JP3540243B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP3540243B2
JP3540243B2 JP2000123073A JP2000123073A JP3540243B2 JP 3540243 B2 JP3540243 B2 JP 3540243B2 JP 2000123073 A JP2000123073 A JP 2000123073A JP 2000123073 A JP2000123073 A JP 2000123073A JP 3540243 B2 JP3540243 B2 JP 3540243B2
Authority
JP
Japan
Prior art keywords
address
latch
refresh
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000123073A
Other languages
English (en)
Other versions
JP2001307485A (ja
Inventor
弘行 高橋
正俊 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2000123073A priority Critical patent/JP3540243B2/ja
Priority to US10/258,334 priority patent/US6809989B2/en
Priority to PCT/JP2001/003156 priority patent/WO2001082304A1/ja
Priority to KR1020027014126A priority patent/KR20030009446A/ko
Priority to EP01921824A priority patent/EP1293986A4/en
Priority to CNB018084362A priority patent/CN1288666C/zh
Publication of JP2001307485A publication Critical patent/JP2001307485A/ja
Application granted granted Critical
Publication of JP3540243B2 publication Critical patent/JP3540243B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/06Address interface arrangements, e.g. address buffers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外部から与えられるアドレスをラッチしてチップ内部の動作に使用する半導体記憶装置に関し、特に、検出したアドレスの変化をトリガに外部から与えられたアドレスをラッチして動作する半導体記憶装置に関するものである。
【0002】
【従来の技術】
従来の半導体記憶装置の中には、外部から与えられたアドレスをラッチした後に、ラッチされたアドレスを後段の回路で使用するものがある。図10はこうした半導体記憶装置について外部から入力されたアドレスがラッチされるまでの経路についてその概略構成を示した回路図である。
【0003】
アドレスバッファ100は入力アドレスINのビット数に相当する個数だけ設けられ、ラッチ回路101はアドレスバッファ100と同数のラッチから構成されている。そして、ラッチ回路101の出力が後段に接続された回路各部の動作に使用される。外部から供給された入力アドレスINは、アドレスバッファ100でバッファリングされてからラッチ回路101に入力される。
【0004】
ラッチ回路101はアドレスラッチ信号ALがロウレベル(以下“L”と略記する)の間、アドレスバッファ100から送出されるアドレスをスルーで通過させる。そして、入力アドレスINの値が確定すると、図示しないタイミング信号生成回路がアドレスラッチ信号ALにパルスを発生させる。ラッチ回路101はこのパルスの立ち上がりをトリガとしてアドレスバッファ100から出力されるアドレスをラッチする。また、ラッチ回路101の後段に位置する図示しない各回路もアドレスラッチ信号ALのパルスをトリガとして動き出す。
【0005】
【発明が解決しようとする課題】
このように、従来の半導体記憶装置ではアドレスバッファ100の出力がラッチ回路101にそのまま入力される回路構成となっている。このため、チップ内外で発生したノイズが入力アドレスINに載っている間にアドレスラッチ信号ALが立ち上がると、ラッチ回路101はノイズの載った誤ったアドレスをラッチしてしまう危険性がある。
【0006】
特に、ラッチ回路101がアドレスをラッチする直前のタイミングでアドレスにノイズが載ってしまうと、ノイズによる影響が残っているうちにラッチ動作が行われてしまうため、誤ってラッチされてしまう危険性がいっそう高くなる。そして、ラッチ回路101の後段の回路はアドレスラッチ信号ALが発生することで動作を開始するため、ラッチ回路101から送出される誤ったアドレスを使用して誤動作してしまう。
【0007】
なお、メモリアドレスからグリッチ等のノイズを除去するものとしては、例えば特開平8−203273号公報に開示された情報処理装置が挙げられる。しかしながら、この情報処理装置ではメモリ制御回路部と半導体記憶装置(メモリ)の間にノイズキャンセル回路部(半導体装置)を設けている。そして、メモリアドレスの変化を予測するためのストローブ信号によりノイズキャンセル回路部を動かして、メモリ制御回路部からメモリへ供給されるメモリアドレスに載ったノイズを無くすようにしている。つまり、この情報処理装置はメモリ制御回路部からメモリに供給されるメモリアドレス上のノイズを除去できるに過ぎず、メモリ内部で発生したノイズに対する対策には全くなっていない。したがって、例えばメモリ内部で発生した電源ノイズ等がメモリアドレスに載った場合に誤動作してしまうという問題がある。
【0008】
また、仮にノイズキャンセル回路部とメモリを統合して1チップ化したとしても、チップ内部の回路からチップの入口にあたるノイズキャンセル回路部へフィードバックされるノイズの対策にはならないため、例えばストローブ信号自体にノイズが載って誤動作してしまう可能性がある。さらに、ストローブ信号を用いる構成では、同期式半導体記憶装置でクロックを用いるのとほぼ同じ動作がシステム内で行われるため、システム内の消費電力増加を招いてしまう。
【0009】
このため上記情報処理装置は、本発明の適用対象の一つである携帯電話のように低消費電力であることが要求されるモバイル製品などには向かないという問題がある。のみならず、上記情報処理装置では、ストローブ信号とメモリアドレスとの間のタイミング設計が必要になってくるためシステム設計が複雑化してしまうという問題があるほか、ストローブ信号自体がノイズ発生源になってしまうなど様々な問題がある。
【0010】
本発明は上記の点に鑑みてなされたものであり、その目的は、チップの内部又は外部でノイズが発生した場合にも、ノイズの載った誤ったアドレスを取り込んでしまって誤動作することのない半導体記憶装置を提供することにある。本発明の他の目的は以下に述べる本発明の実施形態から明らかとなる。
【0011】
【課題を解決するための手段】
以上の課題を解決するため、請求項1記載の発明は、外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作する半導体記憶装置において、前記ラッチ手段が前記アドレスをラッチするタイミングを含む所定期間内で、前記外部から入力されるアドレスに対する感度を下げて前記ラッチ手段に出力するフィルタ手段を具備することを特徴としている。また、請求項2記載の発明は、請求項1記載の発明において、前記フィルタ手段は、前記外部から入力されるアドレス及び前記チップセレクト信号が確定した時点以降の所定のタイミングから、少なくとも前記ラッチ手段が前記アドレスをラッチするタイミングまでの期間に、前記外部から入力されるアドレスに対する感度を下げることを特徴としている。
また、請求項3記載の発明は、請求項1又は2記載の発明において、前記フィルタ手段は、前記外部から入力されるアドレス及び前記チップセレクト信号の変化が前記検出手段に伝達された後に、前記外部から入力されるアドレスに対する感度を下げることを特徴としている。
【0012】
また、請求項4記載の発明は、請求項1〜3の何れかの項記載の発明において、前記フィルタ手段は、前記外部から入力されるアドレスに対して感度を下げ始めるタイミングと前記ラッチ手段に供給されるアドレスにノイズが載るタイミングが重なったとした場合に、前記ラッチ手段が前記アドレスをラッチするタイミングを基準として、前記ノイズの載ったアドレスが感度を下げられた状態で前記ラッチ手段により誤まったアドレスとして認識されないレベルまで戻るのに必要な時間だけ少なくとも前の時点から、前記アドレスに対する感度を下げ始めることを特徴としている。
また、請求項5記載の発明は、請求項1〜4の何れかの項記載の発明において、前記フィルタ手段は、前記外部から入力されるアドレスに対する感度を下げて前記ラッチ手段に出力する抵抗素子と、前記外部から入力されるアドレスに対する感度を下げるべき期間では、前記外部から入力されるアドレスを前記抵抗素子を介して前記ラッチ手段に出力し、該期間以外では前記抵抗素子を介さずに前記外部から入力されるアドレスを前記ラッチ手段に出力するスイッチ手段とを備えたことを特徴としている。
【0013】
また、請求項6記載の発明は、請求項1〜4の何れかの項記載の発明において、前記フィルタ手段は、前記外部から入力されるアドレスのレベルに応じて閾値を変化させるヒステリシス特性を備えた回路であることを特徴としている。
また、請求項7記載の発明は、外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作し、1メモリサイクル中に少なくともリフレッシュ及び読出しを行う半導体記憶装置であって、前記ラッチ信号を制御することにより、記リフレッシュ中のセンスアンプ活性化時、前記読出し中のセンスアンプ活性化時及び前記読出し中のデータ出力動作時に連続的に発生して前記外部から入力されるアドレスに載る電源ノイズの影響が解消されるタイミングで前記外部から入力されるアドレスを前記ラッチ手段にラッチさせる制御手段を具備することを特徴としている。
【0014】
た、請求項記載の発明は、外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作し、1メモリサイクル中に少なくともリフレッシュ及び読出しを行う半導体記憶装置であって、前記ラッチ信号を制御することにより、チップ内部でノイズの発生する可能性がある時点以降に前記ラッチ手段のラッチ状態を解除する制御手段を具備し、前記リフレッシュの後に前記読出しが実行され、前記リフレッシュの際に前記読出しの為の前記アドレスをラッチし、読出しデータの出力動作が完了して電源ノイズの影響が無くなる時点で該ラッチ状態を解除することを特徴としている。
また、請求項記載の発明は、外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作し、1メモリサイクル中に少なくともリフレッシュ及び読出しを行う半導体記憶装置であって、前記ラッチ信号を制御することにより、チップ内部でノイズの発生する可能性がある時点以降に前記ラッチ手段のラッチ状態を解除する制御手段を具備し、前記読出しの後に前記リフレッシュが実行され、前記読出しの際にラッチされた前記アドレスは前記読出しから前記リフレッシュの動作に渡って保持され、前記リフレッシュの動作の完了後に前記ラッチ状態を解除することを特徴としている。
また、請求項10記載の発明は、1メモリサイクル内で読出し及び書込みの一方及びリフレッシュとを行うMSRAMからなる半導体記憶装置であって、外部からアドレスを受けるアドレスバッファと、前記アドレスバッファから出力されたアドレスを受け第1の制御信号に応答して該アドレスを出力する入力フィルタと、前記入力フィルタから出力されたアドレスを第2の制御信号に応答してラッチするラッチ回路と、前記ラッチ回路から出力されたアドレスの変化又はチップセレクト信号の遷移に応答してアドレス変化検出信号を出力するATD回路と、少なくとも前記アドレス変化検出信号に応答してリフレッシュアドレスを出力するリフレッシュ制御回路と、前記ラッチ回路から出力されたアドレス及び前記リフレッシュアドレスを前記アドレス変化検出信号に応答して選択的に出力するマルチプレクサと、少なくとも前記アドレス変化検出信号に応答して前記第1及び第2の制御信号を出力する制御回路とを備え、前記第1の制御信号は前記ラッチ回路が前記アドレスをラッチする際に前記入力フィルタの入力感度を低下させるように駆動し、前記第2の制御信号は前記読出しが実行される際に前記アドレスに対応したメモリセルから読み出されたデータの出力が完了するまで前記ラッチ回路にて保持されたアドレスを保持しつづけるように駆動することを特徴としている。
また、請求項11記載の発明は、請求項10記載の発明において、前記リフレッシュの後に前記読出しが実行され、前記リフレッシュの際に前記読出しの為の前記アドレスをラッチし、読出しデータの出力動作が完了して電源ノイズの影響が無くなる時点で前記ラッチ回路のラッチ状態を解除することを特徴としている。
また、請求項12記載の発明は、請求項10記載の発明において、前記読出しの後に前記リフレッシュが実行され、前記読出しの際にラッチされた前記アドレスは前記読出しから前記リフレッシュの動作に渡って保持され、前記リフレッシュの動作の完了後に前記ラッチ回路のラッチ状態を解除することを特徴としている。
また、請求項13記載の発明は、請求項10記載の発明において、少なくとも書込みイネーブル信号に応答して第3の制御信号を出力する書込み制御回路と、前記第3の制御信号に応答して前記ラッチ回路から出力されたアドレスをラッチしそのラッチしたアドレスを前記マルチプレクサへ出力するレジスタ回路を更に備えることを特徴としている。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の各実施形態について説明する。
〔第1実施形態〕
本実施形態は、本発明の発明者らが先に提案した半導体記憶装置(特願平11−345345号;以下「第1の関連発明」という)に対して本発明を適用したものである。
【0016】
第1の関連発明の半導体記憶装置は、汎用のDRAM(ダイナミック・ランダム・アクセス・メモリ)と同じメモリセルを用いながら、外部から見たときに汎用のSRAM(スタティックRAM)と同様の仕様で動作する。このため、従来の疑似SRAMのようにアクセスの度にチップイネーブル信号を変化させる必要がなく低消費電力である。また、SRAMのように扱いが簡便であるとともに、DRAMのようにチップサイズを大きくすることなく大容量化が可能である。したがって、これから登場してくる次世代の携帯電話などに適した仕様となっている。なお、本明細書ではこの種の半導体記憶装置を「SRAM仕様のDRAM」又は「MSRAM(Mobile Specified RAM)」と呼ぶことにする。
【0017】
後述するように、MSRAMでは1メモリサイクル内でリフレッシュと読み出し/書き込みとを行うため、半導体記憶装置内部では外部から見たメモリサイクルの2倍のサイクルで動作することになる。このため、同じメモリセルを用いながら、汎用のDRAMなどに比べて内部動作を高速化させる必要があり、発生するノイズのピーク値もそれだけ大きくなって誤動作しやすくなる。こうしたノイズのピーク値は電源を強化するなどしても低減可能であるが、そうした対策ではどうしてもチップ面積が増大してしまう。したがって、回路上の工夫を凝らすことでノイズのピーク値が増大しても誤動作しないようにすることが望ましい。
【0018】
また、MSRAMは同期式の半導体記憶装置のようにクロックに従ってアドレスを取り込むわけではなく、外部から与えられるアクセスアドレス及びチップセレクト信号の変化を感知し、この変化をトリガとしてアクセスアドレスを取り込むとともに内部動作を開始させている。このため、MSRAMでは特にアドレスに載るノイズに対して非常に敏感であって、そのためのノイズ対策が重要となってくる。その際、アドレスに載ったノイズがチップ内の各部へ伝搬していった個々の回路でノイズ対策を施すのは適当でないことから、外部からアドレスが入力される初段の回路でノイズ対策をするのが最も望ましい。
【0019】
ここで、図1は本実施形態による半導体記憶装置の構成を示したブロック図である。また、図2は本実施形態による半導体記憶装置の動作を示したタイミングチャートである。ここでは図1及び図2を随時参照してノイズが問題となるタイミングについて説明することにする。そこでまず本実施形態が最も特徴としているノイズフィルタに関連する回路について言及し、これら以外の回路については後で詳しく述べることにする。
【0020】
まず、アドレスAddress は半導体記憶装置外部から供給されるアクセスアドレスであって、メモリセルアレイ6(後述)が行列状に配列されていることに対応して行アドレスおよび列アドレスを含んでいる。次に、アドレスバッファ1はアドレスAddress をバッファリングしてからこれを入力フィルタ19へ出力する。次に、ラッチ2はラッチ制御信号LCが“L”の間は入力されるアドレスをラッチアドレスL_ADD としてスルーで出力する。
【0021】
また、ラッチ2は入力フィルタ19を通じてアドレスバッファ1から供給されるアドレスをラッチ制御信号LCの立ち上がりで取り込み、以後は内部に取り込んだアドレスをラッチアドレスL_ADD として出力する。これは、メモリセルアレイ6との間で読み出し又は書き込みを行っている最中にラッチ2の後段各部へ供給されるアドレスが変化してしまうと、本来活性化されるのとは別のワード線が活性化されてデータ破壊に至ってしまう。そこでラッチ2にアドレスAddress を取り込んでおいて、読み出し又は書き込み中にラッチ2の後段へ供給されるアドレスが変化しないようにしている。
【0022】
次に、アドレスバッファ1とラッチ2の間にはノイズフィルタとして機能する入力フィルタ19が設けられている。上述したように、ラッチ2がラッチをかける直前のタイミングは、ノイズの載ったアドレスを誤まってラッチしてしまう危険性が特に高まる時期であって、ノイズに対して耐性をつけておく必要がある。このため、本実施形態では入力フィルタ19を設けて、この時期にラッチ2へ供給されるアドレスへノイズが載らないようにしている。
【0023】
ここで、入力フィルタ19は入力感度制御信号ICのレベルによって制御され、入力感度制御信号ICがハイレベル(以下“H”と略記する)であれば入力されたアドレスに対する感度を低げてノイズを除去ないし低減させ、ノイズによる影響のない波形を出力する。一方、入力感度制御信号IC信号が“L”であれば、入力フィルタ19は入力されたアドレスをラッチ2へスルーで送出する。なお、入力フィルタ19の具体的な構成例については後述する。
【0024】
MSRAMでは汎用のDRAMと同じメモリセルを用いていることからメモリセルのリフレッシュが必要となってくる。このため、MSRAMでは汎用のDRAMと同様にセルフリフレッシュを行うのに加えて、図2に示したように、外部から通常の読み出し又は書き込み(以下、ノーマルReadまたはノーマルWrite という)要求があったときに、リフレッシュを行ったのちに要求のあったノーマルRead又はノーマルWrite を行っている。
【0025】
すなわち、外部から与えられたアドレスAddress が変化するかチップセレクト信号/CSが有効化されると、ATD(Address Transition Detector ;アドレス変化検出)回路3はこれらの変化を検出してアドレス変化検出信号ATDに正のワンショットパルスを発生させて、まずリフレッシュを起動させる。そしてこのリフレッシュが終了したのであれば、その時点で確定しているアドレスAddress をラッチ2に取り込み、ラッチ2から出力されるラッチアドレスL_ADD をもとにメモリセルアレイ6に対するノーマルRead又はノーマルWrite を行う。
【0026】
ここで、MSRAMにおいて特に問題となりうるノイズはチップ外部で発生するシステムノイズとチップ内部で発生する電源ノイズ等の内部ノイズに大別される。もっとも、外部からのシステムノイズが例えばアドレスバッファ1から出力されるアドレスに載ることと、内部で発生した電源ノイズが例えばアドレスバッファ1の出力にフィードバックされてアドレスに載ることとは等価であると見なせる。このため、両者の違いはノイズがどのようなタイミングで発生しうるかにある。
【0027】
まず、外部からのシステムノイズはMSRAMに限らず一般的な半導体記憶装置でも同様に問題となりうるものであって、半導体記憶装置内部の動作とは無関係に任意のタイミングで発生しうる。一方、チップ内部で発生するノイズとしては、ピーク電流が流れることによってチップ内部の電源電位やグランドの電位が揺れて発生する電源ノイズなどがある。ピーク電流を生じる要因は半導体記憶装置の仕様に応じて幾つか考えられ、その発生タイミングは設計時に予測することが可能である。
【0028】
MSRAMではピーク電流を発生させる原因として主に2つの要因が考えられる。これらのピーク電流は何れもMSRAM内部の動作に由来する特有のタイミングで発生するものであって、これらピーク電流によって生じるノイズの大きさも最も大きな値の一つとなっている。
【0029】
第1の要因として、センスアンプイネーブル信号SEを立ち上げることでセンスアンプが活性されて消費電流が急激に増加し、それによって電源電位やグランド電位が揺れて大きな電源ノイズの発生する場合が考えられる。ここで、センスアンプイネーブル信号SEはリフレッシュ又はノーマルReadの際に活性化される。MSRAMでは1メモリサイクル中(図2中の時間TSKEW+サイクルタイムTcyc)にリフレッシュ及びノーマルReadが行われる場合があるため、センスアンプ活性化による電源ノイズが1メモリサイクルに2回発生する可能性がある。なお、ノーマルWrite の場合には外部から書き込み電位が与えられるため、リフレッシュやノーマルReadの場合ほどピーク電流は大きくならない。
【0030】
次に、第2の要因として、ノーマルReadにおいてメモリセルから読み出されたデータを半導体記憶装置外部に出力する際に消費電流が急激に増加する場合が考えられる。すなわち、データ出力動作にあたってはI/Oバッファ10がバスI/Oおよびその先に接続されたチップ外のシステムバスを充放電することになる。このため、消費電流のピーク値が非常に大きくなる可能性があって、センスアンプイネーブル信号SEの立ち上がりのときと同様にチップ内部で大きな電源ノイズの発生する危険性がある。
【0031】
以上のように、MSRAMでは特にリフレッシュに続いてノーマルReadが行われる場合に、リフレッシュ中のセンスアンプ活性化時,ノーマルRead中のセンスアンプ活性化時およびノーマルRead中のデータ出力動作時に大きな電源ノイズが連続的に発生する可能性があり、汎用のSRAMや汎用のDRAMに比べて誤動作を誘発する危険性がいっそう高くなっている。
【0032】
こうしたノイズによる誤動作を防ぐには2つの対策を施すことが有用である。まず、アドレスAddress が変化してからこれをラッチ2へ取り込むまでの間についてであるが、上述したようにノイズ対策は半導体記憶装置内の入力初段で行うのが好ましい。このため、ノイズ除去手段としては、アドレスバッファ1が出力するアドレスに対する感度を鈍らせて後段のラッチ2がノイズを感知する可能性を低減させるノイズフィルタ(図1に示す入力フィルタ19)が考えられる。
【0033】
また、ノイズ除去のタイミングについては、ラッチタイミングよりも所定時間だけ前の時点からラッチタイミングまでの間(図2に示した▲1▼の期間)にアドレスに載るノイズを除去ないし低減させるようにすれば良い。これによって、リフレッシュ中にセンスアンプが活性化されることで生じる電源ノイズと外部からのシステムノイズとによって誤動作してしまうことを防止できる。
【0034】
ここで、図2に示す▲1▼の期間をどの程度に設定するかは次のように決めれば良い。まず、アドレスAddress が正常に変化している最中に入力フィルタ19の感度を鈍らせるとアドレスAddress の確定が却って遅れてしまうため、入力フィルタ19の感度を鈍らせるのは少なくともアドレスAddress が確定してからにする必要がある。すなわち、アドレスAddress 及びチップセレクト信号/CSはスキューを持っているため、アドレスAddress が変化し初めてから図2に示した時間TSKEWが経過するまで(以下「アドレススキュー期間」という)はこれらが全て確定していない状態にある。したがって、▲1▼の期間の開始タイミングは少なくともアドレススキュー期間後に設定すべきことになる。
【0035】
また、チップ内部のノイズに関しては、センスアンプイネーブル信号SEの立ち上がりタイミング(図2における時刻t7)を含むように▲1▼の期間を設定しておくのが望ましい。ここで、センスアンプイネーブル信号SEの立ち上がりタイミングは半導体記憶装置の設計時におおよそのタイミングを算出できる。また、このタイミングは半導体記憶装置の仕様によっても変わりうるが、温度,電源電圧,プロセス上の製造ばらつきなどによっても変動しうるため、マージンをとって長めの期間を設定しておけば良い。
【0036】
もっとも、センスアンプイネーブル信号SEの立ち上がりを▲1▼の期間内に含ませることが必須条件というわけではない。すなわち、センスアンプの活性化によるノイズの影響がラッチタイミング(図2の時刻t10)までに解消しているのであれば、▲1▼の期間の開始タイミングをセンスアンプイネーブル信号SEの立ち上がり後に設定することも考えられる。要するに、この場合はラッチタイミングと内部電源ノイズの発生タイミングとが十分離れていれば良い。したがってこの場合は外部からのシステムノイズ対策が必要な場合に▲1▼の期間を設定することになる。
【0037】
そして、外部からのシステムノイズは何時でも発生しうるため、これを考慮すると▲1▼の期間の開始タイミングをあまり遅くすることはできない。というのも、▲1▼の期間内では外部からのシステムノイズを除去ないし低減することができるが、▲1▼の期間よりも前にシステムノイズが発生した場合に問題となる可能性がある。すなわち、入力フィルタ19の感度が良い状態から悪い状態に移行するタイミングと外部からのシステムノイズが発生するタイミングが重なると、アドレスに載ったノイズの影響が解消されるまでに逆に時間が掛かってしまう。
【0038】
この場合、入力フィルタ19の感度が良い状態のときにアドレスAddress にノイズが載り、その直後に入力フィルタ19の感度が鈍ったときがワーストケースとなる。つまり、ノイズの載ったアドレスの波形がノイズの無い本来の波形に戻るまでの時間は、入力フィルタ19を設けないときと比べた場合、入力フィルタ19の感度を鈍らせた分だけ長くなってしまう。したがって、いま述べたように両者のタイミングが重なった場合を考慮すると、ノイズの載ったアドレスの波形が本来の波形に戻ってからラッチ2へ取り込まれるように▲1▼の期間の長さを最低限確保しておく必要がある。
【0039】
なお、先に述べたように、センスアンプイネーブル信号SEを立ち上げてから▲1▼の期間を開始させる場合、センスアンプ活性化によるノイズの影響が残っていると、入力フィルタ19の感度を鈍らせたことでアドレスの波形が本来の波形に戻るまでの時間が余計にかかる。したがってこの場合にも、外部からのシステムノイズと同様に▲1▼の期間の長さに対する配慮が必要となる。
【0040】
次に、ラッチ2へアドレスを取り込んでからメモリサイクルの終了時までについては、図2に▲2▼で示した期間を確保することが考えられる。すなわち、ノーマルReadによって読み出したデータのデータ出力動作が完了してから、ラッチ制御信号LCを立ち下げてラッチ2のラッチ状態を解除すれば良い。言い換えるならば、センスアンプが活性化されるタイミングおよび読み出しデータが外部へ出力されるタイミングの双方のタイミングでラッチ2がアドレスを保持し続けるように、ラッチ制御信号LCの立ち下げタイミングを延ばしてやれば良い。
【0041】
ここで、本来であれば、センスアンプによってメモリセルアレイ6から読み出されたデータがI/Oバッファ10に取り込まれていれば、外部へのデータ出力動作が完了していないうちにメモリセルアレイ6に対するアクセスを終了させてラッチ制御信号LCを立ち下げても支障はない。すなわち、次のメモリサイクルが開始される時点(時刻t18)までアドレスAddress の値は保持されているため、ラッチ2のラッチ状態が解除されてアドレスをスルーで通過させるようになっても、ラッチアドレスL_ADD には相変わらずそれまでと同じアドレスの値が出力される。
【0042】
ところが、データ出力動作に伴ってチップ内部で発生した電源ノイズが例えばアドレスバッファ1の出力にフィードバックされた場合に問題が生じる。すなわち、後述するようにこの時点では次のメモリサイクルに備えて入力フィルタ19がアドレスをスルーで通過させる状態にある。このため、ラッチ2がアドレスを保持した状態にないと、ノイズの載ったアドレスが入力フィルタ19及びラッチ2をスルーで通過して半導体記憶装置内の各部に供給されてしまう。
【0043】
したがって、ノイズの載ったアドレスが例えばATD回路3に供給されると、ATD回路3はこれを新たなアドレス変化と誤認してアドレス変化検出信号ATDにワンショットパルスを発生させてしまう。そうすると、ワンショットパルスによって新たな内部動作が起動されてしまいこれが誤動作となってしまう。そこで、データ出力動作が完了するまでラッチ2のラッチ状態を解除しないようにして、たとえアドレスにノイズが載ってもラッチ2に保持されているノイズの無いアドレスをラッチ2後段の各部へ供給するようにすれば誤動作は起こり得ない。
【0044】
次に、入力フィルタ19の具体的な構成例について説明する。入力フィルタ19としては様々な構成が考えられるが、ここでは2種類の構成例を挙げておく。図3は入力フィルタ19の第1の構成例を示した回路図であって、図1に示した構成のうちアドレスバッファ1からラッチ2までの経路にある回路を取り上げている。アドレスバッファ21,入力フィルタ22,ラッチ回路23は、図1に示したアドレスバッファ1,入力フィルタ19,ラッチ2のうち、アドレスAddress の1ビット分に相当する構成である。
【0045】
そして、入力フィルタ22はインバータ24,トランスファゲート25及び抵抗素子26から構成されている。トランスファゲート25はアドレスバッファ21とラッチ回路23の間で抵抗素子26と並列に接続されており、入力感度制御信号ICのレベルに応じてそのオン/オフが制御される。抵抗素子26は高抵抗値(例えば50kΩ)の抵抗素子であって、図示した寄生容量27とともにCRフィルタを構成している。
【0046】
先に触れたように、入力感度制御信号ICはアドレスバッファ21の出力を鈍らせてノイズを除去・低減する場合に“H”となり、アドレスバッファ21の出力を高速にラッチ回路23へ伝達すべき場合に“L”となる。すなわち、入力感度制御信号ICが“H”になると、トランスファゲート25を構成するnチャネル及びpチャネルのMOS(金属酸化膜半導体)トランジスタ(以下「Tr」と略記することがある)が何れもカットオフする。
【0047】
このため、アドレスバッファ21からのアドレスにノイズが載っていても、CRフィルタによって波形がつぶれるため、誤ったアドレスがラッチ回路23に入力されることはなくなる。一方、入力感度制御信号ICが“L”になるとトランスファゲート25がオンするため、抵抗素子26の両端が短絡されてアドレスバッファ21の出力が低インピーダンスでラッチ回路23に伝達される。これにより、アドレスAddress の変化をラッチ回路23の後段の回路に伝える場合に、波形が鈍ってアドレス変化の伝わるのが遅延しないようにしている。なお、入力感度制御信号ICおよびラッチ制御信号LCのタイミングについては後述する。
【0048】
次に、図4は図1に示した入力フィルタ19の第2の構成例を示した回路図であって、図3に示したものと同じ構成要素については同一の符号を付してある。図4において、Tr31〜Tr33はpチャネルのMOSトランジスタ,Tr34〜Tr36はnチャネルのMOSトランジスタである。このうち、Tr31及びTr34は図3に示したアドレスバッファ21を構成している。
【0049】
図4の構成例では入力フィルタ39がTr32,Tr33,Tr35,Tr36及びインバータ37,38で構成されている。このうち、Tr33及びTr35から成るインバータとインバータ37が閉ループ状に接続されており、インバータ37の出力を自身の入力にフィードバック可能に構成している。次に、Tr32,Tr36は入力感度制御信号ICのレベルに応じて動作し、同信号が“L”であれば両トランジスタがカットオフされて入力フィルタ39は入力された信号をスルーで出力する。一方、同信号が“H”であれが両トランジスタがオンして入力フィルタ39はヒステリシス回路として機能する。
【0050】
ここで、電源電圧をVDDとおくとともに、ラッチ回路23の閾値電圧が(1/2)VDDであるものとする。この場合、従来の半導体記憶装置のように、アドレスバッファ21の出力をそのままラッチ回路23に入力する構成であると、アドレスバッファ21から出力されるアドレスにノイズが載ってそれが(1/2)VDDよりも高くなると、ラッチ回路23は誤ったアドレスをラッチしてしまう。
【0051】
これに対して、本実施形態では入力フィルタ39がヒステリシス特性を持つため、こうした誤動作を生じることがなくなる。いま、アドレスバッファ21に入力される電圧を電圧Vin,入力フィルタ39から出力される電圧を電圧Voutとしたとき、入力感度制御信号ICが“H”となっているならば、アドレスバッファ21及び入力フィルタ39から成る回路の入出力特性はおおよそ図5に示されるものとなる。
【0052】
まず、電圧Vinを“L”から“H”に遷移させるには、電圧Vinを閾値電圧VTHH 〔>(1/2)VDD〕以上にしないと電圧Voutを“L”に遷移させることができない。すなわち、電圧Vinが“L”の場合にはpチャネルのTr31及びTr33が何れもオンとなっているため、これら両トランジスタの状態を反転させなければ電圧Voutを“L”にすることができない。したがって、図5に示したように電圧Vinを(1/2)VDDよりも高くしなければならなくなる。
【0053】
一方、電圧Vinを“H”から“L”に遷移させるには、電圧Vinを閾値電圧VTHL 〔<(1/2)VDD〕以下にしないと電圧Voutを“L”に遷移させることができない。すなわち、電圧Vinが“H”の場合にはnチャネルのTr41及びTr35が何れもオンとなっているため、これら両トランジスタの状態を反転させなければ電圧Voutを“H”にすることができない。したがって、図5に示したように電圧Vinを(1/2)VDDよりも低くしなければならない。このように、本実施形態では閾値電圧VTHL 〜VTHH の領域はノイズとして感知しないようにしてノイズマージンを確保している。
【0054】
〈構成の説明〉
次に、図1に示した構成のうち入力フィルタ19に関連する回路以外の回路について説明する。まず、ATD回路3はチップセレクト信号/CSが有効(“L”)な場合に、ラッチアドレスL_ADD のの何れか1ビットにでも変化があればアドレス変化検出信号ATDに正のワンショットパルスを出力する。また、ATD回路3はチップセレクト信号/CSが有効化された場合にもアドレス変化検出信号ATDに正のワンショットパルスを発生させる。なお、チップセレクト信号/CSは図1に示した半導体記憶装置をアクセスする場合に有効化される選択信号である。また、信号名の先頭に付与した記号“/”はそれが負論理の信号であることを意味している。
【0055】
さらに詳述すると、ATD回路3はアドレスAddress の各ビットのうち最初に変化があったビットについてまずワンショットパルスを発生させ、この最初のワンショットパルスが発生している期間中に他のビットに変化があった場合は、既に発生しているワンショットパルスと新たに発生したワンショットパルスを合成している。こうすることで、アドレスAddress にスキューがあった場合、ワンショットパルスのパルス幅がアドレスAddress のスキュー分だけ長くなるものの、1回分のアドレス変化によって複数個のワンショットパルスがアドレス変化検出信号ATDに発生してしまう恐れはなくなる。これにより、複数のアドレス変化検出信号ATDが発生して複数のワード線が同時に活性化されてメモリセルのデータが破壊されることがなくなる。
【0056】
リフレッシュ制御回路4はアドレスカウンタ及びリフレッシュタイマを内蔵している。アドレスカウンタはDRAMメモリセルをリフレッシュするためのリフレッシュアドレスR_ADD を順次生成する。なお、リフレッシュアドレスR_ADD はアドレスAddress に含まれる行アドレスと同じビット幅を持っている。そして、リフレッシュ制御回路4はこれらとアドレス変化検出信号ATD,書き込みイネーブル信号/WEを利用して半導体記憶装置内部のリフレッシュを制御するために、リフレッシュアドレス及びリフレッシュタイミングを半導体記憶装置内部で自動的に発生させて、汎用DRAMにおけるセルフリフレッシュと同様のリフレッシュを実現している。
【0057】
リフレッシュタイマは半導体記憶装置の外部から最後にアクセス要求があってからの経過時間を計時し、それが所定のリフレッシュ時間を越えた場合に半導体記憶装置内部でセルフリフレッシュを起動させる。そのために、リフレッシュタイマはアドレス変化検出信号ATDが有効となる度にリセットされて計時を再開するように構成される。このほか、リフレッシュタイマはリフレッシュタイミングを制御するためのリフレッシュ制御信号REFA,REFBを生成する。その際、リフレッシュタイマは、ATD回路3によって生成されるアドレス変化検出信号ATDと同じタイミングで変化するリフレッシュ制御信号REFC(図示省略)を生成し、これをもとにリフレッシュ制御信号REFA,REFBを生成している。
【0058】
ここで、リフレッシュ制御信号REFAは半導体記憶装置外部からのアクセス要求に付随してリフレッシュを行うか否かを制御するための信号であって、同信号が“H”であればリフレッシュを行い、“L”であればリフレッシュを行わない。リフレッシュ制御信号REFAを立ち下げる要因としては、外部からのアクセス要求に伴うリフレッシュによって1サイクル分のリフレッシュが完了したものの、次のサイクルのリフレッシュを起動するにはまだ時間がある場合、あるいは、セルフリフレッシュを起動させたためにこれが完了するまでは外部からのアクセス要求に伴うリフレッシュを行う必要がなくなった場合である。一方、リフレッシュ制御信号REFBはセルフリフレッシュのために使用される信号である。すなわち、リフレッシュ制御信号REFBに負のワンショットパルスを与えることで、ロウイネーブル信号REへ強制的に正のワンショットパルスを発生させてリフレッシュを起動する。
【0059】
マルチプレクサ5(図中「MUX」)はアドレス変化検出信号ATD及びリフレッシュ制御信号REFBのレベルに応じて、アドレス変化検出信号ATDが“L”かつリフレッシュ制御信号REFBが“H”であれば、アドレス変化検出信号ATDの立ち上がりから予め決められた時間が経過したのちに、ラッチアドレスL_ADD に含まれる行アドレスを選択してこれをアドレスM_ADD として出力する。一方、アドレス変化検出信号ATDが“H”であるかまたはリフレッシュ制御信号REFBが“L”であれば、アドレス変化検出信号ATDの立ち下がりから予め決められた時間が経過したのちに、リフレッシュアドレスR_ADD を選択してこれをアドレスM_ADD として出力する。
【0060】
次に、メモリセルアレイ6は汎用DRAMと同様のメモリセルアレイであって、行方向,列方向にそれぞれワード線,ビット線(またはビット線対;以下同じ)が走っており、DRAMと同様に例えば1トランジスタ1キャパシタから成るメモリセルがワード線及びビット線の交点の位置に行列状に配置されて構成されている。ロウデコーダ7はロウイネーブル信号REが“H”のときにアドレスM_ADD をデコードし、このアドレスM_ADD で指定されたワード線を活性化させる。
【0061】
ロウイネーブル信号REが“L”であるとき、ロウデコーダ7は何れのワード線も活性化させない。カラムデコーダ8はカラムイネーブル信号CEが“H”となっているときに、ラッチアドレスL_ADD に含まれる列アドレスをデコードし、このラッチアドレスL_ADD で指定されたビット線を選択するためのカラム選択信号を生成する。カラムイネーブル信号CEが“L”であれば、カラムデコーダ8は何れのビット線に対応するカラム選択信号も生成しない。
【0062】
センスアンプ・リセット回路9は図示を省略したセンスアンプ,カラムスイッチおよびプリチャージ回路から構成されている。このうち、カラムスイッチはカラムデコーダ8の出力するカラム選択信号で指定されたセンスアンプとバスWRBの間を接続する。センスアンプはセンスアンプイネーブル信号SEが“H”であるとき、アドレスAddress で特定されるメモリセルの接続されたビット線の電位をセンス・増幅してバスWRBに出力し、あるいは、バスWRBに供給された書き込みデータをビット線経由でメモリセルに書き込む。プリチャージ回路はプリチャージイネーブル信号PEが“H”のときに、ビット線の電位を所定電位〔例えば(1/2)VDD〕にプリチャージする。
【0063】
I/O(入出力)バッファ10は、制御信号CWOのレベルに応じて同信号が“H”であればバスWRB上の読み出しデータを出力バッファでバッファリングしてバスI/Oから半導体記憶装置外部に出力する。また、I/Oバッファ10は同信号が“L”であれば、出力バッファをフローティング状態として、半導体記憶装置外部からバスI/O上に供給される書き込みデータを入力バッファでバッファリングしてバスWRBに送出する。つまり制御信号CWOが“H”であれば読み出し,“L”であれば書き込みである。
【0064】
次に、R/W(Read/Write)制御回路11はチップセレクト信号/CS,書き込みイネーブル信号/WEおよび出力イネーブル信号OEに基づいて制御信号CWOを生成する。なお、制御信号CWOの切換タイミングは動作説明で明らかにする。ラッチ制御回路12はアドレス変化検出信号ATDの立ち下がりエッジからラッチ制御信号LC及び入力感度制御信号ICに正のワンショットパルスを発生させる。なお、これらワンショットパルスを発生させるタイミング及びそのパルス幅は、ラッチ制御信号LCと入力感度制御信号ICとで異なっているが、これについては動作説明のところで詳述する。
【0065】
次に、ロウ制御回路13はリフレッシュ制御信号REFA,リフレッシュ制御信号REFB,アドレス変化検出信号ATD及び書き込みイネーブル信号/WEに基づいて、ロウイネーブル信号RE,センスアンプイネーブル信号SE,プリチャージイネーブル信号PEおよび制御信号CCを生成する。また、カラム制御回路14は制御信号CCに基づいてカラムイネーブル信号CEを生成する。
【0066】
さらに詳述すると、読み出し又は書き込み時において、ロウ制御回路13はアドレス変化検出信号ATDの立ち上がりをトリガとしてロウイネーブル信号REに正のワンショットパルスを発生させる。またロウ制御回路13は、リフレッシュ制御信号REFAが“H”の場合に、アドレス変化検出信号ATDの立ち下がりをトリガとして、リフレッシュ動作に必要となる正のワンショットパルスをロウイネーブル信号REに発生させる。さらにロウ制御回路13は、リフレッシュ制御信号REFBに供給される負のワンショットパルスを反転させて得た正のワンショットパルスをロウイネーブル信号REとして出力する。
【0067】
但しロウ制御回路13は、リフレッシュ制御信号REFA信号が“H”であれば、当該アクセス要求により生じるアドレス変化検出信号ATDの立ち上がりでロウイネーブル信号REにワンショットパルスを発生させてリフレッシュを起動する。これに対してリフレッシュ制御信号REFA信号が“L”であれば、アドレス変化検出信号ATDにワンショットパルスが発生していても、ロウ制御回路13はロウイネーブル信号REにワンショットパルスを発生させない。
【0068】
また、ロウ制御回路13はロウイネーブル信号REを遅延させてセンスアンプイネーブル信号SEに正のワンショットパルスを生成するとともに、ロウイネーブル信号REに生じたワンショットパルスの立ち下がりをトリガとしてプリチャージイネーブル信号PEに正のワンショットパルスを発生させる。なお、これらセンスアンプイネーブル信号SE及びプリチャージイネーブル信号PEはノーマルRead,ノーマルWrite ,リフレッシュを問わず生成される。このほか、ロウ制御回路16はロウイネーブル信号REを遅延させて制御信号CCを出力する。
【0069】
制御信号CCはリフレッシュの場合には生成されないため、制御信号CCから生成されるカラムイネーブル信号CEもノーマルRead又はノーマルWrite の場合にだけ生成され、リフレッシュの場合には生成されない。次に、カラム制御回路14は制御信号CCをさらに遅延させてカラムイネーブル信号CEとして出力する。なお、ロウイネーブル信号REのワンショットパルスの幅はノーマルRead,ノーマルWrite ,リフレッシュがそれぞれ行われる時間を決定するため、これらの動作のために必要十分なパルス幅が設定される。
【0070】
次に、ブースト電源15はメモリセルアレイ6内のワード線に印加される昇圧電位をロウデコーダ7に供給する電源である。また、基板電圧発生回路16はメモリセルアレイ6を構成するメモリセルが形成されているウエルまたは半導体基板に印加される基板電圧を発生させる回路である。さらに、リファレンス電圧発生回路17はメモリセルアレイ6,センスアンプ・リセット回路9内のセンスアンプやプリチャージ回路・イコライズ回路が使用するリファレンス電圧〔例えば(1/2)VDD〕を発生させる。
【0071】
ここで、リフレッシュ制御回路4,ブースト電源15,基板電圧発生回路16およびリファレンス電圧発生回路17にはパワーダウン制御信号PowerDown が供給されている。このパワーダウン制御信号PowerDown は半導体記憶装置をパワーダウン状態(スタンバイ状態)にするときのモードを半導体記憶装置外部から指定するための信号である。リフレッシュ制御回路4,ブースト電源15,基板電圧発生回路16およびリファレンス電圧発生回路17はパワーダウン制御信号PowerDown に従ってそれぞれ自身に対する電源供給を制御する。
【0072】
本実施形態ではメモリセル自体がDRAMと同様のものであるため、SRAMのようにスタンバイ状態で単純に半導体記憶装置内の回路各部への電源供給を止めてしまうことはできない。スタンバイ状態であってもメモリセルのデータを保持するためにはリフレッシュ動作に必要となる回路へ電源を供給し続ける必要がある。つまり、本実施形態の半導体記憶装置はスタンバイ状態に関してはSRAMとの互換性を完全にとることはできない。しかしながら、本実施形態ではスタンバイ状態におけるモードを幾つか設けてSRAMとの互換性をできる限りとるとともに、既存の半導体記憶装置には存在しないモードも設けている。
【0073】
すなわち、本実施形態ではリフレッシュ制御回路4,ブースト電源15,基板電圧発生回路16,リファレンス電圧発生回路17のうちの何れを動作させるかに応じて3種類のスタンバイモードを用意してある。本明細書ではこれらのスタンバイモードを便宜上スタンバイモード1〜3と呼ぶことにする。スタンバイモード1は4種類の回路全てに電源を供給するモード、スタンバイモード2は4種類の回路のうちリフレッシュ制御回路4だけ電源供給を止めてこれ以外の3種類の回路に電源を供給するモード、スタンバイモード3は4種類の回路全てに対する電源供給を止めるモードである。
【0074】
パワーダウン制御信号PowerDown としては例えば、リフレッシュ制御回路4に電源を供給するための第1の電源供給線と、ブースト電源15,基板電圧発生回路16及びリファレンス電圧発生回路17に電源を供給するための第2の電源供給線で構成すれば良い。そして、スタンバイモード2に設定するには、第1の電源供給線に電源を供給せずにリフレッシュ制御回路4への電源供給を停止させる。また、スタンバイモード3に設定するには、第1の電源供給線及び第2の電源供給線の何れにも電源を供給せずに、リフレッシュ制御回路4,ブースト電源15,基板電圧発生回路16,リファレンス電圧発生回路17への電源供給をすべて停止させる。さらに、スタンバイモード1に設定するには第1の電源供給線及び第2の電源供給線の双方へ電源を供給する。
【0075】
次に、各スタンバイモードについてさらに詳述すると、スタンバイモード1は通常のDRAMと同等の電源供給モードであって、3種類あるスタンバイモードの中では最も消費電流が大きい。しかし、この場合にはメモリセルのリフレッシュに必要な全ての回路へ電源が供給されたままになっている。このため、スタンバイ状態に移行する直前におけるメモリセルのデータが保持されているほか、半導体記憶装置をスタンバイ状態からアクティブ状態へ移行させるまでの時間が3種類のスタンバイモードの中では最も短い。
【0076】
一方、スタンバイモード2はリフレッシュに必要とされる回路に対して電源が供給されないため、スタンバイ状態においてメモリセルのデータを保持しておくことはできないが、その分スタンバイモード1に比べて消費電流を低減させることができる。つまりこのモードは、スタンバイ状態でデータを保持しておくという既成概念から発想の転換を図ったものであって、スタンバイ状態からアクティブ状態に移行したときにメモリセルアレイに書き込みを行える状態になりさえすれば良い用途に向いている。こうしたことから、スタンバイモード2と次に述べるスタンバイモード3は半導体記憶装置をバッファとして使用する場合などに適している。
【0077】
他方、スタンバイモード3はブースト電圧,基板電圧,リファレンス電圧を立ち上げる必要があるため、スタンバイ状態からアクティブ状態に移行するまでの時間が3種類あるスタンバイモードの中で最も長くなるが、その分、スタンバイモードにおける消費電流を最も小さくすることができる。なお、スタンバイモード1〜3の何れの場合においても、上述した4種類以外の回路については必要な回路だけに電源を供給すれば良い。例えば、リフレッシュを行うだけであれば、アドレスバッファ1,入力フィルタ19,ラッチ2,ATD回路3,カラムデコーダ8,I/Oバッファ10,R/W制御回路11,ラッチ制御回路12,カラム制御回路14等は使われないので電源供給を停止しても構わない。
【0078】
以上のようなスタンバイモードを設けることで、半導体記憶装置が適用される機器やその使用環境などに応じて、スタンバイ状態におけるデータ保持の要否,アクティブ状態への復帰時間,電流消費量などを半導体記憶装置外部からきめ細かく制御できるようになる。なお、パワーダウン制御信号PowerDown は必須の機能というわけではないことからこれを省略してしまっても良く、そうすることで汎用SRAMとI/Oピンの互換性を完全に保つことが可能となる。
【0079】
〈動作の説明(ノーマルRead)〉
次に、図2に示したタイミングチャートに沿って上記構成による半導体記憶装置の動作を説明する。まず時刻t1になると、アドレスAddress がそれまでの値“An−1”から“An”に変化を開始するとともに、図示していないがチップセレクト信号/CSが有効化される。但しアドレスAddress の各ビットおよびチップセレクト信号/CSの間にはスキューがあるため、汎用SRAMの同様に、この時点でアドレスAddress の各ビットが全て確定しているとは限らない。
【0080】
そして、この時点でアドレスAddress は確定していないため、ラッチ制御回路12はラッチ制御信号LCに“L”を出力している。またこの時点では、アドレスAddress の変化を半導体記憶装置内の各部へ高速に伝達する必要があるため、ラッチ制御回路12は入力感度制御信号ICにも“L”を出力している。このため、アドレスAddress はアドレスバッファ1でバッファリングされたのち、入力フィルタ19およびラッチ2を順次スルーで通過し、ラッチアドレスL_ADD としてATD回路3,マルチプレクサ5及びカラムデコーダ8に供給される。
【0081】
この後の時刻t2において、ATD回路3はアドレスAddress (=ラッチアドレスL_ADD )が変化したことを検出してアドレス変化検出信号ATDに正のワンショットパルスを発生させる。こうしてアドレス変化検出信号ATDが立ち上がると、マルチプレクサ5はリフレッシュアドレスR_ADD 側を選択してこれをアドレスM_ADD として出力する。また、アドレス変化検出信号ATDが立ち上がったことで、ロウ制御回路13はロウイネーブル信号REに正のワンショットパルスを発生させる。
【0082】
ロウデコーダ7はこのロウイネーブル信号REの立ち上がりを捉えてアドレスM_ADD の値をデコードし、時刻t3になった時点でリフレッシュアドレスR_ADD に対応したワード線(以下、リフレッシュ対象のワード線を「リフレッシュワード線」と呼ぶ)を活性化させる。なお、図2においては図示を簡単にするために、リフレッシュワード線の電圧波形とノーマルRead又はノーマルWrite の際に活性化されるワード線の電圧波形を一括して「Word」として図示してある。しかし、各メモリサイクルにおけるリフレッシュワード線とノーマルRead/ノーマルWrite によって活性化されるワード線とは一般に異なっている。
【0083】
次に、アドレスAddress が変化し始めた時刻t1から時間TSKEWが経過して時刻t4になると、アドレスAddress の全ビットの値が確定して、アドレスAddress の値をラッチ2へ取り込んでも良い状態となる。次に、時刻t5になるとATD回路3はアドレス変化検出信号ATDに発生させていた正のワンショットパルスを立ち下げる。ラッチ制御回路12はこの立ち下がりをトリガとして時刻t6で入力感度制御信号ICに正のワンショットパルスを発生させる。また、リフレッシュ制御回路4はこれ以後に行われるリフレッシュに備えてリフレッシュアドレスR_ADD を更新する。
【0084】
こうして入力感度制御信号ICが“H”になると、入力フィルタ19はアドレスバッファ1から出力されるアドレスに対する感度を下げてノイズフィルタとして機能するようになる。このため、外部からのシステムノイズや内部で発生する電源ノイズがアドレスAddress に載っていても、これらノイズが除去ないし低減されたアドレスがラッチ2へ供給される。なお、この時点ではアドレスAddress が確定しており、アドレスAddress の変化を半導体記憶装置内の各部へ高速に伝達させる必要がなくなっているため、アドレスバッファ1から出力されるアドレスの感度を下げても支障はない。
【0085】
この後、ロウ制御回路13は時刻t7からセンスアンプイネーブル信号SEに正のワンショットパルスを発生させる。これにより、センスアンプ・リセット回路9は内部のセンスアンプを活性化させ、これによってリフレッシュアドレスR_ADD に対応するリフレッシュワード線に接続されたメモリセルのリフレッシュが開始される。このように本実施形態では、外部から供給されるアドレスAddress の値が確定していない待機期間(スキュー期間TSKEW)をリフレッシュに充てて、汎用SRAMでは本来内部動作が行われない待機期間を有効利用している。なお、リフレッシュ動作ではノーマルReadの場合のように読み出しデータを外部へ出力する必要がない。このため、制御信号CC及びカラムイネーブル信号CEは“L”のままであって、カラムデコーダ8もカラム選択信号を生成しない。
【0086】
そして、図2に示したように時刻t7近辺ではセンスアンプ活性化による電源ノイズが発生して、アドレスバッファ1から出力されるアドレスにこの電源ノイズが重畳する。しかし、入力フィルタ19の作用によってラッチ2に供給されるアドレスに載っていたノイズが除去ないし低減されて、外部から供給された本来のアドレスAddress の値となる。この後、ロウ制御回路13がリフレッシュ動作に必要な時間が経過してからロウイネーブル信号REを立ち下げると、ロウデコーダ7は時刻t8でリフレッシュワード線を非活性化させる。
【0087】
次に、ロウ制御回路13はロウイネーブル信号REの立ち下がりを受けてセンスアンプイネーブル信号SEを立ち下げ、センスアンプ・リセット回路9は活性化させていた内部のセンスアンプを非活性化させる。また、ロウ制御回路13はロウイネーブル信号REの立ち下がりを受けてプリチャージイネーブル信号PEに正のワンショットパルスを発生させる。これにより、センスアンプ・リセット回路9内のプリチャージ回路が次のアクセスに備えてプリチャージ動作を行う。
【0088】
そして時刻t10になると、ラッチ制御回路12は時刻t5におけるアドレス変化検出信号ATDの立ち下がりを受けて、ラッチ制御信号LCに正のワンショットパルスを発生させる。これにより、ラッチ2は入力フィルタ19から出力されたアドレスをラッチする。このとき、時刻t10の直前の時刻t9では外部からのシステムノイズがアドレスバッファ1から出力されるアドレスに載っている。しかし、このシステムノイズは入力フィルタ19でフィルタリングされるため、ラッチ2はノイズの除去ないし低減された正しいアドレスの値“An”をラッチすることができる。
【0089】
こうしてラッチ2にアドレスが正しくラッチされたのであれば、これ以後はアドレスバッファ1から出力されるアドレスにノイズが載っても動作に支障はなくなる。そこで、次のメモリサイクル(後述する時刻t18以降)におけるアドレス変化をアドレスバッファ1からラッチ2へ高速に伝達できるように、ラッチ制御回路12は適当なタイミング(図2では時刻t12としてある)で入力感度制御信号ICを立ち下げる。
【0090】
そして時刻t11からはリフレッシュに続くノーマルRead又はノーマルWrite が行われることになる。図2においては、チップ内部でノイズが発生する頻度が高いノーマルReadの場合について示してありここでもノーマルReadについて説明する。ノーマルReadの場合には、図示していないが出力イネーブル信号OEが有効にされるため、R/W制御回路11はメモリセルからの読み出しに備えて制御信号CWOを“H”にする。これにより、I/Oバッファ10はセンスアンプ・リセット回路9から送られてくる読み出しデータをバスWRBを通じてバスI/Oへ送出できる状態となる。
【0091】
また、マルチプレクサ5はラッチアドレスL_ADD 側を選択するようになり、この時点ではアドレスAddress の値が確定しているため、そのの値“An”がアドレスM_ADD としてロウデコーダ7に出力される。次に、アドレス変化検出信号ATDの立ち下がりを受けて、ロウ制御回路13はロウイネーブル信号REに正のワンショットパルスを発生させる。これにより、ロウデコーダ7はアドレスM_ADD の値“An”に対応したワード線(以下、読み出し対象のワード線を「読み出しワード線」と呼ぶことがある)を時刻t11で活性化させる。これにより、読み出しワード線に接続されたメモリセルの保持するデータが各ビット線上の電位として現れるようになる。
【0092】
一方、ロウイネーブル信号REの立ち上がりを受けて、ロウ制御回路13は時刻t13でセンスアンプイネーブル信号SEに正のワンショットパルスを発生させる。これにより、センスアンプ・リセット回路9は内部のセンスアンプを活性化させ、個々のビット線上に読み出されたメモリセルのデータをセンスしてこれを“0”/“1”の論理レベルまで増幅する。
【0093】
このとき、センスアンプの活性化によって時刻t7と同様に電源ノイズがアドレスバッファ1の出力に載るようになる。しかしこの場合はラッチ2が既にアドレスをラッチした状態にあるため、アドレスバッファ1から出力されるアドレスにノイズが載ってこれが入力フィルタ19をスルーで通過してラッチ2に供給されても動作に支障はない。
【0094】
次に、ロウ制御回路13が制御信号CCに正のワンショットパルスを発生させると、カラム制御回路14はカラムイネーブル信号CEに正のワンショットパルスを発生させる。こうしてカラムイネーブル信号CEが“H”となると、カラムデコーダ8はラッチアドレスL_ADD の値“An”に含まれている列アドレス部分をデコードして、当該列アドレスに対応するカラム選択信号に正のワンショットパルスを発生させる。
【0095】
この結果、センスアンプ・リセット回路9は当該列アドレスに対応するセンスアンプの出力を選択してバスWRBに接続するので、読み出し対象のメモリセルに保持されたデータがバスWRB上に現れてくる。これにより、I/Oバッファ10はバスWRB上に読み出されたデータを時刻t14でバスI/Oに出力し、この時点からデータ出力動作が開始される。このデータ出力動作によって電源ノイズが発生し、その影響でアドレスバッファ1の出力にノイズが載るようになる。しかしこの場合もラッチ制御信号LCは“H”であってラッチ2はアドレスをラッチしたままの状態にあるため、ラッチ2の後段にノイズの載ったアドレスが供給されることはなく動作に支障が生じることはない。
【0096】
こうしてメモリセルアレイ6からの読み出しが終わってロウ制御回路13がロウイネーブル信号REを立ち下げると、ロウデコーダ7はノーマルReadのために活性化されていた読み出しワード線を時刻t16で非活性化させる。また、ロウ制御回路13はロウイネーブル信号REの立ち下げに対応してセンスアンプイネーブル信号SEを立ち下げてセンス動作を終了させる。さらに、ロウ制御回路13がロウイネーブル信号REの立ち下げに対応して制御信号CCを立ち下げると、カラム制御回路14はカラムイネーブル信号CEを立ち下げる。
【0097】
これにより、カラムデコーダ8はカラム選択信号を無効化して、選択されていたセンスアンプとバスWRBの間を切り離す。次いで、ロウ制御回路13はロウイネーブル信号REの立ち下げに対応してプリチャージイネーブル信号PEに正のワンショットパルスを発生させてプリチャージ動作を行う。一方、時刻t15になった時点で読み出しデータの出力動作が完了して当該動作による電源ノイズの影響はなくなっている。
【0098】
そこでラッチ制御回路12は時刻t17でラッチ制御信号LCを立ち下げてラッチ2のラッチ状態を解除する。これにより、次のメモリサイクルにおけるアドレスAddress の変化がアドレスバッファ1,入力フィルタ19,ラッチ2を通じて半導体記憶装置内の各部へ伝達されるようにする。この後、時刻t18になると次のメモリサイクルに入ってアドレスAddress が変化を開始して、アクセス要求が読み出しであれば時刻t1〜t18における動作と同様の動作が為される。
【0099】
〈動作の説明(ノーマルRead以外)〉
リフレッシュ後にノーマルWrite を行う場合の動作は基本的にノーマルReadの場合と同様である。MSRAMでは汎用SRAMと同じく、書き込みイネーブル信号/WE及び書き込みデータがアドレスAddress に対して非同期に与えられる。このため、書き込みイネーブル信号/WEに負のパルスが入力されると、R/W制御回路11は制御信号CWOを立ち下げてI/Oバッファ10から入力されるバスI/O上の書き込みデータをバスWRBに取り込む。
【0100】
そして、ノーマルReadの場合と同様にして最終的にセンスアンプが活性化されると、指定されたメモリセルに対してバスWRBから書き込みが行われる。そして、書き込みイネーブル信号/WEが立ち上げられることで書き込みが終了する。このように、ノーマルWrite ではノーマルReadのときのようなデータ出力動作が存在しないため、図2の時刻t14に相当するタイミングで電源ノイズが発生することはない。したがって、アドレスの載るノイズに対する対策としてはノーマルReadの場合を考慮しておけば良い。
【0101】
このほか、上述した説明では、外部からのアクセスに付随して必ずリフレッシュを行っていたが、実際には全てのメモリサイクルでリフレッシュを行うわけではない。例えばリフレッシュを間欠的に行うのであれば、数ms〜数十msを1サイクルとして数μs毎に1回リフレッシュを行えば良い。このため、リフレッシュを行う必要のないメモリサイクルでは、リフレッシュ制御回路4がリフレッシュ制御信号REFBを“H”にしたままリフレッシュ制御信号REFAを“L”にする。
【0102】
これにより、ロウ制御回路13はロウイネーブル信号REおよびこれに対応したセンスアンプイネーブル信号SE及びプリチャージイネーブル信号PEを発生させなくなり、リフレッシュを伴うことなくノーマルRead又はノーマルWrite が行われる。つまり、この場合は図2の時刻t7に相当するタイミングで電源ノイズが発生しなくなる。したがって、ノイズ対策に関してはリフレッシュ後にノーマルReadを行う場合について考慮しておけば良い。
【0103】
さらに、外部からのアクセスが一定時間ないとリフレッシュ制御信号REFBに負のパルスが生成されてセルフリフレッシュが行われる。この場合はラッチ制御回路12がラッチ制御信号LCにワンショットパルスを発生させず、アドレスの誤ラッチによる誤動作も起こり得ない。
【0104】
次に、第1の関連発明と同様に、本実施形態でも汎用DRAMなどで採用されているページモードを実現することができる。ページモードでは外部から与えられるアドレスAddress を論理的に上位ビット側のアドレスUAddressと下位ビット側のアドレスPageAddress に分割する。そして、アドレスUAddressが同一の複数メモリセルに対してアドレスPageAddress だけを順次変化させながらデータを連続的に入出力する。
【0105】
そのための構成として、例えば4つのメモリセルを連続的にアクセスするのであればバスWRBの幅を4倍に拡げておき、これに合わせてセンスアンプ・リセット回路9内のセンスアンプが4本のビット線を同時に選択するようにしておく。また、センスアンプ・リセット回路9とI/Oバッファの間にバスセレクタを設けて、同時に読み出されたデータのうちの何れかをアドレスPageAddress に従って選択して入出力させる。
【0106】
ページモードによるノーマルReadでは、例えば4つのメモリセルのデータがメモリセルアレイ6から同時に読み出され、その後に外部から入力されるアドレスPageAddress に従ってデータを外部へ順次出力してゆくことになる。したがってページモードを実現する場合には、例えば4つのデータのうちの最後のデータの出力動作後にラッチ制御信号LCを立ち下げる必要がある。
【0107】
なお、ページモードに類似するものとしてバーストモードが存在する。ページモードではアドレスPageAddress を外部からランダムに指定可能となっている。これに対して、バーストモードではアドレスPageAddress の代わりにバースト動作開始時の下位アドレスであるアドレスStartAddressだけを与える。そして2番目以降の下位アドレスについては予め決められた順序に従って半導体記憶装置内部で発生させるようにしている。こうしたことから、バーストモードの場合にもページモードのときと同じく最後のデータの出力動作後にラッチ制御信号LCを立ち下げることになる。
【0108】
〈まとめ〉
以上のように、本実施形態ではアドレススキュー期間が経過してアドレスAddress が確定した後において、ラッチ2がこのアドレスをラッチするタイミングから所定時間だけ遡ったタイミング(時刻t6)から入力フィルタ19でアドレスに対する感度を下げている。これにより、時刻t4〜t10期間内に外部から入力されたシステムノイズやセンスアンプ活性化による電源ノイズが発生しても、アドレスバッファ1に載ったこれらノイズが除去ないし低減されるため、ラッチ2で誤まったアドレスがラッチされることはなくなる。
【0109】
また、図2に▲2▼で示した期間を確保しておくことで、ラッチ2がアドレスをラッチしている期間内において、外部からのシステムノイズ,ノーマルRead又はノーマルWrite 中のセンスアンプの活性化による電源ノイズ,ノーマルRead中のデータ出力動作による電源ノイズがそれぞれ発生しても、ノイズの載ったアドレスがラッチ2の後段へ伝搬されることがなくなる。このため、ノイズによる誤動作を未然に防止することが可能となる。
【0110】
〈変形例〉
なお、ラッチ制御信号LCを立ち上げてラッチ2にアドレスを取り込むタイミングは、理論的にはアドレス確定と同時であっても構わない。しかし、実際には製造上のバラツキやシステム上の原因によってアドレス確定のタイミングが遅れる場合も考え得る。こうしたことから、アドレススキュー期間に対して製造上のマージンを確保しておいて、アドレスAddress の全てのビットがラッチ2を構成する個々のラッチ回路に確実に伝搬してからラッチ動作がなされるように、ラッチタイミングを設定することが望ましい。
【0111】
もっとも、アドレスをラッチするタイミングが遅れてしまうとそれだけノーマルRead又はノーマルWrite が完了するのが遅延することになる。そこで、リフレッシュ動作が終了してノーマルRead/ノーマルWrite のために新たにワード線を活性化できる状態となるまでには、アドレスをラッチ2へラッチしておくことが望ましい。また、図2では時刻t12で入力感度制御信号ICを立ち下げているが、ラッチ2によってアドレスが取り込まれる時刻t19以降であれば時刻t12よりも前であって良い。
【0112】
さらに、外部からのシステムノイズによる影響があまり問題とならない場合も考えられる。そうした場合には、入力フィルタ19を用いてアドレスに対する感度を鈍らせる代わりに、リフレッシュ中のセンスアンプ活性化による電源ノイズの影響が無いタイミング(すなわち、センスアンプ活性化前のタイミングか、あるいは、センスアンプ活性化による電源ノイズの影響がなくなった以降のタイミング)でラッチ制御信号LCを立ち上げても良い。
【0113】
〈シミュレーション結果〉
ここで、図6及び図7は入力フィルタ19として図3に示した構成例を採用した場合について各部のシミュレーション波形を示したグラフである。図中、横軸は相対的な時刻(単位:秒),縦軸は各波形の電圧値(単位:ボルト)である。これらの図では、図3に示した入力フィルタ22を設けなかった場合(従来の半導体記憶装置)にラッチ回路23へ入力される波形をW0としている。
【0114】
また、図3に示した抵抗素子26の抵抗値を10kΩ〜50kΩまで10kΩ刻みで変化させたときにラッチ回路23へ入力される波形をそれぞれW1〜W5としている。なお、図3に示したようにアドレスバッファ21は反転バッファであるため、アドレスAddress のあるビット(図中の「AX0」)の波形と波形W0〜W5の極性が逆になっている。
【0115】
まず、図6はアドレスAX0の値が“0”B(Bは2進表現を意味する)から“1”Bへ遷移した後において、ノイズの影響でアドレスAX0の電圧値が時刻0.155〜0.160μsにかけて2.3Vから0.6Vまで直線的に下降し、時刻0.160〜0.165μsにかけて0.6Vから2.3Vまで直線的に上昇した場合を示している。また図6では、時刻0.156〜0.170μsの期間だけ入力感度制御信号ICが“H”となって入力フィルタ22が入力感度を鈍らせるとともに、時刻0.165μsからラッチ制御信号LCが立ち上がってラッチ回路23が取り込み動作を開始するものとしている。
【0116】
図示したように、波形W0の場合にはアドレスAX0に載ったノイズによって、ピーク時の電圧値が最大振幅に近い値にまでなっており、ノイズが無ければ本来“L”のはずのアドレスをラッチ回路23は確実に“H”と認識してしまう。これに対して、抵抗素子26の抵抗値を増加させてゆくにつれて、ラッチ2に入力される波形がつぶれてそのピーク電圧値が低くなってゆく。このため、ラッチ回路23の閾値電圧が例えば1.25Vであるとした場合、抵抗値を30kΩ以上にすることでラッチ回路23はアドレスを“L”と認識する。
【0117】
また、図6において時刻0.150〜0.152μsにおける波形に着目すると、アドレスAX0の値が“0”Bから“1”Bに変化を開始した時点では、入力感度制御信号ICが“L”であるため、アドレスバッファ1及び入力フィルタ19はアドレスAX0をほとんど遅延なくラッチ回路23に供給しており、この時点ではアドレスAddress の変化が高速にラッチ2及びその後段の回路へ伝達されていることが分かる。
【0118】
次に、図7はアドレスAX0の値が“1”Bから“0”Bへ遷移した場合について示したものである。図示したように、ノイズの影響でアドレスAX0の電圧値が時刻0.105〜0.110μsにかけて0Vから1.7Vまで直線的に上昇し、時刻0.110〜0.115μsにかけて1.7Vから0Vまで直線的に下降するものとしている。また図7では、時刻0.105〜0.120μsの期間だけ入力感度制御信号ICが“H”となり、時刻0.115μsからラッチ制御信号LCが立ち上がるものとしている。
【0119】
この場合も、波形W0ではラッチ回路23に供給される底の電圧値がほぼ0Vになっており、ノイズが無ければ本来“H”のはずのアドレスAX0をラッチ回路23は確実に“L”と認識してしまう。これに対して、抵抗素子26の抵抗値を増加させてゆくにつれて波形がつぶれて底の電圧値が高くなってゆく。このため、ラッチ回路23の閾値電圧が例えば1.25Vであるとした場合、抵抗値を50kΩにすることでラッチ回路23は“H”と認識するようになる。また、時刻0.100〜0.102μsにおける波形に着目すると、この場合もアドレスバッファ21及び入力フィルタ19はほとんど遅延なしにアドレスAX0の変化をラッチ回路23に伝達している。
【0120】
〔第2実施形態〕
第1実施形態では先に掲げた第1の関連発明を基礎としていたが、本発明者は第1の関連発明とは別の形態のMSRAMを提案している(特願2000−109689号;以下「第2の関連発明」という)。そして、本発明は第1の関連発明のみならず第2の関連発明にもほぼ同様に適用することが可能であって、本実施形態では第2の関連発明を基礎とした実施形態について、第1実施形態との相違点を中心にして以下に説明する。
【0121】
上述したように第1実施形態ではリフレッシュ後にノーマルRead又はノーマルWrite を行っていたが、本実施形態では第1実施形態と順序を入れ替えて、ノーマルRead又はレイトライト(詳細は後述)を行ってからリフレッシュを行っている。こうすることで、本実施形態では第1実施形態に比べてアクセス(読み出しの場合はアドレスアクセス時間TAA)の高速化を図っている。
【0122】
また、汎用SRAMでは書き込みイネーブル信号がアドレスに対して非同期的に与えられるが、本実施形態ではアドレススキュー期間内に書き込みイネーブル信号を与える仕様としている。というのも、読み出しを高速化するためには、アドレススキュー期間経過後にできる限り早く読み出し動作を開始させる必要がある。このため、書き込みイネーブル信号が遅れて有効化される場合には、ダミーの読み出しが行われてから本来の書き込みが行われることになる。
【0123】
ところが、MSRAMではDRAMと同様に破壊読み出しでメモリセルから読み出しを行っているため、ダミーの読み出しを中断してしまうとデータ破壊につながってしまう。つまりMSRAMでは、書き込みイネーブル信号が与えられてもダミーの読み出しが完了するまでは書き込み動作を開始させることができない。そのため、書き込みイネーブル信号がアドレスに対して完全に非同期的に与えられる仕様にしてしまうと、メモリサイクルが長くなってしまうという問題がある。こうしたことから、外部からのアクセス要求が読み出し/書き込みの何れであるかをアドレススキュー期間内で確定させておくことで、アドレスが確定した時点でダミーの読み出しを行うことなく書き込みを開始できるようにしている。
【0124】
また、本実施形態ではメモリセルに対する書き込みをレイトライト(Late Write)で行っている。レイトライトでは、外部から書き込み要求が与えられたメモリサイクルにおいては、同じく外部から与えられる書き込みアドレスおよび書き込みデータを半導体記憶装置内部に取り込んでおく。この後に、次の書き込み要求が与えられたメモリサイクルで、先のメモリサイクルで取り込んでおいた書き込みアドレスおよび書き込みデータを用いてメモリセルへ書き込みを行う。つまり、メモリセルに対する書き込みを次に書き込み要求が与えられたメモリサイクルまで遅延させるのがレイトライトである。
【0125】
ここで、ノーマルWrite では汎用SRAMと同様に書き込みイネーブル信号がアドレスに対して非同期的に与えられるため、書き込みイネーブル信号及び書き込みデータの双方が確定するまでメモリセルへの書き込み動作は開始されずに空き時間が生じてしまうとう欠点がある。一方、レイトライトによると、実際に書き込みを行うメモリサイクルでは最初から書き込みアドレス及び書き込みデータが確定しており、アドレススキュー期間が経過した段階ですぐに書き込み可能となる。またレイトライトの採用によって、本実施形態では、アドレスに対して遅れて入力される書き込みデータの取り込み動作とレイトライトとこれに続くリフレッシュの動作とを並行して行えるため、それだけメモリサイクルを短縮することができる。
【0126】
以上のようなことから、本実施形態ではアドレススキュー期間が経過してアドレスAddress が確定した直後からノーマルReadまたはレイトライトを開始することになる。そして本実施形態でも第1実施形態と同じく2つのノイズ対策を講ずることになる。まず、ノイズによる誤動作の可能性がある場合には、入力フィルタ19の感度を下げる期間をアドレススキュー期間後に設けてノイズを除去ないし低減させてからノーマルReadまたはレイトライトを行うことになる。
【0127】
ここで、ノイズを除去ないし低減させる期間を設ける分だけアクセスが遅れることになるが、アクセスの遅れが支障のない範囲内であればこうした対策を施すことが有効である。また、ノイズのピーク値は半導体記憶装置の個々の仕様や適用されるシステムによっても変化する。したがって、ノイズのピーク値がそれほど大きくないことが想定される場合には、入力フィルタ19の感度を鈍らせる期間をできる限り短くすることによってアクセス遅れをそれだけ小さくできる。
【0128】
また、アクセスの遅れが好ましくない場合には、入力フィルタ19の感度を鈍らせる期間を設けることなく、ラッチ状態の終わりを延ばす第2の対策だけを行うことも考えられる。要するに、アドレスに載るノイズによって誤動作が生じる可能性と、入力フィルタ19の感度を鈍らせることによるアクセス遅れとの間のトレードオフによって、入力フィルタ19の感度を鈍らせる期間を設けるかどうかを決定することになる。
【0129】
次に、ラッチ制御信号LCの立ち下げタイミングを延ばす対策に関しては第1実施形態とほぼ同様に適用することができる。本実施形態ではノーマルRead又はレイトライト後にリフレッシュを行うため、ノーマルRead又はレイトライトに先立ってラッチ制御信号LCを立ち上げるとともに、リフレッシュ中にセンスアンプイネーブル信号SEが立ち上がってからラッチ制御信号LCを立ち下げる。これにより、ノーマルReadおよびリフレッシュの際のセンスアンプ活性化によって発生する電源ノイズと、ノーマルRead時のデータ出力動作に伴う電源ノイズによる影響を抑えることが可能となる。また、ラッチ制御信号LCを立ち上げている間は外部からのシステムノイズの影響も排除することができる。
【0130】
〈構成の説明〉
図8は本実施形態による半導体記憶装置の構成を示したブロック図である。同図では、図1(第1実施形態)に示したものと同じ構成要素については同一の符号を付してあるため、以下では図1と相違する構成について説明する。まず、本実施形態ではラッチ2の出力するアドレスをラッチアドレスLC_ADDとし、後述するレジスタ回路61の出力をラッチアドレスL_ADD としている。また本実施形態では、I/Oバッファ10をバスWRBをセンスアンプ・リセット回路9に直接接続するのではなく、バスWRB,後述するレジスタ回路62及びバスWRBXを介して接続している。
【0131】
次に、制御信号LW1および制御信号LW2はレイトライト動作を制御するための信号であって、何れもレイトライトを行う場合に“H”に設定され、そうでない場合に“L”に設定される。次に、レジスタ回路61はアクセスアドレスを保持するためにアドレスAddress のビット幅に等しいレジスタ(以下「アドレスレジスタ」という)を内蔵している。制御信号LW1が“L”であれば、レジスタ回路61は入力されたラッチアドレスLC_ADDをそのままラッチアドレスL_ADD として出力する。
【0132】
一方、制御信号LW1が“H”であれば、レジスタ回路61はラッチアドレスLC_ADDではなくアドレスレジスタに保持されているアドレスをラッチアドレスL_ADD として出力する。また、レジスタ回路61は制御信号LW1の立ち下がりエッジを捉えて、次のレイトライトのためにラッチアドレスLC_ADDをアドレスレジスタに取り込む。さらに、レジスタ回路61は入力されたラッチアドレスLC_ADDとアドレスレジスタが保持するアドレスをビット毎に比較するコンパレータを備えている。このコンパレータは両者の各ビットが全て一致した場合にはヒット信号HITに“H”を出力し、両者の間の何れか1ビットにでも不一致があればヒット信号HITに“L”を出力する。
【0133】
以下に述べるように、このヒット信号HITは半導体記憶装置外部から見たデータコヒーレンシ(Coherency)を保つためのバイパス動作に用いられる。すなわち、レイトライトでは書き込み要求があったメモリサイクルよりも後のメモリサイクルで実際にメモリセルへの書き込みが行われる。このため、書き込み要求のあったメモリサイクルでは、書き込みアドレス及び書き込みデータを一旦レジスタ回路61内のアドレスレジスタ及びレジスタ回路62(後述)内のデータレジスタに取り込んでおく。
【0134】
そして、次に書き込みの要求が入力されたメモリサイクルで、2つのレジスタに取り込んでおいたアドレス及びデータを用いてメモリセルアレイ6へ書き込みを行っている。したがって、現実にメモリセルアレイ6へ書き込みが行われるまでの間に、書き込み要求のあったアドレスに対して読み出し要求があった場合、この時点ではデータが未だメモリセルアレイ6には書かれておらずレジスタ回路62にのみ存在する。このため、メモリセルアレイ6から読み出しを行ってしまうと、書き込み前の古いデータを外部へ出力してしまって誤動作となる。
【0135】
そこでこのような場合には、メモリセルアレイ6をバイパスしてレジスタ回路62からデータの出力を行うようにする。以上のような状況を検出するために、ラッチアドレスLC_ADDとアドレスレジスタを照合して、未だメモリセルアレイ6に書き込まれていないアドレスに対して読み出し要求があったことを検出している。なお、レジスタ回路61は読み出し・書き込みの区別なくヒット信号HITを生成しているが、後述するようにバイパス動作は読み出し要求があった場合にのみ作動するため、特に問題は生じない。
【0136】
次に、ラッチ制御回路52は図1のラッチ制御回路12と同様の構成であって、ラッチ制御信号LC及び入力感度制御信号ICの生成タイミングが異なっている。なお、これら信号のタイミングについては動作説明に譲る。次に、ATD回路53も図1のATD回路3と同様の構成であるが、アドレス変化検出信号ATDにワンショットパルスを発生させるタイミングをアドレススキュー期間の経過後としている。また、後述するように、アドレス変化検出信号ATDのワンショットパルスが立ち上がった時点からアドレスAddress に対するノーマルReadまたはレイトライトが開始され、その後にワンショットパルスが立ち下がった時点からリフレッシュが開始される。このため、ワンショットパルスのパルス幅はノーマルReadまたはレイトライトを完了させるのに必要な時間以上に設定される。
【0137】
ここで、アドレススキュー期間の長さは、アドレスAddress の各ビットおよびチップセレクト信号/CSの間に存在するスキューの最大値と一致させるか、あるいは、余裕を見込んでこのスキューの最大値よりも若干大きな値に設定しておくようにすれば良い。スキューの最大値は半導体記憶装置が適用されるシステム全体の特性に基づいて予め試算しておくことが可能である。したがって、半導体記憶装置が適用されるシステムに応じてアドレススキュー期間を可変とするか、あるいは、予め決められたアドレススキュー期間に合わせて半導体記憶装置が搭載されるシステムの設計を行うことになる。
【0138】
次に、レジスタ回路62及びヒット制御回路63は上述したレジスタ回路61とともにレイトライト動作を実現する。このうち、ヒット制御回路63はアドレス変化検出信号ATDの立ち上がりでヒット信号HITを取り込み、これをヒットイネーブル信号HEとしてレジスタ回路62に送出する。すなわち、アドレススキュー期間内ではアドレスAddress の値が確定していないため、ヒット制御回路63はアドレスAddress が確定した時点でヒット信号HITを取り込む。なお、ヒットイネーブル信号HEは読み出し動作の場合にのみ用いられるが、その制御はレジスタ回路62が行っており、ヒット制御回路63はアクセス要求が書き込み・読み出しであるかを問わずヒットイネーブル信号HEを生成する。
【0139】
次に、レジスタ回路62はバスWRB上で授受されるデータと同じビット幅のデータレジスタを内蔵している。そしてレジスタ回路62は、制御信号LW2の立ち下がりエッジをトリガとして、バスI/O,I/Oバッファ10を通じて外部からバスWRBX上に供給される書き込みデータをデータレジスタに取り込む。つまり、書き込み要求があった場合に、当該メモリサイクルで与えられる書き込みデータを一旦データレジスタに取り込んでおき、次の書き込み要求のあったメモリサイクルでデータレジスタに取り込んでおいた書き込みデータをメモリセルアレイ6へ書き込むことになる。
【0140】
また、制御信号LW2が“H”である場合、レジスタ回路62は直前の書き込み要求の際に与えられた書き込みデータをデータレジスタからバスWRB上に出力する。一方、制御信号LW2が“L”である場合、レジスタ回路62はヒットイネーブル信号HEのレベルに応じて異なる動作を行う。すなわち、ヒットイネーブル信号HEがミスヒットを示す“L”であれば、レジスタ回路62はバスWRB上の読み出しデータをそのままバスWRBX上に出力する。これに対し、ヒットイネーブル信号HEがヒットを示す“H”であれば、レジスタ回路62は未だメモリセルアレイ6に書き込まれていない書き込みデータをデータレジスタからバスWRBX上に送出する。
【0141】
次に、R/W制御回路54は制御信号CWOのほかに制御信号LW1,LW2を生成する点で図1のR/W制御回路11と相違する。次に、半導体記憶装置を立ち上げてから初めて書き込み要求が与えられた場合には、直前の書き込みが存在しない。したがって、当該書き込み要求のあったメモリサイクルでは、書き込みアドレス及び書き込みデータの取り込みを行うだけにとどめ、メモリセルアレイ6に対するレイトライトは行わない。これを実現するために、ロウ制御回路55の内部にフラグを設けて、チップセレクト信号/CSが有効な状態で書き込みイネーブル信号/WEが一度でも有効化されたかどうかをフラグに記憶する。
【0142】
そのために、ロウ制御回路55は半導体記憶装置の立ち上げ時にフラグをオフに初期化しておき、最初の書き込み要求が行われた時点でフラグをオンとする。また、ロウ制御回路55は書き込み要求があった場合(書き込みイネーブル信号/WE=“L”かつチップセレクト信号/CS=“L”)には、フラグがオンになっている場合にだけロウイネーブル信号REにワンショットパルスを発生させる。これによって、ロウ制御回路55及びカラム制御回路14は、書き込みに必要となる制御信号CC,センスアンプイネーブル信号SE,カラムイネーブル信号CE,プリチャージイネーブル信号PEを発生させる。
【0143】
〈動作の説明(ノーマルRead)〉
次に、図9のタイミングチャートを参照して本実施形態による半導体記憶装置の動作を説明する。なお、アドレスに載るノイズに関してはノーマルReadについて説明することが好ましいため、レイトライトの動作については後述することとする。またここでは、図9に示したよりも以前のメモリサイクルでアドレス“Ax”に対するデータ“Qx”の書き込み要求があって、レジスタ回路61内のアドレスレジスタにアドレス“Ax”が取り込まれ、レジスタ回路62内のデータレジスタにデータ“Qx”が取り込まれていることを想定する。さらに、チップセレクト信号/CSは“L”に固定されていて図9に示す半導体記憶装置が選択された状態にあるものとする。
【0144】
まず、時刻t31でアドレスAddress の値が“An−1”から変化し始める。この時点では第1実施形態と同様に入力感度制御信号IC,ラッチ制御信号LCがともに“L”であるとともに制御信号LW1も“L”である。このため、アドレスAddress はアドレスバッファ1,入力フィルタ19,ラッチ2をスルーで通過してラッチアドレスLC_ADDとなり、ラッチアドレスLC_ADDはさらにレジスタ回路61をスルーで通過してラッチアドレスL_ADD となる。
【0145】
そして、ATD回路53はラッチアドレスLC_ADDの変化からアドレスAddress が変化し始めたことを検知するようになる。もっとも時刻t31からはアドレススキュー期間に入るため、汎用SRAMの場合と同じくこの時点でアドレスAddress の値が確定しているとは限らない。このため、時刻t31ではアドレスAddress をラッチ2に取り込むことはせず、この後に時間TSKEWが経過してアドレスAddress の値が“An”に確定した以降にアドレスAddress を取り込むことになる。なお、図9には示していないがアドレススキュー期間では出力イネーブル信号OEが有効化される。
【0146】
そして、R/W制御回路54はメモリセルからの読み出しに備えて制御信号CWOを“H”とするほか、制御信号LW1,LW2を何れも“L”のままとする。これによってI/Oバッファ10はバスWRBX上のデータをバスI/Oへ送出するようになる。もっともこの時点ではまだアドレススキュー期間であって、ヒット制御信号HEも直前のメモリサイクルのままになっており、バスWRBX上にデータWRB上のデータが読み出されるのか、データレジスタの保持データが読み出されるのかは確定していない。
【0147】
次に、アドレススキュー期間が終了して時刻t32になると、アドレスAddress (したがってラッチアドレスLC_ADD)の値が“An”に確定する。このとき、制御信号LW1は“L”であるため、ラッチアドレスLC_ADDの値がそのままラッチアドレスL_ADD として出力される。また、ラッチアドレスLC_ADDの値“An”はアドレスレジスタに保持されているアドレス“Ax”と一致しないため、レジスタ回路61はヒット信号HITとして“L”を出力する。
【0148】
次に、ATD回路53は時刻t33でアドレス変化検出信号ATDに正のワンショットパルスを発生させ、これによってノーマルRead動作が開始される。そしてリフレッシュ制御回路4はリフレッシュアドレスR_ADD の値を更新する。また、マルチプレクサ5はラッチアドレスL_ADD 側を選択してこれをアドレスM_ADD としてロウデコーダ7に出力する。さらに、ヒット制御回路63はでヒット信号HITを取り込んでヒットイネーブル信号HEとして“L”を出力する。これにより、レジスタ回路62はバスWRBとバスWRBXを接続するようになり、センスアンプ・リセット回路9内のセンスアンプによるセンス結果がI/Oバッファ10およびバスI/Oを通じて外部に出力可能な状態となる。
【0149】
この後、アドレスAddress の変化が各部に伝搬するので、ラッチ制御回路52は時刻t34で入力感度制御信号ICに正のワンショットパルスを発生させる。これにより、入力フィルタ19が入力されるアドレスの感度を鈍らせる。このため、例えばラッチ2がアドレスを取り込む直前のタイミングである時刻t35で外部からのシステムノイズがアドレスバッファ1の出力に載ったとしても、ラッチ2にはノイズが除去ないし低減されたアドレスが供給される。したがって、この後にラッチ制御回路52が時刻t36でラッチ制御信号LCを立ち上げてラッチ2がアドレスを取り込んだ場合に、ノイズが載った誤ったアドレスを取り込むことはなくなる。
【0150】
この後、ラッチ制御回路52は時刻t37で入力感度制御信号ICを立ち下げる。次に、ロウ制御回路55がロウイネーブル信号REに正のワンショットパルスを発生させると、ロウデコーダ7は時刻t38でアドレス“An”に対応した読み出しワード線を活性化させる。この後に時刻t39でロウ制御回路55がセンスアンプイネーブル信号SEを立ち上げると、センスアンプの活性化によってチップ内部で電源ノイズが発生する。しかし、ラッチ2はアドレスをラッチした状態にあるため、ノイズの載ったアドレスがラッチ2の後段の回路へ伝達されて誤動作することはない。
【0151】
次に、ロウ制御回路55が制御信号CCに正のワンショットパルスを発生させると、カラム制御回路14はカラムイネーブル信号CEに正のワンショットパルスを発生させる。これにより、カラムデコーダ8はアドレス“An”中の列アドレスに対応したカラム選択信号を活性化させて対応するセンスアンプをバスWRBと接続する。そして、センスアンプは読み出しワード線に接続された各メモリセルのデータをセンス・増幅し、このデータがバスWRB,レジスタ回路62,バスWRBX,I/Oバッファ10を通じてバスI/Oから外部に出力される。このデータ出力動作に伴って時刻t40で電源ノイズが発生するが、この場合も時刻t39と同様にノイズの載ったアドレスがラッチ2の後段に伝搬して誤動作することはない。
【0152】
この後にノーマルReadが終了すると、ロウ制御回路55はロウイネーブル信号REを立ち下げて読み出しワード線を時刻t41で非活性化し、次いで、センスアンプイネーブル信号SEを立ち下げてセンス動作を終了させる。また、カラム制御回路14はカラムイネーブル信号CEを立ち下げてセンスアンプとバスWRBの間を切り離す。次いで、ロウ制御回路55はプリチャージイネーブル信号PEにワンショットパルスを生成してビット線をプリチャージする。
【0153】
次に、時刻t42でATD回路53がアドレス変化検出信号ATDを立ち下げると、ノーマルReadに付随したリフレッシュが第1実施形態と同様の動作によって行われる。このため、時刻t43でリフレッシュワード線が活性化されるとともに、ロウ制御回路55が時刻t44でセンスアンプイネーブル信号SEに正のワンショットパルスが生成すると、センスアンプが活性化されてリフレッシュが始まるのに伴って電源ノイズが発生する。しかし、この時点でもラッチ2はアドレスをラッチした状態にあるため、ノイズの載ったアドレスがラッチ2の後段に伝搬して誤動作することはない。
【0154】
この後、リフレッシュ中に時刻t45になると、ノーマルReadが行われたメモリサイクルが終了してこれに続く新たなメモリサイクルに移行し、リフレッシュ動作はこの新たなメモリサイクルのアドレススキュー期間終了までに完了する。そして、時刻t46でリフレッシュワード線が非活性化され、時刻t48でラッチ制御信号LCが立ち下げられる。なお、アドレスAddress が未確定の間はアドレス変化検出信号ATDが立ち上がってノーマルRead又はレイトライトが始まることはなく、ラッチアドレスL_ADD も直前のメモリサイクルの値が保持されるため、リフレッシュが次のメモリサイクルのアドレススキュー期間終了まで延びても問題はない。
【0155】
〈動作の説明(レイトライト)〉
レイトライトの動作はおおむねノーマルReadの場合と同じであるため、ここではノーマルReadとの相違点を中心に概説する。なお、以下では書き込み対象のワード線を「書き込みワード線」と呼ぶ。まず、半導体記憶装置の立ち上げ後における最初の書き込みでは、メモリセルアレイ6には書き込まれず、外部から与えられた書き込みアドレス及び書き込みデータがそれぞれアドレスレジスタ,データレジスタに取り込まれる。
【0156】
次に、2回目以降の書き込み要求があった場合の動作は次のようになる。まず、アドレススキュー期間内で書き込みイネーブル信号/WEに負のパルスが入力される。R/W制御回路54は書き込みイネーブル信号/WEの立ち下がり受けて、制御信号CWOを“L”にするとともに制御信号LW1,LW2をともに“H”にする。この結果I/Oバッファ10はバスI/O上の書き込みデータをバスWRBX上に送出する。ただしこの時点で書き込みデータが確定しているとは限らない。一方、レジスタ回路61はアドレスレジスタに保持しているアドレス“Ax”をラッチアドレスL_ADD として出力し、レジスタ回路62はデータレジスタに保持しているデータ“Qx”をバスWRB上に出力する。
【0157】
そして、アドレススキュー期間が経過してアドレスが確定した時点で書き込み/読み出しの何れであるかも確定する。このとき、書き込みアドレスおよび書き込みデータは直前に書き込み要求のあったメモリサイクル中で既に確定している。このため、入力フィルタ19の作用によってアドレスをラッチする一定時間前からアドレスに対する感度を鈍らせた後に、書き込み動作が開始される。
【0158】
このため、ノーマルReadの場合と同様にしてセンスアンプが選択されて、アドレス“Ax”で指定されたメモリセルに対してデータ“Qx”の書き込みが始まる。そして、メモリセルアレイ6に対する書き込みが終了すると、ノーマルReadの場合と同様にして、ロウイネーブル信号RE,書き込み対象ワード線,センスアンプイネーブル信号SE,カラムイネーブル信号CE,カラム選択信号が非活性化されるほか、次のアクセスに備えてビット線がプリチャージされる。
【0159】
次に、レイトライトに続いてリフレッシュが行われ、このリフレッシュ中に書き込みイネーブル信号/WEが立ち上げられるまでに、アドレス“An”に対する書き込みデータ(ここではデータ“Qn”とする)が、バスI/O,I/Oバッファ10を通じてバスWRBX上に送出される。もっとも、このときバスWRBXはバスWRBに接続されておらず、データ“Qn”はメモリセルアレイ6への書き込みには関係しない。そして、R/W制御回路54は書き込みイネーブル信号/WEの立ち上がりを受けて制御信号LW1,LW2をともに立ち下げる。
【0160】
この制御信号LW1の立ち下がりを受けて、レジスタ回路61はラッチアドレスLC_ADDの値“An”をアドレスレジスタに取り込み、レジスタ回路62は制御信号LW2の立ち下がりを受けて、バスWRBX上のデータ“Qn”をデータレジスタに取り込む。これらアドレス“An”及びデータ“Qn”は、次の書き込み要求が行われた時点のメモリサイクルでレイトライトに使用される。以上のように、レイトライトの場合にはノーマルReadのようにデータ出力動作がないため、それによる電源ノイズが発生することもない。したがって、アドレスに載るノイズに関してはノーマルReadの場合について考慮すれば良い。
【0161】
〈動作の説明(その他)〉
次にバイパス動作について概説する。例えば、連続するメモリサイクルでアドレス“An”に対する書き込みと読み出しが行われることを想定する。この場合、書き込み要求のあったメモリサイクルで、アドレス“An”に対して与えられた書き込みデータ“Qn”は未だメモリセルアレイ6に反映されていない。そして、読み出しのメモリサイクルでアドレススキュー期間が経過してアドレスAddress の値が“An”に確定すると、この時点でアドレスレジスタはアドレスAddress (=ラッチアドレスLC_ADD)と同じ“An”を保持している。
【0162】
したがって、レジスタ回路61はヒット信号HITとして“H”を出力する。この後、入力感度制御信号ICが立ち下げられると、ヒット制御回路63はヒット信号HITを取り込んでヒットイネーブル信号HEに“H”を出力する。このとき、R/W制御回路54は制御信号LW2に“L”を出力しているため、レジスタ回路62はデータレジスタに保持しているデータ“Qn”をバスWRBX上に出力し、これがI/Oバッファ10を通じて外部に出力される。このように、ノイズ対策の観点からはノーマルReadの場合と同様の考慮をしておけば良い。
【0163】
次に、ノーマルReadまたはレイトライトに伴うリフレッシュを行わない場合は、第1実施形態で説明した通りであって、例えば図9の時刻t44で電源ノイズが発生しなくなる。したがって、アドレスに載るノイズに関してはリフレッシュを伴う場合を考慮しておけば良い。次に、セルフリフレッシュが行われる場合は、第1実施形態と同様にラッチ制御信号LCにワンショットパルスを発生しないため、誤ったアドレスをラッチすることも起こり得ない。
【0164】
次に、上述した説明では、書き込み又は読み出しに伴ってリフレッシュを1回だけ行っているが、1メモリサイクルがもっと長く設定されているのであれば、1メモリサイクルに収まる範囲内で複数回のリフレッシュを行うことができる。したがって、この場合にはラッチ制御信号LCの立ち下げタイミングを1メモリサイクル中の最後のリフレッシュ後とすれば良い。次に、書き込みイネーブル信号/WEに加えて書き込みデータをアドレススキュー期間内に確定させる仕様とすることで、書き込み要求のあったメモリサイクル内においてレイトライトではなくノーマルWrite を行うことが可能となる。この場合はレイトライトの代わりにノーマルWrite となるだけであって、ノイズ対策の観点からは上記同様にノーマルReadの場合について考慮しておけば良い。
【0165】
次に、本実施形態でも第1実施形態と同様にページモードやバーストモードを適用することができる。ここで、本実施形態ではリフレッシュに先行してノーマルRead又はレイトライトを行っている。このためノーマルReadを行う場合、メモリセルアレイ6から複数のデータを同時に読み出した後はメモリセルアレイ6が空きとなる。したがって、これら複数のデータを外部へ順次出力してゆく動作とノーマルReadに付随するリフレッシュ動作を並行して行うことができる。こうしたことから本実施形態では、リフレッシュ中のセンスアンプ活性化タイミング又はノーマルReadで読み出された複数のデータのうちの最終データ出力タイミングのうち、何れか遅い方のタイミングに合わせてラッチ制御信号LCを立ち下げることになる。
【0166】
なお、本実施形態において、図9では時刻t37で入力感度制御信号ICを立ち下げているが、ラッチ2によってアドレスが取り込まれる時刻t36以降であれば時刻t37よりも前であって良い。
また、上述した各実施形態ではMSRAMを中心に説明してきたが、本発明はこれに限定されるものではなく、汎用DRAM,汎用SRAM,疑似SRAMなどを含めた如何なる半導体記憶装置に適用しても良く、また、RAMに限らずROM(読み出し専用メモリ)であっても良い。
【0167】
【発明の効果】
以上説明したように、請求項1記載の発明では、アドレスをラッチするタイミングを含む所定期間内において、外部から入力されるアドレスに対する感度を下げてからラッチ手段に出力している。これにより、チップの内部又は外部で発生したノイズがアドレスに載っても、ラッチ手段が誤ったアドレスをラッチして誤動作してしまう恐れがなくなる。
また、請求項2記載の発明では、外部から入力されるアドレス及びチップセレクト信号が確定した時点からアドレスがラッチされる時点までの間に、外部から入力されるアドレスに対する感度を下げている。これにより、ノイズが載った誤まったアドレスをラッチする危険性が最も高いラッチ直前においても、外部からのシステムノイズなどに対して強くなる。また、スキューのためにアドレスやチップセレクト信号が変化している間は、これらの変化をラッチ手段の後段各部へ高速に伝達することが可能となる。さらに、アドレス及びチップセレクト信号が確定すればこれらの変化を高速に伝える必要がなくなるため、アドレスに対する感度を下げてチップ内外で発生するノイズの影響を排除することができる。
【0168】
また、請求項3記載の発明では、外部から入力されるアドレス及びチップセレクト信号の変化が検出手段へ伝達された後にアドレスに対する感度を下げている。これにより、製造上のバラツキやシステム上の原因によってアドレスやチップセレクト信号の確定が遅れた場合にも、これらの変化をラッチ手段の後段にある検出手段等へ高速に伝達することが可能となる。
また、請求項4記載の発明では、ノイズの載ったアドレスのレベルが誤まったアドレスとして認識されないレベルまで戻るのに必要な時間だけアドレスのラッチタイミングよりも前の時点から、アドレスに対する感度を下げ始めている。これにより、感度を下げ始めるタイミングとラッチすべきアドレスにノイズが載るタイミングが重なった場合であっても、ノイズによる影響のないアドレスがラッチされるようになるため、誤動作することがない。
【0169】
また、請求項7記載の発明では、フレッシュ中のセンスアンプ活性化時、読出し中のセンスアンプ活性化時及び読出し中のデータ出力動作時に連続的に発生して外部から入力されるアドレスに載る電源ノイズの影響が解消されるタイミングで外部から入力されるアドレスをラッチするようにしている。これにより、外部からのシステムノイズの大きさが問題ない程度であれば、請求項1〜6記載の発明のようにフィルタ手段を設けることなく、チップ内部で発生する電源ノイズによる誤動作を回避することができる。
また、請求項8又は9記載の発明では、チップ内部でノイズ発生の可能性がある時点以降にアドレスのラッチ状態を解除している。これにより、ラッチ状態では、外部からのシステムノイズによる誤動作とチップ内部で発生する電源ノイズといった事前に予測しうるノイズによる誤動作とを防止しつつ、ラッチ状態の解除で後は、外部から入力される次のアクセス要求に備えてアドレス及びチップセレクト信号の変化を高速に各部へ伝達することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による半導体記憶装置の構成を示すブロック図である。
【図2】同実施形態による半導体記憶装置の動作を示すタイミングチャートである。
【図3】同実施形態による入力フィルタの第1の構成例を示した回路図である。
【図4】同実施形態による入力フィルタの第2の構成例を示した回路図である。
【図5】図4に示したアドレスバッファ21及び入力フィルタ39について入力電圧である電圧Vinと出力電圧である電圧Voutの関係を示したグラフである。
【図6】図3に示した入力フィルタへノイズが載ったアドレスを入力した場合に、抵抗素子の値を変化させていったときに得られる出力波形を抵抗素子なしの場合の出力波形と対比して示したグラフであって、アドレスのあるビットが“0”から“1”に変化した場合についてのものである。
【図7】図3に示した入力フィルタへノイズが載ったアドレスを入力した場合に、抵抗素子の値を変化させていったときに得られる出力波形を抵抗素子なしの場合の出力波形と対比して示したグラフであって、アドレスのあるビットが“1”から“0”に変化した場合についてのものである。
【図8】本発明の第2実施形態による半導体記憶装置の構成を示すブロック図である。
【図9】同実施形態による半導体記憶装置の動作を示すタイミングチャートである。
【図10】従来の半導体記憶装置において外部から入力されるアドレスがラッチされるまでの経路についての構成を示した回路図である。
【符号の説明】
1,21 アドレスバッファ
2 ラッチ
3,53 ATD回路
4 リフレッシュ制御回路
5 マルチプレクサ
6 メモリセルアレイ
7 ロウデコーダ
8 カラムデコーダ
9 センスアンプ・リセット回路
10 I/Oバッファ
11,54 R/W制御回路
12,52 ラッチ制御回路
13,55 ロウ制御回路
14 カラム制御回路
15 ブースト電源
16 基板電圧発生回路
17 リファレンス電圧発生回路
19,22,39 入力フィルタ
23 ラッチ回路
25 トランスファゲート
26 抵抗素子
31〜36 トランジスタ
37,38 インバータ

Claims (13)

  1. 外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作する半導体記憶装置において、
    前記ラッチ手段が前記アドレスをラッチするタイミングを含む所定期間内で、前記外部から入力されるアドレスに対する感度を下げて前記ラッチ手段に出力するフィルタ手段を具備することを特徴とする半導体記憶装置。
  2. 前記フィルタ手段は、前記外部から入力されるアドレス及び前記チップセレクト信号が確定した時点以降の所定のタイミングから、少なくとも前記ラッチ手段が前記アドレスをラッチするタイミングまでの期間に、前記外部から入力されるアドレスに対する感度を下げることを特徴とする請求項1記載の半導体記憶装置。
  3. 前記フィルタ手段は、前記外部から入力されるアドレス及び前記チップセレクト信号の変化が前記検出手段に伝達された後に、前記外部から入力されるアドレスに対する感度を下げることを特徴とする請求項1又は2記載の半導体記憶装置。
  4. 前記フィルタ手段は、前記外部から入力されるアドレスに対して感度を下げ始めるタイミングと前記ラッチ手段に供給されるアドレスにノイズが載るタイミングが重なったとした場合に、前記ラッチ手段が前記アドレスをラッチするタイミングを基準として、前記ノイズの載ったアドレスが感度を下げられた状態で前記ラッチ手段により誤まったアドレスとして認識されないレベルまで戻るのに必要な時間だけ少なくとも前の時点から、前記アドレスに対する感度を下げ始めることを特徴とする請求項1〜3の何れかの項記載の半導体記憶装置。
  5. 前記フィルタ手段は、
    前記外部から入力されるアドレスに対する感度を下げて前記ラッチ手段に出力する抵抗素子と、
    前記外部から入力されるアドレスに対する感度を下げるべき期間では、前記外部から入力されるアドレスを前記抵抗素子を介して前記ラッチ手段に出力し、該期間以外では前記抵抗素子を介さずに前記外部から入力されるアドレスを前記ラッチ手段に出力するスイッチ手段と
    を備えたことを特徴とする請求項1〜4の何れかの項記載の半導体記憶装置。
  6. 前記フィルタ手段は、前記外部から入力されるアドレスのレベルに応じて閾値を変化させるヒステリシス特性を備えた回路であることを特徴とする請求項1〜4の何れかの項記載の半導体記憶装置。
  7. 外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作し、1メモリサイクル中に少なくともリフレッシュ及び読出しを行う半導体記憶装置であって、
    前記ラッチ信号を制御することにより、記リフレッシュ中のセンスアンプ活性化時、前記読出し中のセンスアンプ活性化時及び前記読出し中のデータ出力動作時に連続的に発生して前記外部から入力されるアドレスに載る電源ノイズの影響が解消されるタイミングで前記外部から入力されるアドレスを前記ラッチ手段にラッチさせる制御手段を具備することを特徴とする半導体記憶装置。
  8. 外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作し、1メモリサイクル中に少なくともリフレッシュ及び読出しを行う半導体記憶装置であって、
    前記ラッチ信号を制御することにより、チップ内部でノイズの発生する可能性がある時点以降に前記ラッチ手段のラッチ状態を解除する制御手段を具備し、
    前記リフレッシュの後に前記読出しが実行され、前記リフレッシュの際に前記読出しの為の前記アドレスをラッチし、読出しデータの出力動作が完了して電源ノイズの影響が無くなる時点で該ラッチ状態を解除することを特徴とす半導体記憶装置。
  9. 外部から入力されるアドレスの変化又はチップセレクト信号の有効化を検出してアドレス変化検出信号を生成する検出手段と、該アドレス変化検出信号から生成されるラッチ信号に従って前記アドレスをラッチ手段にラッチし、該ラッチされたアドレスに従って動作し、1メモリサイクル中に少なくともリフレッシュ及び読出しを行う半導体記憶装置であって、
    前記ラッチ信号を制御することにより、チップ内部でノイズの発生する可能性がある時点以降に前記ラッチ手段のラッチ状態を解除する制御手段を具備し、
    前記読出しの後に前記リフレッシュが実行され、前記読出しの際にラッチされた前記アドレスは前記読出しから前記リフレッシュの動作に渡って保持され、前記リフレッシュの動作の完了後に前記ラッチ状態を解除することを特徴とす半導体記憶装置。
  10. 1メモリサイクル内で読出し及び書込みの一方及びリフレッシュとを行うMSRAMからなる半導体記憶装置であって、
    外部からアドレスを受けるアドレスバッファと、
    前記アドレスバッファから出力されたアドレスを受け第1の制御信号に応答して該アドレスを出力する入力フィルタと、
    前記入力フィルタから出力されたアドレスを第2の制御信号に応答してラッチするラッチ回路と、
    前記ラッチ回路から出力されたアドレスの変化又はチップセレクト信号の遷移に応答してアドレス変化検出信号を出力するATD回路と、
    少なくとも前記アドレス変化検出信号に応答してリフレッシュアドレスを出力するリフレッシュ制御回路と、
    前記ラッチ回路から出力されたアドレス及び前記リフレッシュアドレスを前記アドレス変化検出信号に応答して選択的に出力するマルチプレクサと、
    少なくとも前記アドレス変化検出信号に応答して前記第1及び第2の制御信号を出力する制御回路とを備え、
    前記第1の制御信号は前記ラッチ回路が前記アドレスをラッチする際に前記入力フィルタの入力感度を低下させるように駆動し、前記第2の制御信号は前記読出しが実行される際に前記アドレスに対応したメモリセルから読み出されたデータの出力が完了するまで前記ラッチ回路にて保持されたアドレスを保持しつづけるように駆動することを特徴とする半導体記憶装置。
  11. 前記リフレッシュの後に前記読出しが実行され、前記リフレッシュの際に前記読出しの為の前記アドレスをラッチし、読出しデータの出力動作が完了して電源ノイズの影響が無くなる時点で前記ラッチ回路のラッチ状態を解除することを特徴とする請求項10記載の半導体記憶装置。
  12. 前記読出しの後に前記リフレッシュが実行され、前記読出しの際にラッチされた前記アドレスは前記読出しから前記リフレッシュの動作に渡って保持され、前記リフレッシュの動作の完了後に前記ラッチ回路のラッチ状態を解除することを特徴とする請求項10記載の半導体記憶装置。
  13. 少なくとも書込みイネーブル信号に応答して第3の制御信号を出力する書込み制御回路と、
    前記第3の制御信号に応答して前記ラッチ回路から出力されたアドレスをラッチしそのラッチしたアドレスを前記マルチプレクサへ出力するレジスタ回路を更に備えることを特徴とする請求項10記載の半導体記憶装置。
JP2000123073A 2000-04-24 2000-04-24 半導体記憶装置 Expired - Fee Related JP3540243B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000123073A JP3540243B2 (ja) 2000-04-24 2000-04-24 半導体記憶装置
US10/258,334 US6809989B2 (en) 2000-04-24 2001-04-12 Semiconductor storage device
PCT/JP2001/003156 WO2001082304A1 (fr) 2000-04-24 2001-04-12 Dispositif de stockage a semi-conducteur
KR1020027014126A KR20030009446A (ko) 2000-04-24 2001-04-12 반도체 기억 장치
EP01921824A EP1293986A4 (en) 2000-04-24 2001-04-12 SEMICONDUCTOR STORAGE DEVICE
CNB018084362A CN1288666C (zh) 2000-04-24 2001-04-12 半导体存储器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123073A JP3540243B2 (ja) 2000-04-24 2000-04-24 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2001307485A JP2001307485A (ja) 2001-11-02
JP3540243B2 true JP3540243B2 (ja) 2004-07-07

Family

ID=18633450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123073A Expired - Fee Related JP3540243B2 (ja) 2000-04-24 2000-04-24 半導体記憶装置

Country Status (6)

Country Link
US (1) US6809989B2 (ja)
EP (1) EP1293986A4 (ja)
JP (1) JP3540243B2 (ja)
KR (1) KR20030009446A (ja)
CN (1) CN1288666C (ja)
WO (1) WO2001082304A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344964B2 (ja) * 1999-06-01 2009-10-14 ソニー株式会社 画像処理装置および画像処理方法
JP2002216472A (ja) * 2001-01-22 2002-08-02 Nec Corp 半導体記憶装置
JP2002352576A (ja) * 2001-05-24 2002-12-06 Nec Corp 半導体記憶装置
JP2003132675A (ja) * 2001-10-26 2003-05-09 Seiko Epson Corp 半導体メモリ装置
US6980481B1 (en) * 2001-12-20 2005-12-27 Lsi Logic Corporatiion Address transition detect control circuit for self timed asynchronous memories
US7646649B2 (en) * 2003-11-18 2010-01-12 International Business Machines Corporation Memory device with programmable receivers to improve performance
KR100555534B1 (ko) * 2003-12-03 2006-03-03 삼성전자주식회사 인액티브 위크 프리차아징 및 이퀄라이징 스킴을 채용한프리차아지 회로, 이를 포함하는 메모리 장치 및 그프리차아지 방법
KR100672128B1 (ko) * 2005-10-14 2007-01-19 주식회사 하이닉스반도체 어드레스 신호 및 제어 신호들의 입력 동작시 소비 전류를감소시키는 클럭 제어 회로와 이를 포함하는 반도체 메모리장치 및 그 입력 동작 방법
JP2007193854A (ja) * 2006-01-17 2007-08-02 Toshiba Corp 半導体記憶装置
JP4996191B2 (ja) * 2006-10-02 2012-08-08 株式会社東芝 半導体記憶装置の制御方法
KR100865829B1 (ko) * 2007-03-29 2008-10-28 주식회사 하이닉스반도체 메모리 소자의 신호 처리장치 및 노이즈 제거 회로
US7830729B2 (en) * 2007-06-15 2010-11-09 Micron Technology, Inc. Digital filters with memory
JP5350677B2 (ja) * 2008-05-19 2013-11-27 株式会社東芝 バス信号制御回路、及び、バス信号制御回路を備えた信号処理回路
JP5381895B2 (ja) * 2010-05-21 2014-01-08 株式会社デンソー 制御装置、保護装置および保護方法
TWI608486B (zh) * 2010-09-13 2017-12-11 半導體能源研究所股份有限公司 半導體裝置
KR101664346B1 (ko) * 2010-10-06 2016-10-11 에스케이하이닉스 주식회사 전압 스큐를 조정하는 비휘발성 메모리 장치 및 그의 제어 방법
US8780657B2 (en) * 2012-03-01 2014-07-15 Apple Inc. Memory with bit line current injection
CN106063208B (zh) * 2014-12-31 2019-06-18 华为技术有限公司 一种数据处理方法和装置
US10658026B2 (en) * 2017-05-26 2020-05-19 Taiwan Semiconductor Manufacturing Company Limited Word line pulse width control circuit in static random access memory
CN112447218A (zh) 2019-08-29 2021-03-05 台湾积体电路制造股份有限公司 存储器电路和方法
DE102019128331A1 (de) 2019-08-29 2021-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Gemeinsam genutzter decodiererschaltkreis und verfahren

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3436865A (en) * 1964-05-11 1969-04-08 Corning Glass Works Edge form grinding
JPS60211691A (ja) 1984-04-06 1985-10-24 Hitachi Ltd 半導体記憶装置
JPS615495A (ja) 1984-05-31 1986-01-11 Toshiba Corp 半導体記憶装置
JPS62188095A (ja) 1986-02-14 1987-08-17 Toshiba Corp 半導体記憶装置の制御回路
JPH0736272B2 (ja) * 1986-12-24 1995-04-19 株式会社日立製作所 半導体集積回路装置
JPH03253114A (ja) 1990-03-02 1991-11-12 Nec Corp 半導体装置
EP0461904A3 (en) * 1990-06-14 1992-09-09 Creative Integrated Systems, Inc. An improved semiconductor read-only vlsi memory
JPH04192185A (ja) 1990-11-27 1992-07-10 Mitsubishi Electric Corp 半導体回路
US5229223A (en) 1991-10-29 1993-07-20 Eveready Battery Company, Inc. Air-assisted alkaline cell having a multilayer film seal assembly
JPH07192470A (ja) 1993-03-08 1995-07-28 Nec Ic Microcomput Syst Ltd 半導体メモリの出力回路
JPH0729377A (ja) 1993-07-08 1995-01-31 Sharp Corp 半導体記憶装置
DE69524999T2 (de) 1994-08-01 2002-07-18 Opentv Inc Verfahren zum Komprimieren und Dekomprimieren von Dateien
JPH08203273A (ja) 1995-01-23 1996-08-09 Hitachi Ltd 情報処理装置
KR0152947B1 (ko) * 1995-06-30 1998-10-15 문정환 노이즈를 차단하는 어드레스 버퍼
JPH0955087A (ja) 1995-08-11 1997-02-25 Texas Instr Japan Ltd 半導体メモリ装置
JPH08279733A (ja) 1996-03-21 1996-10-22 Hitachi Ltd 発振回路及び半導体記憶装置
JP3789542B2 (ja) * 1996-04-04 2006-06-28 富士通株式会社 メモリ制御回路
KR100319597B1 (ko) 1997-10-24 2002-04-22 김영환 반도체메모리의독출회로
US6075751A (en) * 1999-01-15 2000-06-13 Intel Corporation Signal transition detector for asynchronous circuits
US6249463B1 (en) * 1999-12-08 2001-06-19 Stmicroelectronics S.R.L. Address latch enable signal control circuit for electronic memories

Also Published As

Publication number Publication date
EP1293986A4 (en) 2005-04-27
JP2001307485A (ja) 2001-11-02
US6809989B2 (en) 2004-10-26
KR20030009446A (ko) 2003-01-29
CN1426586A (zh) 2003-06-25
CN1288666C (zh) 2006-12-06
EP1293986A1 (en) 2003-03-19
WO2001082304A1 (fr) 2001-11-01
US20030112668A1 (en) 2003-06-19

Similar Documents

Publication Publication Date Title
JP3540243B2 (ja) 半導体記憶装置
US8082413B2 (en) Detection circuit for mixed asynchronous and synchronous memory operation
US7061828B2 (en) Fully-hidden refresh dynamic random access memory
JP4249412B2 (ja) 半導体記憶装置
JP4749538B2 (ja) 半導体記憶装置
JP2004199842A (ja) 半導体記憶装置及びその制御方法
US6891770B2 (en) Fully hidden refresh dynamic random access memory
US6735139B2 (en) System and method for providing asynchronous SRAM functionality with a DRAM array
JP2007536684A (ja) メモリデバイスにおける動的リフレッシュを改善する装置及び方法
JP2002042460A (ja) 半導体記憶装置
US5724294A (en) Self-tracking sense amplifier strobing circuit and method
US9324414B2 (en) Selective dual cycle write operation for a self-timed memory
JP3339496B2 (ja) 半導体記憶装置
US6608797B1 (en) Automatic delay technique for early read and write operations in synchronous dynamic random access memories
KR100826641B1 (ko) 반도체 메모리 장치
US20040165452A1 (en) Semiconductor memory device including RAS guarantee circuit
US9583208B2 (en) Sensing scheme for high speed memory circuits with single ended sensing
CN117558317A (zh) 一种检测冷启动攻击的方法及装置、存储器
WO2002099811A1 (fr) Dispositif de memorisation a semi-conducteur

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees