JP4352121B2 - Copper powder manufacturing method - Google Patents

Copper powder manufacturing method Download PDF

Info

Publication number
JP4352121B2
JP4352121B2 JP2003099515A JP2003099515A JP4352121B2 JP 4352121 B2 JP4352121 B2 JP 4352121B2 JP 2003099515 A JP2003099515 A JP 2003099515A JP 2003099515 A JP2003099515 A JP 2003099515A JP 4352121 B2 JP4352121 B2 JP 4352121B2
Authority
JP
Japan
Prior art keywords
copper
copper powder
particle size
powder
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099515A
Other languages
Japanese (ja)
Other versions
JP2004307881A (en
Inventor
美洋 岡田
晃嗣 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2003099515A priority Critical patent/JP4352121B2/en
Publication of JP2004307881A publication Critical patent/JP2004307881A/en
Application granted granted Critical
Publication of JP4352121B2 publication Critical patent/JP4352121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,導電性ペーストの導電フィラーに適した粒径が非常にそろった粒度分布幅の狭い銅粉およびその製造法に関する。
【0002】
【従来の技術】
各種基板の表面や内部あるいは外部に電気回路や電極を形成する手段として導電ペーストが多く使用されている。この導電ペーストに含まれる導電フィラー( 金属粉) としては銅粉や銀粉などがあり,粒径が0.1〜20μmの粉体が実用に供されている。そのさい,ペーストの焼結性や接着強度を制御する上で,またはそれらの変動をなくす上で,粒径のそろった金属粉は不可欠である。ペーストレオロジーの調整のさいにも,また緻密な導体厚膜や電子部品電極を得るためににも,2 〜3 種の粒径のそろった金属粉を組み合わせて混合することが有効とされており,このためには,異なる粒径ごとに粒径のそろった金属粉を必要とし,そのための製造技術も必要である。
【0003】
金属粉の製造方法にはアトマイズ法,電解法,湿式還元法等が良く知られている。銅粉の製造について見ると,アトマイズ法では,得られる銅粉の粒度分布幅が非常に広く,粒径のそろった銅粉を得るには,分級を何度も繰り返さなくてはならず,歩留まりが非常に悪い。電解法は,得られる銅粉の粒度分布幅が広いだけでなく,粒子形状が樹枝状であるため,緻密さを求められる厚膜やチップ電極には適さず,単品で使用することは非常に困難である。
【0004】
これに対して,湿式還元法は比較的粒径がそろい,粒子形状がほぼ球状の銅粉が得られるので,導電性ペーストに要求される銅粉に最も適しているといえる。湿式還元法による銅粉の製法については,例えば特許文献1および特許文献2に記載されているが,これらの方法によると,不純物の影響やわずかな製造プロセス変動等により,製造ロットごとの粒径のバラツキが大きかったり,粒度分布幅が広かったり,粒径が十分にはそろっていなかったりといった問題があった。
【0005】
このような問題に対して,同一出願人に係る特許文献3は,湿式還元の途中で酸化工程を導入すると,比較的粒径の揃った銅粉が得られると教示している。
【0006】
【特許文献1】
特公平7-93051 号公報
【特許文献2】
特開2001-240904 公報
【特許文献3】
特開2000-144217 号公報
【0007】
【発明が解決しようとする課題】
特許文献3の方法でも比較的粒径の揃った銅粉を得ることができるが,その粒径の揃う程度は必ずしも十分ではない。また粒径が4μmを超えるような場合にも粒径の揃ったものが得られるか否かは判然としない。したがって,1μm以下の微粒子から10μm以上の粗粒子までといった広い粒径範囲を,目標とするそれぞれの粒径ごとに十分に粒径の揃った銅粉を一貫して制御できる操作性のよい技術は確立されているとは言えなかった。さらに粒径が揃った目標粒径のものを的中率よく再現できればさらに好ましい。
【0008】
したがって本発明の課題は,銅粉の製造ロットごとの粒径変動を抑え,粒度分布幅が狭く且つ狙った粒径の銅粉を得ることにある。
【0009】
【課題を解決するための手段】
本発明によれば、平均粒径(D50)が0.1μm以上の銅粉と、銅の化合物からなる固形成分と、液溶媒とからなる混合物に、還元剤を添加して前記の固形成分を金属銅に還元する銅粉の製造法を提供する。また、平均粒径(D50)が0.1μm以上の銅粉と、銅の化合物からなる固形成分と、銅イオンを含む液溶媒とからなる混合物に、還元剤を添加して前記の固形成分および銅イオンを金属銅に還元することもでき、いずれの場合にも粒度分布幅の狭い銅粉を製造することができる。銅の化合物としては銅の酸化物または水酸化物であることができ、液溶媒としては水であることができる。D50は粒度分布における50%径を表す。
【0010】
本発明法によれば,混合物中の銅粉以外の銅の総モル数をn0〔モル〕,用いる銅紛の平均粒径(D50) をx0〔μm〕,使用する銅粉の重量をw〔g〕,銅の原子量をAW〔g/モル〕としたとき,製造される銅紛の平均粒径を下記の数2で表されるx〔μm〕の±20%以内とすることができる。この場合,製造される銅粉は,その粒度分布における90%径(D90)と10%径(D10)の比率( D90/D10) が1.5以下であることができ,粒度分布における50%径(D50) は0.1〜20.0μmの範囲であることができる。
【0011】
【数2】

Figure 0004352121
【0012】
【発明の実施の形態】
湿式還元法による銅粉の製造において,得られる銅粉の粒径にバラツキが発生する要因としては,その製法に由来して,核発生プロセスの段階と粒子成長プロセスの段階に分けることができる。
【0013】
核発生の段階は,pH調整,温度調整(急冷等) ,還元剤添加,銅イオンの添加,不純物イオンの添加,反応性ガスの導入あるいは光照射等により,銅粒子の核となる金属銅の超微粒子を生成させる段階である。生成させる核数は,目的とする銅粉の粒径に影響する。大きい粒径の銅粉を得る場合は,核発生数を少なく,逆に小さめの粒径の銅粉を得る場合は核発生数を多くすればよい。しかし,実際には不可避的に混入する不純物の量や製造プロセスのわずかな変動によっても核発生数は影響を受けるので,製造される銅粒子径のバラツキが起こり,製造ロットごとの変動を誘発してしまう。
【0014】
次の粒子成長の段階は,発生させた銅粒子核を徐々に成長させる(銅イオンや酸化銅等を還元して核粒子表面に金属銅を析出させる)ことにより,目的粒径の銅粉に調整する段階である。この段階においても,還元力が強すぎる場合や,発生核の総表面積が小さい場合に粒子成長と同時に,新たな核(二次核) が発生して,粒度分布のブロード化や粒径の微粒化を引き起こしてしまう。
【0015】
このような核発生プロセスの変動と粒成長の変動を抑えることが,粒径がそろった銅粉を製造ロットごとに変動なく得る上で肝要であるが,本発明によると,これが実現できる。
【0016】
すなわち本発明においては、(1)平均粒径が0.1μm以上の銅粉と、銅の化合物からなる固形成分と、液溶媒とからなる混合物、または(2)平均粒径が0.1μm以上の銅粉と、銅の化合物からなる固形成分と、銅イオンを含む液溶媒とからなる混合物に、還元剤を添加して、銅の化合物または銅イオンを還元するのであるが、これらの方法によると、金属銅粉が反応系に導入されることにより、核発生プロセスが無くなり、これによって、核発生段階での変動を皆無にすることができる。また、金属銅粉の粒径は、通常の核発生時の微小な金属核の粒径よりも大きいので、還元によって生成する金属銅が析出する総表面積が大きくなり、粒成長が促進され二次核発生も抑えられることから、粒成長の変動を抑制することができる。
