JP3640503B2 - Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof - Google Patents

Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof Download PDF

Info

Publication number
JP3640503B2
JP3640503B2 JP16292897A JP16292897A JP3640503B2 JP 3640503 B2 JP3640503 B2 JP 3640503B2 JP 16292897 A JP16292897 A JP 16292897A JP 16292897 A JP16292897 A JP 16292897A JP 3640503 B2 JP3640503 B2 JP 3640503B2
Authority
JP
Japan
Prior art keywords
resin composition
weight
reinforced resin
polyphenylene ether
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16292897A
Other languages
Japanese (ja)
Other versions
JPH115895A (en
Inventor
弘昭 古河
和郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15763906&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3640503(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP16292897A priority Critical patent/JP3640503B2/en
Publication of JPH115895A publication Critical patent/JPH115895A/en
Application granted granted Critical
Publication of JP3640503B2 publication Critical patent/JP3640503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂と接触して用いられるような構造材料用途、例えばイグニッションコイルボビン芯材などにおいて、エポキシ硬化剤の耐性に優れる強化樹脂組成物および成形体に関する。
【0002】
【従来の技術】
ポリフェニレンエーテル系樹脂は耐熱性、電気特性、耐酸、耐アルカリ性等に優れ、しかも低比重、低吸水性である等の優れた特性を有する樹脂である。
近年、電気特性、高耐熱の特性を生かし、無機充填剤を配合した強化樹脂組成物材料が、電機部品のコイルボビンの芯材等に使われている。上記用途において強化ポリフェニレンエーテル系樹脂組成物は、判別のため各種の色に着色されて使用されることが多い。
【0003】
しかしながら、この着色材料を用いてコイルボビン芯材を得る場合、芯材の周りを形成するエポキシ樹脂を硬化させるために用いる硬化剤により、該着色材料からなる芯材にクレーズやクラックが発生し、酷い場合には芯材の破壊に至ることがあった。
特開昭60−233150号公報にはポリエチレンテレフタレート系樹脂にガラス繊維および硫化亜鉛を配合してなる組成物が開示され、酸化チタンで着色された組成物と比べ耐熱性、機械特性に優れると明示されている。特開平6−192563号公報等にはポリフェニレンエーテル樹脂に無機充填剤を配合した成形性、剛性、寸法安定性に優れた組成物が明示され、さらにイグニッションコイルボビン用途の規定がある。しかしながら、これらの公報、その他文献等にて、強化ポリフェニレンエーテル系樹脂組成物をエポキシ樹脂にて包埋する際のエポキシ硬化剤の耐性について検討された報告は見たらず、エポキシ硬化剤の耐性に優れる強化樹脂組成物、強化ポリフェニレンエーテル樹脂組成物の発明には至っていなかった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、エポキシ樹脂を硬化させるために用いられるエポキシ硬化剤性の耐性に優れ、耐熱性、機械物性のバランスに優れる強化樹脂組成物、強化ポリフェニレンエーテル系樹脂組成物を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意検討した結果、本発明に至った。すなわち、本発明は、(A)ポリフェニレンエーテル系樹脂100重量部に対し、(B)無機質充填剤5〜200重量部、(C)白色着色剤として硫化亜鉛を全組成物中0.5〜7.7重量%配合してなる強化樹脂組成物該組成物から成形された成形体及びイグニッションコイルボビン芯材に関するものである。
【0006】
本発明の(A)成分として用いるポリフェニレンエーテル系樹脂とは、一般式(a)及び/又は(b)で表される繰り返し単位を有するポリフェニレンエーテル樹脂の単独重合体あるいは共重合体である。
【0007】
【化1】

Figure 0003640503
【0008】
(ここで、R1、R2、R3、R4、R5、R6は独立に炭素1〜4のアルキル基、アリール基、ハロゲン、水素を表す。但し、R1とR2、R5とR6は同時に水素ではない。)
ポリフェニレンエーテル樹脂の単独重合体の代表例としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−n−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジ−n−プロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−n−ブチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−イソプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−クロロエチル−1,4−フェニレン)エーテル等が挙げられる。
【0009】
この中で、ポリ(2,6−ジメチル−1,4−フェニレン)エーテルが特に好ましい。ポリフェニレンエーテル共重合体とは、フェニレンエーテル構造を主単量単位とする共重合体である。その例としては、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体、2,6−ジメチルフェノールとo−クレゾールとの共重合体あるいは2,6−ジメチルフェノールと2,3,6−トリメチルフェノール及びo−クレゾールとの共重合体等がある。
【0010】
本発明に用いるポリフェニレンエーテル系樹脂の単独重合体あるいは共重合体の製造方法は特に限定されるものではないが例えば米国特許4,788,277号明細書(特願昭62−77570号公報)に記載されている方法に従って、ジブチルアミンの存在下に、2,6−キシレノールを酸化カップリング重合して製造することができる。また、分子量および分子量分布も本発明の要件を満たす限り、特に限定されるものではないが、30℃クロロホルム溶媒下での還元粘度が0.3〜0.7dl/gのものが好ましく用いられる。0.3dl/g未満の還元粘度のものでは熱安定性が悪くなる傾向があり、また0.7dl/gを越える還元粘度のものでは成形加工性が損なわれる傾向がある。
【0011】
また、本発明のポリフェニレンエーテル樹脂中には、本発明の主旨に反しない限り、従来ポリフェニレンエーテル樹脂中に存在させてもよいことが提案されている他の種々のフェニレンエーテルユニットを部分構造として含んでいても構わない。少量共存させることが提案されているものの例としては、特願昭63−12698号公報及び特開昭63−301222号公報に記載されている、2−(ジアルキルアミノメチル)−6−メチルフェニレンエーテルユニットや、2−(N−アルキル−N−フェニルアミノメチル)−6−メチルフェニレンエーテルユN−アレキル−N−フェニルアミノメチル)−6−メチルフェニレンエーテルユニット等が挙げられる。また、ポリフェニレンエーテル樹脂の主鎖中にジフェノキノン等が少量結合したものも含まれる。
【0012】
さらに、ポリフェニレンエーテル樹脂には、一般にガラス繊維、炭素繊維等の繊維状補強剤との密着性を改良するためなどに用いられる下記のα, β不飽和カルボン酸またはその無水物等により変性されたポリフェニレンエーテル樹脂も含むことができる。
α, β不飽和カルボン酸またはその無水物の例として、特公昭49−2343号公報、特公平3−52486号公報等に記載される無水マレイン酸、フタル酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、無水ハイミツク酸、5−ノルボルネン−2−メチル−2−カルボン酸あるいはマレイン酸、フマル酸等が挙げられ、これらに限定されるものではないが、無水マレイン酸が特に好ましい。
【0013】
無水マレイン酸等のα, β不飽和カルボン酸またはその無水物とポリフェニレンエーテル樹脂との反応は、有機過酸化物の存在下または非存在下で両者を混合しポリフェニレンエーテル重合体のガラス転移温度以上の温度まで加熱することによって製造できる。
本発明の強化ポリフェニレンエーテル系樹脂組成物を製造する際には、あらかじめ無水マレイン酸等のα, β不飽和カルボン酸またはその無水物を結合したポリフェニレンエーテル樹脂を用いても良いし、強化ポリフェニレンエーテル系樹脂組成物を製造する際に同時に、無水マレイン酸等のα, β不飽和カルボン酸またはその無水物を添加することによりポリフェニレンエーテル重合体と反応させる方法でも良い。
【0014】
さらに、ポリフェニレンエーテル系樹脂としては、エチレン性不飽和化合物により変性されたポリフェニレンエーテル系樹脂を含むことが出来る。
本発明において、無機充填剤を多く含ませると成形加工性が悪くなる傾向にあるが、該エチレン性不飽和化合物により変性されたポリフェニレンエーテル樹脂または強化樹脂組成物は、成形流動時および成形加工時の変色抑制に優れるため、それを用いることがより好適である。
【0015】
エチレン性不飽和化合物の例として、アクリル酸のメチル、エチル、プロピル、ブチル、イソブチル、t−ブチル、2−エチルヘキシル、オクチル、イソデシル、ラウリル、ラウリルートデシル、トリデシル、セチル−ステアリル、ステアリル、シクロヘキシル、ベンジルエステル等のアクリル酸エステル類、メタクリル酸のメチル、エチル、プロピル、ブチル、イソブチル、t−ブチル、2−エチルヘキシル、オクチル、イソデシル、ラウリル、ラウリルートデシル、トリデシル、セチル−ステアリル、ステアリル、シクロヘキシル、ベンジルエステル等のメタクリル酸エステル類、アクリルアミド、アクリロニトリル、スチレン、α−メチルスチレン、クロルスチレン、メチルスチレン、スチルベン、ケイ皮アルコール、ケイ皮酸ニトリル、4−ビニルピリジン等が挙げられる。これらに限定されるものではないが、なかでもアクリル酸ステアリルおよび/またはスチレンを用いた場合が最も好ましい。
【0016】
エチレン性不飽和化合物はポリフェニレンエーテル樹脂100重量%に対して、0.1〜15重量%、より好ましくは0.5〜10重量%の割合で配合される。0.1重量%より少ないと成形流動性、着色性等の効果が小さくなり、15重量%より多すぎると耐熱性の低下が大きくなり好ましくない。
アクリル酸ステアリル等のエチレン性不飽和化合物とポリフェニレンエーテル樹脂との反応は、有機過酸化物の存在下または非存在下で両者を混合しポリフェニレンエーテル重合体のガラス転移温度以上の温度まで加熱することによって製造できる。
【0017】
本発明の強化樹脂組成物を製造する際には、あらかじめエチレン性不飽和化合物を結合したポリフェニレンエーテル樹脂を用いても良いし、強化樹脂組成物を製造する際に同時にアクリル酸ステアリル等のエチレン性不飽和化合物を添加することによりポリフェニレンエーテル重合体と反応させる方法でも良い。
さらに(A)成分のポリフェニレンエーテル系樹脂にはポリスチレン系樹脂を混合したものを含むことが出来る。
ポリスチレン系樹脂とは、一般式(c)
【0018】
【化2】
Figure 0003640503
【0019】
(式中、Rは水素、低級アルキルまたはハロゲンを示し、Zはビニル、水素、ハロゲン及び低級アルキルよりなる群から選択され、pは0〜5の整数である。)で表される芳香族ビニル系単量体単位50重量%以上から構成される単独重合体または共重合可能な他のビニル系単量体またはゴム質重合体との共重合体であり、これら単独重合体の具体例としては、スチレン、α−メチルスチレン、2,4−ジメチルスチレン、モノクロロスチレン、p−メチルスチレン、p−tert−ブチルスチレン、エチルスチレン等が挙げられる。また、芳香族ビニル系単量体と共重合可能な他のビニル系単量体としてはメチルメタクリレート、エチルメタクリレート等のメタクリル酸エステル類、無水マレイン酸等の酸無水物等が挙げられ、またゴム質重合体としては共役ジエン系ゴムあるいは共役ジエンと芳香族ビニル化合物のコポリマーあるいはエチレン−プロピレン共重合体系ゴム等が挙げられる。
【0020】
(A)成分においては、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂を任意の割合で配合することが出来るが、通常その配合比率はポリフェニレンエーテル系樹脂99〜1重量部に対してポリスチレン系樹脂1〜99重量部であり、好ましくは、ポリフェニレンエーテル系樹脂85〜20重量部に対してポリスチレン系樹脂15〜80重量部である。
【0021】
本発明の(B)成分に用いる無機質充填剤の種類は、従来熱可塑性樹脂の補強剤として慣用されているもの、例えば、無機塩、ガラス、カーボン、金属、セラミックスなどの中から任意のものを、要求特性に応じて適宜選択して用いることが出来る。また、その形態は粉末状、粒状、繊維状、ウィスカー状などのいずれであってもよい。例えば、低寸法異方性が要求される場合にはガラスビーズやガラスフレークを、高剛性、高耐衝撃性が要求される場合にはガラス繊維やウィスカー類を導電性付与の目的には金属繊維を、高比重が要求される場合には酸化鉄を選択して用いることが好ましい。
【0022】
前記無機質充填剤は1種用いても良いし、2種以上を組み合わせて用いてもよく、また、本発明の目的を損なわない範囲で、所望に応じシラン系カップリング剤による表面処理や、集束剤による集束処理が施されたものも用いることができる。
この無機質充填剤は、前記した基本樹脂成分の合計量100重量部に対し、5〜200重量部の割合で配合することが必須である。この配合量が5重量部未満では剛性及び寸法精度の改良効果が不十分であるし、200重量部を超えると該充填剤間の接合のための樹脂量が不足し、著しく機械的強度が低下する。
【0023】
本発明の(C)成分に用いる硫化亜鉛は、本発明の強化樹脂組成物を有彩色に着色るために、従来一般的に用いられている酸化チタンの代わりに用い、目的の着色に必要な量使用することが出来る。通常は0.5〜5重量%、好ましくは0.5〜3重量%である。硫化亜鉛は、一般的には、0.2〜0.5μmの平均粒子径であり、湿潤性および分散特性を向上させるために有機界面活性剤でコーティングされたものが用いられる。さらに製法、形状に特に制限はなく、従来熱可塑性樹脂、熱硬化性樹脂の着色剤、または安定剤として慣用されているものを用いることが出来る。また、その成分中に硫酸バリウム等の他の金属硫化物、酸化亜鉛等の他の金属酸化物を不純物として含んでいても構わない。
【0024】
本発明の強化樹脂組成物および成形体が耐性を示すエポキシ硬化剤としては、電気部品、電気絶縁材料に一般的に用いられる酸無水物、イミダゾール化合物、BF3 錯体等のエポキシ硬化剤を挙げることができる。酸無水物系としては無水フタル酸、無水ピロメリット酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸等であり、イミダゾール化合物系としてはイミダゾール、2−メチルイミダゾール等であり、BF3 錯体としては3フッ化ホウ素エチルアミン錯体であり、特に酸無水物系のエポキシ硬化剤に効果を示す。
【0025】
本発明の硫化亜鉛を含む組成物がエポキシ硬化剤に耐性を示す理由は現時点では不明であるが、何らかの弱い化学結合が生じている可能性もある。
また、適応されるエポキシ樹脂の例としては、ビスフェノールAジグリシジルエーテル、ヘキサヒドロビスフェノールAジグリシジルエーテル、テトラブロムビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、フタル酸ジグリシジルエーテル、ビスフェノールヘキサブロロアセトンジグリシジルエーテル、トリグリシジルイソシアヌレート、テトラグリシジルメタキシレンジアミン、クレゾールノボラックポリグリシジルエーテル等が挙げられ、1種以上を組み合わせて用いられる。
【0026】
本発明の組成物には、他の添加剤、例えば、耐衝撃性付与剤、可塑剤、安定剤、紫外線吸収剤、難燃剤、着色剤、離型剤を添加することができる。
耐衝撃性付与剤としては、ブロック共重合体、水添ブロック共重合体を単独でまたは組み合わせて使用することが出来る。ブロック共重合体としては、芳香族ビニル化合物を主体とする重合体ブロックXおよび共役ジエン化合物を主体とする重合体ブロックYとからなるブロック共重合体であり、これに水素添加反応して得られるものが水添ブロック共重合体である。各部ブロックの結合形式は、例えばX−Y、X−Y−X、X−Y−X−Y、(X−Y−)4 −Si、X−Y−X−Y−Xなどである。
【0027】
安定剤としては、亜リン酸エステル類、ヒンダードフェノール類、アルカノールアミン類、酸アミド類、ジチオカルバミン酸金属塩類、無機硫化物、金属酸化物類の中から単独でまたは組み合わせて使用することができる。
難燃剤としては、芳香族リン酸エステル、赤燐、芳香族ハロゲン化合物、三酸化アンチモン等が特に有効である。
【0028】
本発明を構成する各成分を混合する方法は通常公知の方法が用いられ、例えば、押出機、加熱ロール、バンバリーミキサー、ニーダー等を使用することが出来るが、特にサイドフィーダーを備えた押出機を用い、無機充填剤をサイドフィーダーを介して混合する方法が好ましい。
本発明の成形体を作製する方法は、通常公知である例えば溶融射出成形、加熱圧縮成形等の手法をとることが出来る。
【0029】
本発明の成形は耐熱性、耐電気特性を要求され、接着剤としてエポキシ樹脂が使用されるフライバックトランスなどのコイルボビン、パソコン用電源に用いられるバックアップ電源ボックスの一部の部品として使用される。
【0030】
【発明の実施の形態】
以下、実施例によって本発明を具体的に説明するが、本発明は以下の例に限定されるものではない。
成分(A):ポリフェニレンエーテル系樹脂
A−1 :2,6−キシレノールを酸化重合して得た還元粘度0.54のポリ フェニレンエーテル。
A−2 :2,6−キシレノールを酸化重合して得た還元粘度0.42のポリ フェニレンエーテル。
A−3 :2,6−キシレノールを酸化重合して得た還元粘度0.54のポリ フェニレンエーテル100重量部に対して、アクリル酸ステアリル2 重量部を320℃に設定したベントポート付き二軸押出機(PCM−30;池貝鉄工(株))を用いて溶融混練しアクリル酸ステアリル変性ポリフェニレンエーテル樹脂を得たもの。
A−4 :2,6−キシレノールを酸化重合して得た還元粘度0.54のポリ フェニレンエーテル100重量部に対して、無水マレイン酸1.0重量部、パーブチルD0.5重量部を均一に混合した後、二軸押出機(PCM−30;池貝鉄工(株))を用い、窒素雰囲気下で300℃にて溶融混練しマレイン酸変性ポリフェニレンエーテル樹脂を得た。該樹脂を赤外分光光度計により分析した結果、0.4重量%の無水マレイン酸が付加していた。
A−5 :ポリスチレン(旭化成工業(株)製、商品名、旭化成ポリスチレン685)
A−6 :ゴム変性ポリスチレン(旭化成工業(株)製、商品名、旭化成ポリスチレン494)
成分(B):無機充填剤
B−1 :アミノシラン処理された直径13μm、3mmチョップドストランドのガラス繊維
B−2 :ガラスフレーク(日本板硝子(株)製、商品名、CEF150A)
成分(C):硫化亜鉛
C−1 :硫化亜鉛(SACHTLEBEN CHEMIE GMBH 製;ドイツ国、商品名、Sachtolith HD)
その他の成分
HTR :ポリスチレン(1)−水素添加されたポリブタジエン−ポリスチレン(2)の構造を有し、結合スチレン量55%、数平均分子量57,000、分子量分布1.06、ポリスチレン(1)の数平均分子量16,000、ポリスチレン(2)の数平均分子量15,350、ポリブタジエン部の水素添加率が99.9%の水添ブロック共重合体。
リン系難燃剤:ビスフェノールA−ポリクレジルホスフェート:化学式(d)
(n=1〜3の混合物)
【0031】
【化3】
Figure 0003640503
【0032】
酸化チタン:TiO2 (Tioxide(株)商品名、R−TC30))
本実施例中の物性値または特性値は下記の方法により測定した。
荷重たわみ温度(DTULと略す。):ASTM D256に基づき、荷重18.6Kg/cm2 にて測定した。
耐衝撃性:4分の1インチ厚試験片を用いてASTM D638に従ってノッチ付きIZOD衝撃強さを測定した。
耐エポキシ硬化剤性:ASTM1号ダンベル試験片を曲げ歪み治具に取り付け、試験片中央部にエポキシ硬化剤を浸み込ませたガーゼを乗せる。サンプルにクラック、クレーズが発生するまでの時間を測定することにより耐エポキシ硬化剤性を評価した。測定はエポキシ硬化剤にヘキサヒドロ無水フタル酸系硬化剤を用い、360分まで測定を行った。クラック、クレーズが発生するまでの時間が長いほど、エポキシ硬化剤に対する耐性に優れる。
【0033】
【実施例1】
(A)成分のポリフェニレンエーテル系樹脂(A−1)及び(A−4)、それぞれ35重量部、3重量部、ポリスチレン系樹脂(A−5)及び(A−6)各31部、(B)成分の無機充填剤(B−1)20重量部、(C)成分の硫化亜鉛(C−1)1.5重量部をサイドフィーダー付き二軸押出機(PCM−87 池貝鉄工(株))を用い、サイドフィーダー部より無機充填剤を投入、上流のメインフィーダーより残り全ての原料を投入し300℃の温度にて溶融混練して強化樹脂組成物をペレットとして得た。このペレットを用いて290〜310℃に設定したインラインスクリュー型射出成形機に供給し、金型温度90℃または120℃の条件で試験用テストピースを射出成形した。該強化樹脂組成物の物性試験結果を表1に示す。
【0034】
【実施例2】
(A)成分、ポリフェニレンエーテル系樹脂(A−1)及び(A−4)、それぞれ60重量部、5重量部、ポリスチレン系樹脂(A−5)及び(A−6)各17.5部、(B)成分の無機充填剤(B−1)20重量部、(C)成分の硫化亜鉛(C−1)1.5重量部を実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表1に示す。
【0035】
【実施例3】
実施例2の(A−1)成分を(A−2)へ、(C)成分の硫化亜鉛(C−1)を5重量部へ代えた以外は、実施例2と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表1に示す。
【0036】
【実施例4】
実施例2の(A−1)成分を(A−3)へ、(C)成分の硫化亜鉛(C−1)を10重量部へ代えた以外は、実施例2と同様の操作により強化樹脂組成物および試験用テストピースを得た。結果を表1に示す。
【0037】
【実施例5】
実施例2の(B−1)成分を、30重量部へ代えた以外は、実施例2と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表1に示す。
【0038】
【実施例6】
(A)成分のポリフェニレンエーテル系樹脂(A−1)及び(A−4)、それぞれ60重量部、5重量部、ポリスチレン系樹脂(A−5)及び(A−6)各17.5部、(B)成分の無機充填剤(B−1)及び(B−2)を、それぞれ20重量部、10重量部、(C)成分の硫化亜鉛(C−1)1.5重量部を実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表1に示す。
【0039】
【実施例7】
(A)成分ポリフェニレンエーテル系樹脂(A−1)及び(A−4)、それぞれ60重量部、5重量部、ポリスチレン系樹脂(A−5)及び(A−6)各15部、その他の成分としてHTRを5重量部、(B)成分の無機充填剤(B−1)20重量部、(C)成分の硫化亜鉛(C−1)1.5重量部を実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表1に示す。
【0040】
【実施例8】
(A)成分、ポリフェニレンエーテル系樹脂(A−1)及び(A−4)、それぞれ55重量部、5重量部、ポリスチレン系樹脂(A−5)及び(A−6)各10部、その他の成分として、リン系難燃剤を15重量部、(B)成分の無機充填剤(B−1)、20重量部、(C)成分の硫化亜鉛(C−1)、1.5重量部を実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表1に示す。
【0041】
【比較例1】
実施例1中の(C)成分、硫化亜鉛(C−1)を、酸化チタンへ代える他は実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表2に示す。
【0042】
【比較例2】
実施例2中の(C)成分、硫化亜鉛(C−1)を、酸化チタンへ代える他は実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表2に示す。
【0043】
【比較例3】
実施例3中の(C)成分、硫化亜鉛(C−1)を、酸化チタンへ代える他は実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表2に示す。
【0044】
【比較例4】
実施例4中の(C)成分、硫化亜鉛(C−1)を、酸化チタンへ代える他は実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表2に示す。
【0045】
【比較例5】
実施例5中の(C)成分、硫化亜鉛(C−1)を、酸化チタンへ代える他は実施例1と同様の操作により強化樹脂組成物および試験用テストピースを得た。該強化樹脂組成物の物性試験結果を表2に示す。
【0046】
【表1】
Figure 0003640503
【0047】
【表2】
Figure 0003640503
【0048】
【発明の効果】
本発明の組成物、及び成形体は、従来の強化ポリフェニレンエーテル系樹脂組成物では達し得なかった高い耐エポキシ硬化剤性、耐熱性、機械物性のバランスに優れ、イグニッションコイルボビン芯材用途等、産業上有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforced resin composition and a molded article excellent in the resistance of an epoxy curing agent in structural material applications such as an ignition coil bobbin core material used in contact with an epoxy resin.
[0002]
[Prior art]
The polyphenylene ether resin is a resin having excellent characteristics such as heat resistance, electrical characteristics, acid resistance, alkali resistance and the like, and low specific gravity and low water absorption.
In recent years, reinforced resin composition materials blended with inorganic fillers, taking advantage of electrical properties and high heat resistance properties, have been used as core materials for coil bobbins of electrical parts. In the above applications, the reinforced polyphenylene ether resin composition is often used in various colors for discrimination.
[0003]
However, when a coil bobbin core material is obtained using this coloring material, the curing agent used to cure the epoxy resin that forms the periphery of the core material causes craze and cracks in the core material made of the coloring material, which is severe. In some cases, the core material could be destroyed.
Japanese Patent Application Laid-Open No. 60-233150 discloses a composition obtained by blending polyethylene terephthalate resin with glass fiber and zinc sulfide, and clearly shows superior heat resistance and mechanical properties as compared with a composition colored with titanium oxide. Has been. JP-A-6-192563 discloses a composition excellent in moldability, rigidity and dimensional stability in which an inorganic filler is blended with a polyphenylene ether resin, and further stipulates use for an ignition coil bobbin. However, in these publications and other documents, there has been no report examining the resistance of the epoxy curing agent when embedding the reinforced polyphenylene ether-based resin composition with an epoxy resin. The inventions of excellent reinforced resin compositions and reinforced polyphenylene ether resin compositions have not been achieved.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a reinforced resin composition and a reinforced polyphenylene ether resin composition that are excellent in resistance to epoxy curing agents used for curing an epoxy resin, and excellent in balance between heat resistance and mechanical properties. is there.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention. That is, according to the present invention, (A) 100 parts by weight of the polyphenylene ether resin, (B) 5 to 200 parts by weight of the inorganic filler, and (C) zinc sulfide as the white colorant in the total composition of 0.5 to 7 .7 wt% blended formed by reinforced resin composition, to a molded body and an ignition coil bobbin core molded from the composition.
[0006]
The polyphenylene ether resin used as the component (A) of the present invention is a homopolymer or copolymer of a polyphenylene ether resin having a repeating unit represented by the general formula (a) and / or (b).
[0007]
[Chemical 1]
Figure 0003640503
[0008]
(Here, R1, R2, R3, R4, R5, R6 independently represent an alkyl group having 1 to 4 carbon atoms, an aryl group, halogen, and hydrogen, provided that R1 and R2, and R5 and R6 are not hydrogen at the same time. )
Representative examples of the homopolymer of polyphenylene ether resin include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2 , 6-Diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ) Ether, poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-hydroxy) Examples include ethyl-1,4-phenylene) ether and poly (2-methyl-6-chloroethyl-1,4-phenylene) ether.
[0009]
Of these, poly (2,6-dimethyl-1,4-phenylene) ether is particularly preferred. The polyphenylene ether copolymer is a copolymer having a phenylene ether structure as a main monomer unit. Examples thereof include a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, or 2,6-dimethylphenol and 2 , 3,6-trimethylphenol and a copolymer with o-cresol.
[0010]
The method for producing a homopolymer or copolymer of a polyphenylene ether resin used in the present invention is not particularly limited, but for example, disclosed in US Pat. No. 4,788,277 (Japanese Patent Application No. 62-77570). According to the method described, 2,6-xylenol can be prepared by oxidative coupling polymerization in the presence of dibutylamine. The molecular weight and molecular weight distribution are not particularly limited as long as they satisfy the requirements of the present invention, but those having a reduced viscosity of 0.3 to 0.7 dl / g in a 30 ° C. chloroform solvent are preferably used. When the viscosity is less than 0.3 dl / g, the thermal stability tends to be poor, and when the viscosity is less than 0.7 dl / g, the moldability tends to be impaired.
[0011]
Further, the polyphenylene ether resin of the present invention includes, as a partial structure, other various phenylene ether units that have been proposed to exist in the polyphenylene ether resin as long as they do not contradict the gist of the present invention. It does not matter. Examples of those proposed to coexist in a small amount include 2- (dialkylaminomethyl) -6-methylphenylene ether described in Japanese Patent Application Nos. 63-12698 and 63-301222. And a 2- (N-alkyl-N-phenylaminomethyl) -6-methylphenylene ether unit N-allekyl-N-phenylaminomethyl) -6-methylphenylene ether unit. Also included are those in which a small amount of diphenoquinone or the like is bonded to the main chain of the polyphenylene ether resin.
[0012]
In addition, polyphenylene ether resins were modified with the following α, β unsaturated carboxylic acids or their anhydrides that are generally used to improve adhesion to fibrous reinforcing agents such as glass fibers and carbon fibers. Polyphenylene ether resins can also be included.
Examples of α, β unsaturated carboxylic acids or anhydrides thereof include maleic anhydride, phthalic acid, itaconic anhydride, glutaconic anhydride described in JP-B-49-2343, JP-B-3-52486, and the like. Citraconic anhydride, aconitic anhydride, hymic anhydride, 5-norbornene-2-methyl-2-carboxylic acid or maleic acid, fumaric acid, etc. are not limited thereto, but maleic anhydride is particularly preferred preferable.
[0013]
Reaction of α, β-unsaturated carboxylic acid such as maleic anhydride or its anhydride with polyphenylene ether resin is carried out by mixing both in the presence or absence of organic peroxide and exceeding the glass transition temperature of polyphenylene ether polymer. It can manufacture by heating to the temperature of.
In producing the reinforced polyphenylene ether resin composition of the present invention, a polyphenylene ether resin in which an α, β unsaturated carboxylic acid such as maleic anhydride or its anhydride is bonded in advance may be used, or a reinforced polyphenylene ether may be used. A method of reacting with a polyphenylene ether polymer by adding an α, β-unsaturated carboxylic acid such as maleic anhydride or an anhydride thereof simultaneously with the production of the resin composition may be used.
[0014]
Furthermore, the polyphenylene ether resin may include a polyphenylene ether resin modified with an ethylenically unsaturated compound.
In the present invention, when a large amount of an inorganic filler is contained, the molding processability tends to deteriorate, but the polyphenylene ether resin or the reinforced resin composition modified with the ethylenically unsaturated compound is used during molding flow and molding process. It is more preferable to use it because it is excellent in suppressing discoloration.
[0015]
Examples of ethylenically unsaturated compounds are methyl acrylate, ethyl, propyl, butyl, isobutyl, t-butyl, 2-ethylhexyl, octyl, isodecyl, lauryl, lauryl decyl, tridecyl, cetyl-stearyl, stearyl, cyclohexyl, Acrylic esters such as benzyl esters, methyl methacrylate, ethyl, propyl, butyl, isobutyl, t-butyl, 2-ethylhexyl, octyl, isodecyl, lauryl, lauryl decyl, tridecyl, cetyl-stearyl, stearyl, cyclohexyl, Methacrylic acid esters such as benzyl ester, acrylamide, acrylonitrile, styrene, α-methylstyrene, chlorostyrene, methylstyrene, stilbene, cinnamic alcohol, nitrile cinnamic acid , 4-vinyl pyridine, and the like. Although not limited to these, it is most preferable to use stearyl acrylate and / or styrene.
[0016]
The ethylenically unsaturated compound is blended in an amount of 0.1 to 15% by weight, more preferably 0.5 to 10% by weight with respect to 100% by weight of the polyphenylene ether resin. When the amount is less than 0.1% by weight, effects such as molding fluidity and coloring properties are reduced.
The reaction between an ethylenically unsaturated compound such as stearyl acrylate and a polyphenylene ether resin involves mixing both in the presence or absence of an organic peroxide and heating to a temperature above the glass transition temperature of the polyphenylene ether polymer. Can be manufactured.
[0017]
When producing the reinforced resin composition of the present invention, a polyphenylene ether resin bonded with an ethylenically unsaturated compound in advance may be used. At the same time as producing the reinforced resin composition, ethylenic compounds such as stearyl acrylate are used. A method of reacting with a polyphenylene ether polymer by adding an unsaturated compound may also be used.
Further, the polyphenylene ether resin of component (A) can include a mixture of polystyrene resin.
Polystyrene resin is a general formula (c)
[0018]
[Chemical formula 2]
Figure 0003640503
[0019]
(Wherein R represents hydrogen, lower alkyl or halogen, Z is selected from the group consisting of vinyl, hydrogen, halogen and lower alkyl, and p is an integer of 0 to 5). A homopolymer composed of 50% by weight or more of a monomer unit or a copolymer with another copolymerizable vinyl monomer or rubber polymer. Specific examples of these homopolymers include: , Styrene, α-methylstyrene, 2,4-dimethylstyrene, monochlorostyrene, p-methylstyrene, p-tert-butylstyrene, ethylstyrene and the like. Other vinyl monomers that can be copolymerized with aromatic vinyl monomers include methacrylic esters such as methyl methacrylate and ethyl methacrylate, acid anhydrides such as maleic anhydride, and rubber. Examples of the polymer include conjugated diene rubbers, copolymers of conjugated dienes and aromatic vinyl compounds, and ethylene-propylene copolymer rubbers.
[0020]
In the component (A), the polyphenylene ether resin and the polystyrene resin can be blended at an arbitrary ratio, but the blending ratio is usually 1 to 99 polystyrene resins with respect to 99 to 1 part by weight of the polyphenylene ether resin. Parts by weight, preferably 15 to 80 parts by weight of polystyrene resin with respect to 85 to 20 parts by weight of polyphenylene ether resin.
[0021]
The kind of the inorganic filler used for the component (B) of the present invention is any of those conventionally used as a reinforcing agent for thermoplastic resins, such as inorganic salts, glass, carbon, metal, ceramics, etc. These can be selected and used as appropriate according to the required characteristics. Further, the form may be any of powder, granule, fiber, whisker and the like. For example, when low dimensional anisotropy is required, glass beads and glass flakes are used. When high rigidity and high impact resistance are required, glass fibers and whiskers are used for the purpose of imparting electrical conductivity to metal fibers. When high specific gravity is required, it is preferable to select and use iron oxide.
[0022]
One kind of inorganic filler may be used, or two or more kinds may be used in combination, and surface treatment or focusing with a silane coupling agent may be performed as desired within the range not impairing the object of the present invention. What gave the bundling process by an agent can also be used.
It is essential that the inorganic filler is blended at a ratio of 5 to 200 parts by weight with respect to 100 parts by weight of the total amount of the basic resin components. If the blending amount is less than 5 parts by weight, the effect of improving the rigidity and dimensional accuracy is insufficient, and if it exceeds 200 parts by weight, the amount of resin for joining between the fillers is insufficient, and the mechanical strength is significantly reduced. To do.
[0023]
Zinc sulfide used in the component (C) of the present invention, in order to color the reinforced resin composition of the present invention to chromatic, used in place of titanium oxide have been used conventionally generally required for coloring purposes Can be used in any amount. Usually, it is 0.5 to 5% by weight, preferably 0.5 to 3% by weight. Zinc sulfide generally has an average particle diameter of 0.2 to 0.5 μm, and is coated with an organic surfactant to improve wettability and dispersion characteristics. Furthermore, there is no restriction | limiting in particular in a manufacturing method and a shape, The thing conventionally used as a coloring agent or stabilizer of a thermoplastic resin and a thermosetting resin can be used. Moreover, other metal sulfides such as barium sulfate and other metal oxides such as zinc oxide may be included as impurities in the component.
[0024]
Examples of the epoxy curing agent in which the reinforced resin composition and the molded body of the present invention are resistant include epoxy curing agents such as acid anhydrides, imidazole compounds, and BF 3 complexes that are generally used for electrical parts and electrical insulating materials. Can do. Examples of acid anhydrides include phthalic anhydride, pyromellitic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, and imidazole compounds include imidazole and 2-methylimidazole. The BF 3 complex is a boron trifluoride ethylamine complex, and is particularly effective for an acid anhydride type epoxy curing agent.
[0025]
The reason why the composition containing zinc sulfide of the present invention is resistant to the epoxy curing agent is unknown at present, but some weak chemical bond may be formed.
Examples of applicable epoxy resins include bisphenol A diglycidyl ether, hexahydrobisphenol A diglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, and polypropylene glycol diglycidyl. Ether, neopentyl glycol diglycidyl ether, phthalic acid diglycidyl ether, bisphenol hexabroacetone diglycidyl ether, triglycidyl isocyanurate, tetraglycidyl metaxylenediamine, cresol novolac polyglycidyl ether, etc. Used.
[0026]
Other additives such as an impact resistance imparting agent, a plasticizer, a stabilizer, an ultraviolet absorber, a flame retardant, a colorant, and a release agent can be added to the composition of the present invention.
As the impact resistance-imparting agent, a block copolymer or a hydrogenated block copolymer can be used alone or in combination. The block copolymer is a block copolymer composed of a polymer block X mainly composed of an aromatic vinyl compound and a polymer block Y mainly composed of a conjugated diene compound, and obtained by hydrogenation reaction thereto. What is a hydrogenated block copolymer. The combination form of each block is, for example, XY, XYX, XYXY, (XY) 4 -Si, XYXYX, or the like.
[0027]
As a stabilizer, phosphites, hindered phenols, alkanolamines, acid amides, dithiocarbamic acid metal salts, inorganic sulfides, metal oxides can be used alone or in combination. .
As the flame retardant, aromatic phosphate ester, red phosphorus, aromatic halogen compound, antimony trioxide and the like are particularly effective.
[0028]
As a method of mixing each component constituting the present invention, a generally known method is used. For example, an extruder, a heating roll, a Banbury mixer, a kneader, and the like can be used, and in particular, an extruder equipped with a side feeder is used. The method of using and mixing an inorganic filler through a side feeder is preferable.
As a method for producing the molded article of the present invention, generally known techniques such as melt injection molding and heat compression molding can be employed.
[0029]
The molding of the present invention requires heat resistance and electric resistance characteristics, and is used as a part of a coil bobbin such as a flyback transformer and an electric power source for a personal computer that use an epoxy resin as an adhesive.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following examples.
Component (A): Polyphenylene ether resin A-1: Polyphenylene ether having a reduced viscosity of 0.54 obtained by oxidative polymerization of 2,6-xylenol.
A-2: Polyphenylene ether having a reduced viscosity of 0.42 obtained by oxidative polymerization of 2,6-xylenol.
A-3: Biaxial extrusion with vent port in which 2 parts by weight of stearyl acrylate was set at 320 ° C. with respect to 100 parts by weight of polyphenylene ether having a reduced viscosity of 0.54 obtained by oxidative polymerization of 2,6-xylenol Obtained by melt kneading using a machine (PCM-30; Ikegai Iron Works Co., Ltd.) to obtain a stearyl acrylate modified polyphenylene ether resin.
A-4: 1.0 part by weight of maleic anhydride and 0.5 part by weight of perbutyl D were uniformly added to 100 parts by weight of polyphenylene ether having a reduced viscosity of 0.54 obtained by oxidative polymerization of 2,6-xylenol. After mixing, a maleic acid-modified polyphenylene ether resin was obtained by melt-kneading at 300 ° C. under a nitrogen atmosphere using a twin screw extruder (PCM-30; Ikegai Iron Works Co., Ltd.). As a result of analyzing the resin with an infrared spectrophotometer, 0.4% by weight of maleic anhydride was added.
A-5: Polystyrene (Asahi Kasei Kogyo Co., Ltd., trade name, Asahi Kasei Polystyrene 685)
A-6: Rubber-modified polystyrene (Asahi Kasei Kogyo Co., Ltd., trade name, Asahi Kasei Polystyrene 494)
Component (B): Inorganic filler B-1: Aminosilane-treated diameter 13 μm, 3 mm chopped strand glass fiber B-2: Glass flake (manufactured by Nippon Sheet Glass Co., Ltd., trade name, CEF150A)
Component (C): Zinc sulfide C-1: Zinc sulfide (manufactured by SACHTLEBEN CHEMIE GMBH; Germany, trade name, Sachtolith HD)
Other components HTR: Polystyrene (1) -hydrogenated polybutadiene-polystyrene (2) structure, bound styrene content 55%, number average molecular weight 57,000, molecular weight distribution 1.06, polystyrene (1) A hydrogenated block copolymer having a number average molecular weight of 16,000, a number average molecular weight of polystyrene (2) of 15,350, and a hydrogenation rate of the polybutadiene portion of 99.9%.
Phosphorus flame retardant: bisphenol A-polycresyl phosphate: chemical formula (d)
(Mixture of n = 1 to 3)
[0031]
[Chemical 3]
Figure 0003640503
[0032]
Titanium oxide: TiO 2 (Tioxide (Ltd.) Product Name, R-TC30))
The physical property values or characteristic values in the examples were measured by the following methods.
Deflection temperature under load (abbreviated as DTUL): Measured at a load of 18.6 kg / cm 2 based on ASTM D256.
Impact resistance: Notched IZOD impact strength was measured according to ASTM D638 using a quarter inch thick specimen.
Epoxy curing agent resistance: ASTM No. 1 dumbbell test piece is attached to a bending strain jig, and gauze impregnated with an epoxy curing agent is placed on the center of the test piece. The epoxy hardener resistance was evaluated by measuring the time until cracks and crazes were generated in the sample. The measurement was performed up to 360 minutes using a hexahydrophthalic anhydride-based curing agent as the epoxy curing agent. The longer the time until cracks and crazes are generated, the better the resistance to the epoxy curing agent.
[0033]
[Example 1]
(A) component polyphenylene ether resins (A-1) and (A-4), 35 parts by weight, 3 parts by weight, polystyrene resins (A-5) and (A-6), respectively 31 parts, (B ) Component inorganic filler (B-1) 20 parts by weight, component (C) zinc sulfide (C-1) 1.5 parts by weight twin screw extruder with side feeder (PCM-87 Ikekai Tekko Co., Ltd.) The reinforced resin composition was obtained as pellets by introducing an inorganic filler from the side feeder portion and all the remaining raw materials from the upstream main feeder and melting and kneading at a temperature of 300 ° C. Using the pellets, the pellets were supplied to an in-line screw type injection molding machine set at 290 to 310 ° C., and a test piece for test was injection molded under the conditions of a mold temperature of 90 ° C. or 120 ° C. The physical property test results of the reinforced resin composition are shown in Table 1.
[0034]
[Example 2]
(A) component, polyphenylene ether resins (A-1) and (A-4), 60 parts by weight and 5 parts by weight, respectively, polystyrene resins (A-5) and (A-6) 17.5 parts, (B) 20 parts by weight of the inorganic filler (B-1) and 1.5 parts by weight of the (C) component zinc sulfide (C-1) were subjected to the same operation as in Example 1 for the reinforced resin composition and the test. I got a test piece. The physical property test results of the reinforced resin composition are shown in Table 1.
[0035]
[Example 3]
Reinforced resin by the same operation as in Example 2 except that the component (A-1) in Example 2 was changed to (A-2) and the zinc sulfide (C-1) as the component (C) was changed to 5 parts by weight. A composition and test piece for testing were obtained. The physical property test results of the reinforced resin composition are shown in Table 1.
[0036]
[Example 4]
Reinforced resin by the same operation as in Example 2 except that the component (A-1) in Example 2 was changed to (A-3) and the zinc sulfide (C-1) as the component (C) was changed to 10 parts by weight. A composition and test piece for testing were obtained. The results are shown in Table 1.
[0037]
[Example 5]
A reinforced resin composition and a test piece for testing were obtained by the same operation as in Example 2, except that the component (B-1) in Example 2 was changed to 30 parts by weight. The physical property test results of the reinforced resin composition are shown in Table 1.
[0038]
[Example 6]
(A) component polyphenylene ether resins (A-1) and (A-4), 60 parts by weight and 5 parts by weight, respectively, polystyrene resins (A-5) and (A-6) 17.5 parts, Examples (B) Component inorganic fillers (B-1) and (B-2) are 20 parts by weight and 10 parts by weight, respectively, and (C) component zinc sulfide (C-1) is 1.5 parts by weight. A reinforced resin composition and a test piece for testing were obtained by the same operation as in 1. The physical property test results of the reinforced resin composition are shown in Table 1.
[0039]
[Example 7]
(A) Component Polyphenylene ether resins (A-1) and (A-4), 60 parts by weight, 5 parts by weight, polystyrene resins (A-5) and (A-6) 15 parts each, other components In the same manner as in Example 1, 5 parts by weight of HTR, 20 parts by weight of inorganic filler (B-1) as component (B) and 1.5 parts by weight of zinc sulfide (C-1) as component (C) A reinforced resin composition and a test piece for testing were obtained. The physical property test results of the reinforced resin composition are shown in Table 1.
[0040]
[Example 8]
Component (A), polyphenylene ether resins (A-1) and (A-4), 55 parts by weight, 5 parts by weight, 10 parts each of polystyrene resins (A-5) and (A-6), other As component, phosphorus flame retardant 15 parts by weight, (B) component inorganic filler (B-1), 20 parts by weight, (C) component zinc sulfide (C-1), 1.5 parts by weight A reinforced resin composition and a test piece for testing were obtained by the same operation as in Example 1. The physical property test results of the reinforced resin composition are shown in Table 1.
[0041]
[Comparative Example 1]
A reinforced resin composition and a test piece for testing were obtained in the same manner as in Example 1 except that the component (C) in Example 1 and zinc sulfide (C-1) were replaced with titanium oxide. Table 2 shows the physical property test results of the reinforced resin composition.
[0042]
[Comparative Example 2]
A reinforced resin composition and a test piece for testing were obtained by the same operation as in Example 1 except that the component (C) in Example 2 and zinc sulfide (C-1) were replaced with titanium oxide. Table 2 shows the physical property test results of the reinforced resin composition.
[0043]
[Comparative Example 3]
A reinforced resin composition and a test piece for testing were obtained in the same manner as in Example 1 except that the component (C) in Example 3 and zinc sulfide (C-1) were replaced with titanium oxide. Table 2 shows the physical property test results of the reinforced resin composition.
[0044]
[Comparative Example 4]
A reinforced resin composition and a test piece for testing were obtained in the same manner as in Example 1 except that the component (C) in Example 4 and zinc sulfide (C-1) were replaced with titanium oxide. Table 2 shows the physical property test results of the reinforced resin composition.
[0045]
[Comparative Example 5]
A reinforced resin composition and a test piece for testing were obtained in the same manner as in Example 1 except that the component (C) and zinc sulfide (C-1) in Example 5 were replaced with titanium oxide. Table 2 shows the physical property test results of the reinforced resin composition.
[0046]
[Table 1]
Figure 0003640503
[0047]
[Table 2]
Figure 0003640503
[0048]
【The invention's effect】
The composition and molded body of the present invention are excellent in the balance of high epoxy hardener resistance, heat resistance, and mechanical properties that could not be achieved by conventional reinforced polyphenylene ether resin compositions, and used for ignition coil bobbin core materials, etc. It is useful above.

Claims (6)

(A)ポリフェニレンエーテル系樹脂100重量部に対し、(B)無機質充填剤5〜200重量部、(C)白色着色剤として硫化亜鉛を全組成物中0.5〜7.7重量%配合してなる強化樹脂組成物。  (A) To 100 parts by weight of polyphenylene ether resin, (B) 5 to 200 parts by weight of inorganic filler, and (C) 0.5 to 7.7% by weight of zinc sulfide as a white colorant in the total composition. A reinforced resin composition. 無機質充填剤が、ガラス繊維、またはガラス繊維およびガラスフレークである請求項1記載の強化樹脂組成物。  The reinforced resin composition according to claim 1, wherein the inorganic filler is glass fiber, or glass fiber and glass flake. (A)成分のポリフェニレンエーテル系樹脂が、エチレン性不飽和化合物により変性されたポリフェニレンエーテル系樹脂である請求項1又は2記載の強化樹脂組成物。  The reinforced resin composition according to claim 1 or 2, wherein the polyphenylene ether resin of component (A) is a polyphenylene ether resin modified with an ethylenically unsaturated compound. エチレン性不飽和化合物がアクリル酸ステアリルまたはスチレンである請求項記載の強化樹脂組成物。The reinforced resin composition according to claim 3 , wherein the ethylenically unsaturated compound is stearyl acrylate or styrene. 酸無水物、イミダゾール化合物およびBF錯体の1種以上のエポキシ硬化剤を用いるエポキシ樹脂と接着された、請求項1〜4のいずれかに記載の強化樹脂組成物から成形された成形Acid anhydrides, imidazole compounds and bonded with epoxy resin to use at least one epoxy curing agent of the BF 3 complex, moldings molded from the reinforced resin composition according to any one of claims 1 to 4. 酸無水物、イミダゾール化合物およびBFAcid anhydride, imidazole compound and BF 3 錯体の1種以上のエポキシ硬化剤を用いるエポキシ樹脂と接着された、請求項1〜4のいずれかに記載の強化樹脂組成物から成形されたイグニッションコイルボビン芯材。An ignition coil bobbin core material molded from the reinforced resin composition according to any one of claims 1 to 4, which is adhered to an epoxy resin using at least one epoxy curing agent of a complex.
JP16292897A 1997-06-19 1997-06-19 Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof Expired - Lifetime JP3640503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16292897A JP3640503B2 (en) 1997-06-19 1997-06-19 Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16292897A JP3640503B2 (en) 1997-06-19 1997-06-19 Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof

Publications (2)

Publication Number Publication Date
JPH115895A JPH115895A (en) 1999-01-12
JP3640503B2 true JP3640503B2 (en) 2005-04-20

Family

ID=15763906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16292897A Expired - Lifetime JP3640503B2 (en) 1997-06-19 1997-06-19 Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof

Country Status (1)

Country Link
JP (1) JP3640503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128335A (en) * 2002-10-04 2004-04-22 Asahi Kasei Chemicals Corp Ignition coil bobbin
JP5027576B2 (en) * 2007-07-06 2012-09-19 京セラケミカル株式会社 High voltage transformer and manufacturing method thereof
JP5278164B2 (en) * 2009-05-25 2013-09-04 三菱エンジニアリングプラスチックス株式会社 Ignition coil parts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957044A (en) * 1972-06-02 1974-06-03
JPS60233150A (en) * 1984-05-07 1985-11-19 Mitsubishi Rayon Co Ltd Glass-fiber reinforced polyethylene terephthalate based resin composition colored to white
JPS61158116A (en) * 1984-12-29 1986-07-17 Asahi Chem Ind Co Ltd Resin sealed transformer
JPS63258950A (en) * 1987-02-17 1988-10-26 ゼネラル・エレクトリック・カンパニイ Polyphenylene ether composition having improved adhesiveness to epoxy resin
JPH03163164A (en) * 1989-09-07 1991-07-15 Basf Ag Filled thermoplastic resin
JPH04353536A (en) * 1991-05-30 1992-12-08 Idemitsu Petrochem Co Ltd Glass-fiber reinforced resin composition
JPH0797442A (en) * 1993-09-28 1995-04-11 Asahi Chem Ind Co Ltd Modified polyphenylene ether resin
JPH07173381A (en) * 1993-12-20 1995-07-11 Asahi Chem Ind Co Ltd Polyphenylene ether resin composition
JPH07196869A (en) * 1994-01-05 1995-08-01 Mitsubishi Gas Chem Co Inc Discoloration-proof antibacterial resin composition
JPH08115588A (en) * 1994-10-17 1996-05-07 Asahi Chem Ind Co Ltd Structural parts of cd-rom made of modified ppe resin excellent in dimensional precision

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957044A (en) * 1972-06-02 1974-06-03
JPS60233150A (en) * 1984-05-07 1985-11-19 Mitsubishi Rayon Co Ltd Glass-fiber reinforced polyethylene terephthalate based resin composition colored to white
JPS61158116A (en) * 1984-12-29 1986-07-17 Asahi Chem Ind Co Ltd Resin sealed transformer
JPS63258950A (en) * 1987-02-17 1988-10-26 ゼネラル・エレクトリック・カンパニイ Polyphenylene ether composition having improved adhesiveness to epoxy resin
JPH03163164A (en) * 1989-09-07 1991-07-15 Basf Ag Filled thermoplastic resin
JPH04353536A (en) * 1991-05-30 1992-12-08 Idemitsu Petrochem Co Ltd Glass-fiber reinforced resin composition
JPH0797442A (en) * 1993-09-28 1995-04-11 Asahi Chem Ind Co Ltd Modified polyphenylene ether resin
JPH07173381A (en) * 1993-12-20 1995-07-11 Asahi Chem Ind Co Ltd Polyphenylene ether resin composition
JPH07196869A (en) * 1994-01-05 1995-08-01 Mitsubishi Gas Chem Co Inc Discoloration-proof antibacterial resin composition
JPH08115588A (en) * 1994-10-17 1996-05-07 Asahi Chem Ind Co Ltd Structural parts of cd-rom made of modified ppe resin excellent in dimensional precision

Also Published As

Publication number Publication date
JPH115895A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
EP1508595B1 (en) Polyphenylene sulfide resin composition
DE3922739A1 (en) REINFORCED COLORED THERMOPLASTIC MOLDS BASED ON POLYPHENYLENE ETHERS AND POLYAMIDES
EP0360544A2 (en) Thermoplastic resinous composition
JP3640503B2 (en) Reinforced resin composition having excellent resistance to epoxy curing agent and molded article thereof
JP2008007663A (en) Resin composition
JP3306935B2 (en) Thermoplastic resin composition
JP4173377B2 (en) Resin composition
JP3264468B2 (en) Impact resistant polystyrene resin composition
JP4535469B2 (en) Titanium dioxide-containing resin composition
EP0432641A2 (en) Reinforced polyphenylene ether resin compositions having improved melt flow
WO2020138199A1 (en) Polystyrene resin composition
JP4907868B2 (en) Polyphenylene ether resin composition
JPH03153757A (en) Polyphenylene sulfide resin composition
EP1699863B1 (en) Lead free solder friendly thermoplastic blends and methods of manufacture thereof
JPH06200147A (en) Polyphenylene ether-based resin composition
JP2593532B2 (en) Method for producing thermoplastic polyester resin composition
EP0605197A2 (en) Polyether-imide resin compositions
KR100550932B1 (en) Polyphenylene ether resin composition
JP2024010606A (en) Reinforced polyphenylene ether-based resin composition and automobile peripheral part
KR20030050183A (en) Syndiotactic Polystyrene Resin Composition with Improved Impact Strength
JP3812612B2 (en) Polyphenylene ether resin composition that resists photo-discoloration
JPH0532880A (en) Thermoplastic resin composition
JP4402257B2 (en) Polyphenylene ether resin composition
KR100581838B1 (en) Mineral component reinforced polyphenylene ether thermoplastic resin composition
JPH11106642A (en) New polymer blend

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term