JP3444608B2 - Production method of copper fine powder - Google Patents

Production method of copper fine powder

Info

Publication number
JP3444608B2
JP3444608B2 JP19027492A JP19027492A JP3444608B2 JP 3444608 B2 JP3444608 B2 JP 3444608B2 JP 19027492 A JP19027492 A JP 19027492A JP 19027492 A JP19027492 A JP 19027492A JP 3444608 B2 JP3444608 B2 JP 3444608B2
Authority
JP
Japan
Prior art keywords
copper
particle size
fine powder
size distribution
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19027492A
Other languages
Japanese (ja)
Other versions
JPH0610014A (en
Inventor
宏則 立岩
圭司 末永
武士 納
昭夫 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP19027492A priority Critical patent/JP3444608B2/en
Publication of JPH0610014A publication Critical patent/JPH0610014A/en
Application granted granted Critical
Publication of JP3444608B2 publication Critical patent/JP3444608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、湿式法による銅微粉末
の製造方法に関し、特に粒度分布幅が狭く、良好な粒径
に制御された球状の銅微粉末を製造する方法に係る。 【0002】 【従来の技術およびその問題点】従来、銅微粉末を得る
方法としては、種々の方法が提案されている。本発明に
関連する粒径範囲約10μm以下の平均粒径を持つ銅微
粉を製造する方法としては、溶融銅を霧化させるアトマ
イズ法、陰極上への電解析出法、及び銅を機械的に粉砕
する方法等がある。しかしながら、これらの従来法はい
ずれも平均粒径が通常10μm以上と大きく、製造後に
なんらかの分級操作を加えて初めて10μm以下の微粉
末が得られ、それも粒度分布が広く、しかも粒径制御が
困難であるという問題がある。 【0003】また、不活性ガス中で銅を強制蒸発させる
所謂ガス中蒸発法、プラズマ炎中に銅粗粉を吹き込んで
揮発凝集させるプラズマ炎法、水素富化ガス中でアーク
プラズマにより製造する所謂水素プラズマ法、及び銅イ
オン溶液に水素化ホウ素ナトリウムを加えて銅超微粉末
を還元析出させる方法(特開昭58−224103)等
の従来法は、平均粒径が通常0.1μm以下と小さく、
嵩高で比表面積が大きくて酸化しやすく、しかも設備が
高価で量産性に乏しいという欠点がある。 【0004】一方、銅イオンをヒドラジンあるいはヒド
ラジン化合物で還元し、金属銅として析出させることは
公知であるが(新実験化学講座8「無機化合物の合成
(1)」東京化学同人発行)、これらのヒドラジン(化
合物)による銅イオンの還元方法によると、微細な銅粉
末も得られるが、粒度分布が広く、形状も不規則であ
り、しかも粒径の制御が困難で一定品質の銅粉末が得ら
れにくいという欠点がある。 【0005】その中で、炭酸銅の溶液からヒドラジンに
より還元析出させる方法(特公昭59−12723)で
は、球状の銅粉は得られるが、凝集のため、粒度分布が
広いという欠点がある。また、硫酸銅の溶液に界面活性
剤も添加してヒドラジンで還元析出させ、単分散させた
銅微粉を得る方法がある(特開昭62−77407
他)。しかし、界面活性剤は析出銅粉の成長を阻害する
ため、粒径の大きい銅粉を得るのは困難で、平均粒径2
μm以上の銅粉を得るには界面活性剤の添加量を抑える
必要があり、その結果、ある程度の凝集は避けられず、
粒度分布もかなり広くなるという欠点がある。 【0006】本発明は、上記した従来法の問題点を解消
し、約1〜10μmの適度の粒径に容易に制御できると
ともに粒度分布幅が小さく、球状の銅微粉末を製造し得
る方法を提供することを目的とする。 【0007】 【問題点を解決するための手段】本発明方法は特許請求
の範囲に規定したとおり、酢酸を含む水溶液中で懸濁状
の銅化合物をヒドラジンで還元するものであり、これに
より前記した問題点を解決したものである。 【0008】本発明における還元反応のプロセスは、明
確には解明されていないが、本発明者らは、酢酸が一種
の界面活性剤的な働きをすると同時に、銅表面に銅錯化
合物が析出、還元することにより、球状で単分散された
銅粉末が得られるものと推測している。なお、銅粉末の
粒径は還元温度、ヒドラジン添加量等を調整し制御する
ことができる。 【0009】銅化合物としては、酸化銅、亜酸化銅、炭
酸銅、酢酸銅、硫酸銅、硝酸銅等のいずれをも使用でき
るが、硫酸銅、硝酸銅等、強酸との塩を使用したものは
酸化銅、亜酸化銅、炭酸銅、酢酸銅を使ったものと比べ
て還元時のPHが低くなり、還元反応が遅くなり、粒径
が大きい銅粉となる。また、ヒドラジンとしては、抱水
ヒドラジン、無水ヒドラジン、硫酸ヒドラジン等が挙げ
られ、これらヒドラジンは酢酸を含む水溶液中に通常、
銅粉生成に必要な理論量の1〜3倍当量程度添加する。
反応は通常、40〜90℃の還元温度で、1〜48時間
とする。 【0010】かくして本発明により、粒度分布幅が小さ
く、球状の単分散された平均粒径1〜10μmの銅粉末
が得られる。なお、銅粉末の粒径が1μmより小さい
と、ペーストにした時、凝集が激しくなりスクリーンの
目詰りを生じ、さらにはちくそ性が大となり、レベリン
グが悪くなって印刷面が平滑にならなくなる。逆に10
μmより大きくなると、緻密な膜ができず、導電回路と
して不安定になる。 【0011】 【実施例1】水4l、酢酸500gに酸化銅600gを
懸濁し、抱水ヒドラジン300gを添加し、90℃で4
時間反応させた。この結果、平均粒径が2.4μmで、
粒径分布が1〜10μmに100%が入る粒度分布幅の
小さい球状の銅粉末が得られた。 【0012】 【実施例2】水4l、酢酸500gに酸化銅540gを
懸濁し、抱水ヒドラジン280gを添加し、90℃で8
時間反応させた。この結果、平均粒径が2.9μmで、
粒径分布が1〜10μmに100%が入る粒度分布幅の
小さい球状の銅粉末が得られた。 【0013】 【実施例3】水4l、酢酸500gに炭酸銅930gを
懸濁し、抱水ヒドラジン300gを添加し、90℃で4
時間反応させた。この結果、平均粒径が2.3μmで、
粒径分布が1〜10μmに100%が入る粒度分布幅の
小さい球状の銅粉末が得られた。 【0014】 【実施例4】水2.5l、酢酸500gに硫酸銅5水和
物2kgを懸濁し、抱水ヒドラジン350gを添加し、
90℃で48時間反応させた。この結果、平均粒径が
6.3μmで、粒径分布が1〜10μmに90%が入る
粒度分布幅の小さい球状の銅粉末が得られた。 【0015】 【比較例1】水5lに硫酸銅5水和物2kgを溶解し
た。次に抱水ヒドラジン350gを添加し、90℃で4
8時間反応させた。この結果、平均粒径8.5μmで粒
度分布が1〜10μmに30%が入る粒度分布幅の大き
い銅粉末が得られた。 【0016】 【比較例2】水4lに、炭酸銅1350gを懸濁し、抱
水ヒドラジン300gを添加し、90℃で4時間反応さ
せた。この結果、平均粒径が2.8μmで、粒径分布が
1〜10μmに40%が入る粒度分布幅の大きい銅粉末
が得られた。 【0017】 【比較例3】水5lに硫酸銅5水和物2kgを溶解し、
硫酸銅水溶液とした。この硫酸銅水溶液に界面活性剤C
1021NHCH2COONaを2.0g添加した。次に
抱水ヒドラジン350gを添加し、90℃で48時間反
応させた。この結果、平均粒径2.6μmで粒度分布が
1〜10μmに70%が入る粒度分布幅の大きい銅粉末
が得られた。 【0018】 【比較例4】水5lに硫酸銅5水和物2kgを溶解し、
水酸化ホウ素ナトリウム130gを添加し、90℃で4
時間反応させた。この結果、得られた銅粉の粒径は0.
1μm以下であった。 【0019】 【発明の効果】以上説明したように、本発明によれば、
約1〜10μmの適度の粒径に容易に制御できるととも
に、生成する球状銅微粒子の粒度分布が1〜10μmの
範囲に90%以上が含まれている極めて小さい球状の銅
微粉末が得られ、スクリーン印刷等をはじめとして各種
用途に広範囲に使用し得る銅微粉末が安価に製造し得
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing copper fine powder by a wet method, and more particularly to a method for producing spherical copper having a narrow particle size distribution width and a good particle size. The present invention relates to a method for producing fine powder. 2. Description of the Related Art Conventionally, various methods have been proposed for obtaining copper fine powder. As a method for producing copper fine powder having an average particle diameter of about 10 μm or less in the particle diameter range related to the present invention, an atomizing method for atomizing molten copper, an electrolytic deposition method on a cathode, and There is a pulverizing method and the like. However, all of these conventional methods have a large average particle size of usually 10 μm or more, and a fine powder of 10 μm or less can be obtained only by performing some classification operation after the production, which also has a wide particle size distribution and is difficult to control the particle size. There is a problem that is. Further, a so-called gas evaporation method in which copper is forcibly evaporated in an inert gas, a plasma flame method in which copper coarse powder is blown into a plasma flame to volatilize and coagulate, and a so-called arc plasma production in a hydrogen-enriched gas. Conventional methods such as a hydrogen plasma method and a method in which sodium borohydride is added to a copper ion solution to reduce and precipitate a copper ultrafine powder (JP-A-58-224103) have a small average particle diameter of usually 0.1 μm or less. ,
It is bulky, has a large specific surface area, is easily oxidized, and has the drawback of expensive equipment and poor mass productivity. [0004] On the other hand, it is known that copper ions are reduced with hydrazine or a hydrazine compound and are precipitated as metallic copper (New Experimental Chemistry Course 8 "Synthesis of Inorganic Compounds (1)" published by Tokyo Chemical Dojin). According to the method of reducing copper ions with hydrazine (compound), fine copper powder can be obtained, but the particle size distribution is wide, the shape is irregular, and it is difficult to control the particle size. There is a disadvantage that it is difficult. [0005] Among them, a method of reducing and precipitating from a copper carbonate solution with hydrazine (Japanese Patent Publication No. 59-12723) can obtain spherical copper powder, but has a disadvantage that the particle size distribution is wide due to aggregation. Further, there is a method of obtaining a monodispersed copper fine powder by adding a surfactant to a solution of copper sulfate and performing reductive precipitation with hydrazine (Japanese Patent Application Laid-Open No. Sho 62-77407).
other). However, the surfactant inhibits the growth of the precipitated copper powder, so that it is difficult to obtain a copper powder having a large particle diameter.
In order to obtain copper powder of μm or more, it is necessary to reduce the amount of surfactant added, and as a result, some aggregation is inevitable,
There is the disadvantage that the particle size distribution is also quite wide. The present invention solves the above-mentioned problems of the conventional method, and provides a method capable of easily controlling an appropriate particle size of about 1 to 10 μm, having a small particle size distribution width, and producing a spherical copper fine powder. The purpose is to provide. According to the method of the present invention, a copper compound in a suspension in an aqueous solution containing acetic acid is reduced with hydrazine, as defined in the claims. This is a solution to the problem that has been solved. Although the process of the reduction reaction in the present invention has not been clearly elucidated, the present inventors have found that while acetic acid acts as a kind of surfactant, a copper complex compound precipitates on the copper surface. It is presumed that spherical monodispersed copper powder is obtained by reduction. The particle size of the copper powder can be controlled by adjusting the reduction temperature, the amount of hydrazine added, and the like. As the copper compound, any of copper oxide, cuprous oxide, copper carbonate, copper acetate, copper sulfate, copper nitrate and the like can be used, but a compound using a salt with a strong acid such as copper sulfate and copper nitrate can be used. As compared with those using copper oxide, cuprous oxide, copper carbonate, or copper acetate, PH at the time of reduction becomes lower, the reduction reaction becomes slower, and copper powder having a large particle size is obtained. Examples of hydrazine include hydrazine hydrate, anhydrous hydrazine, hydrazine sulfate, and the like.These hydrazines are usually contained in an aqueous solution containing acetic acid.
Add about 1 to 3 equivalents of the theoretical amount required for copper powder generation.
The reaction is usually performed at a reduction temperature of 40 to 90 ° C. for 1 to 48 hours. Thus, according to the present invention, spherical monodispersed copper powder having a small particle size distribution width and an average particle size of 1 to 10 μm can be obtained. If the particle size of the copper powder is smaller than 1 μm, when the paste is formed into a paste, agglomeration becomes severe and clogging of the screen occurs, and further, the brittleness increases, leveling is deteriorated, and the printed surface is not smooth. Conversely 10
If it is larger than μm, a dense film cannot be formed and the conductive circuit becomes unstable. EXAMPLE 1 600 g of copper oxide was suspended in 4 l of water and 500 g of acetic acid, and 300 g of hydrazine hydrate was added.
Allowed to react for hours. As a result, the average particle size was 2.4 μm,
Spherical copper powder having a small particle size distribution width having a particle size distribution of 100% within 1 to 10 μm was obtained. Example 2 540 g of copper oxide was suspended in 4 l of water and 500 g of acetic acid, and 280 g of hydrazine hydrate was added.
Allowed to react for hours. As a result, the average particle size was 2.9 μm,
Spherical copper powder having a small particle size distribution width having a particle size distribution of 100% within 1 to 10 μm was obtained. EXAMPLE 3 930 g of copper carbonate was suspended in 4 l of water and 500 g of acetic acid, and 300 g of hydrazine hydrate was added.
Allowed to react for hours. As a result, the average particle size was 2.3 μm,
Spherical copper powder having a small particle size distribution width having a particle size distribution of 100% within 1 to 10 μm was obtained. EXAMPLE 4 2 kg of copper sulfate pentahydrate was suspended in 2.5 l of water and 500 g of acetic acid, and 350 g of hydrazine hydrate was added.
The reaction was performed at 90 ° C. for 48 hours. As a result, a spherical copper powder having an average particle size of 6.3 μm and a particle size distribution of 90% in 1 to 10 μm and a small particle size distribution width was obtained. Comparative Example 1 2 kg of copper sulfate pentahydrate was dissolved in 5 l of water. Next, 350 g of hydrazine hydrate was added.
The reaction was performed for 8 hours. As a result, a copper powder having an average particle size of 8.5 μm and a particle size distribution of 1% to 10 μm and having a large particle size distribution width of 30% included in 1 to 10 μm was obtained. Comparative Example 2 1350 g of copper carbonate was suspended in 4 l of water, 300 g of hydrazine hydrate was added, and the mixture was reacted at 90 ° C. for 4 hours. As a result, a copper powder having an average particle size of 2.8 μm and a large particle size distribution width in which the particle size distribution is 40% in 1 to 10 μm was obtained. Comparative Example 3 2 kg of copper sulfate pentahydrate was dissolved in 5 l of water,
An aqueous copper sulfate solution was used. Surfactant C is added to this copper sulfate aqueous solution.
2.0 g of 10 H 21 NHCH 2 COONa was added. Next, 350 g of hydrazine hydrate was added and reacted at 90 ° C. for 48 hours. As a result, a copper powder having an average particle size of 2.6 μm and a particle size distribution of 1% to 10 μm and having a large particle size distribution width of 70% was obtained. Comparative Example 4 2 kg of copper sulfate pentahydrate was dissolved in 5 l of water.
Add 130 g of sodium borohydride, and add 4 g at 90 ° C.
Allowed to react for hours. As a result, the particle size of the obtained copper powder was 0.1.
It was 1 μm or less. As described above, according to the present invention,
An extremely small spherical copper fine powder which can be easily controlled to an appropriate particle size of about 1 to 10 μm and has a particle size distribution of 90% or more in the range of 1 to 10 μm, and Copper fine powder which can be widely used for various uses such as screen printing can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 納 武士 埼玉県上尾市原市1380−1 三井金属社 宅A−104 (72)発明者 牛島 昭夫 山口県下関市彦島西山町2−8−2 (56)参考文献 特開 昭64−15309(JP,A) 特開 昭63−186807(JP,A) 特開 昭62−77407(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takeshi Nori               1380-1 Hara-shi, Ageo-shi, Saitama Mitsui Kinzoku Company               House A-104 (72) Inventor Akio Ushijima               2-8-2 Nishiyamacho, Hikoshima, Shimonoseki City, Yamaguchi Prefecture                (56) References JP-A-64-15309 (JP, A)                 JP-A-63-186807 (JP, A)                 JP-A-62-77407 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 銅化合物を還元して銅微粉末を製造する
に当り、酢酸を含む水溶液中に銅化合物を懸濁させ、生
成する球状銅微粒子の粒径分布が1〜10μmの範囲に
90%以上が包含されるような条件で銅化合物をヒドラ
ジンで還元することを特徴とする球状の単分散された銅
微粉末の製造方法。
(57) [Claim 1] In producing a copper fine powder by reducing a copper compound, the copper compound is suspended in an aqueous solution containing acetic acid, and the particle size of the spherical copper fine particles generated. A method for producing a spherical, monodispersed copper fine powder, characterized in that a copper compound is reduced with hydrazine under such a condition that 90% or more is included in a distribution of 1 to 10 μm.
JP19027492A 1992-06-25 1992-06-25 Production method of copper fine powder Expired - Fee Related JP3444608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19027492A JP3444608B2 (en) 1992-06-25 1992-06-25 Production method of copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19027492A JP3444608B2 (en) 1992-06-25 1992-06-25 Production method of copper fine powder

Publications (2)

Publication Number Publication Date
JPH0610014A JPH0610014A (en) 1994-01-18
JP3444608B2 true JP3444608B2 (en) 2003-09-08

Family

ID=16255432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19027492A Expired - Fee Related JP3444608B2 (en) 1992-06-25 1992-06-25 Production method of copper fine powder

Country Status (1)

Country Link
JP (1) JP3444608B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161271B2 (en) * 1995-02-24 2001-04-25 株式会社村田製作所 Production method of copper powder
KR100790458B1 (en) * 2006-07-10 2008-01-02 삼성전기주식회사 Copper nano-particles and preparation method thereof
JP5848552B2 (en) * 2011-08-29 2016-01-27 日立金属株式会社 Method for producing copper fine particle dispersion, method for producing copper fine particle, copper fine particle dispersion and copper fine particle

Also Published As

Publication number Publication date
JPH0610014A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
US6120576A (en) Method for preparing nickel fine powder
JP4821014B2 (en) Copper powder manufacturing method
JP2638271B2 (en) Production method of copper fine powder
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP3570591B2 (en) Production method of copper powder
US5850047A (en) Production of copper powder
KR101236246B1 (en) Copper powder
JPS59116303A (en) Manufacture of fine copper powder
JP3444608B2 (en) Production method of copper fine powder
JPH0557324B2 (en)
JP4577515B2 (en) Highly dispersible silver fine particles, production method thereof, and use
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JP3640552B2 (en) Manufacturing method of copper powder with small particle size distribution
JPH04235205A (en) Production of copper powder
JP4074637B2 (en) Method for producing fine silver powder
JP2002363618A (en) Copper ultrafine grain and production method therefor
JP3245965B2 (en) Production method of copper powder
JP3918036B2 (en) Copper powder manufacturing method
JP4660784B2 (en) Conductive paste
JPH11350009A (en) Production of plate-like copper powder
JPS5912723B2 (en) Copper powder manufacturing method
JPH086130B2 (en) Method for producing copper powder
JPH07109505A (en) Production of silver-palladium composite powder and silver-palladium composite powder
JPH058125B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees