JP3245886B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3245886B2
JP3245886B2 JP12732091A JP12732091A JP3245886B2 JP 3245886 B2 JP3245886 B2 JP 3245886B2 JP 12732091 A JP12732091 A JP 12732091A JP 12732091 A JP12732091 A JP 12732091A JP 3245886 B2 JP3245886 B2 JP 3245886B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
aqueous electrolyte
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12732091A
Other languages
Japanese (ja)
Other versions
JPH04355056A (en
Inventor
靖彦 美藤
修二 伊藤
祐之 村井
正樹 長谷川
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12732091A priority Critical patent/JP3245886B2/en
Publication of JPH04355056A publication Critical patent/JPH04355056A/en
Application granted granted Critical
Publication of JP3245886B2 publication Critical patent/JP3245886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特に正極を改良した非水電解液二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved positive electrode.

【0002】[0002]

【従来の技術】リチウム,リチウム合金またはリチウム
化合物を負極とする非水電解液二次電池は高電圧で高エ
ネルギー密度となることが期待され、多くの研究が行わ
れている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium, a lithium alloy or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted.

【0003】特に、これら電池の正極活物質としてMn
2やTiS2がよく検討されている。これらの正極活物
質はLiに対する電位が3V程度であるが、最近、Li
Mn 24およびLiCoO2がLiに対して4V以上の
電位を示す正極活物質として注目されている。
In particular, Mn is used as a positive electrode active material of these batteries.
OTwoAnd TiSTwoHas been well studied. These positive electrode active materials
The potential of Li is about 3 V with respect to Li.
Mn TwoOFourAnd LiCoOTwoIs more than 4V with respect to Li
It is attracting attention as a positive electrode active material showing a potential.

【0004】すなわち、電池の高エネルギー密度を得る
手段として容量の拡大とともに電池電圧を高める努力が
なされている。
That is, efforts have been made to increase the battery voltage as well as the capacity as a means for obtaining a high energy density of the battery.

【0005】このうち、LiCoO2は、その放電容量
が大きく、優れた充放電サイクル特性を有する可能性が
あることから正極活物質として有望と考えられている。
[0005] Among them, LiCoO 2 is considered to be promising as a positive electrode active material because it has a large discharge capacity and may have excellent charge / discharge cycle characteristics.

【0006】さらに、二次電池として重要な必要特性の
1つである充放電サイクル特性を向上するため、LiC
oO2へのMn,Ni,Cr,Feなどの添加も試みら
れ、充放電サイクル特性の一層の向上が図られている。
Further, in order to improve the charge / discharge cycle characteristics, which is one of the important necessary characteristics as a secondary battery, LiC
Attempts have been made to add Mn, Ni, Cr, Fe, and the like to oO 2, and further improvement of charge / discharge cycle characteristics has been achieved.

【0007】[0007]

【発明が解決しようとする課題】上記の正極活物質を用
いることにより放電容量が大きく充放電サイクル特性に
優れた非水電解液二次電池を実現できるが、充電電圧が
4Vを越えるため、充電後の電池の高温保存特性が不充
分であるという問題があった。非水電解液二次電池の高
温保存については電池内部の正極活物質LiCoO2
混在する可能性のあるLiOHなどのアルカリ、電解液
中の微量水分や電解液溶媒の分解が原因となり、電池内
部抵抗の増大や充放電容量の低下という問題を引き起こ
す。特に電池電圧が高くなるほどこれらの現象は顕著に
なり、また、高温保存時においてより著しいものとな
る。
A non-aqueous electrolyte secondary battery having a large discharge capacity and excellent charge-discharge cycle characteristics can be realized by using the above-mentioned positive electrode active material. There was a problem that the high-temperature storage characteristics of the later battery were insufficient. High temperature storage of non-aqueous electrolyte secondary batteries is caused by the decomposition of alkalis such as LiOH, which may be mixed in the positive electrode active material LiCoO 2 inside the batteries, trace moisture in the electrolyte, and electrolyte solvents. This causes problems such as an increase in resistance and a decrease in charge / discharge capacity. In particular, these phenomena become more remarkable as the battery voltage becomes higher, and become more remarkable during high-temperature storage.

【0008】電池内部へ持ち込まれる水分については、
電解液の蒸留処理を始めとする精製および正極活物質の
乾燥処理などにより電池内部への水分の持込みを抑える
努力がなされている。しかし、充放電を繰り返し行う必
要のある二次電池の場合、特に、充電電圧が4Vを越え
る場合にはこれら水分の除去などの前処理だけでは良好
な高温保存特性を得ることができない。
[0008] Regarding moisture brought into the battery,
Efforts have been made to suppress the incorporation of water into the battery by purifying the electrolyte solution, including the distillation process, and drying the positive electrode active material. However, in the case of a secondary battery that needs to be repeatedly charged and discharged, particularly when the charging voltage exceeds 4 V, good high-temperature storage characteristics cannot be obtained only by pretreatment such as removal of water.

【0009】正極活物質と電解液溶媒との反応やこの反
応により生成した物質と負極活物質との反応が起こりや
すくなり、電池の性能低下が生じると考えられる。
It is considered that the reaction between the positive electrode active material and the electrolytic solution solvent and the reaction between the substance produced by this reaction and the negative electrode active material are likely to occur, and the performance of the battery will be reduced.

【0010】本発明はこのような課題を解決するもの
で、高温保存特性を向上した非水電解液二次電池を提供
することを目的とする。
An object of the present invention is to solve such a problem and to provide a non-aqueous electrolyte secondary battery having improved high-temperature storage characteristics.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解質二次電池は、LiCoO2で表わさ
れる複合酸化物を活物質とする正極と、リチウムを吸蔵
放出することができる負極および非水電解液を有し、前
記正極中に無水SiO2、Al2O3、V2O5、Ir
O2から選ばれる少なくとも1つの固体酸を1モルのL
iCoO2に対して0.002モルから0.2モル添加
したものを用いる。
To solve this problem, a nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode using a composite oxide represented by LiCoO2 as an active material, and a negative electrode capable of inserting and extracting lithium. And a non-aqueous electrolyte, wherein the positive electrode contains anhydrous SiO2, Al2O3 , V2O5, Ir
At least one solid acid selected from O2 is
What added 0.002 mol-0.2 mol with respect to iCoO2 is used.

【0012】[0012]

【0013】[0013]

【0014】[0014]

【作用】この構成により、本発明の非水電解質二次電池
の内部における無水SiO2、Al2O3、V2O5、
IrO2から選ばれる少なくとも1つの固体酸の働きと
して、残留アルカリとの高い反応性を挙げることができ
る。
According to this structure, anhydrous SiO2, Al2O3 , V2O5,
The function of at least one solid acid selected from IrO2 includes high reactivity with residual alkali.

【0015】本発明における正極活物質LiCoO2に
混在する可能性のあるLiOHなどのアルカリへの作用
を考えることができる。正極中に無水SiO2、Al2
O3、V2O5、IrO2から選ばれる少なくとも1つ
の固体酸を添加することにより、残留アルカリを減少さ
せることが可能で、残留アルカリが原因と考えられる高
温保存による電池性能の低下を軽減できる。
The effect of the present invention on alkali such as LiOH, which may be present in the positive electrode active material LiCoO 2, can be considered. Anhydrous SiO2, Al2 in positive electrode
By adding at least one solid acid selected from O 3 , V 2 O 5 , and IrO 2, residual alkali can be reduced, and a decrease in battery performance due to high-temperature storage, which is considered to be caused by the residual alkali, can be reduced.

【0016】[0016]

【実施例】以下、本発明の実施例の非水電解液二次電池
について図面を基にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0017】(実施例1)電池の製造は次のようにして
行う。正極活物質としてLiCoO2 100gに導電
剤としてアセチレンブラック 3.0gを混合し、さら
に、無水SiO23.08g(LiCoO2 1モルに対
して0.05モル)を添加、混合し、さらに、結着剤と
してのポリ4弗化エチレン樹脂4.0gを混合して正極
合剤とした。正極合剤0.1グラムを直径17.5mmに
1トン/cm2でプレス成型して、正極とした。図1にお
いて、成型した正極1をケース2に置く。正極1の上に
セパレータ3としての多孔性ポリプロピレンフィルムを
置いた。負極4として直径17.5mm厚さ0.3mmのリ
チウム板を、ポリプロピレン製ガスケット6を付けた封
口板5に圧着した。
(Example 1) A battery is manufactured as follows. 100 g of LiCoO 2 as a positive electrode active material was mixed with 3.0 g of acetylene black as a conductive agent, and 3.08 g of anhydrous SiO 2 (0.05 mol per 1 mol of LiCoO 2 ) was added and mixed. A positive electrode mixture was prepared by mixing 4.0 g of polytetrafluoroethylene resin as a binder. 0.1 grams of the positive electrode mixture was press-formed at a diameter of 17.5 mm at 1 ton / cm 2 to obtain a positive electrode. In FIG. 1, a molded positive electrode 1 is placed in a case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1. A lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm as the negative electrode 4 was pressure-bonded to the sealing plate 5 to which a polypropylene gasket 6 was attached.

【0018】非水電解液として、プロピレンカーボネー
ト溶液に1モル/lの過塩素酸リチウムを溶解したもの
を用いた。このようにして得た非水電解液をセパレータ
3上および負極4上に加えた。その後ケース2の上縁部
をかしめて電池を封口した。
As the non-aqueous electrolyte, a solution prepared by dissolving 1 mol / l of lithium perchlorate in a propylene carbonate solution was used. The non-aqueous electrolyte thus obtained was added onto the separator 3 and the negative electrode 4. Thereafter, the upper edge of the case 2 was swaged to seal the battery.

【0019】さらに、無水SiO2の正極活物質に対す
る添加濃度(正極活物質に対するモル比)についても検
討を行い、その添加濃度範囲は(表1)に示した。
Further, the addition concentration of anhydrous SiO 2 to the positive electrode active material (molar ratio to the positive electrode active material) was also examined, and the addition concentration range is shown in Table 1.

【0020】比較のため、無水SiO2を添加しない正
極について上記と同様な方法で電池を製造した。
For comparison, a battery was manufactured in the same manner as described above for the positive electrode to which no anhydrous SiO 2 was added.

【0021】電池の高温保存試験を次の方法で行う。す
なわち、上記の方法で得られた電池について、20℃に
おいて1mAの定電流で4.2ボルトまで充電し、次いで
これを3ボルトまで放電した。この充電放電を10サイ
クル行った後、11サイクル目の充電が終わった後、6
0℃で4週間保存した。保存後20℃に戻し、同じ条件
で放電した。ここで、容量維持率は次のように定義し
た。
A high-temperature storage test of the battery is performed by the following method. That is, the battery obtained by the above method was charged at 20 ° C. at a constant current of 1 mA to 4.2 volts, and then discharged to 3 volts. After performing this charge and discharge for 10 cycles, after completing the charge for the eleventh cycle, 6
Stored at 0 ° C. for 4 weeks. After storage, the temperature was returned to 20 ° C., and the battery was discharged under the same conditions. Here, the capacity retention rate was defined as follows.

【0022】 容量維持率=100×11サイクル目の放電電気量/1
0サイクル目の放電電気量 また、保存終了後に充電を行い、その後の放電容量を評
価した。
Capacity retention rate = 100 × discharged electricity amount at 11th cycle / 1
Discharged electricity at the 0th cycle Further, after the storage, the battery was charged, and the discharge capacity after that was evaluated.

【0023】ここで、容量回復率を次のように定義し
た。 容量回復率=100×12サイクル目の放電電気量/1
0サイクル目の放電電気量 上記各電池の60℃4週間保存にともなう電池内部抵抗
の変化を示す図2において、内部抵抗は電池電圧をバイ
アス電圧とし、1.0kHzにおいて振幅100mVの条件
で20℃において測定した。
Here, the capacity recovery rate was defined as follows. Capacity recovery rate = 100 × discharged electricity amount at 12th cycle / 1
Electricity Discharge at Cycle 0 FIG. 2 shows the change in internal resistance of the above-mentioned batteries during storage at 60 ° C. for 4 weeks. In FIG. 2, the internal resistance was 20 ° C. under the condition of a battery voltage as a bias voltage and an amplitude of 100 mV at 1.0 kHz. Was measured.

【0024】無水SiO2を添加しない電池では、保存
直後から急激な電池内部抵抗の増加が認められ、4週間
後には30Ω以上になる。一方、実施例の電池において
は、電池内部抵抗の増加は小さいものである。
In the battery to which no anhydrous SiO 2 was added, a sharp increase in the battery internal resistance was observed immediately after storage, and it became 30Ω or more after 4 weeks. On the other hand, in the battery of the example, the increase in the battery internal resistance is small.

【0025】また、(表1)には、各電池の正極合剤1
g当りの初期放電容量および4週間後の容量維持率,容
量回復率を示す。
Table 1 shows the positive electrode mixture 1 of each battery.
The initial discharge capacity per g and the capacity retention rate and capacity recovery rate after 4 weeks are shown.

【0026】[0026]

【表1】 [Table 1]

【0027】無水SiO2を添加しない電池では、60
℃4週間保存にともない非常に大きな容量低下を示す。
一方、無水SiO2を添加した電池では容量維持率およ
び容量回復率が高い。しかし、電池の初期容量は無水S
iO2の添加量が0.2モルを越えると急激に減少して
いる。したがって、特に容量維持率が80%以上で、容
量回復率が85%以上であった無水SiO2の添加濃度
0.002〜0.2モルの範囲が望ましいことがわかっ
た。このように正極への無水SiO2の添加は高温保存
にともなう容量低下を抑制する効果がある。
In the case of a battery without addition of anhydrous SiO 2 , 60
It shows a very large capacity decrease with storage at 4 ° C for 4 weeks.
On the other hand, a battery to which anhydrous SiO 2 is added has a high capacity retention rate and a capacity recovery rate. However, the initial capacity of the battery is anhydrous S
When the added amount of iO 2 exceeds 0.2 mol, the amount rapidly decreases. Therefore, it was found that the addition concentration of anhydrous SiO 2 in which the capacity retention rate was 80% or more and the capacity recovery rate was 85% or more was particularly desirable in the range of 0.002 to 0.2 mol. As described above, the addition of anhydrous SiO 2 to the positive electrode has an effect of suppressing a decrease in capacity due to high-temperature storage.

【0028】(実施例2)つぎに、Al23についての
検討を行った。
(Example 2) Next, Al 2 O 3 was examined.

【0029】電池の製造および高温保存試験は実施例1
と同様に行った。上記各電池の60℃4週間保存にとも
なう電池内部抵抗の変化を示す図3において、Al23
を添加しない電池では、保存直後から急激な電池内部抵
抗の増加が認められ、4週間後には30Ω以上になる。
一方、実施例の電池においては、電池内部抵抗の増加は
小さいものである。
The battery production and high-temperature storage test were conducted in Example 1.
The same was done. In FIG. 3, which shows the change in the battery internal resistance following storage of each of the above batteries at 60 ° C. for 4 weeks, Al 2 O 3
In the battery without addition of, a sudden increase in the battery internal resistance was observed immediately after storage, and it became 30Ω or more after 4 weeks.
On the other hand, in the battery of the example, the increase in the battery internal resistance is small.

【0030】また、(表2)には、各電池の正極合剤1
g当りの初期放電容量および4週間後の容量維持率,容
量回復率を示す。
Table 2 shows the positive electrode mixture 1 of each battery.
The initial discharge capacity per g and the capacity retention rate and capacity recovery rate after 4 weeks are shown.

【0031】[0031]

【表2】 [Table 2]

【0032】Al23を添加しない電池では、60℃4
週間保存にともない非常に大きな容量低下を示すが、A
23を添加した電池では容量維持率および容量回復率
が高い。しかし、電池の初期容量はAl23の添加量が
0.2モルを越えると急激に減少している。したがっ
て、特に容量維持率が75%以上で、容量回復率が80
%以上であったAl23の添加濃度0.002〜0.2
モルの範囲が望ましいことがわかった。このように正極
へのAl23の添加は高温保存にともなう容量低下を抑
制する効果がある。
In the case of a battery to which Al 2 O 3 is not added, a temperature of 60 ° C.
It shows a very large capacity decrease with weekly storage.
A battery to which l 2 O 3 is added has a high capacity retention rate and a capacity recovery rate. However, the initial capacity of the battery sharply decreases when the amount of Al 2 O 3 added exceeds 0.2 mol. Therefore, especially when the capacity retention rate is 75% or more, the capacity recovery rate is 80%.
% Or more of the additive concentration of Al 2 O 3 of 0.002 to 0.2
A molar range has been found to be desirable. Thus, the addition of Al 2 O 3 to the positive electrode has the effect of suppressing a decrease in capacity due to high-temperature storage.

【0033】また、固体酸として、V25,IrO2
用いた場合にも同様の効果が認められた。
Similar effects were observed when V 2 O 5 and IrO 2 were used as solid acids.

【0034】検討した固体酸の中では高温保存特性への
効果は無水SiO2の場合に最も顕著であった。
Among the solid acids studied, the effect on high-temperature storage characteristics was most pronounced in the case of anhydrous SiO 2 .

【0035】以上のように、LiCoO2で表わされる
複合酸化物を正極活物質とする非水電解質電池におい
て、正極中に無水SiO2、Al2O3、V2O5、I
rO2から選ばれる少なくとも1つの固体酸を添加する
ことにより、高温保存特性に優れた非水電解質二次電池
を得ることができる。
As described above, in a nonaqueous electrolyte battery using a composite oxide represented by LiCoO2 as a positive electrode active material, anhydrous SiO2, Al2O3 , V2O5, I2
By adding at least one solid acid selected from rO2, a non-aqueous electrolyte secondary battery having excellent high-temperature storage characteristics can be obtained.

【0036】さらに、これらの固体酸を混合して添加し
た場合にも同様の効果が認められた。
Further, similar effects were observed when these solid acids were mixed and added.

【0037】以上の実施例では、電解液として1モル/
lの過塩素酸リチウムを溶解したプロピレンカーボネー
ト溶液を用いた場合の結果であるが、電解液としてこれ
以外に、溶質として6フッ化燐酸リチウムやトリフロロ
メタンスルフォン酸リチウム,ホウフッ化リチウム、溶
媒としてプロピレンカーボネート,エチレンカーボネー
トなどのカーボネート類、ガンマーブチロラクトン,酢
酸メチルなどのエステル類を用いた電解液が良好であっ
た。しかしながら、ジメトキシエタンやテトラヒドロフ
ランなどのエーテル類を使用した場合には、高温保存特
性は悪く、電解液中にルイス酸を添加することにより高
温保存特性の向上は認められなかった。実施例では正極
は4V以上の電圧となるため、エーテル類は酸化される
ためと考えている。
In the above embodiment, 1 mol / mol of the electrolytic solution was used.
1 is a result of using a propylene carbonate solution in which 1 part of lithium perchlorate is dissolved. In addition to this as an electrolyte, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium borofluoride as a solute, and a solvent as a solvent are used. Electrolyte solutions using carbonates such as propylene carbonate and ethylene carbonate and esters such as gamma-butyrolactone and methyl acetate were good. However, when ethers such as dimethoxyethane and tetrahydrofuran were used, the high-temperature storage characteristics were poor, and no improvement in the high-temperature storage characteristics was observed by adding a Lewis acid to the electrolytic solution. In the embodiment, it is considered that since the voltage of the positive electrode becomes 4 V or more, ethers are oxidized.

【0038】[0038]

【発明の効果】以上の実施例の説明で明らかなように、
本発明の非水電解液二次電池によれば、リチウムを吸蔵
放出できる負極、LiCoO2で表わされる複合酸化物
を活物質とする正極および非水電解液を有し、正極中に
無水SiO2、Al2O3、V2O5、IrO2から選
ばれる少なくとも1つの固体酸を添加したものを用いる
ことにより、高温保存特性が良好な非水電解質二次電池
を得ることができ、産業上の意義は大きい。
As is clear from the above description of the embodiment,
ADVANTAGE OF THE INVENTION According to the non-aqueous electrolyte secondary battery of this invention, it has the negative electrode which can occlude and release lithium, the positive electrode which uses the composite oxide represented by LiCoO2 as an active material, and a non-aqueous electrolyte, and contains anhydrous SiO2, Al2O3 in a positive electrode. By using a material to which at least one solid acid selected from V2O5 and IrO2 is added, a non-aqueous electrolyte secondary battery having good high-temperature storage characteristics can be obtained, which has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の非水電解液二次電池の縦断面
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】同実施例1の電池の60℃保存にともなう電池
内部抵抗の変化を示したグラフ
FIG. 2 is a graph showing a change in internal resistance of the battery of Example 1 during storage at 60 ° C.

【図3】同実施例2の電池の60℃保存にともなう電池
内部抵抗の変化を示したグラフ
FIG. 3 is a graph showing a change in internal resistance of the battery of Example 2 during storage at 60 ° C.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 封口板 6 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 正樹 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−121259(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaki Hasegawa 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-63-121259 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/62 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 LiCoO2で表わされる複合酸化物を
活物質とする正極と、リチウムを吸蔵放出することがで
きる負極および非水電解液を有し、前記正極中に無水S
iO2、Al2O3、V2O5、IrO2から選ばれる
少なくとも1つの固体酸を1モルのLiCoO2に対し
て0.002モルから0.2モル添加した非水電解液二
次電池。
1. A positive electrode comprising a composite oxide represented by LiCoO2 as an active material, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte, wherein anhydrous S is contained in the positive electrode.
A non-aqueous electrolyte secondary battery in which at least one solid acid selected from iO2, Al2O3 , V2O5 and IrO2 is added in an amount of 0.002 to 0.2 mol per 1 mol of LiCoO2.
JP12732091A 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3245886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12732091A JP3245886B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12732091A JP3245886B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04355056A JPH04355056A (en) 1992-12-09
JP3245886B2 true JP3245886B2 (en) 2002-01-15

Family

ID=14957019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12732091A Expired - Fee Related JP3245886B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3245886B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049872A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
JP7471765B2 (en) 2017-11-20 2024-04-22 王子ホールディングス株式会社 Animal bedding and method for disposing of animal bedding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
JP4503964B2 (en) * 2003-09-19 2010-07-14 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4736943B2 (en) * 2006-05-17 2011-07-27 日亜化学工業株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP5332338B2 (en) * 2008-06-23 2013-11-06 Tdk株式会社 Electrode and lithium ion secondary battery
JP6016029B2 (en) * 2013-03-22 2016-10-26 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6964280B2 (en) * 2016-12-28 2021-11-10 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049872A1 (en) * 2005-10-26 2007-05-03 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
JP7471765B2 (en) 2017-11-20 2024-04-22 王子ホールディングス株式会社 Animal bedding and method for disposing of animal bedding

Also Published As

Publication number Publication date
JPH04355056A (en) 1992-12-09

Similar Documents

Publication Publication Date Title
JP2697365B2 (en) Non-aqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
KR100439448B1 (en) Aqueous electrolyte and a lithium secondary battery using the same
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
US6589689B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP4315705B2 (en) Non-aqueous lithium secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP2940015B2 (en) Organic electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP2001357838A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JPH04169076A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH0896848A (en) Nonaqueous electrolytic secondary battery
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JP2003109659A (en) Nonaqueous electrolyte secondary battery
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2558957B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees