JP3646343B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3646343B2
JP3646343B2 JP10350495A JP10350495A JP3646343B2 JP 3646343 B2 JP3646343 B2 JP 3646343B2 JP 10350495 A JP10350495 A JP 10350495A JP 10350495 A JP10350495 A JP 10350495A JP 3646343 B2 JP3646343 B2 JP 3646343B2
Authority
JP
Japan
Prior art keywords
oxide film
layer
forming
selective oxide
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10350495A
Other languages
English (en)
Other versions
JPH08298322A (ja
Inventor
光浩 片岡
剛 山本
有一 竹内
直人 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10350495A priority Critical patent/JP3646343B2/ja
Publication of JPH08298322A publication Critical patent/JPH08298322A/ja
Application granted granted Critical
Publication of JP3646343B2 publication Critical patent/JP3646343B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電力用半導体素子として用いられる半導体装置、すなわち縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)およびIGBT(Insulated Gate Bipolar Transistor )の製造方法に関し、その単体または電力用半導体素子を組み込んだMOSIC等に採用して好適である。
【0002】
【従来の技術】
縦型パワーMOSFETは、周波数特性が優れ、スイッチング速度が速く、かつ低電力で駆動できる等多くの特長を有することから、近年多くの産業分野で使用されている。たとえば、日経マグロウヒル社発行“日経エレクトロニクス”の1986年5月19日号,pp.165-188には、パワーMOSFETの開発の焦点が低耐圧品および高耐圧品に移行している旨記載されている。さらに、この文献には、耐圧100V以下のパワーMOSFETチップのオン抵抗は、10mΩレベルまで低くなってきていることが記載されており、この理由として、パワーMOSFETの製造にLSIの微細加工技術を利用したり、そのセルの形状を工夫したりすることにより、面積当たりのチャネル幅が大きくとれるようになったことにある旨述べられている。また、この文献には主流であるDMOS型(二重拡散型)セルを使用した縦型パワーMOSFETを中心にのべられている。その理由は、DMOS型はチャネル部分にシリコンウエハの平坦な主表面をそのまま使用することを特長とするプレーナプロセスにより作製されるため、歩留まりが良くコストが安いという製造上の利点があるからである。
【0003】
一方、縦型パワーMOSFETの普及に伴って低損失化、低コスト化がさらに求められているが、微細加工やセルの形状の工夫によるオン抵抗低減は限界にきている。たとえば、特開昭63−266882号公報によると、DMOS型においては微細加工によりユニットセルの寸法を小さくしてもオン抵抗がそれ以上減少しない極小点があり、その主原因がオン抵抗の成分を成すJFET抵抗の増加であることが分かっている。またDMOS型において、特開平2−86136号公報に示されているように、現在の微細加工技術の下ではオン抵抗が極小点をとるユニットセルの寸法は15μm付近である。
【0004】
この限界を突破するために種々の構造が提案されている。それらに共通した特徴は素子表面に溝を形成し、その溝の側面にチャネル部を形成した構造であり、この構造により前述のJFET抵抗を大幅に減少させることができる。さらに、この溝の側面にチャネル部を形成した構造においては、ユニットセル寸法を小さくしてもJFET抵抗の増大は無視することができるため、特開昭63−266882号公報に記載されたようなユニットセル寸法の縮小に対してオン抵抗が極小点をとるという限界が無く、15μmを切って微細加工の限界まで小さくすることができる。
【0005】
このように、溝の側面にチャネル部を形成する構造の従来の製造方法として例えば特開昭61-199666 号公報に開示されたようにRIEで溝を形成し、その溝の側面にチャネル部を形成するものがある。RIEにおいては電離したガスをある一定方向に加速させるため、非常に優れた異方性を有しサイドエッチが起こりにくいという特徴がある。しかしながら、RIEにおいては、物理的に電離されたガスを半導体装置に衝突させるため、エッチングされた面に格子欠陥が必然的に発生し、表面再結合が起こることで移動度が下がり結果としてオン抵抗が増加してしまうという問題がある。
【0006】
ここで格子欠陥が発生しにくい製造方法として、例えば特開昭62-12167号や本出願人による国際公開WO93/03502号に開示されたようにウエットエッチングを用いた製造方法がある。
しかしながら上記WO93/03502号公報や特開昭62-12167号公報に開示された製造方法は、等方性エッチングであるウエットエッチングを用いているため、所望の幅以上にエッチングする所謂サイドエッチが起こり、また液ムラによりウエハ面内で均一に安定した深さの溝を形成することができず、プロセスの制御性が悪いという問題がある。
【0007】
そこで本出願人は特願平6-324693号にてチャネル部を溝の側面に持つMOSFETの製造方法において、チャネル部の欠陥を少なくし、また溝形状を正確に制御できる製造方法を提案している。
【0008】
【発明が解決しようとする課題】
しかしながら電力用半導体素子として用いられる半導体装置、所謂半導体チップを製造する場合、上記公報に記載された素子をユニットセルとしてこのユニットセルを複数個形成されたユニットセル形成領域と、ユニットセル形成領域の最外周でユニットセルの素子特性を安定的に終端させる外周部領域を形成する必要がある。また、素子を外部に電気的に接続するため外部接続用ボンデイングパッド等を形成する必要があるが、これも外周部領域に形成する必要がある。
【0009】
本発明の目的は、チャネル部を溝の側面にもつMOSFETをユニットセルとしてこのユニットセルを複数個形成したユニットセル形成領域の周囲に形成される外周部領域を、ユニットセルのMOSFETの製造方法と整合性よく、かつ簡単な工程で形成できる半導体装置の製造方法を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するために構成された請求項1記載の発明は、
半導体基板の一主面側に該半導体基板よりも低不純物濃度の第1導電型の半導体層を形成する工程と、
前記半導体層の表面を複数の領域に分割する第1の選択酸化膜と、前記第1の選択酸化膜と離間して前記第1の選択酸化膜を囲んで形成される第2の選択酸化膜とを同時に形成する選択酸化膜形成工程と、
前記複数に分割された領域の前記半導体層に第2導電型の不純物を拡散してベース層を形成するベース層形成工程と、
前記ベース層内に第1導電型の不純物を拡散してソース層を形成することにより、前記第1導電型半導体層と前記ソース層との間の前記第1選択酸化膜の側面に接する前記ベース層表面にチャネルとして使用される領域が形成されるソース層形成工程と、
前記第2選択酸化膜を耐エッチング層で被覆し前記第1選択酸化膜をエッチングして前記複数に分割された領域間に溝を形成する溝形成工程と、
前記溝の内壁を酸化してゲート酸化膜とするゲート酸化膜形成工程と、
前記ゲート酸化膜上にゲート電極を形成するゲート電極形成工程と、
前記ソース層および前記ベース層に電気的に接触するソース電極を形成するソース電極形成工程と、
前記半導体基板の他主表面に電気的に接触するドレイン電極とを形成するドレイン電極形成工程と
を含むことを特徴としている。
【0011】
また、上記目的を達成するために構成された請求項2記載の発明は、
請求項1記載の発明における前記選択酸化膜形成工程が、前記第1選択酸化膜および前記第2選択酸化膜の形成予定領域の前記半導体層の表面をエッチングして窪みを形成し、該窪みを含んで選択酸化されることを特徴としている。
また、上記目的を達成するために構成された請求項3記載の発明は、
請求項1および2記載の発明において前記ゲート電極形成工程が、前記ゲート電極を前記溝部から前記第2選択酸化膜上まで延在して形成することを特徴としている。
【0014】
また、上記目的を達成するために構成された請求項記載の発明は、
請求項1乃至3のいずれかに記載の発明において前記ベース層形成工程が、前記半導体層の表面全域にイオン注入により行われることを特徴としている。
【0015】
【作用および発明の効果】
上記のように構成された請求項1の発明によれば、半導体層の表面を複数の領域に分割する第1の選択酸化膜と、前記第1の選択酸化膜と離間して第1の選択酸化膜を囲むように形成される第2の選択酸化膜を同時に形成する。これにより、チャネル部を規定するためのベース層およびソース層の拡散マスクとなる選択酸化膜と、半導体素子のフィールド酸化膜が同時に形成できるため、選択酸化膜形成に必要な耐酸化性絶縁膜の堆積、ホト・エッチング工程および酸化工程が1回に省略でき工程が簡略となり製造コストが低減できる。
【0016】
また、請求項2記載の発明によれば、第1の選択酸化膜を除去して形成されるチャネル領域用の溝を、選択酸化膜形成前に半導体層表面をエッチングして窪みを設けこれを含んで選択酸化するという2段階の工程を踏んだ後形成するため、エッチングの条件と選択酸化の条件を適当に選択・組み合せることにより、所望の溝形状を容易に得ることができるようになる。
【0017】
また、請求項3記載の発明によれば、フィールド酸化膜がエッチングと選択酸化により形成されるため、フィールド酸化膜の段差がなめらかになり、段差部での電界集中が緩和されゲート酸化膜の絶縁耐圧を増加できる。
【0020】
また、請求項記載の発明によれば、ベース層形成における不純物導入を半導体層の表面全域に対して第1の選択酸化膜および第2の選択酸化膜をマスクとしてイオン注入する。これにより、ベース層形成時のホトマスクおよびホト工程が省略でき工程が簡略化され製造コストが低減できる。
【0021】
【実施例】
(第1実施例)
以下、図面を参照して本発明の一実施例を説明する。
図1(a)は本発明により製造される半導体チップの平面図であり、同図(b)は同図(a)におけるチップ端部の断面拡大図である。
【0022】
図1(a)において、101はゲートパッド、102はソースパッドであり、104はユニットセル領域、105はユニットセル領域を取り囲んで形成された外周部である。また、同図(b)に示すようにドレイン電極20はウェハ21の素子形成領域とは反対の面に半導体基板1と接して形成されている。
まず、ユニットセル領域104に形成されるユニットセルについて図2を参照して簡単に説明する。図2(a)はユニットセル領域104の拡大図であり、同図(b)は同図(a)におけるA−A断面図である。図2において、ウェハ21は不純物濃度が1019cm-3程度で厚さが200〜500μmのn+ 型シリコンからなる半導体基板1上に不純物濃度が1016cm-3程度の厚さ7μm前後のnー 型エピタキシャル層2が構成されたものであり、このウェハ21の主表面にユニットセル15がピッチ幅(ユニットセル寸法)aで平面上縦横に規則正しく多数配置された構造となっている。ウェハ21の主表面に12μm程度のユニットセル寸法aでU溝50を形成するために、厚さ3μm程度のLOCOS酸化膜を形成し、この酸化膜をマスクとして自己整合的な二重拡散により接合深さが3μm程度のp型ベース層16と、接合深さが1μm程度のn+ 型ソース層4とが形成されており、それによりU溝50の側壁部51にチャネル5が設定されている。なお、p型ベース層の接合深さはU溝50底辺のエッジ部12でブレークダウンによる破壊が生じない深さに設定されている。また、p型ベース層16の中央部の接合深さが周囲よりも深くなるように、あらかじめp型ベース層16の中央部にボロンが拡散されており、ドレイン・ソース間に高電圧が印加されたときに、p型ベース層16の底面の中央部でブレークダウンがおこるように設定されている。また、二重拡散後にこの拡散マスクおよびU溝50形成用として使用したLOCOS酸化膜は除去されて、U溝50の内壁には厚さが60nm程度のゲート酸化膜8が形成され、さらに、その上に厚さが400nm程度のポリシリコンからなるゲート電極9、厚さが1μm程度のBPSGからなる層間絶縁膜18が形成されている。さらにp型ベース層16の中央部表面に0.5μm程度のp+ 型ベースコンタクト層17が形成され、層間絶縁膜18の上に形成されたソース電極19とn+ 型ソース層4およびp+ 型ベースコンタクト層17がコンタクト穴を介してオーミック接触している。また、半導体基板1の裏面にオーミック接触するようにドレイン電極20が形成されている。
【0023】
次に、外周部105について図1を参照しながら説明する。外周部105は図1(b)に示したように前述したユニットセル領域104の最外周のユニットセル15の中央部分より外側の領域であり、LOCOS酸化法にて形成されたフィールド酸化膜107とこれを囲むように形成されたユニットセル15のp型ベース16と同電位に電気的に接続されたp型ウェル106から構成されている。このp型ウェル106は、このp型ウェル106とnー 型エピタキシャル層2で形成するpn接合のブレークダウン電圧が、ドレイン・ソース間に高電圧が印加されたときの、ユニットセル15のp型ベース層16のブレークダウン電圧より高くなるよう不純物濃度およびその深さが設定されている。また、フィールド酸化膜107上にはユニットセル15のゲート電極9を構成するポリシリコンが延在し、このポリシリコン108にBPSGからなる層間絶縁膜18を介してユニットセル15のゲート電極9へ電位を与えるためのゲートコンタクト用アルミニウム配線109が形成されている。このゲートコンタクト用アルミニウム配線109はフィールド酸化膜107上に形成されたゲートパッド101に接続されている。そして、フィールド酸化膜107の膜厚はゲートパッド101に外部接続ワイヤをボンデイングしたときその衝撃を吸収し、また、外部よりゲートパッドを介してサージや静電気が入力された際、静電破壊を起さない膜厚に設定されている。
【0024】
次に本実施例の製造方法を述べる。
まず、図3,図4に示されるように、n+ 型シリコンからなる面方位が(100)である半導体基板1の主表面にn- 型のエピタキシャル層2を成長させたウエハ21を用意する。この半導体基板1(半導体基板に相当)はその不純物濃度が1019cm-3程度になっている。また、エピタキシャル層2(半導体層に相当)はその厚さが7μm程度で、その不純物濃度は1016cm-3程度となっている次に、図5に示されるように、このウエハ21の主表面を熱酸化して厚さ450nm程度の熱酸化膜110を形成し、周知のホト・エッチング工程を用いて外周部105のp型ウェル106形成予定領域とユニットセル領域104内のユニットセル15形成予定領域の中央部とを開口しウェハ21の主表面を露出させる。次に、露出したウェハ21の主表面に45nm程度の薄い酸化膜を形成した後、熱酸化膜110をマスクとして薄い酸化膜の形成された領域にボロン(B+ )をイオン注入し、熱拡散して接合深さが3μm程度のp型ウェル106およびp型拡散層111を形成する。このp型拡散層111は最終的には後述するp型ベース層16の一部となる。そして、ドレイン・ソース間に高電圧が印加されたとき、p型ウェル106のブレークダウンより低い電圧でp型拡散層111の底辺部分で安定にブレークダウンを起こさせることができ、耐サージ性および破壊耐量を向上させる。
【0025】
次に、図6に示すように、ウエハ21の主表面にパッド酸化膜112を形成しその上に窒化シリコン膜113を約200nm堆積する。この窒化シリコン膜113上にレジスト膜(図示せず)を形成し周知のホト・エッチング工程を用いて外周部105のフィールド酸化膜形成予定領域およびユニットセル領域104内のU溝50形成予定領域上の窒化シリコン膜113に開口を形成する。このときユニットセル領域104内の窒化シリコン膜113のパターンは図15に示すように<011>方向に垂直及び平行になるようにパターニングしてピッチ幅(ユニットセル15の寸法)aの格子状開口パターンを形成する。なお、この開口パターンは上述のp型拡散層111がそのピッチ間隔の中央部に位置するようにする。
【0026】
次に、窒化シリコン膜113をマスクとしてパッド酸化膜111をエッチングし、ひきつづき図7に示すように、エッチングによりn- 型エピタキシャル層2の表面に窪み115および114を形成する。このエッチングは、四フッ化炭素と酸素ガスを用いたケミカルドライエッチングで行う。
次に、図8に示すように、窒化シリコン膜113をマスクとして溝115および114の部分を選択酸化する。これはLOCOS(Local Oxidation of Silicon)法として良く知られた酸化方法であり、この酸化によりLOCOS酸化膜65およびフィールド酸化膜107が形成され、同時にLOCOS酸化膜65によって喰われたn- 型エピタキシャル層2の表面にU溝50が形成され、かつU溝50の形状が確定する。
【0027】
この時、U溝50の側面のチャネル形成部の面方位が(111)に近い面となるようにケミカルドライエッチングの条件とLOCOS酸化の条件を選ぶ。このようにしてLOCOS酸化により形成されたU溝50の内壁表面は平坦で欠陥が少なく、その表面は図3に示されるウエハ21の初期の主表面と同程度に表面状態が良い。また、この状態でのn- 型エピタキシャル層2の表面は図16に示すように、格子状に形成されたLOCOS酸化膜65と、これと離間してかつ格子状のLOCOS酸化膜65を取り囲むようにフィールド酸化膜107が形成されている。
【0028】
次に、窒化シリコン膜113とパッド酸化膜111を除去した後、n- 型エピタキシャル層2の表面に薄い酸化膜60を形成し、図9に示すように、LOCOS酸化膜65をマスクとして、薄い酸化膜60を透過させてp型ベース層16を形成するためのボロンをイオン注入する。このとき、LOCOS酸化膜65と酸化膜60の境界部分が自己整合位置になり、イオン注入される領域が正確に規定される。また、外周部105の領域にはフィールド酸化膜107がすでに形成されており、これをマスクとしてイオン注入できるためボロンのイオン注入はホトマスクを使用せずに実施することができる。続いて、接合深さ3μm程度までボロンを熱拡散する。この熱拡散により、図5に示す工程において前もって形成したp型拡散層111と注入されたボロンの拡散層が一体になり、一つのp型ベース層16(ベース層に相当)を形成する。また、p型ベース層16の領域の両端面はU溝50の側壁の位置で自己整合的に規定される。
【0029】
次に、図10に示すように、格子状のパターンでn- 型エピタキシャル層2表面に形成されているLOCOS酸化膜65により囲まれたp型ベース層16表面中央部に残されたパターンでパターニングされたレジスト膜66とLOCOS酸化膜65を共にマスクとして、薄い酸化膜60を透過させてn+ 型ソース層4(ソース層に相当)を形成するためのリンをイオン注入する。この場合も図9に示す工程においてボロンをイオン注入した場合と同様に、LOCOS酸化膜65と酸化膜60の境界部分が自己整合位置になり、イオン注入される領域が正確に規定される。
【0030】
次に、図11に示すように、接合深さ0.5〜1μm熱拡散し、n+ 型ソース層4を形成し、同時にチャネル5(チャネル領域に相当)も設定する。この熱拡散において、n+ 型ソース層4の領域のU溝50に接した端面は、U溝50の側壁の位置で自己整合的に規定される。
以上、図9〜図11の工程によりp型ベース層16の接合深さとその形状が確定する。このp型ベース層16の形状において重要なことは、p型ベース層16の側面の位置がU溝50の側面により規定され、自己整合されて熱拡散するため、U溝50に対してp型ベース層16の形状は完全に左右対称になる。
【0031】
次に、図12に示すように、フィールド酸化膜107をレジストで覆ったのち、LOCOS酸化膜65を弗酸を含むエッチング液でエッチング除去してU溝50の内壁51を露出させた後、U溝50の側面及び底面に熱酸化により厚さ60nm程度のゲート酸化膜8を形成する。この酸化工程は、約1000℃に保持されている酸化炉にウエハ21を徐々に挿入して行われる。このようにすると、酸化の初期は比較的低い温度で行われるため、p型ベース領域16、n+ 型ソース領域4の不純物が、酸化工程中にウエハ外部に飛散することを抑えられる。ゲート酸化膜8の膜質や、厚さの均一性、チャネル5の界面の界面準位密度,キャリア移動度は従来のDMOSと同程度に良好である。
【0032】
つづいて、図13に示すように、ウエハ21の主表面に厚さ400nm程度のポリシリコン膜を堆積し、隣接した二つのU溝50の上端の距離bよりも2βだけ短い距離cだけ離間するようにパターニングしてゲート電極9を形成する。次にゲート電極9の端部においてゲート酸化膜8が厚くなるよう酸化する。また、このポリシリコンはゲート電極9からフィールド酸化膜107上まで延在してパターニングされる。そして、この後工程にてゲートコンタクト用アルミニウム配線109に接続される。このとき、ポリシリコン膜108の下のフィールド酸化膜107の段差部での電界集中によるゲート酸化膜絶縁破壊に対し本実施例においては、フィールド酸化膜107を窪み115を形成した後選択酸化を行っていることでフィールド酸化膜107とゲート酸化膜8との境界での段差がなめらかになり、電界集中が緩和され絶縁破壊が抑制されることとなる。
【0033】
次に、図14に示すように、パターニングされたレジスト膜68をマスクとして酸化膜67を透過してp+ 型ベースコンタクト層17を形成するためのボロンをイオン注入する。
そして、図1(b)に示すように、注入されたボロンを熱拡散して接合深さ0.5μm程度の拡散しp+ 型ベースコンタクト層17を形成する。なお、この領域にはp型ベース層16とp型拡散層111とが重なって形成されているため、このp型不純物濃度がオーミック接合を形成するに十分な濃度であればこのp+ 型ベースコンタクト層17の形成工程は省略することができる。
【0034】
その後引き続いて ウエハ21の主表面にBPSGからなる層間絶縁膜18を形成し、その一部にコンタクト穴開けを行いp+ 型ベースコンタクト層17とn+ 型ソース層4およびフィールド酸化膜107上のポリシリコン膜108を露出させる。さらに、アルミニウム膜からなるソース電極19を形成し、前記コンタクト穴を介してp+ 型ベースコンタクト層17とn+ 型ソース層4とにオーミック接触させ、フィールド酸化膜107上のポリシリコン膜108にはゲートコンタクト用アルミニウム配線109をオーミック接触させる。さらに、アルミニウム膜保護用としてプラズマCVD法等により窒化シリコン等よりなるパッシベーション膜(図示略)を形成し、また、ウエハ21の裏面にはTi/Ni/Auの3層膜からなるドレイン電極20を形成し、n+ 型半導体基板1にオーミック接触をとる。なお、ドレイン電極20は、半導体基板1の裏面を研削した後、形成するようにしてもよい。
【0035】
上記のように構成された本実施例の半導体装置の製造方法によれば、ユニットセル15のチャネル部形成のためのLOCOS酸化膜65と外周部105に形成されるフィールド酸化膜107を同時に形成することにより、選択酸化膜形成工程に必要な耐酸化性絶縁膜の堆積、ホト・エッチング工程および酸化工程が1回で行うことができ、工程が簡略化され製造コストが低減できる。また、LOCOS酸化膜65とフィールド酸化膜107の酸化工程の前に窪み114および115を形成する。これにより、LOCOS酸化膜65を除去して形成されるチャネル形成用の溝50の形状が、窪み114を形成するためのエッチング工程とこの窪み114の選択酸化工程の2段階の工程で決定されるようになり、各工程の条件を適当に選択することにより所望の溝形状を容易に得ることができるようになる。また、フィールド酸化膜107も窪み115を形成した後選択酸化して形成されることで、フィールド酸化膜107の膜厚が厚い場合でもフィールド酸化膜107の段差は低く形成できるため段差形状がなめらかになり、p型ウェル層106とポリシリコン膜108との間に形成されているゲート酸化膜8への電界集中が緩和されゲート酸化膜8の信頼性が高まる。
【0036】
次に、本発明の第2実施例の製造工程について図17乃至19を参照して説明する。
第1実施例と同様に、n+ 型シリコンからなる面方位が(100)である半導体基板1の主表面にn- 型のエピタキシャル層2を成長させたウエハ21の主表面を熱酸化して厚さ450nm程度の熱酸化膜110を形成し、周知のホト・エッチング工程を用いて外周部105のp型ウェル106形成予定領域とユニットセル領域104内のユニットセル15形成予定領域の中央部とを開口しウェハ21の主表面を露出させた後、露出したウェハ21の主表面に45nm程度の薄い酸化膜を形成し、熱酸化膜110をマスクとして薄い酸化膜の形成された領域にボロン(B+ )をイオン注入、熱拡散して接合深さが3μm程度のp型ウェル106およびp型拡散層111を形成する。
【0037】
そして、図17に示すように、ウエハ21の主表面にパッド酸化膜112を形成しその上に窒化シリコン膜113を約200nm堆積する。この窒化シリコン膜113上にレジスト膜(図示せず)を形成し周知のホト・エッチング工程を用いて外周部105のフィールド酸化膜形成予定領域の窒化シリコン膜のみ開口し、ユニットセル領域104内の窒化シリコン膜113は残すようにパターニングする。
【0038】
次に、図18に示すように、窒化シリコン膜113をマスクとして外周部105のフィールド酸化膜形成予定領域のn- 型エピタキシャル層2の表面を選択酸化する。これはLOCOS(Local Oxidation of Silicon)法として良く知られた酸化方法であり、この酸化によりフィールド酸化膜107が形成される。
この後、図19に示すように、窒化シリコン膜113とパッド酸化膜112を除去し、一部にフィールド酸化膜107が形成されたn- 型エピタキシャル層2の表面を露出する。
【0039】
この後、再度、n- 型エピタキシャル層2の表面にパッド酸化膜と窒化シリコン膜を形成して、ユニットセル領域104にU溝50を形成し、以後、第1実施例と同様に半導体装置を製造する。
上記のように構成された第2実施例の半導体装置の製造方法によれば、ユニットセル15のチャネル部形成のためのLOCOS酸化膜65と外周部105に形成されるフィールド酸化膜107を別々に形成することにより、チャネル形成用の溝50の形状を制御するLOCOS酸化膜65の酸化条件には影響されずにフィールド酸化膜107を形成できる。これにより、フィールド酸化膜107の膜厚はゲートパッド101に外部接続ワイヤをボンデイングしたときその衝撃を吸収し、また、外部よりゲートパッドを介してサージや静電気が入力された際、静電破壊を起さない十分な膜厚に自由に設定でき、また、ユニットセル15のチャネル部形成のためのLOCOS酸化膜65の膜厚、酸化条件も所望の溝形状を得るべく自由に設定することができるようになる。
【0040】
以上、本発明について具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、、本実施例においては半導体基板としてn+ 型半導体基板を持ちいた縦型パワーMOSFETについて説明したが、p+ 型半導体基板を用いた絶縁ゲート型バイポーラトランジスタ(IGBT)のゲート構造にも適用することができる。また、本実施例ではnチャネル型についてのみ説明したが、n型とp型の半導体の型を入れ換えたpチャネル型についても同様の効果が得られることは言うまでもない。
【図面の簡単な説明】
【図1】(a)は本発明の実施例による縦型パワーMOSFETのレイアウトを示す平面図であり、(b)は(a)の要部断面図である。
【図2】(a)は本発明の実施例による縦型パワーMOSFETのユニットセルの平面図であり、(b)は(a)のA−A断面図である。
【図3】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する断面図である。
【図4】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図5】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図6】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部平面図である。
【図7】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【図8】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図9】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図10】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図11】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図12】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図である。
【図13】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【図14】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【図15】(a)は本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する要部断面図であり、(b)は(a)の平面図である。
【図16】本発明の第1実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【図17】本発明の第2実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【図18】本発明の第2実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【図19】本発明の第2実施例による縦型パワーMOSFETの製造工程の説明に供する図である。
【符号の説明】
1 n+ 型半導体基板
2 n- 型エピタキシャル層
4 n+ 型ソース層
5 チャネル
8 ゲート酸化膜
9 ゲート電極
16 p型ベース層
19 ソース電極
20 ドレイン電極
50 U溝
51 U溝の内壁
65 LOCOS酸化膜
107 フィールド酸化膜
104 ユニットセル領域
105 外周部

Claims (4)

  1. 半導体基板の一主面側に該半導体基板よりも低不純物濃度の第1導電型の半導体層を形成する工程と、
    前記半導体層の表面を複数の領域に分割する第1の選択酸化膜と、前記第1の選択酸化膜と離間して前記第1の選択酸化膜を囲んで形成される第2の選択酸化膜とを同時に形成する選択酸化膜形成工程と、
    前記複数に分割された領域の前記半導体層に第2導電型の不純物を拡散してベース層を形成するベース層形成工程と、
    前記ベース層内に第1導電型の不純物を拡散してソース層を形成することにより、前記第1導電型半導体層と前記ソース層との間の前記第1選択酸化膜の側面に接する前記ベース層表面にチャネルとして使用される領域が形成されるソース層形成工程と、
    前記第2選択酸化膜を耐エッチング層で被覆し前記第1選択酸化膜をエッチングして前記複数に分割された領域間に溝を形成する溝形成工程と、
    前記溝の内壁を酸化してゲート酸化膜とするゲート酸化膜形成工程と、
    前記ゲート酸化膜上にゲート電極を形成するゲート電極形成工程と、
    前記ソース層および前記ベース層に電気的に接触するソース電極を形成するソース電極形成工程と、
    前記半導体基板の他主表面に電気的に接触するドレイン電極とを形成するドレイン電極形成工程と
    を含むことを特徴とする半導体装置の製造方法。
  2. 前記選択酸化膜形成工程は、前記第1選択酸化膜および前記第2選択酸化膜の形成予定領域の前記半導体層の表面をエッチングして窪みを形成し、該窪みを含んで選択酸化されることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記ゲート電極形成工程は、前記ゲート電極を前記溝部から前記第2選択酸化膜上まで延在して形成することを特徴とする請求項1および2記載の半導体装置の製造方法。
  4. 前記ベース層形成工程は、前記半導体層の表面全域にイオン注入により行われることを特徴とする請求項1乃至3のいずれかに記載の半導体装置の製造方法。
JP10350495A 1995-04-27 1995-04-27 半導体装置の製造方法 Expired - Fee Related JP3646343B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10350495A JP3646343B2 (ja) 1995-04-27 1995-04-27 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10350495A JP3646343B2 (ja) 1995-04-27 1995-04-27 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH08298322A JPH08298322A (ja) 1996-11-12
JP3646343B2 true JP3646343B2 (ja) 2005-05-11

Family

ID=14355817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10350495A Expired - Fee Related JP3646343B2 (ja) 1995-04-27 1995-04-27 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3646343B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603173B1 (en) 1991-07-26 2003-08-05 Denso Corporation Vertical type MOSFET
JPH1197689A (ja) * 1997-09-17 1999-04-09 Nec Corp 半導体装置
JP3514178B2 (ja) 1998-09-16 2004-03-31 株式会社デンソー 半導体装置の製造方法
JP4984345B2 (ja) * 2000-06-21 2012-07-25 富士電機株式会社 半導体装置
JP2005322949A (ja) * 2005-08-05 2005-11-17 Renesas Technology Corp 半導体装置

Also Published As

Publication number Publication date
JPH08298322A (ja) 1996-11-12

Similar Documents

Publication Publication Date Title
US6872611B2 (en) Method of manufacturing transistor
US6815769B2 (en) Power semiconductor component, IGBT and field-effect transistor
US5877528A (en) Structure to provide effective channel-stop in termination areas for trenched power transistors
US6319777B1 (en) Trench semiconductor device manufacture with a thicker upper insulating layer
JP4892172B2 (ja) 半導体装置およびその製造方法
JP2012138600A (ja) Mosゲート半導体デバイス製造方法
JP2007281515A (ja) 比較的少ない数のマスキング工程で製造され、末端領域に厚い酸化層を有するトレンチ型dmosトランジスタとその製造方法
JPH0936362A (ja) 絶縁ゲート型半導体装置およびその製造方法
JPWO2002061845A1 (ja) 半導体装置およびその製造方法
JP3915180B2 (ja) トレンチ型mos半導体装置およびその製造方法
JP2001102576A (ja) 半導体装置
JP2005285913A (ja) 半導体装置およびその製造方法
US5668026A (en) DMOS fabrication process implemented with reduced number of masks
JP3369388B2 (ja) 半導体装置
JP2001358338A (ja) トレンチゲート型半導体装置
JP2004311547A (ja) 縦形mosトランジスタの製造方法
WO2006135861A2 (en) Power semiconductor device
US20010023957A1 (en) Trench-gate semiconductor devices
JP3354127B2 (ja) 高電圧素子及びその製造方法
JP3646343B2 (ja) 半導体装置の製造方法
JP2002026322A (ja) 半導体装置及びその製造方法
JPH04368182A (ja) 半導体装置およびその製造方法
JP2010027680A (ja) 半導体装置および半導体装置に製造方法
JPH10150207A (ja) 高圧素子およびその製造方法
JP2858411B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees