JP2004128335A - Ignition coil bobbin - Google Patents

Ignition coil bobbin Download PDF

Info

Publication number
JP2004128335A
JP2004128335A JP2002292582A JP2002292582A JP2004128335A JP 2004128335 A JP2004128335 A JP 2004128335A JP 2002292582 A JP2002292582 A JP 2002292582A JP 2002292582 A JP2002292582 A JP 2002292582A JP 2004128335 A JP2004128335 A JP 2004128335A
Authority
JP
Japan
Prior art keywords
resin
coil bobbin
ignition coil
carbon dioxide
amorphous resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292582A
Other languages
Japanese (ja)
Other versions
JP2004128335A5 (en
Inventor
Satoshi Uchida
内田 悟志
Shigeki Katayama
片山 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Original Assignee
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Asahi Chemical Co Ltd filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002292582A priority Critical patent/JP2004128335A/en
Publication of JP2004128335A publication Critical patent/JP2004128335A/en
Publication of JP2004128335A5 publication Critical patent/JP2004128335A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ignition coil bobbin wherein residual strain is reduced and that is small in thickness and long in size. <P>SOLUTION: The ignition coil bobbin for vehicle ignition can be obtained by allowing carbon dioxide of 0.2wt% or more to be dissolved/absorbed in/by an amorphous resin composition with a specific glass transition temperature and injecting/molding it by a mold cavity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はエンジン用点火コイル装置のコイルボンビン関する。
【0002】
【従来の技術】
イグニッション・コイル・ボビンとは、エンジンの点火プラグに使用されているエンジン用点火コイル装置に於いて、内部にセンターコアを配置され外側に二次コイルが巻き付けられ、その全体を軟質エポキシ樹脂(可撓性エポキシ)が充填されている、細長円筒形状の非晶性樹脂成形品を意味する。
例えば特開2000−012357号にペンシルタイプのイグニッションコイルについて開示されている(例えば、特許文献1参照。)。この技術ではガラス繊維30%以上を含んだ変性ポリフェニレンエーテル樹脂が好適であるとされているが、かかる高耐熱の樹脂は、一般に溶融粘度が高く、樹脂充填時に高い圧力を必要とするため、イグニッション・コイル・ボビンのような薄肉成形品の製造時には射出成形が困難な場合があり、充填不足やヒケなどの原因となる。更に高い樹脂圧力で成形できたとしても、成形品内に残留歪みを残すことが多く、反りなどの変形を起こす事がある。またその後の組立工程に於いても、接着剤やエポキシ封止剤の薬品影響を受け、成形品に割れが発生する事がある。また、使用時に於ける温度変化に伴う他の部品との線膨張の異差より熱歪みが生じ成形品に割れが発生する事がある。
【0003】
耐熱性非晶性樹脂は、結晶性樹脂と比較して溶融粘度が高く、このため、成形が非常に劣り、ニッション・コイル・ボビンの薄肉化を困難にしている。イグニッション・コイル・ボビンの薄肉化および長尺化を可能とするためには、成形方法または溶融粘度を低下させた樹脂組成物により成形性を改良し、イグニション・コイル・ボビンの薄肉化を促進する技術が求められている。
結晶性樹脂はガラス繊維などの強化充填剤を添加することにより、融点とほぼ同等の熱変形温度を得ることができるが、一般的にガラス転移点温度が低く、ガラス転移点を越えた温度環境下では、荷重による負荷により変形を生じ、更に高温下で再結晶化による収縮によりイグニッション・コイル・ボビンに必要な使用環境下での寸法安定性を得ることは容易でない。
【0004】
成形性が劣る高耐熱変性PPEによる薄肉成形品であるイグニッション・コイル・ボビンの製造方法として、高速射出成形等の新たな成形方法が提案されている。高速射出成形法は、非晶性樹脂を高速で射出することにより、金型からの冷却による溶融粘度上昇を防ぐと共に高いせん断速度で溶融粘度を低下させ、圧力分布の差を小さくする効果がある。また、射出時間の減少効果と生産性も良くなるが、高速射出により、バリの発生と金型キャビティ端部のガス溜まりでの断熱圧縮や樹脂の流動時の剪断発熱による樹脂ヤケの恐れがある。
【0005】
射出成形条件によらず、非晶性樹脂の溶融粘度を低下させる樹脂改質手段としては、樹脂の分子量を低下させる、樹脂に可塑化成分を添加する等の手法等が一般にとられるが、樹脂の分子量低下は、機械的強度と耐薬品性に影響が大きく、可塑剤成分の添加は成形時の金型表面への可塑剤成分の付着等の問題が懸念される。
一方、多くの文献に示されるように、二酸化炭素を樹脂に吸収させると、樹脂の可塑剤として働き、ガラス転移温度を低下させることが知られているが、樹脂の成形加工に広く応用されるには至っていない(例えば、非特許文献1。)。
【0006】
また、二酸化炭素や窒素などのガスを熱可塑性樹脂中に含ませ、キャビティ内のガスを除去しながら該樹脂をキャビティに充填することで、熱可塑性樹脂の流動性を向上させ、強度や外観低下のない成形品を得る方法が示されている(例えば、特許文献2参照。)。しかし、この方法は、ガスに二酸化炭素を使用した場合、最大でも約0.18重量%と樹脂中に含まれるガスの量が少なく、十分な流動性向上の効果を得ることは難しく、高い寸法精度と寸法安定性を得ることは難しいといえる。
【0007】
また、熱可塑性樹脂の射出成形において、二酸化炭素を0.2重量%以上溶解して粘度低下させた溶融樹脂を、あらかじめ金型キャビティを溶融樹脂のフローフロントで発泡が起きない圧力以上にガスで加圧状態にして、金型キャビティに射出する方法が示されている(例えば、特許文献3参照。)。(以下、カウンター圧力と略す)
また同時に樹脂を金型キャビティへ充填した後、樹脂を加圧保持する工程を有するが、その際の圧力(以下「保圧」という)は、射出ピーク圧力の30%未満であると、成形品の任意断面において発泡部分が形成され、機械的強度および電気特性の低下が懸念される。成形品に発泡部分が形成されることを抑制するためには、射出ピーク圧力の50%以上の範囲が好ましく。更に好ましくは70%以上の範囲であり、最も好ましくは90%以上の範囲にあることである。
【0008】
更に保圧時間は限定されるものではないが、極端に保圧時間が短い場合、金型キャビティに充填する以前に熱可塑性樹脂に混合された二酸化炭素が膨張することにより、成形品に膨れ現象が発生する恐れがあるため好ましくない。熱可塑性樹脂の種類および成形条件により適正な保圧時間は異なるが、ゲート部分の溶融した樹脂が固化温度以下に冷却されるまでの時間、いわゆるゲートシール時間となるまでの保圧時間が必要である。
【0009】
【特許文献1】
特開2000−12357号公報
【特許文献2】
特開平5−318541号公報
【特許文献3】
WO98/52734号公報
【非特許文献1】
J.Appl.Polym.Sci.,Vol.30,2633(1985)など、
【0010】
【発明が解決しようとする課題】
本発明は、薄肉成形品であるイグニッション・コイル・ボビンの機能を向上させるため、また、その新たな製品設計に対応するための非晶性樹脂組成物の成形方法を提供することを課題とする。
具体的には、非晶性樹脂により製造されるイグニッション・コイル・ボビンに於いて、残留ひずみを低減して、その結果、薬品影響や冷熱サイクルの耐久性が向上し、製品の生産及び使用環境等の問題を解決するとともに、成形品の成形条件及び樹脂物性に依存する成形品の薄肉化および長尺化などの設計自由度を高めることを課題とする。
【0011】
【課題を解決するための手段】
本発明者らは、イグニッション・コイル・ボビンに要求されるガラス転移点温度が160℃で、且つ薄肉流動性を向上させ、製品の残留歪みを低減する事に良好である技術を見出した。
即ち本発明は、
1. 非晶性樹脂組成物に、0.2重量%以上の二酸化炭素を溶解または吸収させた後、金型キャビティに射出成形することにより得られることを特徴とする、自動車点火用イグニッション・コイル・ボビン、
2. 非晶性樹脂組成物のガラス転移温度が、160℃以上であることを特徴とする請求項1に記載の自動車点火用イグニッション・コイル・ボビン、
3. 非晶性樹脂組成物が、ポリフェニレンエーテル系樹脂であることを特徴とする、請求項1に記載のイグニッション・コイル・ボビン、
4. 非晶性樹脂が、少なくとも非晶性樹脂成分と無機系及び/または有機系充填材から構成されていることを特徴とする請求項1〜3のいずれかに記載のイグニッション・コイル・ボビン、
5. 射出成形機の加熱筒内、成形機のノズル部、金型と成形機ノズル部分の間のいずれかの位置に二酸化炭素の供給のための設備を設けることにより溶融状態の該非晶性樹脂に二酸化炭素を混合させ、成形することを特徴とするイグニッション・コイル・ボビンの製造法、
である。
【0012】
本発明について、以下に具体的に説明する。
本発明においてイグニッション・コイル・ボビンとは、エンジンの点火プラグに使用されているエンジン用点火コイル装置に於いて、内部にセンターコアを配置され外側に二次コイルが巻き付けられ、その全体を軟質エポキシ樹脂(可撓性エポキシ)が充填されている、細長円筒形状の非晶性樹脂成形品を意味する。
本発明に用いられる非晶性樹脂組成物は、成形収縮率が小さく、成形後の後収縮による寸法変化が少ない非結晶性樹脂組成物であることが好ましい。具体的には、ポリフェニレンエーテル系樹脂(PPEと略することがある)、高耐熱ポリカーボネート系樹脂(PCと略することがある)、ポリエーテルイミド樹脂(PEIと略することがある)、ポリエーテルスルフォン(PESと略することがある)、ポリエーテルエーテルケトン樹脂(PEEKと略することがある)などの非結晶性樹脂であることが好ましい。ポリフェニレンエーテル系樹脂とは、式(1)の構造単位からなる、ホモ重合体および共重合体の少なくとも1つである。
【0013】
【化1】

Figure 2004128335
【0014】
〔式中、Oは酸素原子、Rは、それぞれ独立して、水素、ハロゲン、第一級もしくは第二級の低級アルキル、フェニル、ハロアルキル、アミノアルキル、炭化水素オキシ、又はハロ炭化水素オキシ(但し、少なくとも2個の炭素原子がハロゲン原子と酸素原子を隔てている)を表わす。〕
【0015】
本発明のポリフェニレンエーテル系樹脂の具体的な例としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−エチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−フェニル−1,4−フェニレンエーテル)、ポリ(2,6−ジクロロ−1,4−フェニレンエーテル)等が挙げられ、さらに2,6−ジメチルフェノールと他のフェノール類との共重合体(例えば、特公昭52−17880号公報に記載されてあるような2,3,6−トリメチルフェノールとの共重合体や2−メチル−6−ブチルフェノールとの共重合体)のごときポリフェニレンエーテル共重合体も挙げられる。これらの中でも特に好ましいポリフェニレンエーテル系樹脂としては、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体、またはこれらの混合物である。
【0016】
本発明で用いるポリフェニレンエーテル系樹脂の製造方法は公知の方法で得られるものであれば特に限定されるものではなく、例えば、米国特許第3306874号明細書、同第3306875号明細書、同第3257357号明細書及び同第3257358号明細書、特開昭50−51197号公報、特公昭52−17880号公報及び同63−152628号公報等に記載された製造方法等が挙げられる。
本発明のポリフェニレンエーテル系樹脂は、ポリフェニレンエーテル樹脂とポリスチレンの混合物を含み、一般にガラス転移点温度はこの両者の比率により決まり、ガラス転移温度が160℃以上の場合は、ポリフェニレンエーテル成分が50%以上である事が好ましい。
一方本発明で好ましいポリスチレンとしては、GPポリスチレン、ハイインパクトポリスチレン、シンジオタックポリスチレンが上げられ、いずれも任意の比率でポリフェニレンエーテルと完全に相溶する樹脂である。
【0017】
なかでも電気特性、機械的特性、コスト等の性能から、特に末端変性PPE系樹脂が特に好ましい。該末端変性は、無水マレイン酸、マレイン酸、フマル酸、フェニルマレイミド、イタコン酸、グリシジルメタクリレート、グリシジルアクリレート、ステアリルアクリレートなどが挙げられ、中でも無水マレイン酸が好ましい。
本発明の高耐熱ポリカーボネート系樹脂とは、芳香族系ポリカーボネートのうち、そのジヒドロキシ化合物が芳香環のみで構成された高融点で、ガラス転移温度が160℃以上のものをさし、例えば、「ポリカーボネート樹脂 23〜31頁、1992年発行 発行所 日刊工業新聞社」に記載されている。
【0018】
本発明の非晶性樹脂組成物には、通常使用する添加剤、例えば、ガラス繊維等の強化材、無機充填材、耐衝撃向上用エラストマー、酸化防止剤、離型剤、滑剤、熱安定剤、耐光性安定剤、着色剤、などを必要に応じて1種類以上添加することができる。
本発明において、該非晶性樹脂組成物は、ガラス転移温度が160℃以上であることを特徴とする。ガラス転移温度が150℃未満であると、イグニッション・コイル・ボビンの使用環境下における耐熱性や寸法の長期安定性を満足できないため好ましくない。
【0019】
本発明において、イグニッション・コイル・ボビンは、ガラス転移温度が160℃以上である非晶性樹脂組成物により成形されるが、ガラス転移温度が160℃以上である非晶性樹脂組成物は、一般に溶融時の粘度が高い傾向にある。このため、目的の形状や、金型構造によっては、樹脂充填時の樹脂圧が高くなる恐れがある。さらに、充填不足などの成形不良の原因となるほか、高圧で充填されるため、成形品には内部ひずみが残留しやすく、その結果、成形後に反りなどの変形を生じやすい。
【0020】
尚、本発明において用いる、ガラス転移温度は、ISO 11357−2(DSC法)にて定義される。
本発明においては、非晶性樹脂組成物に0.2重量%以上の二酸化炭素を溶解または吸収させ、流動性を向上及び固化温度の低下をはかることによって、金型キャビティへの充填時に樹脂圧の上昇を抑え、複雑な形状の薄肉コイルボビンを成形することを可能とする。
本発明の非晶性樹脂組成物には、必要に応じて、該非晶性樹脂組成物に対して0.2重量%以上の二酸化炭素を溶解または吸収し、射出成形するが、0.2重量%未満では十分な流動性向上の効果を得ることが難しく、従来の射出成形法に比べ、十分な寸法精度と寸法安定性を得ることは困難であるため、効果的でない。
【0021】
本発明において、非晶性樹脂組成物に0.2重量%以上の二酸化炭素を溶解または吸収させる方法としては、射出成形機の加熱筒内、成形機のノズル部、金型と成形機ノズル部分の間のいずれかの位置に二酸化炭素の供給のための設備を設けることにより溶融状態の該非晶性樹脂に二酸化炭素を混合させる方法のほか、予め溶融状態にある非晶性樹脂に二酸化炭素を混合した状態で樹脂ペレットを造粒し、これを用いて射出成形する方法、予め密閉容器中で樹脂ペレットに二酸化炭素を吸収させる方法などを挙げることができる。
【0022】
二酸化炭素が、非晶性樹脂組成物に均一に分散しやすいこと、溶解量または吸収量の調整が容易であること、成形前の段取りにおける煩雑さが少ないこと、成形機ホッパー部を密閉、耐圧構造とする必要がないことを考慮すると、射出成形機の加熱筒内、成形機のノズル部、金型と成形機ノズル部分の間のいずれかの位置に二酸化炭素を供給するための設備を設け、溶融状態の該非晶性樹脂に二酸化炭素を混合させる方法が好ましい。
【0023】
本発明において、二酸化炭素の溶解量または、吸収量の測定は、以下の方法により行うものとする。
▲1▼成形加工直後に、成形品の重量を測定する(M1とする)。
▲2▼成形品を100℃に保温された熱風乾燥機中に48時間以上放置し、二酸化炭素を放散させる。熱風乾燥機から取り出した成形品の重量を測定する(M2とする)。
▲3▼二酸化炭素吸収量または溶解量(重量%)を、下記式から算出する。
【0024】
【式1】
Figure 2004128335
【0025】
本発明のイグニッション・コイル・ボビンは、製品の寸法安定性と成形品の寸法精度などの特性を保持し、発泡部分がなく、新たな製品設計に対応する樹脂部品の提供を可能にする。
【0026】
【発明の実施の形態】
以下、実施例によって本発明を具体的に説明するが、本発明は以下に限定されるものではない。
射出成形に使用した樹脂は、mPPE系樹脂「旭化成(株)社製ザイロンX2230」「同X2231」である。各樹脂の充填材の添加量、ガラス転移温度を表1、および表2に示す。
ここで、旭化成(株)社製「ザイロンX2230」、「同X2231」、は、無機物添加剤(ガラス繊維)を20重量%添加されたmPPE樹脂である。
薄肉平板の加熱収縮試験には、図1に示す厚さ1.0mm×長さ100mm×幅100mmで寸法測定位置を示す印を刻印した平板を使用した。成形機はソディックプラテック(株)社製「TR50S2A」成形機を用い、各樹脂における標準樹脂温度設定で平板を射出成形により得た。
【0027】
充填時の圧力は、該計量値から該保圧切替え値の間を150mm/secの射出速度で充填したときの最大圧力とした。保圧は、充填時の圧力値の70%値として設定した。また、保圧時間を7秒、冷却時間を20秒とした。
薄肉平板の加熱収縮試験は、樹脂のガラス転移温度より10℃高い温度のオーブンに2Hr放置し、平板成形品の流動方向および垂直方向の寸法の変化より、加熱収縮の値を求めた。
なお、TR50S2A成形機は、加熱筒内に二酸化炭素を供給するための設備を設け、溶融状態の該非晶性樹脂に二酸化炭素を混合させる方法を採用した。
【0028】
【比較例1〜2】
ザイロンX2230,X2231、それぞれの標準的な乾燥条件、成形条件で射出成形し、平板を作成した。
この平板を用いて、100℃の温風乾燥機中に48時間放置し二酸化炭素を放出したの後に、樹脂のガラス転移温度より10℃高い温度のオーブンに2Hr放置し、平板成形品の流動方向および垂直方向の寸法の変化より、薄肉平板の加熱収縮を測定した。また、薄肉平板の中央を切断し、目視にて断面の気泡の有無を確認した。
各樹脂の成形条件、上記に示した薄肉平板の加熱収縮の変形量およびガラス転移温度、気泡の有無を表1に示す。
【0029】
【比較例3〜4】
ザイロンX2230,X2231、それぞれの標準的な乾燥条件、成形条件で、二酸化炭素の吸収量が0.3〜1.5量%となるように、TR50S2A成形機の加熱筒中央に設けられたガス注入部より加熱筒内の溶融樹脂中に二酸化炭素ガスを溶解させた後、カウンター圧力なしで金型キャビティへ射出成形し、平板成形品を得た。
この平板を用いて、比較例1〜2と同じ試験方法で、薄肉平板の加熱収縮を測定および気泡の有無を確認した。
各樹脂の成形条件、上記に示した薄肉平板の加熱収縮の変形量およびガラス転移温度、気泡の有無を表1に示す。
【0030】
【実施例1〜2】
ザイロンX2230,X2231、それぞれの標準的な乾燥条件、成形条件で、二酸化炭素の吸収量が0.3〜1.5量%となるように、TR50S2A成形機の加熱筒中央に設けられたガス注入部より加熱筒内の溶融樹脂中に二酸化炭素ガスを溶解させた後、あらかじめ二酸化炭素ガスでカウンター圧力を掛けた金型キャビティへ射出成形し、平板成形品を得た。
この平板を用いて、比較例1〜2と同じ試験方法で、薄肉平板の加熱収縮を測定および気泡の有無を確認した。
各樹脂の成形条件、上記に示した薄肉平板の加熱収縮の変形量およびガラス転移温度、気泡の有無を表1に示す。
【0031】
【比較例5〜6】
ザイロンX2230,X2231、それぞれの標準的な乾燥条件、成形条件で射出成形し、平板を作成した。
この平板を樹脂の流動方向に対し垂直方向に幅12.7mm×長さ100mmの短冊状に切り出し、60mmの長さの片持ち張り状に固定して、その先端に650gの荷重を加え、固定位置から10mmの箇所にサラダ油を塗布し、クラックが発生するまでの時間を測定した。
各樹脂の成形時の樹脂温度,射出ピーク圧力、上記に示した耐薬品性試験結果を表2に示す。
【0032】
【実施例3〜4】
ザイロンX2230,X2231、それぞれの標準的な乾燥条件、成形条件で、二酸化炭素の吸収量が0.3〜1.5量%となるように、TR50S2A成形機の加熱筒中央に設けられたガス注入部より加熱筒内の溶融樹脂中に二酸化炭素ガスを溶解させた後、あらかじめ二酸化炭素ガスでカウンター圧力を掛けた金型キャビティへ射出成形し、平板成形品を得た。
この平板を樹脂の流動方向に対し垂直方向に幅12.7mm×長さ100mmの短冊状に切り出し、60mmの長さの片持ち張り状に固定して、その先端に650gの荷重を加え、固定位置から10mmの箇所にサラダ油を塗布し、クラックが発生するまでの時間を測定した。
各樹脂の成形時の樹脂温度,射出ピーク圧力、上記に示した耐薬品性試験結果を表2に示す。
【0033】
【表1】
Figure 2004128335
【0034】
【表2】
Figure 2004128335
【0035】
【発明の効果】
本発明のイグニッション・コイル・ボビンは、製品の寸法安定性と成形品の寸法精度などが求められる生産性を保持、成形方法を提示することにより薄肉化,長尺化などの製品設計を可能にし、製品の残留歪みを低減し、結果として耐薬品性や冷熱サイクルの耐久性が向上する。
【図面の簡単な説明】
【図1】本発明の平板を示す。
【符号の説明】
1.100mm□×1mmt平板
2.タブ:(厚さ1mm×長さ5mm×幅10mm)
A 流動方向 辺
B 垂直方向 辺[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coil bobbin of an ignition coil device for an engine.
[0002]
[Prior art]
An ignition coil bobbin is an ignition coil device for an engine used for an ignition plug of an engine, in which a center core is disposed inside, a secondary coil is wound around the outside, and the whole is made of a soft epoxy resin (possible). (Flexible epoxy), and refers to an elongated cylindrical amorphous resin molded product.
For example, Japanese Patent Application Laid-Open No. 2000-012357 discloses a pencil type ignition coil (for example, see Patent Document 1). In this technology, a modified polyphenylene ether resin containing 30% or more of glass fiber is considered to be suitable. However, such a high heat-resistant resin generally has a high melt viscosity and requires a high pressure at the time of filling the resin. Injection molding may be difficult when manufacturing thin-walled molded products such as coils and bobbins, which may cause insufficient filling and sink marks. Even if molding can be performed at a higher resin pressure, residual distortion often remains in the molded product, and deformation such as warpage may occur. Also, in the subsequent assembling process, the molded product may be cracked due to the chemical effect of the adhesive or the epoxy sealing agent. Further, thermal distortion occurs due to a difference in linear expansion from other parts due to a temperature change during use, and cracks may occur in a molded product.
[0003]
The heat-resistant amorphous resin has a higher melt viscosity than the crystalline resin, so that the molding is extremely inferior, and it is difficult to reduce the thickness of the niche, coil and bobbin. In order to enable the thinning and lengthening of the ignition coil bobbin, the moldability is improved by a molding method or a resin composition having a reduced melt viscosity, and the thinning of the ignition coil bobbin is promoted. Technology is required.
By adding a reinforcing filler such as glass fiber to a crystalline resin, a heat distortion temperature almost equal to the melting point can be obtained, but in general, the glass transition temperature is low, and the temperature environment exceeds the glass transition point. Below, it is not easy to obtain the dimensional stability under the use environment required for the ignition coil bobbin due to the deformation caused by the load and the shrinkage due to the recrystallization at high temperature.
[0004]
A new molding method such as high-speed injection molding has been proposed as a method for producing an ignition coil bobbin, which is a thin molded product made of high heat-resistant denatured PPE having poor moldability. The high-speed injection molding method has the effect of preventing the rise in melt viscosity due to cooling from the mold, reducing the melt viscosity at a high shear rate, and reducing the difference in pressure distribution by injecting the amorphous resin at high speed. . In addition, although the effect of reducing the injection time and the productivity are improved, high-speed injection may cause burrs, adiabatic compression in the gas reservoir at the end of the mold cavity, or resin burn due to shear heat generated when the resin flows. .
[0005]
Regardless of the injection molding conditions, as a resin modifying means for lowering the melt viscosity of the amorphous resin, techniques such as lowering the molecular weight of the resin and adding a plasticizing component to the resin are generally used. Decrease in the molecular weight greatly affects the mechanical strength and chemical resistance, and the addition of the plasticizer component may cause problems such as adhesion of the plasticizer component to the mold surface during molding.
On the other hand, as shown in many documents, it is known that when carbon dioxide is absorbed by a resin, it acts as a plasticizer of the resin and lowers the glass transition temperature, but is widely applied to resin molding. (For example, Non-Patent Document 1).
[0006]
In addition, a gas such as carbon dioxide or nitrogen is contained in the thermoplastic resin, and the resin is filled into the cavity while removing the gas in the cavity, thereby improving the fluidity of the thermoplastic resin and lowering the strength and appearance. There is disclosed a method for obtaining a molded article free from defects (see, for example, Patent Document 2). However, in this method, when carbon dioxide is used as the gas, the amount of the gas contained in the resin is as small as about 0.18% by weight at the maximum, and it is difficult to obtain a sufficient fluidity improving effect. It can be said that it is difficult to obtain accuracy and dimensional stability.
[0007]
In addition, in injection molding of a thermoplastic resin, the molten resin whose viscosity has been reduced by dissolving carbon dioxide in an amount of 0.2% by weight or more is filled with gas at a pressure higher than a pressure at which foaming does not occur at the flow front of the molten resin in advance. A method of injecting into a mold cavity in a pressurized state is shown (for example, see Patent Document 3). (Hereinafter abbreviated as counter pressure)
At the same time, after filling the resin into the mold cavity, the method includes a step of holding the resin under pressure. If the pressure at that time (hereinafter referred to as “holding pressure”) is less than 30% of the injection peak pressure, the molded product A foamed portion is formed in an arbitrary cross-section of the above, and there is a concern that the mechanical strength and the electrical properties are reduced. In order to suppress the formation of a foamed part in the molded product, the range is preferably 50% or more of the injection peak pressure. It is more preferably in the range of 70% or more, and most preferably in the range of 90% or more.
[0008]
Further, the dwell time is not limited, but if the dwell time is extremely short, the carbon dioxide mixed with the thermoplastic resin before filling into the mold cavity expands, causing the molded product to swell. This is not preferable because there is a possibility of occurrence of cracks. The appropriate dwell time varies depending on the type of thermoplastic resin and molding conditions, but the dwell time until the molten resin in the gate portion is cooled below the solidification temperature, the so-called gate sealing time, is required. is there.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-12357 [Patent Document 2]
JP-A-5-318541 [Patent Document 3]
WO98 / 52734 [Non-Patent Document 1]
J. Appl. Polym. Sci. , Vol. 30, 2633 (1985),
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a molding method of an amorphous resin composition for improving the function of an ignition coil bobbin which is a thin molded product, and for responding to a new product design. .
Specifically, in ignition coils and bobbins made of amorphous resin, the residual strain is reduced, and as a result, the effects of chemicals and the durability of cooling and heating cycles are improved, and the production and use environment of the product are reduced. It is an object of the present invention to solve the problems such as the above, and to increase the degree of freedom in designing, such as thinning and elongating a molded product depending on molding conditions and resin physical properties of the molded product.
[0011]
[Means for Solving the Problems]
The present inventors have found a technique that has a glass transition point temperature of 160 ° C. required for an ignition coil bobbin, is excellent in improving thin-wall fluidity, and reducing residual distortion of a product.
That is, the present invention
1. An ignition coil bobbin for automobile ignition characterized by being obtained by dissolving or absorbing 0.2% by weight or more of carbon dioxide in an amorphous resin composition and then injecting it into a mold cavity. ,
2. The ignition coil bobbin for an automobile ignition according to claim 1, wherein the glass transition temperature of the amorphous resin composition is 160 ° C or higher.
3. The ignition coil bobbin according to claim 1, wherein the amorphous resin composition is a polyphenylene ether-based resin.
4. The ignition coil bobbin according to any one of claims 1 to 3, wherein the amorphous resin comprises at least an amorphous resin component and an inorganic and / or organic filler.
5. By providing a facility for supplying carbon dioxide in the heating cylinder of the injection molding machine, at the nozzle of the molding machine, or at any position between the mold and the nozzle of the molding machine, the amorphous resin in the molten state can be treated with carbon dioxide. A method of manufacturing an ignition coil bobbin, characterized by mixing and molding carbon.
It is.
[0012]
The present invention will be specifically described below.
In the present invention, an ignition coil bobbin is an ignition coil device for an engine used for an ignition plug of an engine, in which a center core is disposed inside and a secondary coil is wound around the outside, and the whole is made of a soft epoxy. This means an elongated cylindrical amorphous resin molded product filled with resin (flexible epoxy).
The amorphous resin composition used in the present invention is preferably an amorphous resin composition having a small molding shrinkage and a small dimensional change due to post-shrinkage after molding. Specifically, polyphenylene ether-based resin (sometimes abbreviated as PPE), high heat resistant polycarbonate-based resin (sometimes abbreviated as PC), polyetherimide resin (sometimes abbreviated as PEI), polyether Non-crystalline resins such as sulfone (sometimes abbreviated as PES) and polyetheretherketone resin (sometimes abbreviated as PEEK) are preferable. The polyphenylene ether-based resin is at least one of a homopolymer and a copolymer comprising the structural unit of the formula (1).
[0013]
Embedded image
Figure 2004128335
[0014]
Wherein O is an oxygen atom, and R is each independently hydrogen, halogen, primary or secondary lower alkyl, phenyl, haloalkyl, aminoalkyl, hydrocarbonoxy, or halohydrocarbonoxy (provided that , At least two carbon atoms separating a halogen atom and an oxygen atom). ]
[0015]
Specific examples of the polyphenylene ether-based resin of the present invention include, for example, poly (2,6-dimethyl-1,4-phenylene ether) and poly (2-methyl-6-ethyl-1,4-phenylene ether) , Poly (2-methyl-6-phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and the like. Further, 2,6-dimethylphenol and other phenols (For example, a copolymer with 2,3,6-trimethylphenol or a copolymer with 2-methyl-6-butylphenol as described in JP-B-52-17880). And polyphenylene ether copolymers such as Among these, particularly preferred polyphenylene ether resins include poly (2,6-dimethyl-1,4-phenylene ether), a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, or These are mixtures.
[0016]
The method for producing the polyphenylene ether-based resin used in the present invention is not particularly limited as long as it can be obtained by a known method. For example, U.S. Pat. Nos. 3,306,874, 3,306,875, and 3,257,357. No. 3,257,358, JP-A-50-51197, JP-B-52-17880, JP-A-63-152628, and the like.
The polyphenylene ether-based resin of the present invention contains a mixture of polyphenylene ether resin and polystyrene, and the glass transition temperature is generally determined by the ratio of the two. When the glass transition temperature is 160 ° C. or higher, the polyphenylene ether component is 50% or more. It is preferred that
On the other hand, preferred polystyrenes in the present invention include GP polystyrene, high impact polystyrene, and syndiotactic polystyrene, all of which are resins which are completely compatible with polyphenylene ether at an arbitrary ratio.
[0017]
Among them, terminal-modified PPE resins are particularly preferable from the viewpoints of performance such as electric characteristics, mechanical characteristics, and cost. Examples of the terminal modification include maleic anhydride, maleic acid, fumaric acid, phenylmaleimide, itaconic acid, glycidyl methacrylate, glycidyl acrylate, and stearyl acrylate. Of these, maleic anhydride is preferable.
The high heat-resistant polycarbonate resin of the present invention refers to an aromatic polycarbonate having a high melting point in which the dihydroxy compound is composed of only an aromatic ring and having a glass transition temperature of 160 ° C. or higher. Resins, pp. 23-31, published in 1992, published by Nikkan Kogyo Shimbun.
[0018]
The amorphous resin composition of the present invention may contain additives usually used, for example, reinforcing materials such as glass fiber, inorganic fillers, elastomers for improving impact resistance, antioxidants, release agents, lubricants, and heat stabilizers. One or more light-fast stabilizers, coloring agents, and the like can be added as necessary.
In the present invention, the amorphous resin composition has a glass transition temperature of 160 ° C. or higher. If the glass transition temperature is lower than 150 ° C., the heat resistance and the long-term stability of the dimensions in the use environment of the ignition coil bobbin cannot be satisfied, which is not preferable.
[0019]
In the present invention, the ignition coil bobbin is molded from an amorphous resin composition having a glass transition temperature of 160 ° C. or higher, and an amorphous resin composition having a glass transition temperature of 160 ° C. or higher is generally used. The viscosity at the time of melting tends to be high. For this reason, depending on the target shape and the mold structure, there is a possibility that the resin pressure at the time of filling the resin increases. Further, in addition to the cause of molding failure such as insufficient filling, since the filling is performed at a high pressure, internal strain is likely to remain in the molded product, and as a result, deformation such as warpage is likely to occur after molding.
[0020]
In addition, the glass transition temperature used in the present invention is defined by ISO 11357-2 (DSC method).
In the present invention, 0.2% by weight or more of carbon dioxide is dissolved or absorbed in the amorphous resin composition to improve the fluidity and lower the solidification temperature, so that the resin pressure during filling into the mold cavity is reduced. And it is possible to form a thin coil bobbin having a complicated shape.
In the amorphous resin composition of the present invention, if necessary, 0.2% by weight or more of carbon dioxide is dissolved or absorbed in the amorphous resin composition, and injection molding is performed. %, It is difficult to obtain a sufficient fluidity improving effect, and it is difficult to obtain sufficient dimensional accuracy and dimensional stability as compared with the conventional injection molding method.
[0021]
In the present invention, the method for dissolving or absorbing 0.2% by weight or more of carbon dioxide in the amorphous resin composition includes, for example, a heating cylinder of an injection molding machine, a nozzle of a molding machine, a mold and a nozzle of a molding machine. In addition to mixing carbon dioxide with the amorphous resin in the molten state by providing a facility for supplying carbon dioxide at any position between the above, carbon dioxide is added to the amorphous resin in the molten state in advance. Examples thereof include a method in which resin pellets are granulated in a mixed state and injection molding using the granules, and a method in which carbon dioxide is previously absorbed in resin pellets in a closed container.
[0022]
Carbon dioxide can be easily dispersed uniformly in the amorphous resin composition, the adjustment of the amount of dissolution or absorption is easy, the complexity in setting up before molding is small, the hopper of the molding machine is sealed, Considering that it is not necessary to have a structure, equipment for supplying carbon dioxide is installed in the heating cylinder of the injection molding machine, at the nozzle of the molding machine, or at any position between the mold and the nozzle of the molding machine. A method of mixing carbon dioxide with the amorphous resin in a molten state is preferable.
[0023]
In the present invention, the amount of dissolved or absorbed carbon dioxide is measured by the following method.
(1) Immediately after molding, the weight of the molded article is measured (referred to as M1).
{Circle around (2)} The molded article is left in a hot-air drier kept at 100 ° C. for 48 hours or more to diffuse carbon dioxide. The weight of the molded product taken out of the hot air dryer is measured (M2).
(3) The amount of carbon dioxide absorbed or dissolved (% by weight) is calculated from the following equation.
[0024]
(Equation 1)
Figure 2004128335
[0025]
INDUSTRIAL APPLICABILITY The ignition coil bobbin of the present invention maintains characteristics such as dimensional stability of a product and dimensional accuracy of a molded product, and can provide a resin part having no foamed portion and corresponding to a new product design.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.
The resin used for the injection molding is mPPE resin "Zylon X2230" and "X2231" manufactured by Asahi Kasei Corporation. Tables 1 and 2 show the amount of filler added and the glass transition temperature of each resin.
Here, "Xylon X2230" and "Xylon X2231" manufactured by Asahi Kasei Corporation are mPPE resins to which an inorganic additive (glass fiber) is added at 20% by weight.
In the heat shrinkage test of the thin flat plate, a flat plate having a thickness of 1.0 mm, a length of 100 mm, and a width of 100 mm and having a mark indicating a dimension measurement position shown in FIG. 1 was used. As a molding machine, a "TR50S2A" molding machine manufactured by Sodick Platec Co., Ltd. was used, and a flat plate was obtained by injection molding at a standard resin temperature setting for each resin.
[0027]
The pressure at the time of filling was defined as the maximum pressure at the time of filling at an injection speed of 150 mm / sec between the measured value and the holding pressure switching value. The holding pressure was set as 70% of the pressure value at the time of filling. The pressure holding time was 7 seconds and the cooling time was 20 seconds.
In the heat shrinkage test of the thin flat plate, the value of the heat shrinkage was determined from a change in the flow direction and the vertical dimension of the flat molded product after being left for 2 hours in an oven at a temperature higher by 10 ° C. than the glass transition temperature of the resin.
The TR50S2A molding machine provided a facility for supplying carbon dioxide into the heating cylinder, and adopted a method of mixing carbon dioxide with the amorphous resin in a molten state.
[0028]
[Comparative Examples 1-2]
Injection molding was carried out under standard drying conditions and molding conditions for each of Xylon X2230 and X2231, to produce a flat plate.
Using this flat plate, it was left in a hot air dryer at 100 ° C. for 48 hours to release carbon dioxide, and then left for 2 hours in an oven at a temperature higher by 10 ° C. than the glass transition temperature of the resin. The heat shrinkage of the thin flat plate was measured from the change in the dimension in the vertical direction. In addition, the center of the thin flat plate was cut, and the presence or absence of bubbles in the cross section was visually checked.
Table 1 shows the molding conditions of each resin, the amount of heat shrinkage deformation, the glass transition temperature, and the presence or absence of bubbles of the thin flat plate described above.
[0029]
[Comparative Examples 3 and 4]
Xylon X2230, X2231, gas injection provided in the center of the heating cylinder of the TR50S2A molding machine such that the carbon dioxide absorption amount is 0.3 to 1.5% by weight under standard drying conditions and molding conditions. After dissolving carbon dioxide gas in the molten resin in the heating cylinder from the portion, injection molding was performed into the mold cavity without a counter pressure to obtain a flat molded product.
Using this flat plate, the heat shrinkage of the thin flat plate was measured and the presence or absence of air bubbles was confirmed by the same test method as in Comparative Examples 1 and 2.
Table 1 shows the molding conditions of each resin, the amount of heat shrinkage deformation, the glass transition temperature, and the presence or absence of bubbles of the thin flat plate described above.
[0030]
[Examples 1 and 2]
Xylon X2230, X2231, gas injection provided in the center of the heating cylinder of the TR50S2A molding machine such that the carbon dioxide absorption amount is 0.3 to 1.5% by weight under standard drying conditions and molding conditions. After dissolving carbon dioxide gas in the molten resin in the heating cylinder from the portion, injection molding was performed into a mold cavity to which a counter pressure was previously applied with carbon dioxide gas to obtain a flat molded product.
Using this flat plate, the heat shrinkage of the thin flat plate was measured and the presence or absence of air bubbles was confirmed by the same test method as in Comparative Examples 1 and 2.
Table 1 shows the molding conditions of each resin, the amount of heat shrinkage deformation, the glass transition temperature, and the presence or absence of bubbles of the thin flat plate described above.
[0031]
[Comparative Examples 5-6]
Injection molding was carried out under standard drying conditions and molding conditions for each of Xylon X2230 and X2231, to produce a flat plate.
This flat plate is cut out into a rectangular shape having a width of 12.7 mm and a length of 100 mm in a direction perpendicular to the flow direction of the resin, and is fixed in a cantilever shape having a length of 60 mm. Salad oil was applied to a position 10 mm from the position, and the time until cracks occurred was measured.
Table 2 shows the resin temperature, injection peak pressure, and the results of the above-described chemical resistance tests during molding of each resin.
[0032]
Embodiments 3 and 4
Xylon X2230, X2231, gas injection provided in the center of the heating cylinder of the TR50S2A molding machine such that the carbon dioxide absorption amount is 0.3 to 1.5% by weight under standard drying conditions and molding conditions. After dissolving carbon dioxide gas in the molten resin in the heating cylinder from the portion, injection molding was performed into a mold cavity to which a counter pressure was previously applied with carbon dioxide gas to obtain a flat molded product.
This flat plate is cut out into a rectangular shape having a width of 12.7 mm and a length of 100 mm in a direction perpendicular to the flow direction of the resin, and is fixed in a cantilever shape having a length of 60 mm. Salad oil was applied to a position 10 mm from the position, and the time until cracks occurred was measured.
Table 2 shows the resin temperature, injection peak pressure, and the results of the above-described chemical resistance tests during molding of each resin.
[0033]
[Table 1]
Figure 2004128335
[0034]
[Table 2]
Figure 2004128335
[0035]
【The invention's effect】
The ignition coil bobbin of the present invention maintains the productivity that requires the dimensional stability of the product and the dimensional accuracy of the molded product, and enables the product design such as thinning and lengthening by presenting the molding method. In addition, the residual strain of the product is reduced, and as a result, the chemical resistance and the durability of the cooling / heating cycle are improved.
[Brief description of the drawings]
FIG. 1 shows a flat plate of the present invention.
[Explanation of symbols]
1. 100 mm square x 1 mmt flat plate Tab: (1mm thick x 5mm long x 10mm wide)
A Flow direction Side B Vertical direction Side

Claims (5)

非晶性樹脂組成物に、0.2重量%以上の二酸化炭素を溶解または吸収させた後、金型キャビティに射出成形することにより得られることを特徴とする、自動車点火用イグニッション・コイル・ボビン。Ignition coil bobbin for automobile ignition characterized by being obtained by dissolving or absorbing 0.2% by weight or more of carbon dioxide in an amorphous resin composition and then injection molding into a mold cavity. . 非晶性樹脂組成物のガラス転移温度が、160℃以上であることを特徴とする請求項1に記載の自動車点火用イグニッション・コイル・ボビン。The ignition coil bobbin for an automobile ignition according to claim 1, wherein the glass transition temperature of the amorphous resin composition is 160 ° C or higher. 非晶性樹脂組成物が、ポリフェニレンエーテル系樹脂であることを特徴とする、請求項1に記載のイグニッション・コイル・ボビン。The ignition coil bobbin according to claim 1, wherein the amorphous resin composition is a polyphenylene ether-based resin. 非晶性樹脂が、少なくとも非晶性樹脂成分と無機系及び/または有機系充填材から構成されていることを特徴とする請求項1〜3のいずれかに記載のイグニッション・コイル・ボビン。The ignition coil bobbin according to any one of claims 1 to 3, wherein the amorphous resin comprises at least an amorphous resin component and an inorganic and / or organic filler. 射出成形機の加熱筒内、成形機のノズル部、金型と成形機ノズル部分の間のいずれかの位置に二酸化炭素の供給のための設備を設けることにより溶融状態の該非晶性樹脂に二酸化炭素を混合させ、成形することを特徴とするイグニッション・コイル・ボビンの製造法。By providing a facility for supplying carbon dioxide in the heating cylinder of the injection molding machine, at the nozzle of the molding machine, or at any position between the mold and the nozzle of the molding machine, the amorphous resin in the molten state can be treated with carbon dioxide. A method for producing an ignition coil bobbin, wherein carbon is mixed and molded.
JP2002292582A 2002-10-04 2002-10-04 Ignition coil bobbin Pending JP2004128335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292582A JP2004128335A (en) 2002-10-04 2002-10-04 Ignition coil bobbin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292582A JP2004128335A (en) 2002-10-04 2002-10-04 Ignition coil bobbin

Publications (2)

Publication Number Publication Date
JP2004128335A true JP2004128335A (en) 2004-04-22
JP2004128335A5 JP2004128335A5 (en) 2005-11-17

Family

ID=32283792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292582A Pending JP2004128335A (en) 2002-10-04 2002-10-04 Ignition coil bobbin

Country Status (1)

Country Link
JP (1) JP2004128335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513977A (en) * 2014-04-09 2017-06-01 ティコナ・エルエルシー Antistatic polymer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289831A (en) * 1997-02-14 1998-10-27 Denso Corp Ignition coil for internal combustion engine
WO1998052734A1 (en) * 1997-05-21 1998-11-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for injection molding of thermoplastic resins
JPH115895A (en) * 1997-06-19 1999-01-12 Asahi Chem Ind Co Ltd Reinforced resin composition excellent in durability against epoxy resin-curing agent and its molded product
JP2000178436A (en) * 1998-10-07 2000-06-27 Sumitomo Chem Co Ltd Polyphenylene ether-based resin composition
JP2000311824A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Ignition coil for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289831A (en) * 1997-02-14 1998-10-27 Denso Corp Ignition coil for internal combustion engine
WO1998052734A1 (en) * 1997-05-21 1998-11-26 Asahi Kasei Kogyo Kabushiki Kaisha Method for injection molding of thermoplastic resins
JPH115895A (en) * 1997-06-19 1999-01-12 Asahi Chem Ind Co Ltd Reinforced resin composition excellent in durability against epoxy resin-curing agent and its molded product
JP2000178436A (en) * 1998-10-07 2000-06-27 Sumitomo Chem Co Ltd Polyphenylene ether-based resin composition
JP2000311824A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Ignition coil for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513977A (en) * 2014-04-09 2017-06-01 ティコナ・エルエルシー Antistatic polymer composition
JP2021176972A (en) * 2014-04-09 2021-11-11 ティコナ・エルエルシー Antistatic polymer composition

Similar Documents

Publication Publication Date Title
JP2013170258A (en) Flame retardant resin film
JP2004128335A (en) Ignition coil bobbin
US20210130583A1 (en) Reinforced polyphthalamide/polyphenylene ether composition, method for the manufacture thereof, and articles prepared therefrom
JPH11292981A (en) Kneaded material of thermoplastic resin and its production
JP3506970B2 (en) Flame retardant toner cartridge container without using halogen compounds
JPH05339501A (en) Resin composition
JP2002079540A (en) Injection molding method using carbon dioxide and molding obtained by the method
JP4901015B2 (en) Polyphenylene ether resin composition
JP4567218B2 (en) Conductive polyphenylene ether resin composition and molded article thereof
JP7190721B2 (en) NONAQUEOUS ELECTROLYTE BATTERY GASKET AND MANUFACTURING METHOD THEREOF
JP4788149B2 (en) Method for producing polyamide resin composition
JP6675503B2 (en) Fan molding
JP2003261692A (en) Resin composition molded article and molding method thereof
JPH07278409A (en) Phenolic resin molding material
JP2008184490A (en) Phenolic resin molding material and molded article
KR20240042276A (en) Polyamide resin composition, method for preparing the thermoplastic resin composition and molding products thereof
JP2004277436A (en) Phenolic resin molding material for molding insert molded product
JP2001310346A (en) Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler
EP4317289A1 (en) Poly(phenylene ether) resin composition and molded article
JPH07113035A (en) Phenolic resin molding material
JP2023010586A (en) Polyphenylene ether-based resin composition
JP2003277576A (en) Phenol resin molding material
JP2002265751A (en) Phenolic resin molding material
JP2003268213A (en) Polybutylene terephthalate composition, and molded article and electronic part using the same
JPH04202362A (en) Polyarylene sulfide resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701