【0017】
さらに、本発明においては、前記(1)〜(2)のいずれの混合物においても、混合物中に存在する銅粉以外の銅成分はそのほぼ全てを粒成長に充てることができるので、銅粉以外の銅成分の量(銅粉以外の銅の総モル数)、銅粉の粒径、銅粉の添加量を調整することにより、得られる金属粉の粒径を極めて精度良く制御することができるという特徴がある。すなわち、混合物中の銅粉以外の銅の総モル数をn0〔モル〕、銅粉の平均粒径(D50)をx0〔μm〕、銅粉の重量をw〔g〕、銅の原子量をAW〔g/モル〕としたとき、製造される銅粉の平均粒径x〔μm〕は下式で表わすことができる。
【0018】
【数3】
Figure 0004352121
【0019】
式中のαは補正係数である。これは,粒径の測定方法によっては,得られる粒径値が若干異なったり,粒子形状によっては形状係数が変化したりするので,各測定方法や粒子形状に適合するように係数での補正を加味したものである。この係数αは通常は0.8以上1.2以下の範囲に収まることができる。すなわち,製造される銅粉は,該式の平均粒径xの±20%の範囲内にほぼ収まる。
【0020】
本発明の実施にさいし、銅粉以外の銅成分(銅の酸化物や水酸化物等の銅化合物)を存在させることにより、製造用銅粉の銅源は、従来の湿式還元法のように金属イオンの溶解度に制限されることはない。このため、銅の供給源となる銅原子の総量を増やすことができる。すなわち、粒成長に寄与する銅原子数の制限が無くなるため、銅粉を所望の粒径に調整しやすくなり、生産性の向上に繋がる。
【0021】
銅化合物と銅粉との混合物を用いる場合にその銅化合物の銅の酸化数(一価か二価かといった価数)は小さい方がよい。酸化数が大きい場合,還元反応が数段階になり,複数の還元反応が同時進行する可能性があり,この場合には二次核発生等が危惧される。
【0022】
銅の化合物からなる固形成分は,共存する銅粉の金属銅粒子の表面で還元されて粒成長に寄与する場合もあれば,反応液中に一度溶出したうえで溶解析出型の反応で粒成長に寄与する場合もあると考えられる。銅の硫酸,硝酸,炭酸,リン酸等のオキソ酸塩,銅のハロゲン化物の塩類,銅の硫化物等のカルコゲナイド,銅のアミノ酸塩あるいはカルボン酸等の有機酸塩類でも,同様の効果が期待できる。本発明で使用できる銅の化合物からなる固形成分として代表的なものは,銅の酸化物または水酸化物である。
【0023】
反応のための液媒体は,水または有機系の液溶媒,あるいは水と有機系の液溶媒との混合液のいずれでも良い。水を用いる場合や,還元によりガスを発生するような還元剤を使用する場合には,消泡剤や表面張力の低い有機溶媒(例えば,エタノールやイソプロピルアルコール等のアルコール類や,アセトン等のケトン類,ヘキサン等の炭化水素類)を共存させることにより,還元で発生する水素等のガスによる液面上昇を抑えることができるので有益である。
【0024】
銅イオンと錯体を形成し得る物質(錯化剤)は,急激な反応を抑制し二次核の発生を抑えたり,イオンの溶解度を向上させたり,表面性の良い( 表面が滑らかな) 粒子を得るのに有効である。錯化剤としては,酒石酸,蓚酸,クエン酸,コハク酸,エチレンジアミン四酢酸等の有機酸や,アンモニアやエチレンジアミン等のアミン類,グリセロールやマンニトール等のアルコール類,アミノ酸類,シアン(青酸) およびそれらの塩が利用できる。また,錯化剤は故意に添加しなくても,原料となる固形成分の金属塩類(例えばカルボン酸塩) に含まれるものや,反応中の副生成物を錯化剤として機能させても良い。
【0025】
還元剤の添加により還元を進行させるさいには,急激な反応,すなわち二次核発生が抑制されるように,徐々に還元剤を添加するのが良い。具体的には,還元剤の全添加量を数分割し,これらを数分〜数時間おきに回分式に添加する方法や,添加速度を任意に定め,数分〜数時間かけて連続的に添加する方法等が望ましい。
【0026】
添加する銅粉の粒径は,あまりに小さすぎると,凝集が激しくなって粒度分布幅が広くなったり,二次核が発生したりする場合がある。また,粒子の成長速度は,混合する銅粉の粒径には実質的に依存せず,単位時間あたり数μmとほぼ一定に維持されるので,粒径が余り大きすぎると,初期粒径に対する粒子成長の比率が小さくなって生産効率が悪くなる。したがって,混合する銅粉の粒径(平均粒径)は0.1μm以上,好ましくは0.5μm以上,さらに好ましくは1.0μm以上で,20μm以下であるの望ましい。
【0027】
還元反応後に得られる銅粉は粒径が非常にそろったものとなる。例えば粒度分布における90%径(D90)と10%径(D10)の比率(D90/D10) が1.5以下の粒度分布幅の狭いものとなる。ここで,D90およびD10は,横軸に粒径D(μm)をとり,縦軸に粒径Dμm以下の粒子が存在する容積(Q%)をとった累積粒度曲線において,Q%が90%および10%であるときの,それらに対応するそれぞれの粒径D(μm)の値を言う。また例えばD50と言えば,該累積粒度曲線においてQ%が50%のときの粒径Dの値(μm)を言う。このような累積粒度曲線は粒度分布測定装置で描くことができる。D90/D10の比が1.5を超えるような場合は,粒径が十分には揃っていないため,異なった粒径の銅粉を組合せて導電ペースト用のフイラーとするさいに,意図する粒径分布のものを正確に得るのが困難になる。
【0028】
還元反応は,雰囲気制御および温調が可能で攪拌機能を備えた反応槽にて実施するのがよい。反応中の雰囲気としては,空気中の酸素による酸化等の副反応の進行を抑えるため,基本的には全体を通じて不活性ガス雰囲気下で行うのがよい。しかし,必要に応じてアンモニア等の反応性ガスや酸素等を導入することによって,液性を制御したり,銅や錯化剤の酸化・還元電位の調整行ったりしても良い。不活性ガスはコスト面から窒素が最適であるが,アルゴン等の希ガスを使用しても問題ない。
【0029】
金属銅(混合する銅粉)以外の銅化合物の固形成分および/または銅イオンを含む液溶媒(銅粉を添加する前の反応液)は,銅の塩類,銅の水酸化物,銅の酸化物等を純水あるいは純水と有機溶媒の混合液に溶解または懸濁することにより調整する。銅の塩類としては,安価な硫酸銅または塩化銅が望ましいが,銅の硝酸,炭酸,リン酸等のオキソ酸塩類,銅のハロゲン化物塩類,硫化銅等の銅カルコゲナイド類,銅のカルボン酸塩あるいは銅のアミノ酸塩等の有機酸塩類等を使用しても問題ない。また,銅の固形成分として銅の水酸化物および/または酸化物を利用する場合は,溶解した銅塩類を中和等により析出させたものを利用しても良いし,電解法等で製造した亜酸化銅粉末を利用しても良い。
【0030】
このようにして,銅化合物の固形成分および/または銅イオンを含む液溶媒を反応液として準備し,この反応液に対して,必要に応じて,錯化剤,pH調整剤,還元剤などを添加混合することによって,液性,固形成分の量や粒径,銅の酸化数等の調整を行うことができる。錯化剤,pH調整剤,還元剤などの添加に際しては,固体または液体のまま,あるいは純水等に溶解・希釈した後,添加しても構わない。また,銅塩としてカルボン酸塩等を使用した場合は,含有されるカルボン酸に錯化剤としての役割を担わせることもできる。
【0031】
次いで,銅粉を混合するが,混合する銅粉はある程度粒径が揃い,球状に近いものであれば,アトマイズ法や湿式還元法等で製造された銅粉のいずれでも使用でき,製造履歴には特に制限はない。前記のxを算出する式における補正係数αは反応系および測定装置が定まると,一義的に定めることが可能であり,再現性よく意図する粒径の且つ粒径分布幅の狭い銅粉を製造することができる。
【0032】
銅粉を混合したあとは,不活性ガス中で適度な時間リパルプした後,還元剤を徐々に添加して銅化合物の固形成分および/または銅イオンの還元反応を攪拌下で進行ささせる。なお,ここでの還元剤としては,銅化合物の固形成分および銅イオンを金属銅(すなわち酸化数ゼロ) まで還元可能なもの,例えば,含水ヒドラジン,水素化ホウ素化合物,ジメチルアミンボラン,亜鉛華,ホルマリン等を使用できる。
【0033】
反応の終了は,銅イオン,銅錯体あるいは銅化合物の固形成分の存在が,反応液中に検出できなくなる時点ととする。反応終了後は,ろ過により固液分離し,ろ別分を純水あるいは水溶性の有機溶媒で洗浄する。固液分離はろ過に限らず,遠心分離,スプレードライ等,その他の手段を用いても良い。固液分離して得られたケーキを不活性ガスまたは還元雰囲気下で50〜300℃の温度で数〜数十時間かけて乾燥することにより,粒径のそろった導電ペースト用銅粉を得ることができる。不活性ガスとしては,窒素もしくは希ガスを使用し,水素あるいは一酸化炭素等の還元性ガスを混合して使用しても良い。
【0034】
本発明法は、見方を変えれば、既存の銅粉の粒径を大きくしながら且つ粒径のそろった銅粉に改善する方法であるとも言える。すなわち、本発明は、(1)原料銅粉を、銅の化合物からなる固形成分を含む液媒体と混合し、この混合物に還元剤を添加して前記の固形成分を金属銅に還元することからなる粒度分布幅の狭い銅粉の製造法、および(2)原料銅粉を、銅の化合物からなる固形成分および銅イオンを含む液媒体と混合し、この混合物に還元剤を添加して前記の固形成分および銅イオンを金属銅に還元することからなる粒度分布幅の狭い銅粉の製造法を提供するものであるとも言える。
【0035】
【実施例】
〔実施例1〕
硫酸銅五水和物2.5kg(銅のモル数=10モル)を室温,窒素雰囲気下にて純水6.1kgに溶解した。この硫酸銅水溶液を10wt%の水酸化ナトリウム水溶液9.6kgに添加し,攪拌を開始することにより中和し,水酸化銅を生成させた。
【0036】
水酸化銅生成後,亜酸化銅までの還元が可能な還元剤として,42wt%のブドウ糖水溶液6.5Kgを添加した。そのさい,亜酸化銅の生成を促進させるために70℃まで昇温し,70℃で30分間反応させた。その後,液温70℃に保持したまま,空気を流速4L/minで150分間導入し,液性を安定化させた。空気を導入してから50分後,窒素雰囲気に戻して室温まで冷却した。それまでは攪拌を続けた。冷却後は攪拌を止めたうえ,亜酸化銅をデカンテーションにより沈降させた。亜酸化銅が十分に沈降したことを確認し,上澄み液を切ることにより,ウエットな状態の亜酸化銅(切れなかった上澄み液が残存する)2.5kgを得た。銅の収率が100%であるとすると,この亜酸化銅と残存上澄み液との混合物中に,銅10モルに相当する亜酸化銅が得られることになる。
【0037】
前記の亜酸化銅と残存上澄み液の混合物に,純水2.3kgとD50=4.23μmの銅粉530gを添加した(最終目標銅粉のねらう粒径は5.5μmである)。このミックスを窒素雰囲気中で60℃に昇温した後,還元剤として80%含水ヒドラジン31gを添加して反応を攪拌下で開始した。最初のヒドラジンを添加してから30分間間隔でヒドラジン31gを追加し続け,360分後の段階で亜酸化銅が確認できなくなり,反応が終了した。
【0038】
反応終了後は,室温まで冷却した後,吸引ろ過により固液分離し,純水8Lで洗浄した。洗浄後のケーキを雰囲気制御が可能な乾燥器に入れ,窒素雰囲気中120℃で11時間かけて乾燥し,目的とする銅粉を得た。
【0039】
得られた銅粉の電子顕微鏡写真を図1に示した。またこの銅粉の粒度分布を,湿式レーザー回折式の粒度分布測定装置(ベックマンコールター社製のLS230) にて測定した。その結果,D50=5.45μm,D90=6.41μm,D10=4.70μm(D90/D10=1.36)であった。その粒度分布を図3に示した。これらの結果に見られるように,得られた銅粉はねらい粒径どおりのものであり,粒度分布の非常にシャープな銅粉であった。
【0040】
〔実施例2〕
D50=4.23μmの銅粉530g に代えて,D50=2.83μmの銅粉100.2gを添加した(最終目標銅粉のねらい粒径は5.5μmである)以外は,実施例1を繰り返した。得られた銅粉は,D50=5.51μm,D90=6.60μm,D10=4.48μm(D90/D10=1.47)であり,図4に示すように粒度分布の非常にシャープな,ねらい粒径どおりのものであった。
【0041】
〔実施例3〕
D50=4.23μmの銅粉530g に代えて,D50=1.25μmの銅粉7.55gを添加した(最終目標銅粉のねらいは粒径5.5μmである)以外は,実施例1を繰り返した。ただし,実施例1と同様にヒドラジンを添加し続けたが,本例では390分後に反応が終了した。得られた銅粉は,D50=5.57μm,D90=6.44μm,D10=4.42μm(D90/D10=1.46)であり,図5に示すように粒度分布の非常にシャープな,ねらい粒径どおりのものであった。
【0042】
〔実施例4〕
D50=4.23μmの銅粉530g に代えて,D50=5.36μmの銅粉273gを添加した(最終目標銅粉のねらいは粒径8.0μmである)以外は,実施例1を繰り返した。
【0043】
得られた銅粉は,D50=7.78μm,D90=9.11μm,D10=6.14μm(D90/D10=1.48)であり,図6に示すように粒度分布の非常にシャープな,ねらい粒径より僅かに粒径が小さい銅粉であった。
【0044】
〔実施例5〕
D50=4.23μmの銅粉530g に代えて,D50=2.58μmの銅粉44.6gを添加した(最終目標銅粉のねらいは粒径6.4μmである)以外は,実施例1を繰り返した。
【0045】
得られた銅粉は,D50=6.13μm,D90=7.20μm,D10=5.25μm(D90/D10=1.37)であり,図7に示すように粒度分布の非常にシャープな,ねらい粒径より僅かに粒径が小さい銅粉であった。
【0046】
さらに,再現性を確認する目的で,硫酸銅五水和物の製造ロットを変えた以外は,本例を繰返したところ,D50=6.13μm,D90=7.20μm,D10=5.25μm (D90/D10=1.37)となり,同一銅粉の製造が,原料や製造ロートの変動をほとんど受けないで再現できることが確認できた。図7には,製造ロットを変えた場合のものを,銅粉2として,その粒度分布を示した。
【0047】
〔比較例1〕
実施例1と同様にして得た亜酸化銅と残存上澄み液の混合物に,純水2.3kgを添加した。この混合液を用いて粒径5.5μmをねらって以下の反応を攪拌下で行った。まず,この混合液を窒素雰囲気中で45℃に昇温した後,80%含水ヒドラジン11g を添加して反応を開始した。最初のヒドラジンを添加してから30分間間隔でヒドラジン11gを270分まで添加し続け,270分より昇温速度0.25℃/minで85℃まで昇温した。85℃に到達(410分)と同時に,ヒドラジンの添加を再開し,30分間間隔で18.6gずつ,530分からは,20分間隔で15.5gずつ添加した。ヒドラジン添加開始時から710分後に反応が終了した。反応終了後は実施例1と同様に洗浄・乾燥して銅粉を得た。
【0048】
得られた銅粉は,D50=6.19μm,D90=8.31μm,D10=4.28μm (D90/D10=1.94)であり,図8に示すように,粒度分布が比較的ブロードな銅粉であった。本例で得られた銅粉の電子顕微鏡写真を図2に示した。なお本比較例では,反応時間が実施例のおよそ2倍の時間を必要としている。
【0049】
再現性を確認する目的で,硫酸銅五水和物の製造ロットを変えた以外は,本比較例を繰返したところ,D50=7.18μm,D90=9.84μm,D10=4.42μm (D90/D10=2.23)となり,再現性があまりよくなく,製造ロットの変動が大きいことが確認された。
【0050】
【発明の効果】
以上説明したように,本発明によると意図する粒径をもち且つその粒径分布幅の狭い非常に粒径の揃った銅粉が再現性よく製造できる。導電ペースト用のフイラーとして銅粉を用いる場合に,導電ペーストとして所望の特性を付与するために,銅粉の粒度分布を調整することが必要となるが,この場合に異なる粒径のものを混ぜ合わせ意図する粒度分布とするのが便利であるが,そのさい粒径の異なる銅粉そのものがブロードな粒度分布をもつものでは,意図する粒度分布を得ることできない。本発明によれば,異なる粒径の銅粉ごとに,それらの粒径分布幅の狭い銅粉を簡単且つ再現性よく製造することができるので,これらを混ぜ合わせることによって,意図する粒度分布をもつ導電ペースト用銅粉とすることができる。
【図面の簡単な説明】
【図1】本発明に従う粒径のそろった銅粉の電子顕微鏡写真である。
【図2】比較例の銅粉の電子顕微鏡写真である。
【図3】実施例1で用いた原料銅粉と実施例1の反応で得られた銅粉の粒度分布を示す図である。
【図4】実施例2で用いた原料銅粉と実施例2の反応で得られた銅粉の粒度分布を示す図である。
【図5】実施例3で用いた原料銅粉と実施例3の反応で得られた銅粉の粒度分布を示す図である。
【図6】実施例4で用いた原料銅粉と実施例4の反応で得られた銅粉の粒度分布を示す図である。
【図7】実施例5で用いた原料銅粉と実施例5の反応で得られた銅粉の粒度分布を示す図である。
【図8】比較例1で得られた銅粉の粒度分布を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper powder having a very uniform particle size suitable for a conductive filler of a conductive paste and a narrow particle size distribution width and a method for producing the same.
[0002]
[Prior art]
A conductive paste is often used as a means for forming electric circuits and electrodes on the surface, inside or outside of various substrates. Examples of the conductive filler (metal powder) contained in the conductive paste include copper powder and silver powder, and powder having a particle size of 0.1 to 20 μm is practically used. At that time, a metal powder with a uniform particle size is indispensable for controlling the sintering property and adhesive strength of the paste, or for eliminating such fluctuations. In order to adjust the paste rheology and to obtain a dense conductor thick film and electronic component electrodes, it is effective to mix two or three kinds of metal powders with a uniform particle size. For this purpose, metal powder having a uniform particle size is required for each different particle size, and a manufacturing technique therefor is also required.
[0003]
Atomizing method, electrolysis method, wet reduction method and the like are well known as methods for producing metal powder. Looking at the production of copper powder, the atomization method has a very wide particle size distribution width of the obtained copper powder. To obtain copper powder with a uniform particle size, classification must be repeated many times, and the yield Is very bad. The electrolytic method is not only suitable for thick films and chip electrodes that require denseness because the resulting copper powder has a wide particle size distribution width and also has a dendritic shape. Have difficulty.
[0004]
On the other hand, the wet reduction method can be said to be most suitable for the copper powder required for the conductive paste because it can obtain copper powder having a relatively uniform particle size and a substantially spherical particle shape. For example, Patent Document 1 and Patent Document 2 describe the copper powder production method by the wet reduction method. However, according to these methods, the particle size of each production lot is affected by the influence of impurities and slight production process fluctuations. There are problems such as large variations in particle size, wide particle size distribution, and insufficient particle size.
[0005]
With respect to such a problem, Patent Document 3 related to the same applicant teaches that copper powder having a relatively uniform particle size can be obtained by introducing an oxidation step during wet reduction.
[0006]
[Patent Document 1]
Japanese Patent Publication No.7-93051 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-240904 [Patent Document 3]
Japanese Patent Laid-Open No. 2000-144217
[Problems to be solved by the invention]
Although the copper powder having a relatively uniform particle size can be obtained by the method of Patent Document 3, the degree of the uniform particle size is not always sufficient. In addition, it is not clear whether or not a product having a uniform particle size can be obtained even when the particle size exceeds 4 μm. Therefore, a technique with good operability that can consistently control a wide range of particle sizes, from fine particles of 1 μm or less to coarse particles of 10 μm or more, for each target particle size is sufficiently uniform. It couldn't be established. Further, it is more preferable if the target particle size having a uniform particle size can be reproduced with good accuracy.
[0008]
Accordingly, an object of the present invention is to obtain a copper powder having a narrow particle size distribution width and a targeted particle diameter while suppressing fluctuations in the particle diameter of each production lot of copper powder.
[0009]
[Means for Solving the Problems]
According to the present invention, a reducing agent is added to a mixture comprising a copper powder having an average particle size (D50) of 0.1 μm or more, a solid component composed of a copper compound, and a liquid solvent, and the solid component is added. Provided is a method for producing copper powder that is reduced to metallic copper . In addition, a reducing agent is added to a mixture composed of copper powder having an average particle size (D50) of 0.1 μm or more, a solid component composed of a copper compound, and a liquid solvent containing copper ions, and the solid component and Copper ions can also be reduced to metallic copper, and in either case, copper powder with a narrow particle size distribution width can be produced. The copper compound can be a copper oxide or hydroxide, and the liquid solvent can be water. D50 represents a 50% diameter in the particle size distribution.
[0010]
According to the method of the present invention, the total number of moles of copper other than the copper powder in the mixture is n 0 [mol], the average particle diameter (D50) of the copper powder used is x 0 [μm], and the weight of the copper powder used is When w [g] and the atomic weight of copper are AW [g / mol], the average particle size of the produced copper powder may be within ± 20% of x [μm] expressed by the following formula 2. it can. In this case, the produced copper powder can have a ratio (D90 / D10) of 90% diameter (D90) to 10% diameter (D10) in the particle size distribution of 1.5 or less, and 50% in the particle size distribution. The diameter (D50) can be in the range of 0.1 to 20.0 μm.
[0011]
[Expression 2]
Figure 0004352121
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the production of copper powder by the wet reduction method, the cause of the variation in the particle size of the obtained copper powder can be divided into the stage of the nucleation process and the stage of the particle growth process due to the production method.
[0013]
The nucleation stage consists of pH adjustment, temperature adjustment (quenching, etc.), addition of a reducing agent, addition of copper ions, addition of impurity ions, introduction of reactive gas or light irradiation, etc. This is the stage of generating ultrafine particles. The number of nuclei generated affects the target copper powder particle size. In order to obtain copper powder having a large particle size, the number of nuclei generated should be small. Conversely, in order to obtain copper powder having a small particle size, the number of nuclei generated should be increased. In practice, however, the number of nuclei is affected by the amount of impurities inevitably mixed and slight variations in the manufacturing process. This causes variations in the diameter of the copper particles produced, inducing fluctuations from production lot to production lot. End up.
[0014]
The next stage of particle growth is to gradually grow the generated copper particle nuclei (reducing copper ions, copper oxide, etc. to deposit metal copper on the surface of the core particles), thereby obtaining copper powder of the desired particle size. This is the stage to adjust. Even at this stage, when the reducing power is too strong, or when the total surface area of the generated nuclei is small, new nuclei (secondary nuclei) are generated at the same time as the particle growth, and the particle size distribution becomes broader and the particle size becomes finer. It will cause.
[0015]
Suppressing such fluctuations in the nucleation process and fluctuations in grain growth is essential for obtaining a copper powder having a uniform grain size for each production lot without fluctuation, but according to the present invention, this can be realized.
[0016]
That is, in the present invention, (1) a mixture of copper powder having an average particle size of 0.1 μm or more, a solid component made of a copper compound, and a liquid solvent , or (2) an average particle size of 0.1 μm or more. The copper compound or copper ion is reduced by adding a reducing agent to a mixture consisting of a copper powder, a solid component consisting of a copper compound, and a liquid solvent containing copper ions. In addition, the introduction of metallic copper powder into the reaction system eliminates the nucleation process, thereby eliminating any fluctuations in the nucleation stage. In addition, since the particle size of the metal copper powder is larger than the particle size of the minute metal nuclei at the time of normal nucleation, the total surface area on which the metal copper produced by the reduction is deposited increases the grain growth and promotes secondary growth. Since nucleation is also suppressed, fluctuations in grain growth can be suppressed.
[0017]
Furthermore, in the present invention, in any mixture of the above (1) to (2) , the copper component other than the copper powder present in the mixture can be used for almost all of the grain growth. By adjusting the amount of copper component (total number of moles of copper other than copper powder), the particle size of copper powder, and the amount of copper powder added, the particle size of the obtained metal powder can be controlled with extremely high accuracy. There is a feature. That is, the total number of moles of copper other than copper powder in a mixture n 0 [mol], the average particle size of the copper powder (D50) to x 0 [μm], the weight of the copper powder w [g], the atomic weight of copper Is AW [g / mol], the average particle diameter x [μm] of the produced copper powder can be expressed by the following formula.
[0018]
[Equation 3]
Figure 0004352121
[0019]
Α in the equation is a correction coefficient. Depending on the particle size measurement method, the obtained particle size value may be slightly different, or the shape factor may vary depending on the particle shape. Therefore, correction with the coefficient is required to suit each measurement method and particle shape. It has been added. This coefficient α can normally fall within the range of 0.8 or more and 1.2 or less. That is, the produced copper powder is almost within the range of ± 20% of the average particle diameter x of the formula.
[0020]
In the practice of the present invention, the presence of copper components other than copper powder (copper compounds such as copper oxides and hydroxides) makes the copper source of the copper powder for production as in the conventional wet reduction method. There is no limitation on the solubility of metal ions. For this reason, it is possible to increase the total amount of copper atoms serving as a copper supply source . That is, since there is no restriction on the number of copper atoms that contributes to grain growth, the copper powder can be easily adjusted to a desired particle diameter, which leads to an improvement in productivity .
[0021]
When a mixture of a copper compound and copper powder is used, the copper oxidation number of the copper compound (a valence such as monovalent or divalent) is preferably small. When the oxidation number is large, the reduction reaction has several stages, and multiple reduction reactions may proceed simultaneously. In this case, the generation of secondary nuclei is a concern.
[0022]
Solid components composed of copper compounds may be reduced on the surface of coexisting copper powder metal copper particles, contributing to grain growth, or may be eluted once in the reaction solution and then grown by dissolution-precipitation type reaction. It is thought that it may contribute to. Similar effects can be expected with copper oxoacids such as sulfuric acid, nitric acid, carbonic acid, and phosphoric acid, copper halide salts, chalcogenides such as copper sulfide, and organic acid salts such as copper amino acid salts and carboxylic acids. it can. A typical solid component comprising a copper compound that can be used in the present invention is a copper oxide or hydroxide.
[0023]
The liquid medium for the reaction may be water or an organic liquid solvent, or a mixed liquid of water and an organic liquid solvent. When using water or a reducing agent that generates gas by reduction, an antifoaming agent or an organic solvent having a low surface tension (for example, alcohols such as ethanol and isopropyl alcohol, ketones such as acetone, etc.) Coexisting with hydrocarbons such as hexane, etc.) is advantageous because the rise in liquid level due to gas such as hydrogen generated by reduction can be suppressed.
[0024]
Substances that can form complexes with copper ions (complexing agents) are particles with good surface properties (smooth surface) that suppress abrupt reactions and suppress secondary nucleation, improve ion solubility, and so on. It is effective to get. Complexing agents include organic acids such as tartaric acid, succinic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid, amines such as ammonia and ethylenediamine, alcohols such as glycerol and mannitol, amino acids, cyanogen (cyanic acid) and the like. The salt is available. In addition, the complexing agent may not be added intentionally, but the solid component metal salt (for example, carboxylate) used as a raw material or a by-product during the reaction may function as a complexing agent. .
[0025]
When the reduction is progressed by adding the reducing agent, it is preferable to gradually add the reducing agent so that rapid reaction, that is, generation of secondary nuclei is suppressed. Specifically, the total amount of reducing agent added is divided into several parts, and these are added batchwise every few minutes to several hours, and the addition rate is arbitrarily determined, and continuously over several minutes to several hours. The method of adding is desirable.
[0026]
If the particle size of the copper powder to be added is too small, the agglomeration becomes intense and the particle size distribution width may be widened, or secondary nuclei may be generated. In addition, the growth rate of the particles does not substantially depend on the particle size of the copper powder to be mixed, and is maintained at a constant value of several μm per unit time. The ratio of particle growth is reduced and production efficiency is deteriorated. Accordingly, the particle diameter (average particle diameter) of the copper powder to be mixed is 0.1 μm or more, preferably 0.5 μm or more, more preferably 1.0 μm or more and 20 μm or less.
[0027]
The copper powder obtained after the reduction reaction has a very uniform particle size. For example, the ratio of the 90% diameter (D90) and the 10% diameter (D10) (D90 / D10) in the particle size distribution is 1.5 or less and the particle size distribution width is narrow. Here, in D90 and D10, in the cumulative particle size curve in which the horizontal axis represents the particle size D (μm) and the vertical axis represents the volume (Q%) in which particles having a particle size of D μm or less exist, Q% is 90%. And the corresponding particle diameter D (μm) corresponding to 10%. For example, Speaking of D50 means the value (μm) of the particle size D when Q% is 50% in the cumulative particle size curve. Such a cumulative particle size curve can be drawn with a particle size distribution measuring device. When the ratio of D90 / D10 exceeds 1.5, the particle size is not sufficient, so when combining the copper powders with different particle sizes into a conductive paste filler, It becomes difficult to accurately obtain a diameter distribution.
[0028]
The reduction reaction is preferably carried out in a reaction tank that can control the atmosphere and adjust the temperature and has a stirring function. As the atmosphere during the reaction, in order to suppress the progress of side reactions such as oxidation by oxygen in the air, it is basically preferable to carry out under an inert gas atmosphere throughout. However, the liquidity may be controlled or the oxidation / reduction potentials of copper and complexing agent may be adjusted by introducing a reactive gas such as ammonia or oxygen as necessary. Nitrogen is the most suitable inert gas from the viewpoint of cost, but there is no problem even if a rare gas such as argon is used.
[0029]
Liquid compounds containing copper compounds other than metallic copper (copper powder to be mixed) and / or copper ions (reaction liquid before adding copper powder) are copper salts, copper hydroxide, copper oxidation The product is adjusted by dissolving or suspending it in pure water or a mixture of pure water and an organic solvent. Copper salts are preferably inexpensive copper sulfate or copper chloride, but copper oxoacid salts such as nitric acid, carbonic acid and phosphoric acid, copper halide salts, copper chalcogenides such as copper sulfide, and copper carboxylates Alternatively, there is no problem even if an organic acid salt such as a copper amino acid salt is used. In addition, when copper hydroxide and / or oxide is used as a solid component of copper, it is possible to use a solution obtained by precipitating dissolved copper salts by neutralization or the like. Cuprous oxide powder may be used.
[0030]
In this way, a liquid solvent containing a solid component of the copper compound and / or copper ions is prepared as a reaction solution, and a complexing agent, a pH adjusting agent, a reducing agent, etc. are added to the reaction solution as necessary. By adding and mixing, the liquidity, the amount and particle size of solid components, the oxidation number of copper, and the like can be adjusted. When adding a complexing agent, a pH adjusting agent, a reducing agent, etc., it may be added as a solid or liquid, or after being dissolved or diluted in pure water or the like. Moreover, when carboxylate etc. are used as a copper salt, the role as a complexing agent can also be played to the carboxylic acid contained.
[0031]
Next, the copper powder is mixed, but if the copper powder to be mixed has a certain particle size and is nearly spherical, any copper powder manufactured by the atomization method or wet reduction method can be used, and the manufacturing history There are no particular restrictions. The correction coefficient α in the above formula for calculating x can be uniquely determined once the reaction system and the measuring device are determined, and produces copper powder with a desired particle size and a narrow particle size distribution range with good reproducibility. can do.
[0032]
After the copper powder is mixed, after repulping in an inert gas for an appropriate time, a reducing agent is gradually added to reduce the solid component of the copper compound and / or the copper ion under stirring . The reducing agent used here can reduce the solid component of copper compound and copper ions to metallic copper (that is, oxidation number zero), such as hydrous hydrazine, borohydride compound, dimethylamine borane, zinc white, Formalin or the like can be used.
[0033]
The reaction ends when the presence of copper ion, copper complex or solid component of copper compound can no longer be detected in the reaction solution. After completion of the reaction, solid-liquid separation is performed by filtration, and the filtered fraction is washed with pure water or a water-soluble organic solvent. Solid-liquid separation is not limited to filtration, and other means such as centrifugation and spray drying may be used. Obtaining a copper powder for conductive paste with a uniform particle size by drying the cake obtained by solid-liquid separation at a temperature of 50 to 300 ° C. for several to several tens of hours in an inert gas or a reducing atmosphere. Can do. As the inert gas, nitrogen or a rare gas may be used, and a reducing gas such as hydrogen or carbon monoxide may be mixed and used.
[0034]
From a different point of view, the method of the present invention can be said to be a method of improving the copper particle having a uniform particle size while increasing the particle size of the existing copper powder. That is, the present invention (1) mixes raw material copper powder with a liquid medium containing a solid component made of a copper compound, and adds a reducing agent to the mixture to reduce the solid component to metallic copper. The method for producing a copper powder having a narrow particle size distribution width , and (2) mixing the raw material copper powder with a liquid medium containing a solid component made of a copper compound and copper ions, and adding a reducing agent to the mixture It can also be said that the present invention provides a method for producing a copper powder having a narrow particle size distribution width, which comprises reducing a solid component and copper ions to metallic copper.
[0035]
【Example】
[Example 1]
Copper sulfate pentahydrate (2.5 kg) (mol number of copper = 10 mol) was dissolved in 6.1 kg of pure water at room temperature in a nitrogen atmosphere. This aqueous copper sulfate solution was added to 9.6 kg of a 10 wt% aqueous sodium hydroxide solution and neutralized by starting stirring to produce copper hydroxide.
[0036]
After the formation of copper hydroxide, 6.5 kg of a 42 wt% glucose aqueous solution was added as a reducing agent capable of reduction to cuprous oxide. At that time, in order to promote the production of cuprous oxide, the temperature was raised to 70 ° C., and the reaction was carried out at 70 ° C. for 30 minutes. Thereafter, while maintaining the liquid temperature at 70 ° C., air was introduced at a flow rate of 4 L / min for 150 minutes to stabilize the liquid property. 50 minutes after the introduction of air, the atmosphere was returned to a nitrogen atmosphere and cooled to room temperature. Until then, stirring was continued. After cooling, stirring was stopped and cuprous oxide was allowed to settle by decantation. After confirming that the cuprous oxide had settled sufficiently, the supernatant was cut to obtain 2.5 kg of wet cuprous oxide (the supernatant that was not cut remains). Assuming that the copper yield is 100%, cuprous oxide corresponding to 10 mol of copper is obtained in the mixture of the cuprous oxide and the remaining supernatant.
[0037]
To the mixture of the cuprous oxide and the remaining supernatant, 2.3 kg of pure water and 530 g of copper powder with D50 = 4.23 μm were added (the target particle size of the final target copper powder is 5.5 μm). After raising the temperature of this mix to 60 ° C. in a nitrogen atmosphere, 31 g of 80% hydrous hydrazine was added as a reducing agent, and the reaction was started under stirring. 31 g of hydrazine was continuously added at intervals of 30 minutes after the first hydrazine was added, and cuprous oxide could not be confirmed 360 minutes later, and the reaction was completed.
[0038]
After completion of the reaction, the mixture was cooled to room temperature, separated into solid and liquid by suction filtration, and washed with 8 L of pure water. The cake after washing was placed in a dryer capable of controlling the atmosphere and dried in a nitrogen atmosphere at 120 ° C. for 11 hours to obtain the intended copper powder.
[0039]
An electron micrograph of the obtained copper powder is shown in FIG. The particle size distribution of the copper powder was measured with a wet laser diffraction particle size distribution measuring device (LS230 manufactured by Beckman Coulter). As a result, D50 = 5.45 μm, D90 = 6.41 μm, D10 = 4.70 μm (D90 / D10 = 1.36). The particle size distribution is shown in FIG. As can be seen from these results, the obtained copper powder had the intended particle size and was very sharp in the particle size distribution.
[0040]
[Example 2]
Example 1 was used except that 100.2 g of D50 = 2.83 μm copper powder was added instead of 530 g of D50 = 4.23 μm copper powder (the target particle size of the final target copper powder is 5.5 μm). Repeated. The obtained copper powder has D50 = 5.51 μm, D90 = 6.60 μm, D10 = 4.48 μm (D90 / D10 = 1.47), and has a very sharp particle size distribution as shown in FIG. The target particle size was as expected.
[0041]
Example 3
Example 1 was used except that 7.55 g of D50 = 1.25 μm copper powder was added instead of 530 g of D50 = 4.23 μm copper powder (the aim of the final target copper powder is a particle size of 5.5 μm). Repeated. However, hydrazine was continuously added as in Example 1, but in this example, the reaction was completed after 390 minutes. The obtained copper powder has D50 = 5.57 μm, D90 = 6.44 μm, D10 = 4.42 μm (D90 / D10 = 1.46), and has a very sharp particle size distribution as shown in FIG. The target particle size was as expected.
[0042]
Example 4
Example 1 was repeated except that 273 g of D50 = 5.36 μm copper powder was added instead of 530 g of D50 = 4.23 μm copper powder (the aim of the final target copper powder is 8.0 μm particle size). .
[0043]
The obtained copper powder has D50 = 7.78 μm, D90 = 9.11 μm, D10 = 6.14 μm (D90 / D10 = 1.48), and has a very sharp particle size distribution as shown in FIG. The copper powder had a particle size slightly smaller than the target particle size.
[0044]
Example 5
Instead of 530 g of D50 = 4.23 μm copper powder, 44.6 g of D50 = 2.58 μm copper powder was added (the aim of the final target copper powder is a particle size of 6.4 μm). Repeated.
[0045]
The obtained copper powder has D50 = 6.13 μm, D90 = 7.20 μm, D10 = 5.25 μm (D90 / D10 = 1.37), and has a very sharp particle size distribution as shown in FIG. The copper powder had a particle size slightly smaller than the target particle size.
[0046]
Further, for the purpose of confirming reproducibility, this example was repeated except that the production lot of copper sulfate pentahydrate was changed, and D50 = 6.13 μm, D90 = 7.20 μm, D10 = 5.25 μm ( D90 / D10 = 1.37), and it was confirmed that the production of the same copper powder could be reproduced with almost no fluctuations in the raw materials and the production funnel. FIG. 7 shows the particle size distribution of copper powder 2 when the production lot is changed.
[0047]
[Comparative Example 1]
2.3 kg of pure water was added to the mixture of cuprous oxide and the remaining supernatant obtained in the same manner as in Example 1. Using this mixed solution, the following reaction was carried out with stirring for a particle size of 5.5 μm. First, this mixture was heated to 45 ° C. in a nitrogen atmosphere, and 11 g of 80% hydrous hydrazine was added to initiate the reaction. After adding the first hydrazine, 11 g of hydrazine was continuously added at intervals of 30 minutes until 270 minutes, and the temperature was increased from 270 minutes to 85 ° C. at a temperature increase rate of 0.25 ° C./min. Upon reaching 85 ° C. (410 minutes), the addition of hydrazine was resumed, and 18.6 g was added every 30 minutes, and 15.5 g was added every 20 minutes from 530 minutes. The reaction was completed 710 minutes after the start of hydrazine addition. After completion of the reaction, it was washed and dried in the same manner as in Example 1 to obtain copper powder.
[0048]
The obtained copper powder has D50 = 6.19 μm, D90 = 8.31 μm, D10 = 4.28 μm (D90 / D10 = 1.94), and the particle size distribution is relatively broad as shown in FIG. It was copper powder. An electron micrograph of the copper powder obtained in this example is shown in FIG. In this comparative example, the reaction time requires approximately twice as long as that of the example.
[0049]
For the purpose of confirming reproducibility, this comparative example was repeated except that the production lot of copper sulfate pentahydrate was changed, and D50 = 7.18 μm, D90 = 9.84 μm, D10 = 4.42 μm (D90 /D10=2.23), it was confirmed that the reproducibility was not so good and the fluctuation of the production lot was large.
[0050]
【The invention's effect】
As described above, according to the present invention, copper powder having an intended particle size and a narrow particle size distribution width and having a very uniform particle size can be produced with good reproducibility. When copper powder is used as a conductive paste filler, it is necessary to adjust the particle size distribution of the copper powder in order to give the desired properties as the conductive paste. It is convenient to set the intended particle size distribution, but if the copper powder itself having a different particle size has a broad particle size distribution, the intended particle size distribution cannot be obtained. According to the present invention, it is possible to easily and reproducibly produce a copper powder having a narrow particle size distribution width for each copper powder having a different particle size. It can be set as the copper powder for conductive paste.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of copper powder having a uniform particle diameter according to the present invention.
FIG. 2 is an electron micrograph of a copper powder of a comparative example.
3 is a graph showing the particle size distribution of the raw copper powder used in Example 1 and the copper powder obtained by the reaction of Example 1. FIG.
4 is a graph showing the particle size distribution of the raw copper powder used in Example 2 and the copper powder obtained by the reaction of Example 2. FIG.
5 is a graph showing the particle size distribution of the raw material copper powder used in Example 3 and the copper powder obtained by the reaction of Example 3. FIG.
6 is a graph showing the particle size distribution of the raw material copper powder used in Example 4 and the copper powder obtained by the reaction of Example 4. FIG.
7 is a graph showing the particle size distribution of the raw copper powder used in Example 5 and the copper powder obtained by the reaction of Example 5. FIG.
8 is a graph showing the particle size distribution of the copper powder obtained in Comparative Example 1. FIG.

Claims (5)

平均粒径(D50)が1.25μm以上20μm以下の銅粉と、銅の化合物からなる固形成分と、液媒体とからなる混合物に、還元剤を添加して前記の固形成分を金属銅に還元する銅粉の製造法であって、該混合物中の銅粉以外の銅の総モル数をn0〔モル〕、銅粉の平均粒径(D50)をx0〔μm〕、銅粉の重量をw〔g〕、銅の原子量をAW〔g/モル〕としたとき、製造される銅粉の平均粒径が下記の数1で表されるx〔μm〕の±20%以内であることを特徴とする銅粉の製造法。
Figure 0004352121
A reducing agent is added to a mixture comprising a copper powder having an average particle size (D50) of 1.25 μm or more and 20 μm or less, a solid component composed of a copper compound, and a liquid medium to reduce the solid component to metallic copper. a process for the preparation of copper powder to the total moles of copper other than copper powder in the mixture n 0 [mol], the average particle size of the copper powder (D50) x 0 [μm], the weight of the copper powder W [g] and the atomic weight of copper is AW [g / mol], the average particle size of the produced copper powder is within ± 20% of x [μm] represented by the following formula 1. A process for producing copper powder characterized by
Figure 0004352121
平均粒径(D50)が1.25μm以上20μm以下の銅粉と、銅の化合物からなる固形成分と、銅イオンを含む液媒体とからなる混合物に、還元剤を添加して前記の固形成分および銅イオンを金属銅に還元する銅粉の製造法であって、該混合物中の銅粉以外の銅の総モル数をn0〔モル〕、銅粉の平均粒径(D50)をx0〔μm〕、銅粉の重量をw〔g〕、銅の原子量をAW〔g/モル〕としたとき、製造される銅粉の平均粒径が下記の数1で表されるx〔μm〕の±20%以内であることを特徴とする銅粉の製造法。
Figure 0004352121
A reducing agent is added to a mixture comprising a copper powder having an average particle size (D50) of 1.25 μm or more and 20 μm or less, a solid component composed of a copper compound, and a liquid medium containing copper ions, and the solid component and A method for producing copper powder in which copper ions are reduced to metallic copper , wherein the total number of moles of copper other than copper powder in the mixture is n 0 [mol], and the average particle diameter (D50) of the copper powder is x 0 [ μm], when the weight of the copper powder is w [g] and the atomic weight of copper is AW [g / mol], the average particle diameter of the produced copper powder is x [μm] represented by the following formula 1. A method for producing a copper powder characterized by being within ± 20%.
Figure 0004352121
混合物には、銅イオンと錯体を形成する物質が含まれる請求項1または2に記載の銅粉の製造法。The method for producing copper powder according to claim 1 or 2, wherein the mixture contains a substance that forms a complex with copper ions. 銅の化合物が銅の酸化物または水酸化物である請求項1または2に記載の銅粉の製造法。The method for producing a copper powder according to claim 1 or 2, wherein the copper compound is a copper oxide or hydroxide. 還元剤は連続式または回分式に徐々に添加される請求項1ないし4のいずれかに記載の銅粉の製造法。The method for producing copper powder according to any one of claims 1 to 4, wherein the reducing agent is gradually added continuously or batchwise.
JP2003099515A 2003-04-02 2003-04-02 Copper powder manufacturing method Expired - Fee Related JP4352121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099515A JP4352121B2 (en) 2003-04-02 2003-04-02 Copper powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099515A JP4352121B2 (en) 2003-04-02 2003-04-02 Copper powder manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008300405A Division JP2009052146A (en) 2008-11-26 2008-11-26 Copper powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004307881A JP2004307881A (en) 2004-11-04
JP4352121B2 true JP4352121B2 (en) 2009-10-28

Family

ID=33463944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099515A Expired - Fee Related JP4352121B2 (en) 2003-04-02 2003-04-02 Copper powder manufacturing method

Country Status (1)

Country Link
JP (1) JP4352121B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679888B2 (en) * 2004-11-26 2011-05-11 日揮触媒化成株式会社 Metal fine particles and method for producing metal fine particles
JP4821014B2 (en) * 2005-03-22 2011-11-24 Dowaエレクトロニクス株式会社 Copper powder manufacturing method
JP5416979B2 (en) * 2009-01-30 2014-02-12 Dowaエレクトロニクス株式会社 Copper powder and method for producing the same
WO2011013542A1 (en) * 2009-07-30 2011-02-03 国立大学法人京都大学 Metal nanoparticles, dispersion containing same, and process for production of same
JP5985216B2 (en) * 2012-03-12 2016-09-06 三井金属鉱業株式会社 Silver powder
JP5889938B2 (en) * 2014-03-06 2016-03-22 日本発條株式会社 LAMINATE AND METHOD FOR PRODUCING LAMINATE
WO2023074827A1 (en) * 2021-10-28 2023-05-04 三井金属鉱業株式会社 Copper particles and method for producing same

Also Published As

Publication number Publication date
JP2004307881A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP6274444B2 (en) Method for producing copper powder
JP5392884B2 (en) Method for producing copper powder
JP4821014B2 (en) Copper powder manufacturing method
WO2007004649A1 (en) Highly crystalline silver powder and process for production of the same
US20040221685A1 (en) Method for manufacturing nano-scaled copper powder by wet reduction process
JP7344550B2 (en) Method for producing iron-nickel nanowires
JP4352121B2 (en) Copper powder manufacturing method
JP2006022394A (en) Method for producing metallic copper fine particle
JP2009052146A (en) Copper powder and its manufacturing method
JPH02294414A (en) Production of fine copper powder
JP2019108610A (en) Spherical silver powder and method for producing the same
JP2011144441A (en) Silver-coated nickel powder and method for producing the same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
US5514202A (en) Method for producing fine silver-palladium alloy powder
JP5416979B2 (en) Copper powder and method for producing the same
US20160121401A1 (en) Method of synthesizing silver nanoparticles
TW201338893A (en) Silver powder
JP2018104724A (en) Production method of silver-coated copper powder
JP2022161370A (en) Silver micro-particle and method of producing the same
KR20100122226A (en) A preparation method of nano-plate dy2o3 with uniform size
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
WO2023074827A1 (en) Copper particles and method for producing same
JP2002363618A (en) Copper ultrafine grain and production method therefor
JP7406047B2 (en) Method for producing nickel powder and nickel particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090702

R150 Certificate of patent or registration of utility model

Ref document number: 4352121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees