JP3572307B2 - Flat panel substrate bonding equipment - Google Patents

Flat panel substrate bonding equipment Download PDF

Info

Publication number
JP3572307B2
JP3572307B2 JP2004500269A JP2004500269A JP3572307B2 JP 3572307 B2 JP3572307 B2 JP 3572307B2 JP 2004500269 A JP2004500269 A JP 2004500269A JP 2004500269 A JP2004500269 A JP 2004500269A JP 3572307 B2 JP3572307 B2 JP 3572307B2
Authority
JP
Japan
Prior art keywords
xyθ
substrates
moving
holding
holding plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004500269A
Other languages
Japanese (ja)
Other versions
JPWO2003091970A1 (en
Inventor
利夫 関川
明義 横田
一朗 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Engineering Co Ltd
Application granted granted Critical
Publication of JP3572307B2 publication Critical patent/JP3572307B2/en
Publication of JPWO2003091970A1 publication Critical patent/JPWO2003091970A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)

Description

技術分野
本発明は、例えば液晶ディスプレー(LCD)やプラズマディスプレー(PDP)などのフラットパネルディスプレーの製造過程において、それに用いられる二枚の基板をアライメント(位置合わせ)して貼り合わせるためのフラットパネル用基板の貼り合わせ装置に関する。
詳しくは、上下一対の保持板に対して夫々着脱自在に保持された二枚の基板を真空中で重ね合わせ、これらを相対的にXYθ方向へ調整移動して両基板同士の位置合わせを行い、両基板の内外に生じる気圧差で所定のギャップまで潰すフラットパネル用基板の貼り合わせ装置に関する。
背景技術
従来、この種のフラットパネル用基板の貼り合わせ装置として、上下一対の保持板を相対的に接近させることにより、これら両保持板の間にシール材を介して閉空間が形成され、該閉空間内を吸引減圧して所定の真空度にした後に、保持板の一方を他方に対し水平方向へ変位させて微調整することにより、両基板(ガラス基板)が正確に位置合わせされ、その後、閉空間内を大気圧に戻して、両基板間の封止空間内の気圧と大気圧との差により、両基板が加圧されるものがある(例えば、特許文献1参照)。
【特許文献1】
特開平6−34983号公報(第4頁、図1、図4、図5)
また、一対の加圧板が囲まれるように一対の真空チャンバーユニットをZ方向へ分離可能に配設し、この下チャンバーユニットが架台の上面にXYθステージを介してXYθ方向へ調整移動自在に支持され、これら両真空チャンバーユニットを接合して真空チャンバー(閉空間)が形成された状態で真空引きすることにより、該真空チャンバーの内部を真空状態にすると共に、XYθステージで密閉状態を維持したまま上下チャンバーユニットを相対的にXYθ方向へ移動させることにより、真空チャンバーの外部から両基板同士の高精度な位置合わせを行うものがある(例えば、特許文献2参照)。
【特許文献2】
特開2001−5405号公報(第3−4頁、図1、図2)
更に、このXYθステージは、駆動モーターによりX軸方向へ往復動自在なXステージと、別な駆動モーターによりY軸方向へ往復動自在なYステージが回転ベアリングを介して配備されると共に、このYステージ上に別な駆動モーターによりYステージに対して水平に回転可能に配備されている。
一方、近年は液晶用基板の貼り合わせ装置において、TFTガラス及びCFガラスは年々大型化され、現在では一辺が1000mmを超えるものまで製造され始めており、またこのようなガラス基板をアライメントする際にXYθ方向へ移動させる量は、現状で約20μm〜50μm程度であり、一辺が1000mmを超える大型のガラス基板であっても数百μmを越えることはない。
しかし乍ら、このような従来のフラットパネル用基板の貼り合わせ装置では、両基板同士の位置合わせ手段としてXYθステージを用いるが、現存するXYθステージは基本的にXYθ方向へmm単位以上移動させるために設計されたものが一般的であり、特に基板のアライメントのように数百μm以下の僅かな移動量では、回転ベアリングの転動体が一回転分まで至らず、各基板のアライメント毎に数百μm以下の僅かな移動を繰り返した場合には、油切れにより摺動部が摩耗して耐久性に劣るという問題があった。
更に、上記XYθステージの上に形成された閉空間を所定の真空度に耐え得る構造にする必要があるため、その重量が重くなり、それによってもXYθステージの摺動部が摩耗し易くなり、これを防止するにはメンテナンス作業を頻繁に行う必要があるという問題があった。
また、XYθステージの構造上、装置全体が大型化すると共に重くなって構造コスト及び輸送コストがかさむという問題もある。
しかも最近の基板の大型化傾向に伴って装置の大型化が進み、上記の問題はますます大きくなりつつある。
本発明のうち生成物1記載の発明は、XYθステージを用いずに真空中で両基板を外部からスムーズにXYθ移動させてアライメントすることを目的としたものである。
請求項2記載の発明は、請求項1に記載の発明の目的に加えて、位置調整手段の構造を簡素化しながら位置決め用移動手段の駆動源を小型化することを目的としたものである。
請求項3記載の発明は、請求項1に記載の発明の目的に加えて、位置調整手段の構造を簡素化することを目的としたものである。
請求項4記載の発明は、請求項1、2または3に記載の発明の目的に加えて、高精度のアライメントを可能にすることを目的としたものである。
発明の開示
前述した目的を達成するために、本発明のうち請求項1記載の発明は、両保持版の対向する周縁部間を密閉状態に維持したまま相対的にXYθ方向へ移動自在に支持する移動シール手段と、この移動シール手段から両保持板のどちらか一方に亘って架設されると共に両保持板の相対的なXYθ方向への調整移動に伴って同方向へ移動可能なZ方向へ大きな剛性を有する位置調整手段と、両保持板を相対的に接近移動させて両保持板の間に両基板が囲まれるように閉空間を区画形成する昇降手段と、上記閉空間内を真空状態に維持しながら両保持板を相対的にXYθ方向へ調整移動させるために閉空間の外に配設した位置決め用の移動手段とを備え、この位置決め用移動手段で両保持板を相対的にXYθ方向へ調整移動することにより、上記位置調整手段の移動を利用して両基板を相対的にXYθ方向へ位置合わせすることを特徴とするものである。
このような構成から生じる請求項1記載の発明の作用は、移動シール手段により両保持板の周縁部間が密閉状態に維持されて閉空間内を真空状態に維持しながら、該閉空間の外に配設された位置決め用移動手段で、両保持板を相対的にXYθ方向へ調整移動することにより、同方向へ位置調整手段が移動して、両基板同士の位置合わせが行われると共に、該位置調整手段が有するZ方向への大きな剛性によって、両保持板の周縁部間が所定間隔に保持されるため、移動シール手段が受ける支持抵抗が適正な値に保たれるものである。
請求項2記載の発明は、請求項1記載の構成に、前記位置調整手段が、Z方向へ延びる略平行な複数部材で構成され、これらの一端部を相互に接合すると共に、他端部を移動シール手段及び両保持板のどちらか一方に夫々接合して、これら複数部材の少なくとも一部をXYθ方向へ変形自在に支持した構成を加えたことを特徴とする。
ここで、複数部材の少なくとも一部をXYθ方向へ変形自在(変形可能)に支持するための構造としては、例えば複数の可動棒が屈曲自在に連結されるリンク機構などに使用して複数部材の少なくとも一部を屈曲変形させるものに限らず、このような機構を使用せずに、複数部材の少なくとも一部を弾性変形可能な部材で支持し、その撓みを利用して変形させるものも含まれる。
このように追加した構成から生じる請求項2記載の発明の作用は、請求項1記載の発明の作用に加えて、位置決め用移動手段による駆動負荷が小さくても、位置調整手段を構成する複数部材の少なくとも一部がXYθへスムーズに変形する。
請求項3記載の発明は、請求項1記載の発明の構成に、前記位置調整手段が、弾性シートと金属板とを交互に積み重ねて接着成形した積層体である構成を加えたことを特徴とする。
このように追加した構成から生じる請求項3記載の発明の作用は、請求項1記載の発明の作用に加えて、閉空間内を真空状態に維持しながら位置決め用移動手段で両保持板を相対的にXYθ方向へ調整移動することにより、各金属板の間に夫々積層された弾性シートの弾性変形を利用して両基板が相対的にXYθ方向へ位置合わせされる。
請求項4記載の発明は、請求項1、2または3記載の発明の構成に、前記位置決め用移動手段を上方の保持板に連設すると共に、上方の保持板をXYθ方向へ調整移動に支持し、下方の保持板を高い剛性をもってXYθ方向へ移動不能に支持した構成を加えたことを特徴とする。
このように追加した構成から生じる請求項4の発明の作用は、請求項1、2または3記載の発明の作用に加えて、下方の保持板が上方の保持板の動きに追従しない。
【図面の簡単な説明】
図1は、本発明の一実施例を示すフラットパネル用基板の貼り合わせ装置の縦断正面図である。
図2は、図1の(2)−(2)線に沿える横断平面図である。
図3は、位置調整手段の拡大斜視図である。
図4は、(a)〜(d)がフラットパネル用基板の貼り合わせ方法を工程順に示す部分的な説明図である。
図5は、(a)(b)が位置調整手段の変形例を示す拡大斜視図である。
図6は、本発明の他の実施例を示すフラットパネル用基板の貼り合わせ装置の縦断正面図である。
図7は、本発明の他の実施例を示すフラットパネル用基板の貼り合わせ装置の縦断正面図である。
発明を実施するための最良な形態
以下、本発明の実施例を図面に基づいて説明する。
この実施例は、図1〜図4に示す如く上方の保持板1が、Z(上下)方向へ往復動自在で且つXYθ(水平)方向へ調整移動自在に吊持された上定盤であると共に、下方の保持板2が、架台9上にZ方向及びXYθ方向へ移動不能となるように高い剛性をもって支持され下定盤であり、これら上定盤1及び下定盤2の対向面に保持した二枚のガラス製基板A,Bを真空雰囲気中で重ね合わせ、相対的にXYθ方向へ調整移動させることにより、アライメントとして両基板A,Bの粗合わせ及び微合わせを行い、その後、両基板A,Bの内外に生じる気圧差で両基板A,Bが所定のギャップまで潰される場合を示すものである。
これら基板A,Bの対向面のどちらか一方、図示例の場合には下方の基板Bの表面周縁部に沿って、例えば液晶封止用シール材として線形状の接着剤Cが閉鎖した額縁状に塗布され、その内部には液晶(図示せず)が充填されると共に、必要に応じて多数のギャップ調整用スペーサー(図示せず)が散布される。
上定盤1及び下定盤2は、例えば金属やセラミックスなどの剛体で構成され、これらの対向面の中央部には、両基板A,Bを移動不能に保持する保持手段3として、本実施例の場合、夫々に開穿した複数の吸引孔から例えば真空ポンプなどの吸引源(図示せず)で吸引する吸引吸着手段3a,3aと、真空中における吸着保持を補助するための一対の静電吸着手段3b,3bとが配設されている。
これら吸引吸着手段3a,3aの吸引源と静電吸着手段3b,3bの電源は、コントローラ(図示せず)で動作制御され、両基板A,Bをセットする初期状態に吸引吸着及び静電吸着が開始され、両基板A,Bの微合わせ後にどちらか一方、本実施例では上方基板Aの静電吸着を解除し、後述する閉空間Sが大気に戻った後は下方基板Bの吸引吸着及び静電吸着を解除して初期状態に戻す。
なお、この保持手段3は、上述したものに限定されず、例えば低真空であれば、真空差を利用した真空吸着手段を、静電吸着手段3b,3bに代えて使用しても良い。
更に、上定盤1の周縁部1aと下定盤2の周縁部2aとの間には、これら両者間の密閉状態を維持したまま相対的にXYθ方向へ移動自在に支持する移動シール手段4が、両基板A,Bを囲むように環状に設けられる。
図示例の場合には、両基板A,Bが矩形であるため、移動シール手段4を平面額縁状に形成しているが、これに限定されず、例えばウェーハーのように両基板A,Bが円形の場合には、その外周に沿って相似する形状に形成される。
この移動シール手段4は、本実施例の場合、上定盤1及び下定盤2の平面形状に合わせて断面円形又は矩形に形成された移動ブロック4aと、この移動ブロック4aの上面に装着した上定盤1の周縁部1aと接離する例えばOリングなどのZ方向へ弾性変形可能な環状シール材4bと、移動ブロック4aの下面に装着した下定盤2の周縁部2aと常時接触してXYθ方向へ移動可能な例えばOリングなどの環状の真空シール4cとから構成される。
この真空シール4cには、必要に応じて例えば真空グリースを使用する。
なお、図示例では、上定盤1の周縁部1aに移動ブロック4aの上面とZ方向のみに相互に嵌合する係合部4dを一体的に突設し、これら係合部4dの下面から移動ブロック4aの上面に亘って一重の環状シール材4bを介装すると共に、移動ブロック4aの下面から下定盤2の周縁部2aに亘って二重の真空シール4cを介装したが、これに限定されず、図示せぬが一重の環状シール材4bとZ方向へ重なるように内周側の真空シール4cのみを残し、外周側の真空シール4cを削除しても良い。
また、上記移動シール手段4から上定盤1及び下定盤2のどちらか一方に亘って、上定盤1及び下定盤2の相対的なXYθ方向への調整移動に伴って同方向へ移動可能なZ(上下又は鉛直)方向へ大きな剛性を有する位置調整手段5が架設される。
本実施例の場合には、この位置調整手段5が、Z方向へ延びる略平行な複数部材で構成され、これらの一端部を相互に接合すると共に、他端部を移動シール手段4と上定盤1及び下定盤2のどちらか一方に夫々接合して、これら複数部材の少なくとも一部をXYθ方向のみへ変形自在に支持している。
更に詳しく説明すれば、この複数部材が図1〜図3に示す如く、移動ブロック4aの底面から下定盤2の周縁部2aへ向けて懸垂するように接合された中心部材5aと、その周囲を囲むように下定盤2の周縁部2aの底面に懸垂するように接合された周囲部材5bと、これら中心部材5a及び周囲部材5bの下端部を接合して支持する連結部材5cとで構成されると共に、これらを一体化したユニットを上定盤1及び下定盤2の外周に沿って複数配置することにより、上定盤1や移動ブロック4aの重量などの力は、中心部材5aと下定盤2との接合部分及びこれら中心部材5a、周囲部材5bと連結部材5cとの接合部分に作用するため、前記移動シール手段4の真空シール4cには過大に作用することが無いようにしている。
特に図1〜図3及び図4に示した例では、中心部材5aをその軸方向であるZ方向へ剛性が高くてXYθ方向へ変形不能な円柱状に形成すると共に、下定盤2の周縁部2aに開穿された通孔2bに対してXYθ方向へ移動可能に貫通させ、この中心部材5aの周囲に例えばリンク機構からなるXYθ方向へ屈曲変形可能な周囲部材5bを複数本、図示例では4本配置すると共に、これらリンク機構の下端部及び上端部に使用した屈曲部材5b1として、例えばポールジョイントなどを使用し、更に連結部材5cを円板状に形成している。
そして上定盤1には、上定盤1及び下定盤2の間に上記移動シール手段4を挟んで両基板A,Bが囲まれるように閉空間Sを区画形成するために、例えば上下駆動用シリンダーやジャッキなどからなる昇降手段6が連設される。
この昇降手段6は、コントローラー(図示せず)で動作制御され、基板A,Bをセットする初期状態で、図4(a)に示す如く上定盤1を上限位置で待機しており、基板A,Bのセット完了後に、図1の実線及び図4(b)に示す如く上定盤1を下降させて、下定盤2との間に閉空間Sが両基板A,Bを囲むように区画形成し、両基板A,Bの微合わせ終了後か、或いは後述する閉空間Sが大気圧に戻った後は上昇させて初期状態に戻す。
更に、前記昇降手段6とは別に、上下定盤1,2のどちらか一方又は両方をZ方向へ平行移動させて両基板A,Bの間隔を調整する基板間隔調整手段が設けられる。
この基板間隔調整手段は、本実施例の場合、前記上定盤1の周縁部1aに突設した係合部4dの先端と、これと嵌合する移動ブロック4aの上面との間に亘って周方向へ等間隔毎に複数配設した例えばリニアアクチュエーターなどのZ方向へ伸縮動する駆動体4e…であり、これら駆動体4e…をZ方向へ短縮化して前記環状シール4bをZ方向へ圧縮変形させることにより、昇降手段6で接近させた両基板A,Bを、それらの間が環状接着剤Cで密閉される位置まで更に接近させる。
これら駆動体4e…も、コントローラー(図示せず)で動作制御され、初期状態で図4(a)に示す如くZ方向へ伸長しており、両基板A,Bの粗合わせ終了後に図4(c)に示す如く短縮させ、両基板A,Bの微合わせ終了後か、或いは後述する閉空間Sが大気圧に戻った後は伸長させて初期状態に戻す。
また、この閉空間Sには、図1の符号7に示すような外部に配設した例えば真空ポンプと連絡して、該閉空間S内の気体、本実施例では空気を出し入れして所定の真空度にする吸気手段が設けられる。
この吸気手段7は、コントローラー(図示せず)で動作制御され、上定盤1及び下定盤2の接近移動により閉空間Sが形成された後に該閉空間Sから吸気を開始し、両基板A,Bの微合わせの終了後は閉空間Sに空気を供給して大気圧に戻す。
そして、前記閉空間Sの外側には、それを真空状態に維持しながら上定盤1及び下定盤2を相対的にXYθ方向へ調整移動させるための位置決め用移動手段8が配設される。
本実施例の場合には、この位置決め用移動主だ8が図1に示す如く、上定盤1をXYθ方向へ移動させるために連設された例えばカムやアクチュエーターなどからなる駆動源8aと、両基板A,Bに表示されたマークを顕微鏡とカメラで構成された検出器8bとから構成され、この検出器8bから出力されるデータに基づいて駆動源8aを作動させることにより、移動ブロック4a及びそれに連結した上定盤1がXYθ方向へ押動されて、該上定盤1に保持された上方基板Aの粗合わせと微合わせを行っている。
図示例の場合には、図2に示す如く3つの駆動源8aを前記移動シール手段4の移動ブロック4aへ向けて連設している。
次に、斯かるフラットパネル用基板の貼り合わせ方法を工程順に従って説明する。
先ず、図4(a)に示す如く上定盤1及び下定盤2の対向面には、上方の基板Aと、予め接着剤Cが塗布されて液晶が充填された下方の基板Bとを夫々プリアライメントしてセットし、吸引吸着手段3a,3a及び静電吸着手段3b,3bにより両基板A,Bを夫々移動不能に吸着保持させてセットする。
その後、昇降手段6の作動で図4(b)に示す如く上定盤1と下定盤2を互いに近づけ、上定盤1の周縁部1aに突設した係合部4dが移動ブロック4a上の環状シール4bに密接して、上定盤1と下定盤2との間には、両基板A,Bを囲むように閉空間Sが区画形成される。
これと同時に両基板A,Bは、上定盤1と下定盤2の接近移動により、所定間隔まで接近し、この状態で1mm程度の隙間をもって対峙している。
しかし、一方の基板Bに塗布した環状接着剤Cには、他方の基板Aが接触せず、これら両基板A,Bの間と閉空間Sは連通している。
その後、吸気手段7の作動で閉空間Sから空気が抜かれて所定の真空度になると共に、両基板A,Bの間からも空気が抜かれて真空となる。
この状態で、位置決め用移動手段8の作動により上定盤1と下定盤2を相対的にXYθ方向へ調整移動させて、両基板A,Bの粗合わせが行われる、
これに続いて、閉空間Sが所定の真空度に到達すれば、閉空間Sと上定盤1及び下定盤2が受ける大気圧との圧力差によって、上定盤1及び下定盤2を更に接近移動させようとする力が作用する。しかし、基板間隔調整手段の駆動体4e…の短縮動により、図4(c)に示す如く上記係合部4dか或いは上定盤1の周縁部1aと移動ブロック4aの上面とが更に接近するものの、これらの間は設定された間隔に保持されて、環状シール4bを圧縮変形させるが完全に潰れることはない。
それにより他方の基板Aが所定の距離まで接近した状態で、位置決め用移動手段8の作動により、両基板A,Bの微合せを行う(これを基板非接触微合せと呼ぶ)か、又は、図示せる如く他方の基板Aが更に接近し、一方の基板Bに塗布した環状接着剤Cに接触して両者間に封止空間が形成された状態で、位置決め用移動手段8の作動により両基板A,Bの微合せを行う(これを基板接触微合せと呼ぶ)。
ここで、アライメント(粗合わせ、微合わせ)動作を図4に従って詳しく説明すれば、図4(a)に示す如く両基板A,Bが対峙する状態から、昇降手段6の作動で上定盤1と下定盤2を互いに近づけると、図4(b)に示す如く上定盤1の周縁部1aに突設した係合部4dが環状シール4に密接した時、これら上定盤1の係合部4dと移動ブロック4aの上面はZ方向のみに相互に嵌合して、これら両者がXYθ方向へ一体化される。
また移動ブロック4aの底面と下定盤2の周縁部2aとの間は、下定盤2の周縁部2aに常時接触する真空シール4cと、位置調整手段5を構成する複数部材、即ち移動ブロック4aの底面に接合された中心部材5a、下定盤2の周縁部2bの底面に接合された周囲部材5b及びこれらの下端部に接合された連結部材5cとにより、1mm以上の間隔をもって支持されている。
そこで、上定盤1と下定盤2を相対的にXYθ方向へ調整移動させるために位置決め用移動手段8の駆動源8aを動作させると、図1の実線及び図4(b)の二点鎖線に示す如く、真空シール4cによって閉空間S内の真空状態を維持したまま、移動ブロック4a及びそれに連結した上定盤1が、下定盤2に対してXYθ方向へ移動する。
即ち、位置決め用移動手段8の駆動源8aで移動ブロック4aをXYθ方向へ押動すると、同方向へ位置調整手段5の周囲部材5bが変形することにより、中心部材5a及び移動ブロック4aが平行移動して、該移動ブロック4aに連結した上定盤1をXYθ方向へ自在に移動させることができ、この中心部材5aが有するZ方向への大きな剛性によって、上定盤1及び下定盤2が受ける大気圧に耐えながら移動ブロック4aの底面と下定盤2の周縁部2aとの間を所定間隔に保持するため、真空シール4cが受ける摺動抵抗は適正な値に保たれる。
その結果、XYθステージを用いずに真空中で両基板A,Bを外部からスムーズにXYθ移動させて高精度にアライメント(粗合わせ、微合わせ)できる。
更に本実施例の場合には、位置調整手段5が、Z方向へ延びる略平行な複数部材の少なくとも一部である周囲部材5bを、例えばリンク機構などによりXYθ方向へ変形自在に支持したから、位置決め用移動手段8による駆動負荷が小さくても、複数部材5a,5bの少なくとも一部がXYθ方向へスムーズに変形する。
その結果、位置調整手段5の構造を簡素化しながら位置決め用移動手段8の駆動源8aを小型化できるという利点がある。
また、上述した位置調整手段5の構造では、XYθ方向への調整移動に伴って摩擦接触する部分が無いため、この摩擦接触により塵が発生せず、アライメントにおいて発塵による両基板A,Bへの悪影響を防止できる。
なお、上記位置調整手段5を構成する複数部材の構造は、図示したものに限定されず、XYθ方向へ変形可能な周囲部材5bは、上述したリンク機構に代えて、例えば図5(a)(b)に示す如く弾性変形可能な円筒体5b′を配置したり、複数本の弾性変形可能な柱やワイヤーなどからなる弾性杆材5b″を配置したり、これらと逆に周囲部材5bの剛性を高くしてXYθ方向へ変形不能に形成すると共に中心部材5aをXYθ方向へ変形させるなど、他の構造にしても同様な作用が得られる。
このような複数部材の少なくとも一部を弾性変形可能な部材で支持し、その撓みを利用して変形させた場合には、構造が簡素化されて製造コストの低減化が図れると共に、XYθ方向への調整移動に伴って摩擦接触する部分が全く無いため、この摩擦接触による塵の発生を完全に防止できる。
また位置決め用移動手段8を上定盤1に連設し、下定盤2を高い剛性をもって支持すれば、下定盤2は上定盤1の動きに追従することなく高精度のアライメントができる。
そして、上述の如く粗合わせと微合わせが完了した後は、上記両基板A,Bを所定の距離まで接近した状態で微合せが行われる基板非接触微合せの場合には、両基板A,Bを更に接近して両者間に封止空間がほぼ形成された状態で、また基板接触微合せの場合には、そのままの状態で、上方の静電吸着手段3bのみの吸着を解除し、吸気手段7の作動で閉空間S内に空気を入れてその雰囲気を大気圧に戻す。
それにより、図4(d)に示す如く上定盤1から上方基板Aが離れ、下方基板B上に接着剤Cを介して乗ったまま、これら両基板A,B間に形成される封止空間の内圧と大気圧との差により、両基板A,Bが均等に押し潰されて、所定のギャップが形成される。
また、上述した粗合わせを行う前の時点、具体的には両基板A,Bのセット時に適正量の液晶を適正状態で封入すれば、閉空間S内の雰囲気を大気圧に戻すことにより、両基板A,Bの内外に生じる気圧差で均等に押し潰されて、液晶が封入された状態で所定のギャップ形成が可能となり、後工程で液晶を注入せずに液晶パネルが制作できる。
それ以降は、閉空間S内が大気圧に戻ったら、昇降手段6の作動により上定盤1と下定盤2を離して閉空間S1が開放され、アライメントされた両基板A,Bを取り出して、上述した動作が繰り返される。
一方、図6に示すものと、図7に示すものは、本発明の他の実施例である。
図6に示すものは、前記移動シール手段4が、移動ブロック4aと環状シール材4bと環状の真空シール4cのみで構成され、前記上定盤1の周縁部1aと移動ブロック4aの上面とに亘って、例えばリニアアクチュエーターなどのZ方向へ伸縮動する基板間隔調整手段4fを等間隔毎に複数配設し、これら基板間隔調整手段4f…を伸長することにより、上定盤1の周縁部1aと移動ブロック4aの上面をXYθ方向へ一体的に係合させると共に、上定盤1の周縁部1aと移動ブロック4aの上面と間隔を、両基板A,Bが環状接着剤Cで密閉するまで接近させるようにした構成が、前記図1〜図5に示した実施例とは異なり、それ以外の構成は図1〜図5に示した実施例と同じものである。
なお、図示例では、基板間隔調整手段4f…を上定盤1の周縁部1aから移動ブロック4aの上面へ向けて配置したが、これと逆に移動ブロック4aの上面から上定盤1の周縁部1aへ向けて配置しても良い。
そして、図6の一点鎖線に示す如く、ジャッキからなる昇降手段6により上定盤1のみを上動して移動ブロック4aと分離させた状態で、両基板A,Bがセットされ、その後、同図の実線に示す如く、上定盤1を下動して基板間隔調整手段4f…により移動ブロック4aとXYθ方向へ一体的に係合させて、両基板A,Bを囲むように閉空間Sが形成される。
この状態で、位置決め用移動手段8のモーターからなる駆動源8aの作動によりカム8を回動させると、移動ブロック4aと下定盤2に亘って架設されたスプリング8cが、伸縮し、それにより同図の二点鎖線に示す如く、位置調整手段5が移動して上定盤1及び移動ブロック4aが下定盤2上を、相対的にXYθ方向へ調整移動し、両基板A,B同士の粗合わせが行われる。
その後、基板間隔調整手段4f…の短縮により、上定盤1と下定盤2が更に接近して、この状態でも上述したように上定盤1と下定盤2を相対的にXYθ方向へ調整移動させて、両基板A,B同士の微合わせが行われる。
従って、図6に示すものも、図1〜図5に示した実施例と同様な作用が得られる。
特に図示例の場合には、上定盤1及び下定盤2の上下外側面に外壁1b,2cを夫々外側へ膨出するように連設して、空間部1c,2dを区画形成すると共に、これら空間部1c,2dに吸気手段1d,2eを配管接続して、夫々の内部を所定の真空度にすることにより、両基板A,Bの内外に生じる気圧差での所定のギャップまで潰す時に、大気圧は空間部1c,2dの外壁1b,2cのみに掛かって上定盤1及び下定盤2には大気圧が掛からず、大気圧による変形を防止している。
更に、前記閉空間S内を所定の真空度にするための吸気手段7が、上定盤1及び下定盤2と、それに取り付けられる板状の静電吸着手段3との間に隙間3c,3cを形成し、この隙間3c,3cから閉空間S内の空気が一方向のみへ流れることによる悪影響を防止している。この悪影響とは、例えば保持した両基板A,Bが傾いたり、予め下方の基板B上に充填された液晶が飛び散るなどである。
図7に示すものは、前記位置調整手段5が、例えばゴムなどの薄い弾性シート5dと例えば鋼板などの金属板5eとを交互に積み重ねて接着成形した積層体である構成が、前記図1〜図5又は図6に示した実施例とは異なり、それ以外の構成は図1〜図5又は図6に示した実施例と同じものである。
特に上記弾性シート5dとしては、優れた強度と弾性を有しながら長期のクリープ(粘弾性)を小さくするために、例えば高純度の天然ゴムやシリコーンゴムなどの弾性体を使用することができ、このような弾性シート5dと鋼板からなる金属板5eとを交互に積み重ね加硫成型すれば、極めて大きなZ方向への剛性と荷重支持能力を有しながら水平方向には柔らかい断剛性を有する。
従って、図7に示すものは、図1〜図5又は図6に示した実施例に比べ、位置調整手段5の構造を更に簡素化でき、製造コストの更なる低減化も図れるという利点がある。
尚、前示実施例では、上方の保持板1がZ方向へ往復動自在で且つXYθ方向へ調整移動自在に吊持された上定盤であり、下方の保持板2がZ方向及びXYθ方向へ移動不能に支持された下定盤である場合を示したが、これに限定されず、これと逆に上方の保持板1をZ方向及びXYθ方向へ移動不能に支持し、下方の保持板2をZ方向へ往復動自在で且つXYθ方向へ調整移動自在に支持しても良いし、それ以外に上下の保持板1,2は二枚の基板A,Bを夫々着脱自在に保持するものであれば他の構造であっても良い。
更に真空雰囲気中でアライメントする場合を示したが、これに限定されず、特殊ガス雰囲気中でアライメントする場合も同様である。
また、基板A,Bの保持手段3、移動シール手段4、位置調整手段5、昇降手段6、吸気手段6及び位置決め用移動手段8は、図示された構造に限定されず、同様に作用すれば他の構造でも良い。
また更に移動シール手段4の真空シール4cに代えて磁性流体式真空シールを使用しても良い。
産業上の利用可能性
以上説明したように、本発明のうち請求項1記載の発明は、本発明のうち請求項1記載の発明は、移動シール手段により両保持板の周縁部間が密閉状態に維持されて閉空間内を真空状態に維持しながら、該閉空間の外に配設された位置決め用移動手段で、両保持板を相対的にXYθ方向へ調整移動することにより、同方向へ位置調整手段が移動して、両基板同士の位置合わせが行われると共に、該位置調整手段が有するZ方向への大きな剛性によって、両保持板の周縁部間が所定間隔に保持されるため、移動シール手段が受ける支持抵抗が適正な値に保たれるので、XYθステージを用いずに真空中で両基板を外部からスムーズにXYθ移動させてアライメントできる。
従って、両基板同士の位置合わせ手段としてXYθステージを用いた従来のものに比べ、位置調整手段の構造を小型化でき、それにより摩耗の低減化が図れて繰返しアライメントに対する耐久性の向上が期待できると共に、メンテナンスが容易になり、しかも輸送コストの低減化も図れる。
請求項2の発明は、請求項1の発明の効果に加えて、位置決め用移動手段による駆動負荷が小さくても、位置調整手段を構成する複数部材の少なくとも一部がXYθ方向へスムーズに変形するので、位置調整手段の構造を簡素化しながら位置決め用移動手段の駆動源を小型化できる。
従って、製造コストの低減化が図れると共に、XYθ方向への調整移動に伴って摩擦接触する部分が無いため、この摩擦接触により塵が発生せず、アライメントにおいて発塵による両基板A,Bへの悪影響を防止できる。
請求項3の発明は、請求項1の発明の効果に加えて、位置決め用移動手段で、閉空間内を真空状態に維持しながら両保持板を相対的にXYθ方向へ調整移動することにより、各金属板の間に夫々積層された弾性シートの弾性変形を利用して両基板が相対的にXYθ方向へ位置合わせされるので、位置調整手段の構造を簡素化できる。
従って、製造コストの低減化が図れる。
請求項4の発明は、請求項1、2または3の発明の効果に加えて、下方の保持板が上方の保持板の動きに追従しないので、高精度のアライメントを可能にすることができる。
Technical field
The present invention relates to a flat panel substrate for aligning and bonding two substrates used in a flat panel display manufacturing process such as a liquid crystal display (LCD) and a plasma display (PDP). The present invention relates to a bonding device.
Specifically, two substrates respectively detachably held on a pair of upper and lower holding plates are superimposed in a vacuum, and these are relatively adjusted and moved in the XYθ directions to perform alignment between the two substrates. The present invention relates to an apparatus for bonding flat panel substrates, which is crushed to a predetermined gap by a pressure difference between the inside and outside of the substrates.
Background art
Conventionally, as a bonding apparatus for a flat panel substrate of this type, a closed space is formed between a pair of upper and lower holding plates relatively through a sealing material between the two holding plates. After reducing the suction pressure to a predetermined degree of vacuum, one of the holding plates is displaced in the horizontal direction with respect to the other and finely adjusted, so that both substrates (glass substrates) are accurately aligned. Is returned to the atmospheric pressure, and the two substrates are pressurized by the difference between the atmospheric pressure in the sealed space between the two substrates and the atmospheric pressure (for example, see Patent Document 1).
[Patent Document 1]
JP-A-6-34983 (page 4, FIGS. 1, 4 and 5)
Also, a pair of vacuum chamber units are disposed so as to be separable in the Z direction so as to surround the pair of pressure plates, and the lower chamber unit is supported on the upper surface of the gantry via an XYθ stage so as to be adjustable and movable in the XYθ direction. The vacuum chamber unit is joined to form a vacuum chamber (closed space), and the interior of the vacuum chamber is evacuated to a vacuum state. There is a device that performs high-accuracy alignment of both substrates from outside the vacuum chamber by relatively moving the chamber unit in the XYθ direction (for example, see Patent Document 2).
[Patent Document 2]
JP 2001-5405 A (page 3-4, FIGS. 1 and 2)
Further, the XYθ stage includes an X stage that is reciprocally movable in the X-axis direction by a drive motor and a Y stage that is reciprocally movable in the Y-axis direction by another drive motor via a rotary bearing. It is provided on the stage so as to be able to rotate horizontally with respect to the Y stage by another drive motor.
On the other hand, in recent years, in a liquid crystal substrate bonding apparatus, TFT glass and CF glass have been increasing in size year by year, and are now being manufactured up to 1000 mm on a side, and when such glass substrates are aligned, XYθ The amount of movement in the direction is about 20 μm to 50 μm at present, and does not exceed several hundred μm even for a large-sized glass substrate whose one side exceeds 1000 mm.
However, in such a conventional flat panel substrate bonding apparatus, an XYθ stage is used as a means for aligning the two substrates. However, the existing XYθ stage is basically moved by mm or more in the XYθ direction. In general, when the amount of movement is as small as several hundred μm or less, as in the case of substrate alignment, the rolling element of the rotary bearing does not reach one rotation, and several hundreds of rotations are required for each substrate alignment. In the case where repeated movements of less than μm were repeated, there was a problem that the sliding portion was worn out due to lack of oil and durability was poor.
Furthermore, since the closed space formed on the XYθ stage needs to have a structure capable of withstanding a predetermined degree of vacuum, the weight increases, and the sliding portion of the XYθ stage is also easily worn, In order to prevent this, there is a problem that frequent maintenance work is required.
In addition, due to the structure of the XYθ stage, there is also a problem that the entire apparatus becomes larger and heavier, which increases the structural cost and transport cost.
In addition, the size of the apparatus has been increased in accordance with the recent tendency to increase the size of the substrate, and the above-mentioned problem has been further increasing.
The invention described in Product 1 of the present invention aims at performing alignment by smoothly moving both substrates from outside to XYθ in a vacuum without using an XYθ stage.
A second object of the present invention is to reduce the size of the driving source of the positioning moving means while simplifying the structure of the position adjusting means, in addition to the object of the first invention.
The third aspect of the present invention aims at simplifying the structure of the position adjusting means in addition to the object of the first aspect of the present invention.
A fourth aspect of the present invention has the object of enabling high-precision alignment in addition to the object of the first, second, or third aspect of the present invention.
Disclosure of the invention
In order to achieve the above-mentioned object, an invention according to claim 1 of the present invention is a moving seal that supports a relatively movable XYθ direction while maintaining a sealed state between opposing peripheral portions of both holding plates. Means and a large rigidity in the Z direction, which can be moved in the same direction along with the adjustment movement of the two holding plates in the relative XYθ directions. Position adjusting means, moving means for moving the two holding plates relatively close to each other, and elevating means for forming a closed space so that the two substrates are surrounded by the two holding plates. Positioning movement means disposed outside the closed space for relatively adjusting and moving the holding plate in the XYθ direction, and both the holding plates are relatively adjusted in the XYθ direction by the positioning movement means. By the above position It is characterized in that aligning the substrates by using the movement of integer means the relatively XYθ direction.
The operation of the invention according to claim 1 resulting from such a structure is that the movable sealing means maintains the closed space between the peripheral portions of the two holding plates and maintains the inside of the closed space in a vacuum state, and the outside of the closed space. By moving the two holding plates relatively in the XYθ directions by the positioning moving means provided in the position moving means, the position adjusting means moves in the same direction and the two substrates are aligned with each other. Due to the large rigidity in the Z direction of the position adjusting means, the periphery of both holding plates is held at a predetermined interval, so that the supporting resistance received by the moving sealing means is maintained at an appropriate value.
According to a second aspect of the present invention, in the configuration of the first aspect, the position adjusting means is composed of a plurality of substantially parallel members extending in the Z direction. It is characterized in that at least a part of the plurality of members is supported so as to be deformable in the X, Y, and θ directions by being joined to one of the moving sealing means and the two holding plates.
Here, as a structure for supporting at least a part of the plurality of members so as to be deformable (deformable) in the XYθ directions, for example, a plurality of movable rods are used in a link mechanism that is flexibly connected. It is not limited to one that bends and deforms at least a part thereof, but also includes one that supports at least a part of a plurality of members with an elastically deformable member without using such a mechanism and deforms by using the bending thereof. .
The operation of the invention according to claim 2 resulting from the configuration thus added is, in addition to the operation of the invention according to claim 1, a plurality of members constituting the position adjusting means even if the driving load by the positioning moving means is small. At least partially smoothly transforms to XYθ.
According to a third aspect of the present invention, in addition to the configuration of the first aspect of the present invention, a configuration is provided in which the position adjusting means is a laminate formed by alternately stacking elastic sheets and metal plates and bonding them. I do.
The operation of the invention according to the third aspect resulting from the configuration added in this way is the same as the operation of the invention of the first aspect, except that the two holding plates are relatively moved by the positioning moving means while maintaining the closed space in a vacuum state. By performing the adjustment movement in the XYθ direction, the two substrates are relatively positioned in the XYθ direction by utilizing the elastic deformation of the elastic sheets laminated between the respective metal plates.
According to a fourth aspect of the present invention, in the configuration of the first, second, or third aspect, the positioning moving means is connected to an upper holding plate, and the upper holding plate is supported for adjustment movement in the XYθ directions. In addition, a configuration is provided in which the lower holding plate is supported with high rigidity so as not to move in the XYθ directions.
The operation of the invention of claim 4 resulting from the configuration added in this way, in addition to the operation of the invention of claim 1, 2, or 3, the lower holding plate does not follow the movement of the upper holding plate.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view of a flat panel substrate bonding apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional plan view taken along the line (2)-(2) in FIG.
FIG. 3 is an enlarged perspective view of the position adjusting means.
FIGS. 4A to 4D are partial explanatory views showing a method of bonding a flat panel substrate in a process order.
FIGS. 5A and 5B are enlarged perspective views showing modified examples of the position adjusting means.
FIG. 6 is a longitudinal sectional front view of a flat panel substrate bonding apparatus according to another embodiment of the present invention.
FIG. 7 is a longitudinal sectional front view of a flat panel substrate bonding apparatus according to another embodiment of the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
This embodiment is an upper surface plate on which an upper holding plate 1 is suspended so as to be able to reciprocate in a Z (vertical) direction and to be adjustable in an XYθ (horizontal) direction as shown in FIGS. At the same time, the lower holding plate 2 is supported on the gantry 9 with high rigidity so as to be immovable in the Z direction and the XYθ direction, and is a lower stool, which is held on the facing surface of the upper stool 1 and the lower stool 2. The two glass substrates A and B are superimposed in a vacuum atmosphere and relatively adjusted and moved in the XYθ directions to perform rough alignment and fine alignment of the substrates A and B as alignment. 2 shows a case where both substrates A and B are crushed to a predetermined gap due to a pressure difference between the inside and outside of the substrate.
A frame shape in which a linear adhesive C is closed as a sealing material for sealing a liquid crystal, for example, along one of the opposing surfaces of the substrates A and B, in the illustrated example, along the peripheral edge of the lower surface of the substrate B. And a liquid crystal (not shown) is filled therein, and a number of gap adjusting spacers (not shown) are sprayed as necessary.
The upper stool 1 and the lower stool 2 are made of a rigid body such as metal or ceramics, for example, and a holding means 3 for holding both substrates A and B immovably at the center of their facing surfaces. In the case of, suction suction means 3a, 3a for sucking from a plurality of suction holes respectively opened by a suction source (not shown) such as a vacuum pump, and a pair of electrostatic means for assisting suction holding in vacuum. Suction means 3b, 3b are provided.
The suction sources of the suction / suction means 3a, 3a and the power supply of the electrostatic suction means 3b, 3b are operation-controlled by a controller (not shown), and the suction and suction and the electrostatic suction are performed in an initial state where both substrates A, B are set. After the two substrates A and B are finely aligned, one of the two substrates A and B is released from the electrostatic attraction of the upper substrate A in this embodiment, and after the closed space S described later returns to the atmosphere, the attraction and adsorption of the lower substrate B is performed. Then, the electrostatic adsorption is released to return to the initial state.
The holding means 3 is not limited to the above-described one. For example, if the vacuum is low, a vacuum suction means using a vacuum difference may be used instead of the electrostatic suction means 3b.
Further, between the peripheral portion 1a of the upper stool 1 and the peripheral portion 2a of the lower stool 2, a movable sealing means 4 for supporting the movable portions relatively in the XYθ directions while maintaining the hermetically sealed state therebetween is provided. Are provided in an annular shape so as to surround both substrates A and B.
In the illustrated example, since both substrates A and B are rectangular, the moving sealing means 4 is formed in a flat frame shape. However, the present invention is not limited to this. In the case of a circle, it is formed in a similar shape along the outer periphery.
In the case of the present embodiment, the moving seal means 4 includes a moving block 4a formed in a circular or rectangular cross section in accordance with the planar shape of the upper stool 1 and the lower stool 2, and an upper surface mounted on the upper surface of the moving block 4a. An annular sealing member 4b elastically deformable in the Z direction, such as an O-ring, for example, which comes into contact with and separates from the peripheral portion 1a of the surface plate 1, and the peripheral portion 2a of the lower surface plate 2 attached to the lower surface of the moving block 4a, and constantly contacts XYθ. And an annular vacuum seal 4c such as an O-ring that can move in the direction.
For this vacuum seal 4c, for example, vacuum grease is used as necessary.
In the illustrated example, an engaging portion 4d that fits in the Z direction only with the upper surface of the moving block 4a is integrally provided on the peripheral portion 1a of the upper surface plate 1 so as to project from the lower surface of the engaging portion 4d. A single annular sealing member 4b was interposed over the upper surface of the moving block 4a, and a double vacuum seal 4c was interposed from the lower surface of the moving block 4a to the peripheral portion 2a of the lower platen 2. Although not limited, although not shown, only the inner peripheral side vacuum seal 4c may be left and the outer peripheral side vacuum seal 4c may be deleted so as to overlap the single annular sealing member 4b in the Z direction.
The upper and lower stool 2 can be moved in the same direction along the relative movement of the upper stool 1 and the lower stool 2 in the XYθ direction from either the moving sealing means 4 to one of the upper and lower stools 1 and 2. A position adjusting means 5 having a large rigidity in the Z (vertical or vertical) direction is provided.
In the case of the present embodiment, the position adjusting means 5 is constituted by a plurality of substantially parallel members extending in the Z direction, one end of which is joined to each other, and the other end is fixed to the moving seal means 4. Each of the plurality of members is joined to one of the platen 1 and the lower platen 2 to support at least a part of the plurality of members so as to be deformable only in the XYθ directions.
More specifically, as shown in FIGS. 1 to 3, the plurality of members are joined together so as to hang from the bottom surface of the moving block 4 a toward the peripheral portion 2 a of the lower platen 2. A peripheral member 5b joined so as to surround the bottom surface of the peripheral portion 2a of the lower stool 2 so as to surround it, and a connecting member 5c joining and supporting the lower end portions of the central member 5a and the peripheral member 5b. In addition, by arranging a plurality of units integrating these components along the outer circumferences of the upper stool 1 and the lower stool 2, the force such as the weight of the upper stool 1 and the moving block 4a is reduced by the center member 5a and the lower stool And the central member 5a, the peripheral member 5b and the connecting member 5c, so that they do not act excessively on the vacuum seal 4c of the moving seal means 4.
In particular, in the examples shown in FIGS. 1 to 3 and 4, the center member 5 a is formed in a cylindrical shape having high rigidity in the Z direction, which is the axial direction thereof, and which cannot be deformed in the XYθ directions. In the illustrated example, a plurality of peripheral members 5b, which are formed by a link mechanism and are capable of bending and deforming in the XYθ direction, are penetrated through the through holes 2b formed in the base member 2a so as to be movable in the XYθ direction. In addition to the four arrangements, a pole joint or the like is used as the bending member 5b1 used at the lower end and the upper end of the link mechanism, and the connecting member 5c is formed in a disk shape.
In order to form a closed space S in the upper stool 1 so as to surround both substrates A and B with the movable sealing means 4 interposed between the upper stool 1 and the lower stool 2, for example, a vertical drive Elevating means 6 comprising a cylinder for use and a jack are connected in series.
The elevating means 6 is operation-controlled by a controller (not shown), and in an initial state for setting the substrates A and B, as shown in FIG. After the setting of A and B is completed, the upper surface plate 1 is lowered as shown by the solid line in FIG. 1 and FIG. 4B so that the closed space S surrounds both substrates A and B between the upper surface plate 1 and the lower surface plate 2. After the division and formation of the two substrates A and B, or after the closed space S, which will be described later, returns to the atmospheric pressure, it is raised and returned to the initial state.
Further, apart from the elevating means 6, there is provided a substrate spacing adjusting means for adjusting one of the substrates A and B by moving one or both of the upper and lower stools 1 and 2 in parallel in the Z direction.
In the case of the present embodiment, the substrate interval adjusting means extends between the tip of the engaging portion 4d protruding from the peripheral portion 1a of the upper platen 1 and the upper surface of the moving block 4a fitted with the same. A plurality of driving members 4e, such as linear actuators, which are arranged at equal intervals in the circumferential direction and extend and contract in the Z direction. These driving members 4e are shortened in the Z direction to compress the annular seal 4b in the Z direction. By deforming, the two substrates A and B approached by the lifting / lowering means 6 are further approached to a position where the space therebetween is sealed with the annular adhesive C.
The operation of these driving bodies 4e is also controlled by a controller (not shown), and in the initial state, they extend in the Z direction as shown in FIG. 4A. After the fine adjustment of the substrates A and B is completed, or after a closed space S described later returns to the atmospheric pressure, it is extended and returned to the initial state as shown in c).
Further, the closed space S is connected to, for example, a vacuum pump disposed outside as shown by reference numeral 7 in FIG. An intake means for providing a degree of vacuum is provided.
The operation of the suction means 7 is controlled by a controller (not shown). After the closed space S is formed by the approaching movement of the upper stool 1 and the lower stool 2, suction is started from the closed space S. , And B, air is supplied to the closed space S to return to the atmospheric pressure.
Outside the closed space S, a positioning moving means 8 for adjusting the upper surface plate 1 and the lower surface plate 2 relatively in the XYθ direction while maintaining them in a vacuum state is provided.
In the case of the present embodiment, as shown in FIG. 1, the positioning movement main body 8 includes a drive source 8a, which is provided in order to move the upper surface plate 1 in the XYθ directions, and is composed of, for example, a cam or an actuator. The marks displayed on both substrates A and B are composed of a detector 8b composed of a microscope and a camera, and the drive source 8a is operated based on the data output from the detector 8b, whereby the moving block 4a The upper surface plate 1 connected to the upper surface plate 1 is pushed in the XYθ direction, and the upper substrate A held on the upper surface plate 1 is roughly and finely aligned.
In the case of the illustrated example, as shown in FIG. 2, three driving sources 8a are connected to the moving block 4a of the moving sealing means 4 in series.
Next, a method for bonding such a flat panel substrate will be described in the order of steps.
First, as shown in FIG. 4 (a), an upper substrate A and a lower substrate B which has been previously coated with an adhesive C and filled with liquid crystal are provided on the opposing surfaces of the upper stool 1 and the lower stool 2, respectively. The substrates A and B are set by pre-alignment, and are suction-held by the suction suction means 3a, 3a and the electrostatic suction means 3b, 3b so as to be immovable.
Then, as shown in FIG. 4B, the upper platen 1 and the lower platen 2 are brought closer to each other by the operation of the lifting / lowering means 6, and the engaging portion 4d protruding from the peripheral portion 1a of the upper platen 1 is placed on the moving block 4a. A closed space S is formed between the upper platen 1 and the lower platen 2 so as to surround the substrates A and B in close contact with the annular seal 4b.
At the same time, the substrates A and B approach each other up to a predetermined distance due to the approach movement of the upper surface plate 1 and the lower surface plate 2, and face each other with a gap of about 1 mm in this state.
However, the annular adhesive C applied to one of the substrates B does not contact the other substrate A, and the closed space S communicates between the two substrates A and B.
Thereafter, the air is evacuated from the closed space S by the operation of the air intake means 7 to reach a predetermined degree of vacuum, and the air is also evacuated from between the substrates A and B to create a vacuum.
In this state, the upper surface plate 1 and the lower surface plate 2 are adjusted and moved relatively in the XYθ directions by the operation of the positioning moving means 8, so that the substrates A and B are roughly aligned.
Subsequently, when the closed space S reaches a predetermined degree of vacuum, the upper surface plate 1 and the lower surface plate 2 are further moved by the pressure difference between the closed space S and the atmospheric pressure received by the upper surface plate 1 and the lower surface plate 2. A force that attempts to move closer is applied. However, due to the shortening movement of the driving members 4e of the board interval adjusting means, the engaging portion 4d or the peripheral portion 1a of the upper platen 1 and the upper surface of the moving block 4a further approach as shown in FIG. However, the space between them is held at a set interval, and the annular seal 4b is compressed and deformed, but is not completely collapsed.
Thus, with the other substrate A approaching a predetermined distance, the two substrates A and B are finely aligned by the operation of the positioning moving means 8 (this is referred to as substrate non-contact fine alignment), or As shown in the drawing, the other substrate A is further approached, contacts the annular adhesive C applied to the one substrate B, and a sealing space is formed therebetween. Fine adjustment of A and B is performed (this is called substrate contact fine adjustment).
Here, the alignment (coarse alignment, fine alignment) operation will be described in detail with reference to FIG. 4. From the state where both substrates A and B face each other as shown in FIG. When the lower surface plate 2 and the lower surface plate 2 are brought closer to each other, as shown in FIG. 4B, when the engaging portion 4 d protruding from the peripheral portion 1 a of the upper surface plate 1 comes into close contact with the annular seal 4, the engagement of the upper surface plate 1 The portion 4d and the upper surface of the moving block 4a are fitted with each other only in the Z direction, and these are integrated in the XYθ direction.
In addition, between the bottom surface of the moving plate 4a and the peripheral portion 2a of the lower platen 2, a vacuum seal 4c that is always in contact with the peripheral portion 2a of the lower platen 2, and a plurality of members constituting the position adjusting means 5, that is, the moving block 4a The center member 5a joined to the bottom surface, the peripheral member 5b joined to the bottom surface of the peripheral portion 2b of the lower stool 2 and the connecting member 5c joined to these lower ends are supported at an interval of 1 mm or more.
Therefore, when the drive source 8a of the positioning moving means 8 is operated to relatively move the upper and lower stool 1 and 2 in the XYθ direction, the solid line in FIG. 1 and the two-dot chain line in FIG. As shown in the figure, the moving block 4a and the upper platen 1 connected thereto move in the XYθ direction with respect to the lower platen 2 while the vacuum state in the closed space S is maintained by the vacuum seal 4c.
That is, when the moving block 4a is pushed in the XYθ direction by the driving source 8a of the positioning moving means 8, the peripheral member 5b of the position adjusting means 5 is deformed in the same direction, so that the center member 5a and the moving block 4a move in parallel. Thus, the upper platen 1 connected to the moving block 4a can be freely moved in the XYθ directions, and the upper platen 1 and the lower platen 2 receive the large rigidity in the Z direction of the center member 5a. Since the gap between the bottom surface of the moving block 4a and the peripheral portion 2a of the lower platen 2 is maintained at a predetermined interval while withstanding the atmospheric pressure, the sliding resistance received by the vacuum seal 4c is maintained at an appropriate value.
As a result, the two substrates A and B can be smoothly moved XYθ from outside in a vacuum without using the XYθ stage, and alignment (coarse adjustment or fine alignment) can be performed with high accuracy.
Further, in the case of the present embodiment, the position adjusting means 5 supports the peripheral member 5b, which is at least a part of a plurality of substantially parallel members extending in the Z direction, so as to be deformable in the XYθ direction by, for example, a link mechanism. Even if the driving load by the positioning moving means 8 is small, at least a part of the plurality of members 5a and 5b is smoothly deformed in the XYθ directions.
As a result, there is an advantage that the driving source 8a of the positioning moving means 8 can be reduced in size while simplifying the structure of the position adjusting means 5.
In the structure of the position adjusting means 5 described above, since there is no portion that comes into frictional contact with the adjustment movement in the XYθ directions, dust is not generated by this frictional contact, and the two substrates A and B due to dusting are generated during alignment. Adverse effects can be prevented.
The structure of the plurality of members constituting the position adjusting means 5 is not limited to the illustrated one, and the surrounding member 5b that can be deformed in the XYθ directions is replaced with, for example, the link mechanism described above, for example, as shown in FIG. As shown in b), an elastically deformable cylindrical body 5b 'is arranged, a plurality of elastically deformable columns or elastic rods 5b "made of wires or the like are arranged, and conversely, the rigidity of the surrounding member 5b is increased. The same effect can be obtained with other structures, such as making the shape incapable of being deformed in the XYθ direction by increasing the height, and deforming the center member 5a in the XYθ direction.
When at least a part of such a plurality of members is supported by an elastically deformable member and is deformed by using the bending thereof, the structure is simplified, the manufacturing cost can be reduced, and in the XYθ direction, Since there is no portion that comes into frictional contact with the adjustment movement, the generation of dust due to the frictional contact can be completely prevented.
If the positioning moving means 8 is connected to the upper platen 1 and the lower platen 2 is supported with high rigidity, the lower platen 2 can be aligned with high accuracy without following the movement of the upper platen 1.
After the rough alignment and the fine alignment are completed as described above, the fine adjustment is performed in a state where the substrates A and B are brought close to a predetermined distance. B is further approached, and in the state where a sealing space is substantially formed between them, and in the case of substrate contact fine adjustment, the suction of only the upper electrostatic suction means 3b is released, and By the operation of the means 7, air is introduced into the closed space S and the atmosphere is returned to the atmospheric pressure.
As a result, as shown in FIG. 4D, the upper substrate A is separated from the upper stool 1 and the sealing formed between the upper and lower substrates A and B while the upper substrate A is on the lower substrate B via the adhesive C. Due to the difference between the internal pressure of the space and the atmospheric pressure, the two substrates A and B are evenly crushed to form a predetermined gap.
At the time before the above-mentioned rough alignment is performed, specifically, when a proper amount of liquid crystal is filled in a proper state when the substrates A and B are set, the atmosphere in the closed space S is returned to the atmospheric pressure, The substrates are evenly crushed by a pressure difference generated between the inside and outside of the substrates A and B, so that a predetermined gap can be formed in a state where the liquid crystal is sealed, and a liquid crystal panel can be manufactured without injecting the liquid crystal in a later process.
After that, when the inside of the closed space S returns to the atmospheric pressure, the closed surface S1 is opened by separating the upper surface plate 1 and the lower surface plate 2 by the operation of the lifting / lowering means 6, and the aligned substrates A and B are taken out. , The above-described operation is repeated.
6 and 7 show another embodiment of the present invention.
In FIG. 6, the moving seal means 4 comprises only a moving block 4a, an annular sealing material 4b, and an annular vacuum seal 4c. The moving sealing means 4 is provided on the peripheral portion 1a of the upper platen 1 and the upper surface of the moving block 4a. A plurality of board spacing adjusting means 4f, such as a linear actuator, which expands and contracts in the Z direction are arranged at equal intervals, and these board spacing adjusting means 4f are extended to thereby provide a peripheral portion 1a of the upper surface plate 1. And the upper surface of the moving block 4a are integrally engaged in the XYθ directions, and the gap between the peripheral portion 1a of the upper stool 1 and the upper surface of the moving block 4a is kept until the substrates A and B are sealed with the annular adhesive C. The configuration to be approached is different from the embodiment shown in FIGS. 1 to 5, and the other configuration is the same as the embodiment shown in FIGS. 1 to 5.
In the illustrated example, the substrate spacing adjusting means 4f are arranged from the peripheral portion 1a of the upper surface plate 1 toward the upper surface of the moving block 4a. You may arrange | position to the part 1a.
Then, as shown by the dashed line in FIG. 6, both substrates A and B are set in a state in which only the upper stool 1 is moved up and separated from the moving block 4a by the lifting / lowering means 6 composed of a jack. As shown by the solid line in the figure, the upper platen 1 is moved down and integrally engaged with the moving block 4a in the XYθ directions by the substrate spacing adjusting means 4f. Is formed.
In this state, when the cam 8 is rotated by the operation of the driving source 8a composed of the motor of the positioning moving means 8, the spring 8c spanning the moving block 4a and the lower platen 2 expands and contracts, thereby causing the same. As shown by the two-dot chain line in the figure, the position adjusting means 5 moves, and the upper stool 1 and the moving block 4a adjust and move relatively on the lower stool 2 in the X and Y directions, so that the two substrates A and B are rough. Matching is performed.
Thereafter, the upper platen 1 and the lower platen 2 are further approached due to the shortening of the substrate interval adjusting means 4f..., And even in this state, the upper platen 1 and the lower platen 2 are relatively moved in the XYθ direction as described above. Thus, the fine adjustment of both substrates A and B is performed.
Therefore, the embodiment shown in FIG. 6 can obtain the same operation as the embodiment shown in FIGS.
In particular, in the case of the illustrated example, the outer walls 1b and 2c are continuously provided on the upper and lower outer surfaces of the upper and lower stools 1 and 2 so as to bulge outward, respectively, to form the spaces 1c and 2d. By connecting the air intake means 1d and 2e to these spaces 1c and 2d by piping, and setting the inside of each of them to a predetermined degree of vacuum, when crushing up to a predetermined gap due to a pressure difference between the inside and outside of both substrates A and B. The atmospheric pressure is applied only to the outer walls 1b and 2c of the spaces 1c and 2d, and the upper platen 1 and the lower platen 2 are not subjected to the atmospheric pressure, thereby preventing deformation due to the atmospheric pressure.
Further, suction means 7 for bringing the inside of the closed space S to a predetermined degree of vacuum is provided with gaps 3c, 3c between the upper surface plate 1 and the lower surface plate 2 and the plate-shaped electrostatic suction means 3 attached thereto. Are formed to prevent the adverse effect caused by the air in the closed space S flowing in only one direction from the gaps 3c, 3c. The adverse effects include, for example, tilting of the held substrates A and B and scattering of the liquid crystal previously filled on the lower substrate B.
FIG. 7 shows a configuration in which the position adjusting means 5 is a laminate in which thin elastic sheets 5d such as rubber and metal plates 5e such as steel plates are alternately stacked and adhesively molded, for example. Unlike the embodiment shown in FIG. 5 or FIG. 6, the other configuration is the same as the embodiment shown in FIG. 1 to FIG. 5 or FIG.
In particular, as the elastic sheet 5d, an elastic body such as high-purity natural rubber or silicone rubber can be used to reduce long-term creep (viscoelasticity) while having excellent strength and elasticity. If such an elastic sheet 5d and a metal plate 5e made of a steel plate are alternately stacked and vulcanized and formed, a soft shearing rigidity is obtained in the horizontal direction while having extremely large rigidity in the Z direction and load supporting ability.
Therefore, the structure shown in FIG. 7 has the advantage that the structure of the position adjusting means 5 can be further simplified and the manufacturing cost can be further reduced as compared with the embodiment shown in FIGS. .
In the embodiment described above, the upper holding plate 1 is an upper platen suspended so as to be able to reciprocate in the Z direction and adjustably move in the XYθ direction, and the lower holding plate 2 is used in the Z direction and the XYθ direction. Although the lower platen supported so as not to be able to move is shown, the invention is not limited to this. On the contrary, the upper holding plate 1 is supported so as not to move in the Z direction and the XYθ direction, and the lower holding plate 2 May be reciprocally movable in the Z direction and adjustable and movable in the XYθ directions. In addition, the upper and lower holding plates 1 and 2 respectively hold the two substrates A and B detachably. Any other structure may be used.
Furthermore, although the case where alignment is performed in a vacuum atmosphere has been described, the present invention is not limited to this, and the same applies to the case where alignment is performed in a special gas atmosphere.
Further, the holding means 3, the moving sealing means 4, the position adjusting means 5, the lifting / lowering means 6, the suction means 6, and the positioning moving means 8 for the substrates A and B are not limited to the structures shown in the drawings, but may be operated in the same manner. Other structures may be used.
Further, a magnetic fluid type vacuum seal may be used in place of the vacuum seal 4c of the moving seal means 4.
Industrial applicability
As described above, according to the first aspect of the present invention, the first aspect of the present invention provides a closed space in which the periphery of both holding plates is maintained in a closed state by the moving seal means. While maintaining the inside in a vacuum state, the position adjusting means is moved in the same direction by adjusting and moving the two holding plates relatively in the XYθ directions by the positioning moving means arranged outside the closed space. In addition, the two substrates are aligned with each other, and the large stiffness in the Z direction of the position adjusting means keeps the peripheral portions of both holding plates at a predetermined interval. Is maintained at an appropriate value, so that both substrates can be smoothly moved from outside by XYθ in vacuum without using an XYθ stage to perform alignment.
Therefore, the structure of the position adjusting means can be reduced in size as compared with the conventional one using an XYθ stage as the means for aligning the two substrates, thereby reducing wear and improving the durability against repeated alignment. At the same time, maintenance becomes easy, and the transportation cost can be reduced.
According to a second aspect of the present invention, in addition to the effect of the first aspect, at least a part of the plurality of members constituting the position adjusting means is smoothly deformed in the XYθ direction even if the driving load by the positioning moving means is small. Therefore, the driving source of the positioning moving means can be downsized while simplifying the structure of the position adjusting means.
Therefore, the manufacturing cost can be reduced, and since there is no portion that comes into frictional contact with the adjustment movement in the XYθ direction, dust is not generated by this frictional contact, and dust is generated on both substrates A and B by alignment during alignment. The adverse effects can be prevented.
According to a third aspect of the present invention, in addition to the effect of the first aspect of the present invention, the positioning moving means adjusts and moves both holding plates relatively in the XYθ directions while maintaining the closed space in a vacuum state. Since the two substrates are relatively positioned in the XYθ directions by utilizing the elastic deformation of the elastic sheets laminated between the respective metal plates, the structure of the position adjusting means can be simplified.
Therefore, the manufacturing cost can be reduced.
According to the fourth aspect of the invention, in addition to the effects of the first, second, or third aspect, since the lower holding plate does not follow the movement of the upper holding plate, highly accurate alignment can be performed.

Claims (4)

(補正後) 上下一対の保持板(1,2)に対して夫々着脱自在に保持された二枚の基板(A,B)を、両保持板(1,2)の間に区画形成された真空な閉空間(S)内で重ね合わせ、これら両保持板(1,2)を相対的にXYθ方向へ調整移動して両基板(A,B)同士の位置合わせを行い、両基板(A,B)の内外に生じる気圧差で所定のギャップまで潰すフラットパネル用基板の貼り合わせ装置において、
前記両保持板(1,2)の対向する周縁部(1a,2a)の間に、両基板(A,B)を囲むように環状の移動ブロック(4a)を設け、この移動ブロック(4a)と一方の保持板(1)をXYθ方向へ一体化させて移動可能にすると共に、これら移動ブロック(4a)と他方の保持板(2)の周縁部(2a)との間に、常時接触してXYθ方向へ移動可能な環状の真空シール(4c)を設けて、両保持板(1,2)の間を密閉状態に維持したまま相対的にXYθ方向へ移動自在に支持する移動シール手段(4)と、
この移動シール手段(4)の移動ブロック(4a)から他方の保持板(2)に亘ってZ方向へ延びる略平行な複数部材(5a,5b)を架設し、該複数部材(5a,5b)の一部を他方の保持板(2)に貫通して、これら複数部材(5a,5b)の一端部を相互に接合すると共に、複数部材(5a,5b)の他端部を移動ブロック(4a)と他方の保持板(2)に夫々接合することにより、両保持板(1,2)の相対的なYXθ方向への調整移動に伴って同方向へ移動可能でしかもZ方向へ大きな剛性を有する位置調整手段(5)と、
上記閉空間(S)内を真空状態に維持しながら両保持板(1,2)を相対的にXYθ方向へ調整移動させるために閉空間(S)の外に配設した位置決め用の移動手段(8)とを備え、
この位置決め用移動手段(8)で両保持板(1,2)を相対的にXYθ方向へ調整移動することにより、同方向へ位置調整手段(5)を移動させて、両基板(A,B)を相対的にXYθ方向へ位置合わせすると共に、該位置調整手段(5)が有するZ方向への大きな剛性によって、移動ブロック(4a)と他方の保持板(2)との間を所定間隔に保持することを特徴とするフラットパネル用基板の貼り合わせ装置。
(After Correction) The two substrates (A, B) detachably held on the pair of upper and lower holding plates (1, 2) were formed between the two holding plates (1, 2). The two holding plates (1, 2) are superposed in the vacuum closed space (S), the two holding plates (1, 2) are relatively adjusted and moved in the XYθ direction, and the two substrates (A, B) are aligned with each other. , B) in a flat panel substrate bonding apparatus for crushing up to a predetermined gap by a pressure difference generated inside and outside
An annular moving block (4a) is provided between the opposing peripheral portions (1a, 2a) of the holding plates (1, 2) so as to surround both substrates (A, B), and the moving block (4a) is provided. And one of the holding plates (1) are integrated in the XYθ direction so as to be movable, and a constant contact is made between the moving block (4a) and the peripheral portion (2a) of the other holding plate (2). Moving seal means (4c) that is movable in the X and Y directions by providing an annular vacuum seal (4c) and supports the two holding plates (1 and 2) relatively movably in the X and Y directions while maintaining a closed state between the holding plates (1 and 2). 4) and
A plurality of substantially parallel members (5a, 5b) extending in the Z direction from the moving block (4a) of the moving sealing means (4) to the other holding plate (2) are provided, and the plurality of members (5a, 5b) are provided. Of the plurality of members (5a, 5b) are joined to each other, and the other end of the plurality of members (5a, 5b) is connected to the moving block (4a). ) And the other holding plate (2) can be moved in the same direction along with the relative movement of the two holding plates (1, 2) in the YXθ direction, and have a large rigidity in the Z direction. Position adjustment means (5) having
Positioning moving means provided outside the closed space (S) for adjusting and moving the holding plates (1, 2) relatively in the XYθ directions while maintaining the inside of the closed space (S) in a vacuum state. (8)
By adjusting and moving the two holding plates (1, 2) relatively in the XYθ directions by the positioning moving means (8), the position adjusting means (5) is moved in the same direction, and the two substrates (A, B) are moved. ) Is relatively positioned in the XYθ directions, and the large rigidity in the Z direction of the position adjusting means (5) allows the moving block (4a) and the other holding plate (2) to have a predetermined distance. A flat panel substrate bonding apparatus characterized by holding.
(補正後) 前記位置調整手段(5)が、移動ブロック(4a)から他方の保持板(2)の周縁部(2a)に開穿された通孔(2b)に対しXYθ方向へ移動可能に貫通させて接合した中心部材(5a)と、その周囲を囲むように他方の保持板(2)に接合した周囲部材(5b)と、これら中心部材(5a)及び周囲部材(5b)の下端部を接合して支持する連結部材(5c)とで構成される請求項1記載のフラットパネル用基板の貼り合わせ装置。(After Correction) The position adjusting means (5) can move in the XYθ direction from the moving block (4a) to the through hole (2b) formed in the peripheral portion (2a) of the other holding plate (2). A central member (5a) joined by penetrating, a peripheral member (5b) joined to the other holding plate (2) so as to surround the periphery thereof, and lower end portions of the central member (5a) and the peripheral member (5b) The flat panel substrate bonding apparatus according to claim 1, comprising a connecting member (5c) for joining and supporting the flat panel substrates. (削除)(Delete) (補正後) 前記位置決め用移動手段(8)を上方の保持板(1)に連設すると共に、上方の保持板(1)をXYθ方向へ調整移動に支持し、下方の保持板(2)を高い剛性をもってXYθ方向へ移動不能に支持した請求項1または2記載のフラットパネル用基板の貼り合わせ装置。(After Correction) The positioning moving means (8) is connected to the upper holding plate (1), and the upper holding plate (1) is supported for adjustment movement in the XYθ directions, and the lower holding plate (2) is supported. 3. The flat panel substrate bonding apparatus according to claim 1, wherein the substrate is supported so as to be immovable in the XYθ direction with high rigidity.
JP2004500269A 2002-04-24 2003-04-18 Flat panel substrate bonding equipment Expired - Fee Related JP3572307B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002122474 2002-04-24
JP2002122474 2002-04-24
JP2002336740 2002-11-20
JP2002336740 2002-11-20
PCT/JP2003/004963 WO2003091970A1 (en) 2002-04-24 2003-04-18 Sticking device for flat panel substrate

Publications (2)

Publication Number Publication Date
JP3572307B2 true JP3572307B2 (en) 2004-09-29
JPWO2003091970A1 JPWO2003091970A1 (en) 2005-09-02

Family

ID=29272335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004500269A Expired - Fee Related JP3572307B2 (en) 2002-04-24 2003-04-18 Flat panel substrate bonding equipment

Country Status (6)

Country Link
JP (1) JP3572307B2 (en)
KR (1) KR100666021B1 (en)
CN (1) CN1304885C (en)
AU (1) AU2003227422A1 (en)
TW (1) TWI228612B (en)
WO (1) WO2003091970A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817556B2 (en) * 2004-01-21 2006-09-06 株式会社 日立インダストリイズ Board assembly equipment
KR101358952B1 (en) * 2006-08-08 2014-02-06 엘아이지에이디피 주식회사 apparatus for attaching substrates
JP4821707B2 (en) * 2007-05-29 2011-11-24 株式会社デンソー Sheet material laminating device
JP4954968B2 (en) * 2008-12-01 2012-06-20 アドヴァンスド・ディスプレイ・プロセス・エンジニアリング・コーポレーション・リミテッド Adhesive chuck and substrate bonding apparatus having the same
TW201352096A (en) * 2012-06-01 2013-12-16 Subtron Technology Co Ltd Plate separation assembly and operating method thereof
KR101408644B1 (en) * 2013-02-25 2014-06-18 주식회사 톱텍 Compensation device for stage flatness ratio of connation coalescence board
JP5422767B1 (en) * 2013-05-09 2014-02-19 信越エンジニアリング株式会社 Bonding separation method and separation apparatus
CN104808370B (en) * 2015-05-22 2017-10-31 合肥京东方光电科技有限公司 It is a kind of to cartridge device, alignment method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124026A (en) * 1987-11-09 1989-05-16 Fuji Electric Co Ltd Logic operation method
JPH08115128A (en) * 1993-07-15 1996-05-07 Agency Of Ind Science & Technol Parallel link mechanism
JP3169484B2 (en) * 1993-08-20 2001-05-28 新日本製鐵株式会社 Parallel link manipulator
JP3094827B2 (en) * 1995-02-14 2000-10-03 ウシオ電機株式会社 Method and apparatus for bonding liquid crystal panels
JPH0996822A (en) * 1995-09-29 1997-04-08 Toshiba Corp Substrate joining device
JPH1124026A (en) * 1997-06-27 1999-01-29 Sintokogio Ltd Method and device for forming gap
JPH11274031A (en) * 1998-03-20 1999-10-08 Canon Inc Aligner, manufacturing device and positioning apparatus
JP2000009867A (en) * 1998-06-22 2000-01-14 Olympus Optical Co Ltd Stage moving device
JP2000162133A (en) * 1998-09-21 2000-06-16 Olympus Optical Co Ltd Substrate inspection device and parallel link mechanism used therefor
JP3535044B2 (en) * 1999-06-18 2004-06-07 株式会社 日立インダストリイズ Substrate assembling apparatus and method, and liquid crystal panel manufacturing method
JP3486862B2 (en) * 1999-06-21 2004-01-13 株式会社 日立インダストリイズ Substrate assembly method and apparatus
JP3707990B2 (en) * 2000-03-30 2005-10-19 株式会社 日立インダストリイズ Board assembly equipment

Also Published As

Publication number Publication date
KR100666021B1 (en) 2007-01-10
TW200305743A (en) 2003-11-01
KR20040096490A (en) 2004-11-16
WO2003091970A1 (en) 2003-11-06
AU2003227422A1 (en) 2003-11-10
CN1568493A (en) 2005-01-19
CN1304885C (en) 2007-03-14
JPWO2003091970A1 (en) 2005-09-02
TWI228612B (en) 2005-03-01

Similar Documents

Publication Publication Date Title
KR100844968B1 (en) Substrate assembling apparatus and method
JP2001305563A (en) Substrate sticking device
US20060157192A1 (en) Apparatus and method for manufacturing laminated substrate
JP3572307B2 (en) Flat panel substrate bonding equipment
JP3542956B2 (en) LCD panel substrate bonding equipment
JP2011119293A (en) Alignment device
TW201516546A (en) Bonding equipment manufacturing device and bonding equipment manufacturing method
JP3906753B2 (en) Board assembly equipment
JPWO2007036996A1 (en) Substrate holding structure
CN105244306A (en) Support chuck and apparatus for treating substrate
KR100894739B1 (en) Apparatus for attaching substrates
JP3817258B2 (en) Substrate alignment device
JP2009180911A (en) Substrate lamination method, substrate lamination apparatus, and display device manufactured by using method or apparatus
JPH09283392A (en) Method and device for laminating substrates
US20040109124A1 (en) Substrate bonding apparatus and liquid crystal display panel
JPWO2004097509A1 (en) Bonded substrate manufacturing equipment
KR20210120946A (en) Substrate assembly apparatus and substrate assembly method
JP3796491B2 (en) Substrate bonding equipment
KR101292803B1 (en) Apparatus for assembling substrates having a gap control unit
JP7468945B2 (en) Circuit Board Assembly Equipment
KR101334095B1 (en) Apparatus for assembling substrates
JP4449932B2 (en) Board assembly apparatus and board assembly method
JP2003315805A (en) Panel alignment system of substrate for flat panel
JP2008262056A (en) Device and method for bonding substrate together
JP2007011396A (en) Substrate assembling apparatus and assembling method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees