JP2000216407A/ja
Application granted granted Critical
Publication of JP3666280B2 publication Critical patent/JP3666280B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体材料として炭化けい素を用いた電力用電界効果トランジスタ(以下FETと記す)、特に電力用素子として注目される接合型のFET(以下JFETと記す)や金属ー半導体接合型のFET(以下MESFETと記す)、およびその製造方法に関する。
【0002】
【従来の技術】
炭化けい素(以下SiCと記す)は、バンドギャップが広く、また最大絶縁電界がシリコン(以下Siと記す)と比較して約一桁大きいことから、次世代の電力用半導体素子への応用が期待されている材料である。これまでに、4H−SiCまたは6H−SiCの単結晶ウェハを用いて様々な電子デバイスへ応用されてきており、特に高温、電力用素子に適すると考えられている。上記の結晶は閃亜鉛鉱型とウルツ鉱型とを積層した形のアルファ相SiCである。他に3C−SiCと称されるベータ相SiCの結晶でも半導体装置が試作されている。最近では電子用半導体素子としてショットキーダイオード、縦形MOSFET、サイリスタなどが、また、最も汎用的な半導体装置であるCMOS−ICが試作がされ、その特性から従来のSi半導体装置と比較して非常に特性が良好なことが確認されている。
【0003】
先ず従来のSiCのFETについて説明する。
図9はこれまでに報告されている電力用のJFETの一例の断面図である。n+ ドレイン層11a上に積層されたnドリフト層11bに高加速電圧のイオン注入によりp+ 埋め込み領域12が形成され、そのp+ 埋め込み領域12の上方のnドリフト層11bにn型不純物が導入されてnチャネル領域20とされ、そのnチャネル領域20の表面層にpゲート領域14およびn+ ソース領域13が形成されている。n+ ソース領域13に接触してソース電極17が、n+ ドレイン層11aに接触してドレイン電極18が、pゲート領域14に接触してゲート電極16がそれぞれ設けられている。二つのn+ ソース領域13の間のnチャネル領域20の表面上には、ゲート絶縁膜15があり、ゲート電極16はこの部分ではMOSゲートとなっている。ソース電極17は、n+ ソース領域13だけてなく、p+ コンタクト領域12aを介してp+ 埋め込み領域12にも接触している。
【0004】
nチャネル領域20は、p+ 埋め込み領域12およびpゲート領域14によって挟まれており、ゲート電極16に正の電圧を印加するとゲート絶縁膜15の下方のnチャネル領域20にキャリアが蓄積された蓄積層が誘起され、ドレイン電極18からソース電極17へと電流が流れる。ゲート電極16に負の電圧を印加するとpゲート領域14からnチャネル領域20に空乏層が広がり、nチャネル領域20の導電領域が狭められる。このことによってソース電極17とドレイン電極18との間の電流が制御される。このようにソース・ドレイン間の電流はゲート電極16への印加電圧によってスイッチング可能な素子となっている。
【0005】
【発明が解決しようとする課題】
図9の構造のJFETでは、概ね良好な特性が得られるが、二つの点について改善が必要である。
一つはゲート電圧に対する利得を上げることが常に要求されている。もう一つはオフ時にp+ 埋め込み領域12よりもpゲート領域14の方が電位が低くなると、p+ 埋め込み領域12から正孔がpゲート領域14へと流れ込む。このため素子がターンオンしてしまうという問題が発生し易く、誤動作の原因となる。
【0006】
また、スイッチング特性を制御する目的で、nチャネル領域20には全面にわたるイオン注入等によって不純物濃度制御がなされているが、このような構造にすると、nチャネル領域13がpゲート領域14とnドリフト層12との間の空乏層の広がりに影響を与えてしまい、耐圧のコントロールが制限されるという問題もある。
以上の問題に鑑み本発明の目的は、ゲート電圧に対する利得が大きく、動作の安定した高耐圧の炭化けい素縦型FETおよびその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題解決のため本発明は、第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域第一導電型ソース領域と、その第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面層にゲート絶縁膜を介してゲート電極を設けたものとする。あるいは、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面上にショットキー接合を形成するものとする。あるいは、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する凹部を形成し、露出した第二導電型埋め込み領域の表面に接触する埋め込み電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面層にゲート絶縁膜を介してゲート電極を設けたものとする。あるいは、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する凹部を形成し、露出した第二導電型埋め込み領域の表面に接触する埋め込み電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面上にショットキー接合を形成するものとする。
【0008】
【0009】
これらの方法により、第二導電型埋め込み領域の第一導電型ドリフト層に、第二導電型埋め込み領域と第二導電型ゲート領域との両側から空乏層が広がり、ゲート電圧に対する利得が大幅に向上する。第二導電型埋め込み領域と第二導電型ゲート領域とが同電位となるために、寄生トランジスタが作用せず、両者間での電流の流れが無くなる結果、誤動作が抑えられる。
【0010】
【0011】
第二導電型ゲート領域が設けられておらず、第一導電型ドリフト層の表面に接触して設けられたショットキー接合を形成するゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第二導電型埋め込み領域をゲート電極と同電位としたものでもよい。
【0012】
その場合は、第二導電型埋め込み領域の第一導電型ドリフト層に、第二導電型埋め込み領域とショットキー接合を形成するゲート電極との両側から空乏層が広がり、ゲート電圧に対する利得が大幅に向上する。
【0013】
第一導電型ドリフト層の表面層に第一導電型ドリフト層より高不純物濃度の第一導電型チャネル領域を有するものとする。
そのように第一導電型チャネル領域の不純物濃度を制御することによって、しきい電圧を制御することができ、また、ノーマリオフのFETとすることができる。
【0014】
また、第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域第一導電型ソース領域と、第一導電型ドリフト層の表面層に形成された第一導電型ドリフト層より高不純物濃度の第一導電型チャネル領域と、第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型チャネル領域が第二導電型埋め込み領域の上部にのみ存するものとする。
【0015】
従来半導体基板の全面にしきい値電圧などのチャネル特性の制御を目的とした不純物導入をおこなっていたが、そのため一部で他の不純物領域と重なった部分などで耐圧を低下させることがあった。不純物導入を選択的に行うことにより、チャネル特性の制御と耐圧設計が独立して行えるようになった。
【0016】
一導電型チャネル領域が第二導電型埋め込み領域の上部にのみ存するようにすることにより、第二導電型埋め込み領域の端部の影響を免れることができる。
【0017】
上記のような、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続した炭化けい素縦形FETの製造方法としては、第一のマスクが中央の第一の部分と外側の第二の部分及び更に外側の第三の部分からなり、第三の部分の外端により第二導電型コンタクト領域を規定し、第三の部分の内端と第二の部分の外端により第一導電型ソース領域を規定し、第一のマスクの第一の部分の外端により第二導電型埋め込み領域の内端を規定してそれぞれの領域を形成するものとする。
【0018】
【0019】
【0020】
そのようにすれば、チャネルとなる部分の実質的な寸法が、第一のマスクによる第一導電型ソース領域と第二導電型埋め込み層とで決まるので、マスク合わせによる不均一が回避され、精密な制御が可能になる。これにより、オン抵抗の小さいFETを製造することができる。
【0021】
更に、第一導電型ソース領域、第二導電型埋め込み領域形成のための不純物の導入がいずれもイオン注入によっておこなわれるものとすれば、SiCにおいても確実に不純物領域の形成ができる。
【0022】
【発明の実施の形態】
以下本発明について、実施例を示しながら詳細に説明する。ただし、図9と共通の部分、あるいは本発明とかかわりのない部分については説明を省略する。本発明の重要な応用例としてnチャネル型のFETを例に取っているが、導電型を逆にしたpチャネル型のFETにも本発明が適応可能なことは勿論である。なお、SiCには良く知られているように、多くのポリタイプが存在するが、主に6Hおよび4Hと呼ばれるものを対象としている。
【0023】
[実施例1]
図1は本発明第一の実施例(以下実施例1と記す。以下同様)にかかるSiCJFETの単位セルの断面図である。
【0024】
+ ドレイン層21a上にエピタキシャル成長によりnドリフト層21bが積層されたウェハにおいて、nドリフト層21bの表面から少し深い位置に選択的にp+ 埋め込み領域22が形成され、p+ 埋め込み領域22の上方にはnドリフト層21bよりドナー濃度の高いnチャネル領域30がある。そのnチャネル領域30の表面層にはpゲート領域24、n+ ソース領域23およびp+ 埋め込み領域22に達するp+ コンタクト領域22aが互いに分離して形成されている。pゲート領域24の表面上にはゲート電極26が、n+ ソース領域23の表面上にはソース電極27が、p+ コンタクト領域22aの表面上にはコンタクト電極26aがそれぞれ設けられ、またn+ ドレイン層21aの裏面に接触してドレイン電極28が設けられている。ゲート電極26とコンタクト電極26aとは短絡されている。各オーミック電極用の金属としてはp型領域上にはチタン(Ti)やアルミニウム(Al)、またはその合金、n型領域上にはニッケル(Ni)などが一般的ではあるが、p型領域やn型領域の表面濃度が1×1019cm-3以上になると、いずれの金属でもオーミック接触を取れるようになる。29は絶縁膜である。
【0025】
主なディメンジョンの一例は、次のような値である。n+ ドレイン層21aの不純物濃度は1×1018cm-3、厚さ350μm 、nドリフト層21bのそれは、1×1016cm-3、厚さ9μm 。p+ 埋め込み領域22の最高不純物濃度は1×1019cm-3、厚さ0.3μm で、その上に0.8μm のnチャネル領域30がある。p+ 埋め込み領域22の間の間隔は、約5μm である。n+ ソース領域23の表面不純物濃度は1×1019cm3 、接合深さ0.2μm で、幅は約3μm 、pゲート領域24のそれらは、1×1019cm-3、接合深さ0.2μm 、幅は約10μm 、p+ コンタクト領域22aのそれらは、1×1019cm-3、接合深さ1.0μm 、幅は約3μm である。n+ ソース領域23とpゲート領域24との間の間隔は約1μm である。図の単位セルのピッチは約25μm である。
【0026】
の従来のJFETと違っている点は、n+ ソース領域23とp+ コンタクト領域22aとが分離して形成されているため、ソース電極27がp+ 埋め込み領域22に接触していない点である。そして、p+ 埋め込み領域22は、p+ コンタクト領域22aを介してpゲート領域24と同じ電位とされている。またpゲート領域24が広い範囲にわたって配置されているが、本質的な違いはなく、JFETの実施例の一形態である。
【0027】
図2(a)ないし(f)および図3(a)ないし(d)は、図1の実施例1のSiCJFETの製造方法を説明するための製造工程順の表面近傍の部分断面図である。以下順に説明する。
【0028】
先ず、n+ ドレイン層21a上に燐ドープのnドリフト層21bをエピタキシャル成長により積層した4H−SiC基板を準備する。例えば、nドリフト層21bの不純物濃度は1×1016cm-3、厚さは10μmである。そのnドリフト層21bの表面上に、多結晶シリコン膜1を減圧CVD法により堆積し、フォトリソグラフィでパターンを形成して、第一マスクM1とする[図2(a)]。第一マスクM1は、中央部のM1aと両側のM1b、M1cの各部分からなる。多結晶シリコン膜1の厚さは1μmとした。第一マスクM1は必ずしも多結晶シリコン膜である必要はなく、選択的なエッチングのマスクとなるものであれば、シリコンプロセスなどによく用いられる酸化けい素膜(以下SiO2 膜と記す)、窒化けい素膜あるいはフォトレジストであってもよい。但し高温でイオン注入をする場合には、多結晶シリコンなどの高温に絶える材料を用いる必要がある。
【0029】
多結晶シリコン膜1の第一マスクM1の上に熱CVD法によりSiO2 膜2を堆積し、フォトリソグラフィでパターンを形成して、第二マスクM2とした後、これら第一、第二マスクM1、M2により規定された領域に、p型不純物となるイオン例えばほう素(以下Bと記す)イオン5aを注入する[同図(b)]。5bは注入されたB原子である。これはp+ コンタクト領域22a形成のためであり、加速電圧は30、100、300、900keV、ドーズ量は約5×1015cm-2である。イオン注入時の温度は、約800℃である。高温でイオン注入することにより、活性化率を向上させることができる。第二マスクM2は、必ずしもSiO2 膜である必要はないが、後の工程で第一マスクM1を残したまま除去することが必要であるため、第一マスクM1とは異なる材料とし、選択的なエッチングができるようにする必要がある。例えば、第一マスクM1として多結晶シリコン膜を使用した場合、第二マスクM2として、上の例のようにSiO2 膜を用いれば、ふっ酸により第二マスクM2だけを除去可能である。その逆も可能であり、その場合には四塩化炭素と酸素の混合ガス等を用いた反応性イオンエッチング(以下RIEと記す)により、SiO2 膜と多結晶シリコン膜のエッチング速度を制御して多結晶シリコン膜のみをエッチングすることが可能である。このように、第一マスクM1に対して選択的な除去のできるものであればよい。第二のマスクM2は、端が第一マスクM1上にあれば良いのでマスク合わせは容易である。p型不純物としてはBの他にアルミニウム(以下Alと記す)などが用いられる。
【0030】
SiO2 膜の第二マスクM2を除去し、再度熱CVD法によりSiO2 膜2を堆積し、フォトリソグラフィでパターンを形成して、第三マスクM3とした後、これら第一、第三マスクM1、M3で規定される領域に、n型不純物となるイオン例えば窒素(以下Nと記す)イオン4aを注入する[同図(c)]。4bは注入されたN原子である。これはn+ ソース領域23形成のためであり、加速電圧は100keV、ドーズ量は約5×1015cm-2である。この場合も第三マスクM3は必ずしもSiO2 膜である必要はなく、後の工程で第一マスクM1に対して選択的な除去のできるものであればよい。第三マスクM3は、端が第一のマスクM1上にあれば良いのでマスク合わせは容易である。n型不純物となる不純物としてはNの他に燐(以下Pと記す)などを用いることができる。
【0031】
SiO2 膜の第三マスクM3を除去し、フォトリソグラフィで第一マスクの一部M1b、M1cも除去し、第一マスクの一部M1aだけを残す。残した第一マスクの一部M1aをマスクにして再びBイオン5aを注入する。[同図(d)]。これはp+ 埋め込み領域22形成のためであり、加速電圧は800keV、ドーズ量は約1×1015cm-2である。加速電圧を高めたのは、深い不純物領域を形成するためである。p型不純物としてはBの他にAlなどを用いてもよい。
【0032】
残した第一マスクの一部M1aを除去し、多結晶シリコンを堆積した後フォトリソグラフィでパターンを形成して、第四マスクM4とした後、第四マスクM4で規定される領域に、p型不純物となるイオン例えばBイオン5aを注入する[同図(d)]。5bは注入されたB原子である。これはpゲート領域24形成のためであり、加速電圧は100keV、ドーズ量は約5×1015cm-2である。この場合も第四マスクM4は必ずしも多結晶シリコン膜である必要はなく、CVDSiO2 膜でもよい。第四マスクM4は、n+ ソース領域23と厳密なマスクあわせは必要ない。p型不純物となる不純物としてはBの他にAlなどを用いることができる。
【0033】
第四マスクM4を除去し、全面にNイオン4aを注入する。[同図(f)]。4bは注入されたN原子である。これはnチャネル領域30の濃度制御のためであり、加速電圧は200keV、ドーズ量は約1×1012cm-2である。この前にp+ 埋め込み領域22のための深いイオン注入をおこなっているため、p+ 埋め込み領域22上のnドリフト層21bのnチャネル領域30となる部分には幾分かのB原子が注入されているが、このNイオンの注入により、表面層の比抵抗を安定させることができる。熱処理後の表面層の不純物濃度は、約5×1015cm -3 になる。
【0034】
1600℃、2時間の熱処理をおこない、注入した不純物を活性化することによってn+ ソース領域23、pゲート領域24、p+ 埋め込み領域22、p+ コンタクト領域22aの各領域が形成される[図3(a)]。先に述べたようにSiCでは不純物の拡散が殆ど起きないが、加速電圧の調節により、不純物領域の形成される深さを制御することができる。例えば、p+ 埋め込み領域22は、加速電圧を800keVと高くしたことによって、深さ0.8μmを中心にして、厚さ0.3μmの層ができており、その上には約0.6μmのnドリフト領域21bが残されている。pゲート領域24、n+ ソース領域23の深さは、約0.2μmである。
【0035】
表面に、CVD法により、SiO2 膜2を堆積する[同図(b)]。
フォトリソグラフィで第五マスクM5(図示せず)を形成し、ふっ酸による湿式エッチングで、SiO2 膜2に窓開けし、絶縁膜29として残す[同図(c)]。
【0036】
アルミニウム合金膜を蒸着し、パターン形成して、ソース電極27、ゲート電極26およびコンタクト電極26aとする。n+ サブストレートの裏面にもドレイン電極(図示せず)を設けてプロセスを完了する[同図(d)]。
上記のような製造方法をとることにより、図1の高耐圧SiC縦型JFETとすることができた。
【0037】
図9の従来のJFETでは、ソース電極17がn+ ソース領域13とp+ コンタクト領域12aとに共通に接触しており、p+ 埋め込み領域12がソース電極17と同電位とされていた。そのとき、ゲート電極17に正の電圧を印加した場合、pゲート領域14側だけから空乏層が広がるために、nチャネル領域30のピンチオフが速やかにおこなわれなかった。
【0038】
それに対し、図1のJFETの特徴は、p+ コンタクト領域22a上のコンタクト電極26aがソース電極27と短絡されておらず、ゲート電極26と短絡されていることである。本実施例のようにすると、p+ 埋め込み領域22は、ゲート電極26と同電位に保たれる。ゲート電極26に負の電圧を印加することによって、pゲート領域24とp+ コンタクト領域22aとの両者がゲートとして働き、nチャネル領域30に上下両側から空乏層が広がって、効率良くピンチオフすることができる。このことは小さなゲート電圧でソース・ドレイン間の電流が大きく変化することを意味しており、したがってゲート電圧に対する利得が大きいと言える。
【0039】
さらに従来構造では、pゲート領域14とp+ 埋め込み領域12とが、別電位となることがあり、その場合寄生トランジスタを生じて、ゲート電極16に負のバイアスをかけたとき、p+ 埋め込み領域12からpゲート領域14へと電流が流れる現象が発生することがある。そのようになると、もはや電流制御が不可能となってしまう。
【0040】
しかしながら、本発明のような構造にすれば、pゲート領域24とp+ 埋め込み領域22とは同電位なので、寄生トランジスタを生じて両者間に電流が流れることが無く、前記のような不具合は発生しない。
【0041】
また、上記の製造方法とすれば、第一マスクの一部M1cの端によって + コンタクト領域22aが規定され、第一マスクの一部M1cの別の端と、第一マスクの別の部分M1bとによって + ソース領域23が規定されている。さらに第一マスクの別の部分M1aによって、p+ 埋め込み領域22の端が規定されている。このように、不純物領域が第一マスクM1だけで規定されているため、それぞれが整合しており、位置ずれ等のマスク合わせによる不均一の問題が起こり得ない。第一マスクM1のパターン形成後に、各不純物領域の寸法が確認できるという利点もある。
【0042】
チャネル領域の長さはMOSFETの特性を決定する主たるパラメータであることから、その制御は応用上極めて重要であるが、本実施例1のSiCJFETでは、実質的にチャネル長となるのは、pゲート領域24の下部のnチャネル領域30であり、チャネル長が短く均一に、精度よく形成され、安定した特性と高い歩留まりが得られる。試作した1500VクラスのJFETのオン抵抗は、15mΩ・cm-2と低い値を示した。
【0043】
また、p+ 埋め込み領域22を加速電圧の高いイオン注入で形成して、接合深さを深くしたため、容易に1500V以上の高耐圧が実現できた。
+ 埋め込み領域22の上部のnドリフト層にNイオンを注入しnチャネル領域30としたことによって、JFETのしきい電圧を制御することができ、条件によってノーマリオフのFETとすることもできる。
【0044】
製造方法としては、幾つかの変形も考えられる。例えば、n+ ソース領域23とpゲート領域24とを形成するためのイオン注入の順序は逆でもよい。また、nチャネル領域30の不純物濃度制御のためのイオン注入は最初におこなってもよい。p+ コンタクト領域22aは高度に繊細なマスク合わせをする必要がないので、そのイオン注入は、マスクM1とは別におこなっても良い。イオン注入を1000℃というような高温でなく、もっと低温でおこなうことにすれば、マスク材料の選択幅が広げられる。
【0045】
nドリフト層21bをエピタキシャル成長した後、その表面層にp+ 埋め込み領域22のための不純物を導入し、更にエピタキシャル法によりnチャネル領域30を成長させる等の方法を取ることもできる。
【0046】
[実施例2]
図4は本発明第二の実施例にかかるSiCJFETの部分断面図である。これは図1の実施例1の変形例である。
【0047】
この例では、p+ 埋め込み領域32に達するp+ コンタクト領域が形成されておらず、SiC基板表面に凹部32aが形成されて、p+ 埋め込み領域32に接触するコンタクト電極36aが設けられている。そしてそのコンタクト電極36aは、ゲート電極36と短絡されている。
【0048】
凹部32a形成の方法としては、図3(b)の後フォトリソグラフィでレジストおよび酸化膜のパターンを形成し、それをマスクにして四ふっ化炭素(CF4 )と酸素(O2 )との混合ガスを用いた反応性イオンエッチング(RIE)により形成することができる。
【0049】
この例でも、p+ 埋め込み領域32は、ゲート電極36と同電位に保たれ、pゲート領域34とp+ コンタクト領域32aとの両者がゲートとして働き、nチャネル領域40に上下両側から空乏層が広がって、小さなゲート電圧で速やかにピンチオフすることができる。また、pゲート領域34とp+ 埋め込み領域32とは同電位なので、寄生トランジスタを生じない。従って、両者間に電流が流れて制御が不可能となることが無い。
この実施例2のJFETの構造にすれば、深いp+ コンタクト領域を形成するためのイオン注入が不要である。なお、この構造は後述の例にも適用できる。
【0050】
[実施例3]
図5は本発明第三の実施例にかかるSiCJFETの部分断面図である。
この例では、ゲート電極46が接触するpゲート領域44が分割され、p+ 埋め込み領域42の欠落部の上方には形成されていない。その間では、nチャネル領域50の表面上に酸化膜45を介してゲート電極46が設けられている。コンタクト電極46aがソース電極47とは分離されており、ゲート電極46と短絡されている点はこれまでの例と同じであり、速やかなスイッチングが可能である。
【0051】
ゲート電極46に負の電圧を印加したとき、ゲート酸化膜45直下のnチャネル領域50の表面層に、キャリアが誘起された蓄積層を生じ、オン抵抗を低減できる。
【0052】
[実施例4]
図6は本発明第四の実施例にかかるSiCMESFETの部分断面図である。
図1のSiCJFETと違っている点は、ゲート電極56がnチャネル領域60の表面に接触している点である。ここで、ゲート電極56は、nチャネル領域60とショットキー接合を形成するような金属、例えばTi,Al、Ptなどを選択する。
【0053】
コンタクト電極56aがソース電極57とは分離されており、ゲート電極56と短絡されている点はこれまでの例と同じである。ゲート電極56に負の電圧を印加したとき、ゲート電極56とp+ 埋め込み領域52とからnチャネル領域60に空乏層が広がって、小さなゲート電圧で速やかにピンチオフすることができる。また、この例でも寄生トランジスタを生じず、制御が不可能となることが無い。
【0054】
ゲート電極56は、SiC基板とショットキー接合を形成するような金属であり、ソース電極57と同じ金属とは限らない。或いは、ゲート電極56は、ショットキー接触をする金属とソース電極57と同じ金属との二層にしてもよい。これを製造するプロセスについてはほとんどこれまでの例から容易に推測できるので、説明を省略する。
【0055】
[実施例5]
図7は本発明第五の実施例にかかるSiCJFETの部分断面図である。
この例では、ゲート電極66が接触するpゲート領域64が分割され、p+ 埋め込み領域62の欠落部の上方には形成されていない。その間では、nチャネル領域70の表面上にショットキー接合を形成するような金属でゲート電極66が設けられている。コンタクト電極66aがソース電極67とは分離されており、ゲート電極66と短絡されている点はこれまでの例と同じであり、速やかなスイッチングが可能である。
【0056】
実施例3のJFETでは図からわかるように、pゲート領域44はゲート電極46が接触する部分でのみコンタクトが取られている。この接触抵抗を小さく抑えるためには、接触面積を大きくしなければならず、このコンタクト窓の大きさがチャネルの長さの最低値を制限していた。
【0057】
本実施例のJFETはこの点を改良したものであり、ゲート電極66がpゲート領域64だけでなく、nチャネル領域70の表面にも接触しているため、コンタクト部分が広く取れ、チャネル領域を狭く設計することが可能となる。
図6の実施例に対して、ショットキー接合の端の部分にpゲート領域64を設け高耐圧化を図る意味もある。
【0058】
この実施例5のJFETにおいても、n+ ソース領域63とp+ 埋め込み領域62とを自己整合して形成することができ、実施例1のJFETと同様にチャネル長が、均一で精度よく形成され、安定した特性が歩留まりよく得られることは同じである。
【0059】
[実施例6]
図8は本発明第六の実施例にかかるSiCJFETの部分断面図である。
図1の実施例1と良く似ているが、実施例1のnチャネル領域30のドーピングが、SiC基板の全面にわたってなされたのに対し、本実施例ではnチャネル領域80のドーピングが、選択的にp+ 埋め込み領域72の上方部分だけになされている点が違っている。
【0060】
図1のように全体にわたってチャネル用のドーピングをおこなうと、p+ 埋め込み領域22の端近傍で、pn接合から空乏層が十分広がらず、耐圧が劣化してしまう可能性がある。
【0061】
それを防止するためにp+ 埋め込み領域72の上方部分のみにドーピングをおこなう。このようにすると、p+ 埋め込み領域72とnドリフト層71bとの間に空乏層が正常に広がり耐圧劣化を招くことがない。
【0062】
その製造方法については、図2の(e)の後マスクM1aを除去せず、そのままNイオン注入をおこなえば良いので、特に工程数を増すこと無しに実現できる。
実施例2〜5のJFET、MESFETについてもまったく同じように選択的にドーピングした構造を適用することができる。
【0063】
【発明の効果】
以上説明したように本発明によれば、第一導電型ソース領域と第二導電型埋め込み領域とを有する炭化けい素縦型FETにおいて、それぞれ独立に電極を設け、第二導電型埋め込み領域をゲート電極と同電位にすることによって、ゲート電圧の利得等のスイッチング特性を大幅に向上させることができる。
【0064】
その製造方法としては、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続した炭化けい素縦形FETの製造方法において、第一のマスクが中央の第一の部分と外側の第二の部分及び更に外側の第三の部分からなり、第三の部分の外端により第二導電型コンタクト領域を規定し、第三の部分の内端と第二の部分の外端により第一導電型ソース領域を規定し、第一のマスクの第一の部分の外端により第二導電型埋め込み領域の内端を規定してそれぞれの領域を形成する。例えばこの方法により、第一導電型ソース領域と第二導電型ベース層埋め込み領域とを形成すれば、第一導電型ソース領域と第二導電型ベース層埋め込み領域とが自己整合的に形成される。
【0065】
第一導電型チャネル領域の不純物濃度を選択的に制御することによって、耐圧不良の発生を防止することができる。
このようにして、従来極めて困難であった非常に精密なチャネル領域をもつJFETおよびMOSFETが実現できるようになり、オン抵抗の低減に効果をもたらした。
【0066】
本発明は、個別のFETに限らず、CMOS−ICや他のSiC半導体装置にも極めて有効な方法であり、高耐圧の炭化けい素半導体装置の製造を容易にするものである。
【図面の簡単な説明】
【図1】 本発明第一の実施例のMOSFETの部分断面図
【図2】 (a)〜(f)は実施例1のJFETの製造方法を説明するための工程順の部分断面図
【図3】 (a)〜(d)は図2(f)に続く実施例1のJFETの工程順の部分断面図
【図4】 実施例2のJFETの部分断面図
【図5】 実施例3のJFETの部分断面図
【図6】 実施例4のMESFETの部分断面図
【図7】 実施例5のMESFETの部分断面図
【図8】 実施例6のJFETの部分断面図
【図9】 従来のJFETの部分断面図
【符号の説明】
M1、M1a、M1b、M1c 第一マスク
M2 第二マスク
M3 第三マスク
M4 第四マスク
1 多結晶シリコン膜
2 SiO2
3 絶縁膜
4a 窒素イオン
4b 窒素原子
5a ほう素イオン
5b ほう素原子
11a、21a n+ ドレイン層
11b、21b、71b nドリフト層
12、22、32、42、52、62、72 p+ 埋め込み領域
12a、22a p+ コンタクト領域
13、23、63 n+ ソース領域
14、24、34、44、64 pゲート領域
15、45 ゲート酸化膜
16、26、36、46、56、66 ゲート電極
17、27、47、57、67 ソース電極
18、28 ドレイン電極
20、30、40、50、60、70、80 チャネル領域
26a、36a、46a、56a、66a ゲート電極
29 絶縁膜
32a 凹部

Claims (12)

  1. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域第一導電型ソース領域と、その第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面層にゲート絶縁膜を介してゲート電極を設けたことを特徴とする炭化けい素縦形FET。
  2. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域と第一導電型ソース領域と、その第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面上にショットキー接合を形成することを特徴とする炭化けい素縦形FET。
  3. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域と第一導電型ソース領域と、その第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する凹部を形成し、露出した第二導電型埋め込み領域の表面に接触する埋め込み電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面層にゲート絶縁膜を介してゲート電極を設けたことを特徴とする炭化けい素縦形FET。
  4. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域と第一導電型ソース領域と、その第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する凹部を形成し、露出した第二導電型埋め込み領域の表面に接触する埋め込み電極をゲート電極と接続し、第二導電型埋め込み領域が形成されていない部分の上方の第一導電型ドリフト層の表面上にショットキー接合を形成することを特徴とする炭化けい素縦形FET。
  5. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第一導電型ソース領域と、その第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第一導電型ドリフト層の表面に接触して設けられたショットキー接合を形成するゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第二導電型埋め込み領域をゲート電極と同電位としたことを特徴とする炭化けい素縦形FET。
  6. 第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続することを特徴とする請求項記載の炭化けい素縦形FET。
  7. 第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する凹部を形成し、露出した第二導電型埋め込み領域の表面に接触する埋め込み電極をゲート電極と接続することを特徴とする請求項記載の炭化けい素縦形FET。
  8. 第一導電型ドリフト層の表面層に第一導電型ドリフト層より高不純物濃度の第一導電型チャネル領域を有することを特徴とする請求項1ないしのいずれかに記載の炭化けい素縦形FET。
  9. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域第一導電型ソース領域と、第一導電型ドリフト層の表面層に形成された第一導電型ドリフト層より高不純物濃度の第一導電型チャネル領域と、第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有する炭化けい素縦形FETにおいて、第一導電型チャネル領域が第二導電型埋め込み領域の上部にのみ存することを特徴とする炭化けい素縦形FET。
  10. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第二導電型ゲート領域と第一導電型ソース領域と、その第二導電型ゲート領域および第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第二導電型ゲート領域の表面に接触して設けられたゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有し、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続した炭化けい素縦形FETの製造方法において、第一のマスクが中央の第一の部分と外側の第二の部分及び更に外側の第三の部分からなり、第三の部分の外端により第二導電型コンタクト領域を規定し、第三の部分の内端と第二の部分の外端により第一導電型ソース領域を規定し、第一のマスクの第一の部分の外端により第二導電型埋め込み領域の内端を規定してそれぞれの領域を形成することを特徴とする炭化けい素縦型FETの製造方法。
  11. 第一導電型炭化けい素ドレイン層上に積層された炭化けい素からなる第一導電型ドリフト層と、その第一導電型ドリフト層の表面層に選択的に互いに隔離して形成された第一導電型ソース領域と、その第一導電型ソース領域の下方に、それらと接続しないように埋め込まれて選択的に形成された第二導電型埋め込み領域と、第一導電型ドリフト層の表面に接触して設けられたショットキー接合を形成するゲート電極と、第一導電型ソース領域に接触して設けられたソース電極と、第一導電型ドレイン層の裏面に設けられたドレイン電極とを有し、第一導電型ドリフト層の表面から第二導電型埋め込み領域に達する第二導電型コンタクト領域を形成し、その第二導電型コンタクト領域の表面に接触するコンタクト電極をゲート電極と接続した炭化けい素縦形FETの製造方法において、第一のマスクが中央の第一の部分と外側の第二の部分及び更に外側の第三の部分からなり、第三の部分の外端により第二導電型コンタクト領域を規定し、第三の部分の内端と第二の部分の外端により第一導電型ソース領域を規定し、第一のマスクの第一の部分の外端により第二導電型埋め込み領域の内端を規定してそれぞれの領域を形成することを特徴とする炭化けい素縦型FETの製造方法。
  12. 第一導電型ソース領域、第二導電型埋め込み領域形成のための不純物の導入がいずれもイオン注入によっておこなわれることを特徴とする請求項10又は11に記載の炭化けい素縦形FETの製造方法。
JP01160199A 1999-01-20 1999-01-20 炭化けい素縦形fetおよびその製造方法 Expired - Lifetime JP3666280B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01160199A JP3666280B2 (ja) 1999-01-20 1999-01-20 炭化けい素縦形fetおよびその製造方法
US09/487,169 US6303947B1 (en) 1999-01-20 2000-01-19 Silicon carbide vertical FET and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01160199A JP3666280B2 (ja) 1999-01-20 1999-01-20 炭化けい素縦形fetおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2000216407A JP2000216407A (ja) 2000-08-04
JP3666280B2 true JP3666280B2 (ja) 2005-06-29

Family

ID=11782435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01160199A Expired - Lifetime JP3666280B2 (ja) 1999-01-20 1999-01-20 炭化けい素縦形fetおよびその製造方法

Country Status (2)

Country Link
US (1) US6303947B1 (ja)
JP (1) JP3666280B2 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229872B2 (en) * 2000-04-04 2007-06-12 International Rectifier Corporation Low voltage power MOSFET device and process for its manufacture
JP4797271B2 (ja) * 2001-03-30 2011-10-19 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4848591B2 (ja) * 2001-03-30 2011-12-28 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4797270B2 (ja) * 2001-03-30 2011-10-19 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4830213B2 (ja) * 2001-05-08 2011-12-07 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4848595B2 (ja) * 2001-05-16 2011-12-28 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4839548B2 (ja) * 2001-08-29 2011-12-21 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US6552363B2 (en) * 2001-09-18 2003-04-22 International Rectifier Corporation Polysilicon FET built on silicon carbide diode substrate
JP4122880B2 (ja) * 2002-07-24 2008-07-23 住友電気工業株式会社 縦型接合型電界効果トランジスタ
JP4696444B2 (ja) * 2003-11-14 2011-06-08 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4586547B2 (ja) * 2005-01-24 2010-11-24 住友電気工業株式会社 接合型電界効果トランジスタ
JP4751308B2 (ja) 2006-12-18 2011-08-17 住友電気工業株式会社 横型接合型電界効果トランジスタ
US7825477B2 (en) * 2007-04-23 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with localized stressor
US7982239B2 (en) * 2007-06-13 2011-07-19 Northrop Grumman Corporation Power switching transistors
KR100933383B1 (ko) 2007-10-26 2009-12-22 한국전기연구원 접합장벽쇼트키 게이트 구조를 갖는 고전압 탄화규소쇼트키 접합형 전계효과 트랜지스터 및 그 제조방법
JP5187118B2 (ja) * 2008-10-10 2013-04-24 住友電気工業株式会社 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
JP5077185B2 (ja) * 2008-10-16 2012-11-21 住友電気工業株式会社 横型接合型電界効果トランジスタおよびその製造方法
US8102012B2 (en) * 2009-04-17 2012-01-24 Infineon Technologies Austria Ag Transistor component having a shielding structure
US20110024765A1 (en) * 2009-07-31 2011-02-03 General Electric Company Silicon carbide semiconductor structures, devices and methods for making the same
WO2011155105A1 (ja) * 2010-06-07 2011-12-15 パナソニック株式会社 半導体装置及びその製造方法
FR2963479B1 (fr) * 2010-07-29 2012-07-27 Inst Nat Sciences Appliq Structure semi-conductrice pour interrupteur electronique de puissance
JP2012109348A (ja) * 2010-11-16 2012-06-07 Sumitomo Electric Ind Ltd 炭化珪素半導体装置
US9035363B2 (en) * 2012-02-21 2015-05-19 Robert Newton Rountree JFET ESD protection circuit for low voltage applications
JP2013201190A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 接合形電界効果トランジスタ及びその製造方法
US20140055901A1 (en) * 2012-08-25 2014-02-27 North Carolina State University Solid state fault isolation devices and methods
US9472684B2 (en) * 2012-11-13 2016-10-18 Avogy, Inc. Lateral GaN JFET with vertical drift region
US9136379B2 (en) * 2013-04-26 2015-09-15 Alpha & Omega Semiconductor, Inc. Bottom source substrateless power MOSFET
US10446695B2 (en) 2015-10-21 2019-10-15 United Silicone Carbide, Inc. Planar multi-implanted JFET
US9653618B1 (en) 2015-10-21 2017-05-16 United Silicon Carbide, Inc. Planar triple-implanted JFET
DE102015121566B4 (de) * 2015-12-10 2021-12-09 Infineon Technologies Ag Halbleiterbauelemente und eine Schaltung zum Steuern eines Feldeffekttransistors eines Halbleiterbauelements
CN107785411B (zh) * 2016-08-31 2020-06-12 无锡华润上华科技有限公司 集成有结型场效应晶体管的器件及其制造方法
JP6973422B2 (ja) * 2019-01-21 2021-11-24 株式会社デンソー 半導体装置の製造方法
JP7329348B2 (ja) * 2019-03-27 2023-08-18 ローム株式会社 半導体装置
CN110190114B (zh) * 2019-05-31 2021-01-01 西安电子科技大学 一种栅控双极-场效应复合碳化硅垂直双扩散金属氧化物半导体晶体管
CN110212032B (zh) * 2019-05-31 2021-04-13 西安电子科技大学 一种栅控双极-场效应复合元素半导体基横向双扩散金属氧化物半导体晶体管
CN110212033B (zh) * 2019-05-31 2021-04-13 西安电子科技大学 一种栅控双极-场效应复合碳化硅ldmos
CN110212034B (zh) * 2019-05-31 2021-04-13 西安电子科技大学 一种栅控双极-场效应复合元素半导体基vdmos
CN110544722A (zh) * 2019-08-14 2019-12-06 西安电子科技大学 一种栅控双极-场效应复合氮化镓横向双扩散金属氧化物半导体晶体管
CN110534558B (zh) * 2019-08-14 2021-06-18 西安电子科技大学 一种栅控双极-场效应复合氮化镓垂直双扩散金属氧化物半导体晶体管
US11139394B2 (en) 2019-08-30 2021-10-05 Semiconductor Components Industries, Llc Silicon carbide field-effect transistors
DE102020004758A1 (de) * 2019-08-30 2021-03-04 Semiconductor Components Industries, Llc Siliciumcarbid-feldeffekttransistoren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158973B2 (ja) * 1995-07-20 2001-04-23 富士電機株式会社 炭化けい素縦型fet
US5917203A (en) * 1996-07-29 1999-06-29 Motorola, Inc. Lateral gate vertical drift region transistor
US5877047A (en) * 1997-08-15 1999-03-02 Motorola, Inc. Lateral gate, vertical drift region transistor
JP3216804B2 (ja) * 1998-01-06 2001-10-09 富士電機株式会社 炭化けい素縦形fetの製造方法および炭化けい素縦形fet

Also Published As

Publication number Publication date
JP2000216407A (ja) 2000-08-04
US6303947B1 (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3666280B2 (ja) 炭化けい素縦形fetおよびその製造方法
US6117735A (en) Silicon carbide vertical FET and method for manufacturing the same
JP5199072B2 (ja) チャネル領域の平滑な表面を有するシリコンカーバイドデバイスを作製する方法
JP3460585B2 (ja) 炭化けい素mos半導体素子の製造方法
JP4604241B2 (ja) 炭化ケイ素mos電界効果トランジスタおよびその製造方法
JP3180895B2 (ja) 炭化けい素半導体装置の製造方法
US8035112B1 (en) SIC power DMOSFET with self-aligned source contact
JP4595144B2 (ja) 炭化珪素半導体装置及びその製造方法
JP3428459B2 (ja) 炭化けい素nチャネルMOS半導体素子およびその製造方法
JP2008503894A (ja) 炭化ケイ素デバイスおよびその作製方法
JP2001144292A (ja) 炭化珪素半導体装置
US8222107B2 (en) Method for producing semiconductor element
JP4678902B2 (ja) 炭化けい素umos半導体素子およびその製造方法
JP2003318397A (ja) 電界効果トランジスタとその製造方法
JP4620368B2 (ja) 半導体装置の製造方法
JP3921862B2 (ja) 炭化けい素縦形fetの製造方法
KR20040054479A (ko) 반도체 장치
JP3496509B2 (ja) 炭化珪素半導体装置の製造方法
JP3637052B2 (ja) SiC−MISFET及びその製造方法
WO2015111177A1 (ja) 半導体装置,パワーモジュール,電力変換装置,および鉄道車両
JP5033316B2 (ja) 半導体装置の製造方法
JP2000082810A (ja) 炭化けい素トレンチ型mos半導体素子の製造方法および炭化けい素トレンチ型mos半導体素子
JP2023529342A (ja) 段階的な横方向ドーピングを有する半導体パワーデバイスおよびそのようなデバイスを形成する方法
EP3637474B1 (en) Silicon carbide switch device and manufacturing method therefor
JP3952814B2 (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term