JPH05221637A - Production of cuprous oxide powder and copper powder - Google Patents

Production of cuprous oxide powder and copper powder

Info

Publication number
JPH05221637A
JPH05221637A JP2394792A JP2394792A JPH05221637A JP H05221637 A JPH05221637 A JP H05221637A JP 2394792 A JP2394792 A JP 2394792A JP 2394792 A JP2394792 A JP 2394792A JP H05221637 A JPH05221637 A JP H05221637A
Authority
JP
Japan
Prior art keywords
copper
powder
cuprous oxide
oxide powder
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2394792A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nakada
好和 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2394792A priority Critical patent/JPH05221637A/en
Publication of JPH05221637A publication Critical patent/JPH05221637A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

PURPOSE:To control particle diameters of cuprous oxide powder in producing cuprous oxide powder by adding a Rochelle salt, an alkali hydroxide and a reducing sugar to an aqueous solution of a copper salt by regulating an amount of the Rochelle salt added. CONSTITUTION:<=30wt.% aqueous solution of a water-soluble copper salt (e.g. copper sulfate) is mixed with 0.1-15g one or more complexing agents selected from Rochelle salt, sodium tartrate and potassium tartrate based on 1 liter of the aqueous solution of a copper salt, adjusted to pH11-13 by adding an alkali hydroxide (e.g. sodium hydroxide) and mixed with >=0.5mol based on 1mol copper ion of reducing saccharide (e.g. glucose) to give cuprous oxide powder or further >=0.1mol based on 1mol cuprous oxide of hydrazine, etc., as a reducing agent to give copper powder. The reaction temperature is set at room temperature to 80 deg.C. The prepared cuprous oxide and copper powder have 0.5-10mum particle diameter and <=10% its variability and is useful as a raw material for conductive paste of copper.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス等の絶縁
性基板上に銅厚膜の電極および配線パターンを形成する
ための銅導体ペースト用の酸化第一銅粉末および銅粉末
の製造方法に関し、さらに詳しくは、粒径が制御された
酸化第一銅粉末および銅粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cuprous oxide powder for a copper conductor paste for forming a copper thick film electrode and a wiring pattern on an insulating substrate such as ceramics, and a method for producing the copper powder. More specifically, it relates to a cuprous oxide powder having a controlled particle size and a method for producing a copper powder.

【0002】[0002]

【従来の技術】ガラス、セラミックス等の絶縁性基板上
にスクリーン印刷法もしくは直接描画法などで導体ペー
ストを所定パターンに塗布し焼成することで電極および
配線を形成する技術は、厚膜技術としてすでに実用化さ
れている。この厚膜技術において従来の銀系導体ペース
トに代わり、低抵抗率であって、耐マイグレーションに
優れるため微細回路が形成可能な銅導体ペーストが用い
られる傾向にあることは周知である。この銅導体ペース
トは、一般に、銅粉末、酸化銅粉末、ガラス粉末等の固
形物粉末を、樹脂を溶剤および可塑剤等に溶解したビヒ
クル中に分散させて成るものである。
2. Description of the Related Art A technique for forming electrodes and wirings by applying a conductor paste in a predetermined pattern by a screen printing method or a direct drawing method on an insulating substrate such as glass or ceramics and firing it is already known as a thick film technique. It has been put to practical use. It is well known that in this thick film technology, a copper conductor paste having a low resistivity and excellent in migration resistance and capable of forming a fine circuit tends to be used in place of the conventional silver-based conductor paste. This copper conductor paste is generally obtained by dispersing solid powder such as copper powder, copper oxide powder, and glass powder in a vehicle in which a resin is dissolved in a solvent and a plasticizer.

【0003】銅導体ペーストに用いられる銅粉末および
酸化第一銅粉末の粒径は、いずれも約0.5 μm から10μ
m である。粒径が約0.5 μm 未満の粉末は嵩密度が低い
のでペースト化に多量のビヒクルを必要とするので好ま
しくなく、他方、粒径が約10μm 超の粉末を用いた場合
は通常の焼成条件では充分に焼結した厚膜の形成が困難
となるうえ、印刷性の点でも微細配線の印刷に難がある
ので好ましくない。銅導体ペーストに用いられる各粉末
の粒径は、上述の範囲内で焼成温度により適宜決定され
る。通常、焼成温度が低いほど粒径の小さい粉末が用い
られる。
The particle sizes of the copper powder and the cuprous oxide powder used in the copper conductor paste are both about 0.5 μm to 10 μm.
m. A powder with a particle size of less than about 0.5 μm is not preferable because it has a large bulk density and requires a large amount of vehicle for forming a paste.On the other hand, if a powder with a particle size of more than about 10 μm is used, normal firing conditions are sufficient. It is not preferable because it is difficult to form a thick film that is sintered, and it is difficult to print fine wiring in terms of printability. The particle size of each powder used in the copper conductor paste is appropriately determined by the firing temperature within the above range. Usually, a powder having a smaller particle size is used as the firing temperature is lower.

【0004】銅導体ペースト用の銅粉末の製造は、銅塩
水溶液に各種還元剤を添加して銅粉末を製造する方法も
しくは酸化銅粉末を水性媒体中で還元して銅粉末を製造
する方法等の湿式還元法で行われている。また、銅導体
ペースト用の酸化第一銅粉末の一般的な製造方法として
は、同じく銅塩水溶液にロッシェル塩、水酸化アルカリ
および還元糖を加える方法が挙げられる。しかし、この
従来法で製造された酸化第一銅粉末および銅粉末は粒径
分布が拡がり、目標粒径以外の粉末が混合するため、粒
径を精度よく制御できないので実用化はなされていな
い。
The production of copper powder for copper conductor paste is carried out by adding various reducing agents to an aqueous solution of copper salt to produce copper powder or by reducing copper oxide powder in an aqueous medium to produce copper powder. The wet reduction method is used. Further, as a general method for producing cuprous oxide powder for copper conductor paste, a method of adding Rochelle salt, alkali hydroxide and reducing sugar to an aqueous solution of copper salt can also be mentioned. However, the cuprous oxide powder and the copper powder produced by this conventional method have a wide particle size distribution, and powders other than the target particle size are mixed, so that the particle size cannot be accurately controlled, so that they have not been put into practical use.

【0005】[0005]

【発明が解決しようとする課題】銅厚膜の導体特性は銅
導体ペーストの原料である銅粉末および酸化第一銅粉末
の粒径に大きく左右される。このため、銅厚膜の導体特
性の信頼性を高めるには粒径が精度よく制御された銅粉
末および酸化第一銅粉末を使用する必要がある。前述し
たように銅導体ペーストに用いる銅粉末は粒径が約0.5
μm から10μm であって、ばらつきが±10%以下に制御
されたものを使用する必要があり、そのためにそのよう
な範囲で任意の粒径に高度に制御された粉末を製造しな
ければならない。
The conductor characteristics of a thick copper film are greatly affected by the particle sizes of the copper powder and cuprous oxide powder, which are the raw materials for the copper conductor paste. Therefore, in order to increase the reliability of the conductor characteristics of the thick copper film, it is necessary to use a copper powder and a cuprous oxide powder whose particle sizes are accurately controlled. As mentioned above, the copper powder used in the copper conductor paste has a particle size of about 0.5.
It is necessary to use a powder having a particle size of 10 μm to 10 μm and a variation controlled to be ± 10% or less. Therefore, a highly controlled powder having an arbitrary particle size in such a range must be manufactured.

【0006】従来の製造方法における粒径制御方法は
(1)銅塩の種類を変える、(2) 水溶液中の銅イオン濃度
の制御、(3) 反応温度の制御、(4) 各種保護コロイドの
添加、(5) 各種シランカップリング剤の添加等がある。
しかし、上記粒径制御方法はそれぞれ (1)危険もしくは
高価な銅塩、あるいは不純物混入のおそれがある銅塩を
使用しなければならない、(2) 粒径によっては銅粉末の
収率が一定しない、(3)高温の場合多量の熱量を要しか
つ制御が困難であるため銅粉末の粒径がばらつきやす
い、(4) 保護コロイドは付着力が強く銅粉末中の炭素量
が高い、(5) 酸化銅粉末にあらかじめシランカップリン
グ剤で表面処理する必要がある等の欠点がある。
The particle size control method in the conventional manufacturing method is
(1) Change the type of copper salt, (2) control of copper ion concentration in aqueous solution, (3) control of reaction temperature, (4) addition of various protective colloids, (5) addition of various silane coupling agents, etc. There is.
However, each of the above particle size control methods must use (1) a dangerous or expensive copper salt, or a copper salt that may contain impurities, (2) The yield of copper powder is not constant depending on the particle size. (3) At high temperature, a large amount of heat is required and it is difficult to control, so the particle size of the copper powder tends to vary, (4) Protective colloid has strong adhesiveness, and the amount of carbon in the copper powder is high. ) There is a drawback that the copper oxide powder needs to be surface-treated with a silane coupling agent in advance.

【0007】また、酸化銅粉末を水性媒体中で還元させ
て銅粉末を製造する方法では出発原料である酸化第一銅
粉末の粒径により銅粉末の粒径が決まるので任意の粒径
の制御ができない。特に、最近のように微細配線化のた
め、厚膜導体は一様に焼結収縮されることが要求されて
いることから、導体特性の一層の改善が求められている
状況下では酸化銅粉末および銅粉末の粒度分布を±10%
以内というように精度よく制御することが求められてい
る。
In the method of producing copper powder by reducing copper oxide powder in an aqueous medium, the particle size of the cuprous oxide powder, which is the starting material, determines the particle size of the copper powder, so that any particle size can be controlled. I can't. In particular, because of the recent demand for fine wiring, thick film conductors are required to be uniformly sintered and shrunk. And copper powder particle size distribution ± 10%
It is required to control with high accuracy such as within.

【0008】かくして、本発明の目的は、高度の粒径制
御が可能な酸化第一銅粉末および銅粉末の製造方法を提
供することである。さらに、本発明の別の目的は、得ら
れる酸化第一銅粉末および銅粉末の粒径を0.5 〜10μm
の範囲内であって、しかもそのばらつきを10%以内に抑
えることで、導体特性の改善を図った銅導体ペーストを
提供することである。
[0008] Thus, an object of the present invention is to provide a cuprous oxide powder and a method for producing a copper powder, which enables a high degree of particle size control. Further, another object of the present invention is to control the particle size of the obtained cuprous oxide powder and copper powder to 0.5 to 10 μm.
It is to provide a copper conductor paste in which the conductor characteristics are improved by controlling the variation within 10% and within 10%.

【0009】[0009]

【課題を解決するための手段】本発明者は、かかる目的
を達成すべく、鋭意研究した結果、銅塩水溶液、水酸化
アルカリおよび還元糖にて酸化第一銅粉末を製造する場
合、銅塩水溶液に添加するロッシェル塩( 酒石酸ナトリ
ウムカリウム) の量を変化させることで酸化第一銅粉末
の粒径を制御でき、かつこのように粒径制御された酸化
第一銅粉末を還元することで粒径が制御された銅粉末が
製造できることを見い出し、本発明を完成した。
Means for Solving the Problems As a result of earnest studies to achieve such an object, the present inventor has found that when a cuprous oxide powder is produced with an aqueous solution of a copper salt, an alkali hydroxide and a reducing sugar, the copper salt is By changing the amount of Rochelle salt (sodium potassium tartrate) added to the aqueous solution, the particle size of the cuprous oxide powder can be controlled, and by reducing the particle size-controlled cuprous oxide powder, the particle size can be controlled. The present invention has been completed by finding that copper powder having a controlled diameter can be produced.

【0010】ここに、本発明は、30重量%以下の銅塩水
溶液に、ロッシェル塩、酒石酸ナトリウム、および酒石
酸カリウムの1種の錯化剤、水酸化アルカリおよび還元
糖を加えることを特徴とする酸化第一銅粉末の製造方法
である。さらに、本発明は、このようにして得られた酸
化第一銅粉末を含有する水溶液に還元剤を加えることを
特徴とする銅粉末の製造方法である。
The present invention is characterized by adding one complexing agent of Rochelle salt, sodium tartrate, and potassium tartrate, an alkali hydroxide and a reducing sugar to an aqueous solution of a copper salt of 30% by weight or less. It is a method for producing cuprous oxide powder. Furthermore, the present invention is a method for producing a copper powder, which comprises adding a reducing agent to the aqueous solution containing the cuprous oxide powder thus obtained.

【0011】[0011]

【作用】次に、本発明における粒径制御の作用について
説明する。すなわち、本発明によれば、ロッシェル塩、
酒石酸ナトリウム、および酒石酸カリウムから選んだ少
なくとも1種の錯化剤( 以下、ロッシェル塩で代表す
る)の添加量が多いと酸化第一銅粉末の粒径が小さくな
り、かつ、粒径の小さい酸化第一銅粉末を還元すると生
成銅粉末の粒径も小さくなる。
Next, the function of particle size control in the present invention will be described. That is, according to the present invention, Rochelle salt,
If the amount of at least one complexing agent selected from sodium tartrate and potassium tartrate (hereinafter represented by Rochelle salt) is large, the particle size of the cuprous oxide powder will be small and the oxidation of small particle size will be performed. When the cuprous powder is reduced, the particle size of the produced copper powder also becomes smaller.

【0012】これらの現象に対する明確な理由付けは未
だ行われていないが、現象的には、ロッシェル塩の添加
量を増やすと酸化第一銅粒子の核生成数が増し、また、
粒径の小さい酸化第一銅粉末を用いて還元処理を行うと
銅粉末の核生成数が増すことになり、それぞれ小粒径の
粉末が得られる。また、得られる粉末のバラツキの少な
いのは酸化第一銅粉末の場合は、酒石酸イオンのCu2+
オンに対する錯体化作用のためで、また銅粉末の場合は
粒径が制御された酸化第一銅粉末を還元したためと考え
られる。
[0012] Although no clear reason has been given to these phenomena, the number of nucleation of cuprous oxide particles increases when the amount of Rochelle salt added is increased.
When the reduction treatment is performed using cuprous oxide powder having a small particle diameter, the number of nucleation of the copper powder increases, and powder having a small particle diameter is obtained. In the case of cuprous oxide powder, the variation in the obtained powder is small because of the complexing action of the tartrate ion with Cu 2+ ion, and in the case of copper powder, the particle size is controlled. It is considered that the copper powder was reduced.

【0013】本発明にかかる方法で使用可能な銅塩とし
ては水溶性であることが必要であり、硫酸銅、炭酸銅、
硝酸銅、塩化銅、シアン化銅および酢酸銅等があるが、
価格、廃液操作等から判断して硫酸銅が好ましい。硫酸
銅水溶液などの銅塩水溶液の濃度は30wt% (以下%はwt
%を表わす)以下とするが、この濃度が30%超では生成
粉末の粒径がばらつくので好ましくない。この理由は、
30%超では溶液の粘度が高すぎて均一に反応が起こらな
いためである。下限は特に制限しないが、通常は10%以
上で操業上許容できる量の粉末を得ることができる。
The copper salt that can be used in the method of the present invention must be water-soluble, and copper sulfate, copper carbonate,
There are copper nitrate, copper chloride, copper cyanide, copper acetate, etc.,
Judging from the price, waste liquid operation, etc., copper sulfate is preferable. The concentration of copper salt aqueous solution such as copper sulfate aqueous solution is 30 wt% (hereinafter,% is wt%
%), But if the concentration exceeds 30%, the particle size of the produced powder varies, which is not preferable. The reason for this is
This is because if it exceeds 30%, the viscosity of the solution is too high and the reaction does not occur uniformly. The lower limit is not particularly limited, but usually 10% or more can obtain an operationally acceptable amount of powder.

【0014】本発明で用いるロッシェル塩は、銅イオン
に対する錯化剤の作用を有する。ロッシェル塩の添加量
は硫酸銅水溶液1リットルに対して0.1 gから15gが好
ましい。場合によって、0.1 g未満では錯体の形成が不
十分であり、15g超では過剰の酒石酸イオンのため生成
粉末の粒径がばらつくことがあるからである。なお、ロ
ッシェル塩の他に酒石酸ナトリウムおよび酒石酸カリウ
ムも同様の効果がある。
The Rochelle salt used in the present invention acts as a complexing agent for copper ions. The amount of Rochelle salt added is preferably 0.1 g to 15 g per liter of the copper sulfate aqueous solution. In some cases, if the amount is less than 0.1 g, the formation of the complex is insufficient, and if it exceeds 15 g, the particle size of the produced powder may vary due to the excess tartrate ion. In addition to Rochelle salt, sodium tartrate and potassium tartrate also have similar effects.

【0015】本発明に使用可能な水酸化アルカリとして
は、例えば水酸化ナトリウムもしくは水酸化カリウムが
挙げられる。水酸化アルカリは反応溶液のpHが11から13
になるまで添加する。pHが11未満では還元糖による酸化
第一銅粉末の生成が不十分である。pHが13超では多量の
水酸化アルカリを要するため経済的でない。攪拌操作の
点より水酸化アルカリは水溶液にして添加することが望
ましい。
Examples of the alkali hydroxide usable in the present invention include sodium hydroxide and potassium hydroxide. Alkali hydroxide has a reaction solution pH of 11 to 13
Add until. If the pH is less than 11, the production of cuprous oxide powder by reducing sugar is insufficient. If the pH exceeds 13, a large amount of alkali hydroxide is required, which is not economical. From the standpoint of stirring operation, it is desirable to add the alkali hydroxide in the form of an aqueous solution.

【0016】本発明に用いる還元糖としては工業的に入
手しやすいぶどう糖が使用可能である。ぶどう糖還元に
よる酸化第一銅粉末の生成には、銅イオン1モルに対し
ぶどう糖0.5 モル以上を添加するのが好ましい。ぶどう
糖の添加量が銅イオン1モルに対し0.5 モル未満では還
元反応が不十分となる場合がある。本発明において酸化
第一銅粉末を還元して金属銅粉末とする還元剤として
は、ヒドラジンおよびヒドラジン化合物、次亜リン酸ア
ルカリ、水素化ほう素アルカリ、ホルマリン等が使用可
能であるが、還元力、作業性、価格の点よりヒドラジン
およびヒドラジン化合物が好ましい。
As the reducing sugar used in the present invention, glucose which is industrially easily available can be used. For the production of cuprous oxide powder by reducing glucose, it is preferable to add 0.5 mol or more of glucose to 1 mol of copper ion. If the amount of glucose added is less than 0.5 mol per mol of copper ion, the reduction reaction may be insufficient. In the present invention, as a reducing agent for reducing cuprous oxide powder to metallic copper powder, hydrazine and hydrazine compounds, alkali hypophosphite, alkali borohydride, formalin and the like can be used, but reducing power Hydrazine and hydrazine compounds are preferable from the viewpoints of workability and cost.

【0017】ヒドラジンの最適添加量は、反応温度およ
び反応時間によって異なるが、酸化第一銅1モルに対し
ヒドラジン0.1 モル以上である。本発明の粉末製造にお
ける反応温度は室温から80℃の範囲で設定が可能である
が制御性の点から室温から60℃の範囲で設定することが
好ましい。ここに、本発明にかかる方法における代表的
操作例は次の通りである。まず、銅塩の水溶液を用意
し、これに錯化剤を加え、さらに水酸化アルカリを加え
ることで水酸化銅を沈殿させる。次に、還元糖を加える
ことで酸化第一銅の粉末を生成させる。
The optimum addition amount of hydrazine varies depending on the reaction temperature and the reaction time, but is 0.1 mol or more of hydrazine to 1 mol of cuprous oxide. The reaction temperature in the powder production of the present invention can be set in the range of room temperature to 80 ° C, but it is preferably set in the range of room temperature to 60 ° C from the viewpoint of controllability. Here, a typical operation example in the method according to the present invention is as follows. First, an aqueous solution of a copper salt is prepared, a complexing agent is added thereto, and an alkali hydroxide is further added to precipitate copper hydroxide. Next, reducing sugar is added to produce cuprous oxide powder.

【0018】酸化第一銅粉末はそのまま回収して、金属
酸化物粉末として銅導体ペーストに配合してもよい。こ
のように回収された酸化第一銅粉末を別途水溶液に分散
させ、得られた水溶液には、さらに、還元剤を添加する
ことで、酸化銅を金属銅にまで還元し、銅粉末を生成し
てもよい。最終的に生成した銅粉末はベンゾトリアゾー
ル等により防錆処理を行ってもよい。
The cuprous oxide powder may be recovered as it is and mixed into the copper conductor paste as a metal oxide powder. The cuprous oxide powder thus collected is separately dispersed in an aqueous solution, and the resulting aqueous solution is further added with a reducing agent to reduce the copper oxide to metallic copper to produce copper powder. May be. The finally produced copper powder may be rust-proofed with benzotriazole or the like.

【0019】[0019]

【実施例】以下実施例により本発明を説明する。なお、
この実施例は単に例示のためのもので、これによって本
発明を不当に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples. In addition,
This example is merely illustrative and does not unduly limit the invention.

【0020】実施例1 1重量%硫酸銅水溶液1リットルにロッシェル塩を0.1
gから20gの範囲で添加して55℃に調整し、24%−NaOH
水溶液を600ml を加えた。次に、この溶液にぶどう糖17
0 gを添加し40分保持して酸化第一銅粉末を得た。得ら
れた酸化第一銅粉末の粒子形状は立方状であり、辺の長
さを粒径としてロッシェル塩の添加量と酸化第一銅粉末
の粒径との関係を表1に示す。表1に示す結果からも明
らかなように、ロッシェル塩の添加量増大とともに酸化
第一銅粉末の粒径は小さくなっており、酸化第一銅粉末
の粒径はロッシェル塩の添加量により制御可能であるこ
とが判明した。特に、ロッシェル塩の添加量が0.5 gか
ら15gの範囲で粒度のばらつきが少ない酸化第一銅粉末
が得られた。
Example 1 To 1 liter of a 1% by weight copper sulfate aqueous solution was added 0.1% of Rochelle salt.
Add to the range of 20g to adjust to 55 ℃, 24% -NaOH
600 ml of the aqueous solution was added. Next, add 17 dextrose to this solution.
0 g was added and held for 40 minutes to obtain cuprous oxide powder. The particle shape of the obtained cuprous oxide powder is cubic, and the relationship between the addition amount of Rochelle salt and the particle diameter of the cuprous oxide powder is shown in Table 1 with the side length as the particle diameter. As is clear from the results shown in Table 1, the particle size of the cuprous oxide powder decreases as the amount of Rochelle salt added increases, and the particle size of the cuprous oxide powder can be controlled by the amount of Rochelle salt added. It turned out to be In particular, cuprous oxide powder with little variation in particle size was obtained when the amount of Rochelle salt added was in the range of 0.5 g to 15 g.

【0021】次に、この酸化第一銅粉末を濾別した後、
室温の水0.1 リットル中に分散し、還元剤として含水ヒ
ドラジン80%水溶液を400ml 注入して銅粉末を生成さ
せ、濾過・乾燥後、球状の単分散銅粉末を得た。得られ
た銅粉末の粒径を同じく表1に示すが、これより銅粉末
の粒径は酸化第一銅粉末の粒径が小さくなるほど小さく
なっており、これは、銅粉末の粒径はロッシェル塩の添
加量により制御可能であることを示す。
Next, after filtering the cuprous oxide powder,
It was dispersed in 0.1 liter of water at room temperature, 400 ml of 80% aqueous hydrazine solution as a reducing agent was injected to produce a copper powder, which was filtered and dried to obtain a spherical monodispersed copper powder. The particle diameter of the obtained copper powder is also shown in Table 1. From this, the smaller the particle diameter of the cuprous oxide powder is, the smaller the particle diameter of the copper powder is. It shows that the amount of salt can be controlled.

【0022】実施例2 硫酸銅水溶液の濃度が10重量%に変えた以外は実施例1
と同様にして酸化第一銅粉末および銅粉末を得た。それ
ぞれの粉末の粒径を表1に示すが、実施例1と同様な結
果となり、酸化第一銅粉末および銅粉末の粒径はロッシ
ェル塩の添加量により制御可能である。
Example 2 Example 1 except that the concentration of the copper sulfate aqueous solution was changed to 10% by weight.
In the same manner as above, cuprous oxide powder and copper powder were obtained. The particle diameters of the respective powders are shown in Table 1, and the same results as in Example 1 are obtained, and the particle diameters of the cuprous oxide powder and the copper powder can be controlled by the addition amount of Rochelle salt.

【0023】実施例3 硫酸銅水溶液の濃度を28重量%に変えた以外は実施例1
と同様にして酸化第一銅粉末および銅粉末を得た。それ
ぞれの粉末の粒径を表1に示すが、実施例1と同様な結
果となり、酸化第一銅粉末および銅粉末の粒径はロッシ
ェル塩の添加量により制御可能である。
Example 3 Example 1 except that the concentration of the copper sulfate aqueous solution was changed to 28% by weight.
In the same manner as above, cuprous oxide powder and copper powder were obtained. The particle diameters of the respective powders are shown in Table 1, and the same results as in Example 1 are obtained, and the particle diameters of the cuprous oxide powder and the copper powder can be controlled by the addition amount of Rochelle salt.

【0024】実施例4 硫酸銅水溶液の濃度を30重量%に変えた以外は実施例1
と同様にして酸化第一銅粉末および銅粉末を得た。それ
ぞれの粉末の粒径を表1に示すが、実施例1と同様な結
果となり、酸化第一銅粉末および銅粉末の粒径はロッシ
ェル塩の添加量により制御可能である。また、図1に本
例における酸化第一銅粉末および銅粉末のそれぞれの粒
径の分布をグラフで示す。粒度分布がいずれの場合にも
ほぼ10%以内にあることが分かる。
Example 4 Example 1 except that the concentration of the copper sulfate aqueous solution was changed to 30% by weight.
In the same manner as above, cuprous oxide powder and copper powder were obtained. The particle diameters of the respective powders are shown in Table 1, and the same results as in Example 1 are obtained, and the particle diameters of the cuprous oxide powder and the copper powder can be controlled by the addition amount of Rochelle salt. Further, FIG. 1 is a graph showing the particle size distributions of the cuprous oxide powder and the copper powder in this example. It can be seen that the particle size distribution is within 10% in any case.

【0025】比較例1 硫酸銅水溶液の濃度を32重量%に変えた以外は実施例1
と同様にして酸化第一銅粉末および銅粉末を得た。それ
ぞれの粉末の粒径を表1に示すが、酸化第一銅粉末およ
び銅粉末の粒径はかなりばらついている。図2は、本例
においてロッシェル塩5g を添加した場合に得られた酸
化第一銅粉末と銅粉末との粒度分布を示すグラフである
が、これからも分かるようにいずれの場合にもかなりば
らついていることが分かる。
Comparative Example 1 Example 1 except that the concentration of the copper sulfate aqueous solution was changed to 32% by weight.
In the same manner as above, cuprous oxide powder and copper powder were obtained. The particle diameters of the respective powders are shown in Table 1, and the particle diameters of the cuprous oxide powder and the copper powder vary considerably. FIG. 2 is a graph showing the particle size distribution of the cuprous oxide powder and the copper powder obtained when 5 g of Rochelle salt was added in this example. I understand that

【0026】比較例2 硫酸銅水溶液の濃度を34重量%に変えた以外は実施例1
と同様にして酸化第一銅粉末および銅粉末を得た。それ
ぞれの粉末の粒径を表1に示すが、酸化第一銅粉末およ
び銅粉末の粒径はかなりばらついている。
Comparative Example 2 Example 1 except that the concentration of the copper sulfate aqueous solution was changed to 34% by weight.
In the same manner as above, cuprous oxide powder and copper powder were obtained. The particle diameters of the respective powders are shown in Table 1, and the particle diameters of the cuprous oxide powder and the copper powder vary considerably.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上、説明したように、本発明によれ
ば、従来よりも極めて容易な操作で酸化第一銅粉末およ
び銅粉末の粒径制御が可能となるため、収量が高く、粒
径の揃った酸化第一銅粉末および銅粉末の製造を行うこ
とができる。
As described above, according to the present invention, the particle size of the cuprous oxide powder and the copper powder can be controlled by an operation which is extremely easy as compared with the conventional method. It is possible to produce a cuprous oxide powder and a copper powder having a uniform composition.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例4においてロッシェル塩の添加量が5g
の時に生成したCu粉末および酸化第一銅粉末の粒度分布
を示すグラフである。
FIG. 1 shows that the amount of Rochelle salt added in Example 4 was 5 g.
3 is a graph showing a particle size distribution of Cu powder and cuprous oxide powder generated at the time of.

【図2】比較例1においてロッシェル塩の添加量が5g
の時に生成したCu粉末および酸化第一銅粉末の粒度分布
を示すグラフである。
FIG. 2 shows that the amount of Rochelle salt added in Comparative Example 1 was 5 g.
3 is a graph showing a particle size distribution of Cu powder and cuprous oxide powder generated at the time of.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】30重量%以下の銅塩水溶液に、銅塩水溶液
1リットル当り0.1g〜15g のロッシェル塩、酒石酸ナト
リウムおよび酒石酸カリウムから選んだ1種の錯化剤、
水酸化アルカリおよび還元糖を加えることを特徴とする
酸化第一銅粉末の製造方法。
1. A complexing agent selected from 0.1 g to 15 g of Rochelle salt, sodium tartrate and potassium tartrate per liter of an aqueous copper salt solution in a copper salt aqueous solution of 30% by weight or less,
A method for producing cuprous oxide powder, which comprises adding an alkali hydroxide and a reducing sugar.
【請求項2】 請求項1記載の方法で得られた酸化第一
銅粉末を含有する水溶液に還元剤を加えることを特徴と
する銅粉末の製造方法。
2. A method for producing a copper powder, which comprises adding a reducing agent to an aqueous solution containing the cuprous oxide powder obtained by the method according to claim 1.
JP2394792A 1992-02-10 1992-02-10 Production of cuprous oxide powder and copper powder Withdrawn JPH05221637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2394792A JPH05221637A (en) 1992-02-10 1992-02-10 Production of cuprous oxide powder and copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2394792A JPH05221637A (en) 1992-02-10 1992-02-10 Production of cuprous oxide powder and copper powder

Publications (1)

Publication Number Publication Date
JPH05221637A true JPH05221637A (en) 1993-08-31

Family

ID=12124744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2394792A Withdrawn JPH05221637A (en) 1992-02-10 1992-02-10 Production of cuprous oxide powder and copper powder

Country Status (1)

Country Link
JP (1) JPH05221637A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331239B1 (en) * 1997-04-07 2001-12-18 Okuno Chemical Industries Co., Ltd. Method of electroplating non-conductive plastic molded products
US6391087B1 (en) * 1997-06-04 2002-05-21 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
CN1299864C (en) * 2005-04-26 2007-02-14 黄德欢 Preparation method of nano-bronze powder
CN1305772C (en) * 2005-04-26 2007-03-21 黄德欢 Process for preparing nano cuprous oxide powder
JP2008050661A (en) * 2006-08-25 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
WO2009014392A3 (en) * 2007-07-26 2009-03-12 Lg Chemical Ltd Preparation method of copper particle composition
WO2013047332A1 (en) * 2011-09-30 2013-04-04 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method of producing same
US9951433B2 (en) 2014-01-27 2018-04-24 Okuno Chemical Industries Co., Ltd. Conductive film-forming bath
US10036097B2 (en) 2012-12-21 2018-07-31 Okuno Chemical Industries Co., Ltd. Conductive coating film forming bath
CN114908413A (en) * 2022-04-21 2022-08-16 微冻眠(厦门)科技有限公司 Preparation method and application of nano cuprous oxide cubic single crystal and refrigerating fluid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331239B1 (en) * 1997-04-07 2001-12-18 Okuno Chemical Industries Co., Ltd. Method of electroplating non-conductive plastic molded products
US6391087B1 (en) * 1997-06-04 2002-05-21 Mitsui Mining And Smelting Co., Ltd. Copper fine powder and method for preparing the same
CN1299864C (en) * 2005-04-26 2007-02-14 黄德欢 Preparation method of nano-bronze powder
CN1305772C (en) * 2005-04-26 2007-03-21 黄德欢 Process for preparing nano cuprous oxide powder
JP2008050661A (en) * 2006-08-25 2008-03-06 Shoei Chem Ind Co Method for producing copper powder
KR100936623B1 (en) * 2007-07-26 2010-01-13 주식회사 엘지화학 Preparation method of copper particles composition
WO2009014392A3 (en) * 2007-07-26 2009-03-12 Lg Chemical Ltd Preparation method of copper particle composition
JP2010534280A (en) * 2007-07-26 2010-11-04 エルジー・ケム・リミテッド Method for producing copper particle composition
US8236089B2 (en) 2007-07-26 2012-08-07 Lg Chem, Ltd. Preparation method of copper particle composition
WO2013047332A1 (en) * 2011-09-30 2013-04-04 Dowaエレクトロニクス株式会社 Cuprous oxide powder and method of producing same
JP2014005188A (en) * 2011-09-30 2014-01-16 Dowa Electronics Materials Co Ltd Cuprous oxide powder and method of producing the same
US9211587B2 (en) 2011-09-30 2015-12-15 Dowa Electronics Materials Co., Ltd. Cuprous oxide powder and method for producing same
US10036097B2 (en) 2012-12-21 2018-07-31 Okuno Chemical Industries Co., Ltd. Conductive coating film forming bath
US9951433B2 (en) 2014-01-27 2018-04-24 Okuno Chemical Industries Co., Ltd. Conductive film-forming bath
CN114908413A (en) * 2022-04-21 2022-08-16 微冻眠(厦门)科技有限公司 Preparation method and application of nano cuprous oxide cubic single crystal and refrigerating fluid

Similar Documents

Publication Publication Date Title
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
US5945158A (en) Process for the production of silver coated particles
JP2911429B2 (en) Production method of copper fine powder
EP0363552B1 (en) Process for preparing metal particles
JP2638271B2 (en) Production method of copper fine powder
JPH1088206A (en) Silver powder and manufacture of silver powder
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JPH05221637A (en) Production of cuprous oxide powder and copper powder
CN102554264A (en) Preparation method of palladium-silver alloy powder for conductive paste
KR900004108B1 (en) Process for forming solid solutions
KR101236246B1 (en) Copper powder
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP4639395B2 (en) Method for producing silver particles
JPH0557324B2 (en)
JPH01139710A (en) Manufacture of fine granular alloy powder
US5514202A (en) Method for producing fine silver-palladium alloy powder
KR20060018496A (en) Composite metal powder manufaturing method of silver and copper
JPH04235205A (en) Production of copper powder
JP3344508B2 (en) Method for producing Ag-Pd powder
US4439468A (en) Platinum coated silver powder
JP4012961B2 (en) Production method of plate copper powder
JPH07145409A (en) Silver-palladium coprecipitation powder and its production
JP3444608B2 (en) Production method of copper fine powder
JP3399970B2 (en) Method for producing copper monodisperse particles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518