JPH04355056A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04355056A
JPH04355056A JP3127320A JP12732091A JPH04355056A JP H04355056 A JPH04355056 A JP H04355056A JP 3127320 A JP3127320 A JP 3127320A JP 12732091 A JP12732091 A JP 12732091A JP H04355056 A JPH04355056 A JP H04355056A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
secondary battery
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3127320A
Other languages
Japanese (ja)
Other versions
JP3245886B2 (en
Inventor
Yasuhiko Mifuji
靖彦 美藤
Shuji Ito
修二 伊藤
Sukeyuki Murai
村井 祐之
Masaki Hasegawa
正樹 長谷川
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12732091A priority Critical patent/JP3245886B2/en
Publication of JPH04355056A publication Critical patent/JPH04355056A/en
Application granted granted Critical
Publication of JP3245886B2 publication Critical patent/JP3245886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery of 4.0V class excellent in high temperature storage characteristic. CONSTITUTION:A positive pole 1, adding solid acid to a positive pole active material LiCoO2, is used, lithium metal is used for a negative pole 4, and 1mol/l lithium perchlorate to propylene carbonate is used as a nonaqueous electrolyte. By adding the solid acid to the positive pole, decrease of battery performance, considered with a cause of alkaline in the positive pole active material, is reduced, and a nonaqueous electrolyte secondary battery excellent in high temperature storage characteristic can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特に正極を改良した非水電解液二次電池に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery with an improved positive electrode.

【0002】0002

【従来の技術】リチウム,リチウム合金またはリチウム
化合物を負極とする非水電解液二次電池は高電圧で高エ
ネルギー密度となることが期待され、多くの研究が行わ
れている。
BACKGROUND OF THE INVENTION Nonaqueous electrolyte secondary batteries using lithium, lithium alloys, or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and many studies are being conducted.

【0003】特に、これら電池の正極活物質としてMn
O2やTiS2がよく検討されている。これらの正極活
物質はLiに対する電位が3V程度であるが、最近、L
iMn2O4およびLiCoO2がLiに対して4V以
上の電位を示す正極活物質として注目されている。
In particular, Mn is used as the positive electrode active material of these batteries.
O2 and TiS2 are often considered. These positive electrode active materials have a potential of about 3V with respect to Li, but recently, L
iMn2O4 and LiCoO2 are attracting attention as positive electrode active materials exhibiting a potential of 4 V or more with respect to Li.

【0004】すなわち、電池の高エネルギー密度を得る
手段として容量の拡大とともに電池電圧を高める努力が
なされている。
That is, efforts are being made to increase the battery voltage as well as expand the capacity as a means of obtaining a high energy density of the battery.

【0005】このうち、LiCoO2は、その放電容量
が大きく、優れた充放電サイクル特性を有する可能性が
あることから正極活物質として有望と考えられている。
Among these, LiCoO2 is considered to be promising as a positive electrode active material because it has a large discharge capacity and may have excellent charge-discharge cycle characteristics.

【0006】さらに、二次電池として重要な必要特性の
1つである充放電サイクル特性を向上するため、LiC
oO2へのMn,Ni,Cr,Feなどの添加も試みら
れ、充放電サイクル特性の一層の向上が図られている。
Furthermore, in order to improve the charge/discharge cycle characteristics, which is one of the important characteristics required for a secondary battery, LiC
Attempts have also been made to add Mn, Ni, Cr, Fe, etc. to oO2, with the aim of further improving the charge/discharge cycle characteristics.

【0007】[0007]

【発明が解決しようとする課題】上記の正極活物質を用
いることにより放電容量が大きく充放電サイクル特性に
優れた非水電解液二次電池を実現できるが、充電電圧が
4Vを越えるため、充電後の電池の高温保存特性が不充
分であるという問題があった。非水電解液二次電池の高
温保存については電池内部の正極活物質LiCoO2に
混在する可能性のあるLiOHなどのアルカリ、電解液
中の微量水分や電解液溶媒の分解が原因となり、電池内
部抵抗の増大や充放電容量の低下という問題を引き起こ
す。特に電池電圧が高くなるほどこれらの現象は顕著に
なり、また、高温保存時においてより著しいものとなる
[Problems to be Solved by the Invention] By using the above positive electrode active material, a non-aqueous electrolyte secondary battery with a large discharge capacity and excellent charge/discharge cycle characteristics can be realized, but since the charging voltage exceeds 4V, There was a problem that the high temperature storage characteristics of the later batteries were insufficient. When storing nonaqueous electrolyte secondary batteries at high temperatures, the internal resistance of the battery increases due to alkali such as LiOH that may be mixed in the positive electrode active material LiCoO2 inside the battery, trace water in the electrolyte, and decomposition of the electrolyte solvent. This causes problems such as an increase in energy consumption and a decrease in charge/discharge capacity. In particular, these phenomena become more pronounced as the battery voltage increases, and become more pronounced during high-temperature storage.

【0008】電池内部へ持ち込まれる水分については、
電解液の蒸留処理を始めとする精製および正極活物質の
乾燥処理などにより電池内部への水分の持込みを抑える
努力がなされている。しかし、充放電を繰り返し行う必
要のある二次電池の場合、特に、充電電圧が4Vを越え
る場合にはこれら水分の除去などの前処理だけでは良好
な高温保存特性を得ることができない。
Regarding moisture brought into the battery,
Efforts are being made to suppress the introduction of moisture into the battery through purification such as distillation of the electrolyte and drying of the positive electrode active material. However, in the case of a secondary battery that requires repeated charging and discharging, particularly when the charging voltage exceeds 4 V, it is not possible to obtain good high-temperature storage characteristics only by pretreatment such as removing moisture.

【0009】正極活物質と電解液溶媒との反応やこの反
応により生成した物質と負極活物質との反応が起こりや
すくなり、電池の性能低下が生じると考えられる。
[0009] It is thought that the reaction between the positive electrode active material and the electrolyte solvent and the reaction between the substance produced by this reaction and the negative electrode active material tend to occur, resulting in a decrease in battery performance.

【0010】本発明はこのような課題を解決するもので
、高温保存特性を向上した非水電解液二次電池を提供す
ることを目的とする。
[0010] The present invention solves these problems, and aims to provide a non-aqueous electrolyte secondary battery with improved high-temperature storage characteristics.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解液二次電電池は、LiCoO2で表わ
される複合酸化物を活物質とする正極、リチウムを吸蔵
放出することのできる負極および非水電解液を有し、前
記正極中に固体酸を添加したものを用いる。
[Means for Solving the Problem] In order to solve this problem, the non-aqueous electrolyte secondary battery of the present invention has a positive electrode that uses a composite oxide represented by LiCoO2 as an active material, and a positive electrode that can occlude and release lithium. A negative electrode and a non-aqueous electrolyte are used, and a solid acid is added to the positive electrode.

【0012】また、固体酸が無水SiO2,IrO2,
Al2O3,V2O5から選ばれる少なくとも1つであ
ることが望ましい。
[0012] In addition, the solid acid may be anhydrous SiO2, IrO2,
It is desirable that the material be at least one selected from Al2O3 and V2O5.

【0013】また、固体酸の添加量が1モルのLiCo
O2に対して0.002モルから0.2モルであること
が好ましい。
[0013] Furthermore, when the amount of solid acid added is 1 mol of LiCo
Preferably, the amount is from 0.002 mol to 0.2 mol relative to O2.

【0014】[0014]

【作用】この構成により、本発明の非水電解液二次電池
は、非水電解液二次電池内部における固体酸の働きはア
ルカリとの高い反応性を挙げることができる。
[Function] With this structure, in the non-aqueous electrolyte secondary battery of the present invention, the solid acid inside the non-aqueous electrolyte secondary battery has high reactivity with alkali.

【0015】本発明における正極活物質LiCoO2に
混在する可能性のあるLiOHなどのアルカリへの作用
を考えることができる。正極中に固体酸を添加すること
により、残留アルカリを減少させることが可能で、残留
アルカリが原因と考えられる高温保存による電池性能の
低下を軽減できる。
[0015] In the present invention, the effect on alkali such as LiOH that may be mixed in the positive electrode active material LiCoO2 can be considered. By adding a solid acid to the positive electrode, it is possible to reduce residual alkali, and it is possible to reduce the decrease in battery performance due to high temperature storage, which is thought to be caused by residual alkali.

【0016】[0016]

【実施例】以下、本発明の実施例の非水電解液二次電池
について図面を基にして説明する。
[Embodiments] Hereinafter, non-aqueous electrolyte secondary batteries according to embodiments of the present invention will be described with reference to the drawings.

【0017】(実施例1)電池の製造は次のようにして
行う。正極活物質としてLiCoO2  100gに導
電剤としてアセチレンブラック  3.0gを混合し、
さらに、無水SiO23.08g(LiCoO2  1
モルに対して0.05モル)を添加、混合し、さらに、
結着剤としてのポリ4弗化エチレン樹脂4.0gを混合
して正極合剤とした。正極合剤0.1グラムを直径17
.5mmに1トン/cm2でプレス成型して、正極とし
た。図1において、成型した正極1をケース2に置く。 正極1の上にセパレータ3としての多孔性ポリプロピレ
ンフィルムを置いた。負極4として直径17.5mm厚
さ0.3mmのリチウム板を、ポリプロピレン製ガスケ
ット6を付けた封口板5に圧着した。
(Example 1) A battery was manufactured as follows. 100 g of LiCoO2 as a positive electrode active material and 3.0 g of acetylene black as a conductive agent were mixed,
Furthermore, anhydrous SiO23.08g (LiCoO2 1
0.05 mol to mol) is added and mixed, and further,
A positive electrode mixture was prepared by mixing 4.0 g of polytetrafluoroethylene resin as a binder. 0.1 gram of positive electrode mixture in diameter 17
.. The positive electrode was press-molded to 5 mm at 1 ton/cm2. In FIG. 1, a molded positive electrode 1 is placed in a case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1 . A lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm was press-bonded to a sealing plate 5 equipped with a polypropylene gasket 6 as the negative electrode 4.

【0018】非水電解液として、プロピレンカーボネー
ト溶液に1モル/lの過塩素酸リチウムを溶解したもの
を用いた。このようにして得た非水電解液をセパレータ
3上および負極4上に加えた。その後ケース2の上縁部
をかしめて電池を封口した。
The non-aqueous electrolyte used was a propylene carbonate solution in which 1 mol/l of lithium perchlorate was dissolved. The non-aqueous electrolyte thus obtained was added onto the separator 3 and the negative electrode 4. Thereafter, the upper edge of the case 2 was caulked to seal the battery.

【0019】さらに、無水SiO2の正極活物質に対す
る添加濃度(正極活物質に対するモル比)についても検
討を行い、その添加濃度範囲は(表1)に示した。
Furthermore, the concentration of anhydrous SiO2 added to the positive electrode active material (molar ratio to the positive electrode active material) was also investigated, and the range of the added concentration is shown in (Table 1).

【0020】比較のため、無水SiO2を添加しない正
極について上記と同様な方法で電池を製造した。
For comparison, a battery was manufactured in the same manner as above using a positive electrode to which anhydrous SiO2 was not added.

【0021】電池の高温保存試験を次の方法で行う。す
なわち、上記の方法で得られた電池について、20℃に
おいて1mAの定電流で4.2ボルトまで充電し、次い
でこれを3ボルトまで放電した。この充電放電を10サ
イクル行った後、11サイクル目の充電が終わった後、
60℃で4週間保存した。保存後20℃に戻し、同じ条
件で放電した。ここで、容量維持率は次のように定義し
た。
[0021] A high temperature storage test of the battery is carried out in the following manner. That is, the battery obtained by the above method was charged to 4.2 volts at a constant current of 1 mA at 20° C., and then discharged to 3 volts. After performing this charging and discharging for 10 cycles, after the 11th cycle of charging is completed,
It was stored at 60°C for 4 weeks. After storage, it was returned to 20°C and discharged under the same conditions. Here, the capacity maintenance rate was defined as follows.

【0022】 容量維持率=100×11サイクル目の放電電気量/1
0サイクル目の放電電気量 また、保存終了後に充電を行い、その後の放電容量を評
価した。
[0022] Capacity maintenance rate = 100 x amount of discharged electricity at 11th cycle/1
The amount of electricity discharged at the 0th cycle was also charged after storage, and the subsequent discharge capacity was evaluated.

【0023】ここで、容量回復率を次のように定義した
。 容量回復率=100×12サイクル目の放電電気量/1
0サイクル目の放電電気量 上記各電池の60℃4週間保存にともなう電池内部抵抗
の変化を示す図2において、内部抵抗は電池電圧をバイ
アス電圧とし、1.0kHzにおいて振幅100mVの
条件で20℃において測定した。
[0023] Here, the capacity recovery rate is defined as follows. Capacity recovery rate = 100 x amount of discharged electricity at 12th cycle/1
Discharge amount of electricity at 0th cycle In Figure 2, which shows the change in battery internal resistance of each of the above batteries as they were stored at 60°C for 4 weeks, the internal resistance was measured at 20°C with the battery voltage as the bias voltage and an amplitude of 100 mV at 1.0 kHz. Measured at.

【0024】無水SiO2を添加しない電池では、保存
直後から急激な電池内部抵抗の増加が認められ、4週間
後には30Ω以上になる。一方、実施例の電池において
は、電池内部抵抗の増加は小さいものである。
[0024] In a battery to which anhydrous SiO2 is not added, a rapid increase in battery internal resistance is observed immediately after storage, and after 4 weeks it reaches 30Ω or more. On the other hand, in the battery of the example, the increase in battery internal resistance is small.

【0025】また、(表1)には、各電池の正極合剤1
g当りの初期放電容量および4週間後の容量維持率,容
量回復率を示す。
In addition, (Table 1) shows the positive electrode mixture 1 of each battery.
The initial discharge capacity per gram, the capacity retention rate after 4 weeks, and the capacity recovery rate are shown.

【0026】[0026]

【表1】[Table 1]

【0027】無水SiO2を添加しない電池では、60
℃4週間保存にともない非常に大きな容量低下を示す。 一方、無水SiO2を添加した電池では容量維持率およ
び容量回復率が高い。しかし、電池の初期容量は無水S
iO2の添加量が0.2モルを越えると急激に減少して
いる。したがって、特に容量維持率が80%以上で、容
量回復率が85%以上であった無水SiO2の添加濃度
0.002〜0.2モルの範囲が望ましいことがわかっ
た。このように正極への無水SiO2の添加は高温保存
にともなう容量低下を抑制する効果がある。
[0027] In a battery without adding anhydrous SiO2, 60
After storage for 4 weeks at ℃, there is a very large decrease in capacity. On the other hand, a battery containing anhydrous SiO2 has a high capacity retention rate and a high capacity recovery rate. However, the initial capacity of the battery is anhydrous S
When the amount of iO2 added exceeds 0.2 mol, it decreases rapidly. Therefore, it has been found that it is particularly desirable that the concentration of anhydrous SiO2 added is in the range of 0.002 to 0.2 mol, so that the capacity retention rate is 80% or more and the capacity recovery rate is 85% or more. As described above, the addition of anhydrous SiO2 to the positive electrode has the effect of suppressing the capacity decrease due to high temperature storage.

【0028】(実施例2)つぎに、Al2O3について
の検討を行った。
(Example 2) Next, a study was conducted on Al2O3.

【0029】電池の製造および高温保存試験は実施例1
と同様に行った。上記各電池の60℃4週間保存にとも
なう電池内部抵抗の変化を示す図3において、Al2O
3を添加しない電池では、保存直後から急激な電池内部
抵抗の増加が認められ、4週間後には30Ω以上になる
。 一方、実施例の電池においては、電池内部抵抗の増加は
小さいものである。
[0029] Battery manufacturing and high temperature storage test were carried out in Example 1.
I did the same thing. In Figure 3, which shows the change in battery internal resistance as each of the above batteries was stored at 60°C for 4 weeks, Al2O
In the battery to which No. 3 was not added, a rapid increase in battery internal resistance was observed immediately after storage, and it reached 30Ω or more after 4 weeks. On the other hand, in the battery of the example, the increase in battery internal resistance is small.

【0030】また、(表2)には、各電池の正極合剤1
g当りの初期放電容量および4週間後の容量維持率,容
量回復率を示す。
In addition, (Table 2) shows the positive electrode mixture 1 of each battery.
The initial discharge capacity per gram, the capacity retention rate after 4 weeks, and the capacity recovery rate are shown.

【0031】[0031]

【表2】[Table 2]

【0032】Al2O3を添加しない電池では、60℃
4週間保存にともない非常に大きな容量低下を示すが、
Al2O3を添加した電池では容量維持率および容量回
復率が高い。しかし、電池の初期容量はAl2O3の添
加量が0.2モルを越えると急激に減少している。した
がって、特に容量維持率が75%以上で、容量回復率が
80%以上であったAl2O3の添加濃度0.002〜
0.2モルの範囲が望ましいことがわかった。このよう
に正極へのAl2O3の添加は高温保存にともなう容量
低下を抑制する効果がある。
[0032] In the battery without adding Al2O3, the temperature is 60°C.
After storage for 4 weeks, the capacity decreases significantly.
Batteries containing Al2O3 have high capacity retention and capacity recovery rates. However, the initial capacity of the battery decreases rapidly when the amount of Al2O3 added exceeds 0.2 mol. Therefore, in particular, the concentration of Al2O3 added was 0.002 to 0.002 with a capacity retention rate of 75% or more and a capacity recovery rate of 80% or more.
A range of 0.2 moles has been found to be desirable. As described above, the addition of Al2O3 to the positive electrode has the effect of suppressing the capacity decrease due to high temperature storage.

【0033】また、固体酸として、V2O5,IrO2
を用いた場合にも同様の効果が認められた。
[0033] Also, as solid acids, V2O5, IrO2
A similar effect was observed when using .

【0034】検討した固体酸の中では高温保存特性への
効果は無水SiO2の場合に最も顕著であった。
Among the solid acids examined, the effect on high-temperature storage properties was most remarkable in the case of anhydrous SiO2.

【0035】以上のように、LiCoO2で表わされる
複合酸化物を正極活物質とする非水電解液電池において
、正極中に固体酸を添加することにより、高温保存特性
に優れた非水電解液二次電池を得ることができる。
As described above, in a non-aqueous electrolyte battery using a composite oxide represented by LiCoO2 as a positive electrode active material, by adding a solid acid to the positive electrode, a non-aqueous electrolyte battery with excellent high-temperature storage characteristics can be obtained. You can get the next battery.

【0036】さらに、これらの固体酸を混合して添加し
た場合にも同様の効果が認められた。
Furthermore, similar effects were observed when a mixture of these solid acids was added.

【0037】以上の実施例では、電解液として1モル/
lの過塩素酸リチウムを溶解したプロピレンカーボネー
ト溶液を用いた場合の結果であるが、電解液としてこれ
以外に、溶質として6フッ化燐酸リチウムやトリフロロ
メタンスルフォン酸リチウム,ホウフッ化リチウム、溶
媒としてプロピレンカーボネート,エチレンカーボネー
トなどのカーボネート類、ガンマーブチロラクトン,酢
酸メチルなどのエステル類を用いた電解液が良好であっ
た。しかしながら、ジメトキシエタンやテトラヒドロフ
ランなどのエーテル類を使用した場合には、高温保存特
性は悪く、電解液中にルイス酸を添加することにより高
温保存特性の向上は認められなかった。実施例では正極
は4V以上の電圧となるため、エーテル類は酸化される
ためと考えている。
[0037] In the above examples, the electrolyte was 1 mol/
These are the results when using a propylene carbonate solution in which 1 liter of lithium perchlorate was dissolved, but in addition to this as an electrolyte, lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium borofluoride were used as a solute, and as a solvent. Electrolytes using carbonates such as propylene carbonate and ethylene carbonate, and esters such as gamma butyrolactone and methyl acetate were good. However, when ethers such as dimethoxyethane and tetrahydrofuran were used, the high-temperature storage properties were poor, and no improvement in the high-temperature storage properties was observed by adding a Lewis acid to the electrolyte. It is thought that this is because in the example, the positive electrode has a voltage of 4V or more, so the ethers are oxidized.

【0038】[0038]

【発明の効果】以上の実施例の説明で明らかなように本
発明の非水電解液二次電池によれば、リチウムを吸蔵放
出できる負極、LiCoO2で表わされる複合酸化物を
活物質とする正極および非水電解液を有し、前記正極中
に固体酸を添加したものを用いることにより高温保存特
性が良好な非水電解液二次電池を得ることができ、産業
上の意義は大きい。
Effects of the Invention As is clear from the description of the embodiments above, the non-aqueous electrolyte secondary battery of the present invention has a negative electrode capable of intercalating and deintercalating lithium, and a positive electrode having a composite oxide represented by LiCoO2 as an active material. By using a positive electrode having a non-aqueous electrolyte and a solid acid added to the positive electrode, a non-aqueous electrolyte secondary battery with good high-temperature storage characteristics can be obtained, which is of great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の非水電解液二次電池の縦断面
[Fig. 1] A vertical cross-sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】同実施例1の電池の60℃保存にともなう電池
内部抵抗の変化を示したグラフ
[Figure 2] Graph showing changes in battery internal resistance as the battery of Example 1 is stored at 60°C

【図3】同実施例2の電池の60℃保存にともなう電池
内部抵抗の変化を示したグラフ
[Figure 3] Graph showing changes in battery internal resistance as the battery of Example 2 is stored at 60°C

【符号の説明】[Explanation of symbols]

1  正極 2  ケース 3  セパレータ 4  負極 5  封口板 6  ガスケット 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】LiCoO2で表わされる複合酸化物を活
物質とする正極と、リチウムを吸蔵放出することのでき
る負極および非水電解液を有し、前記正極中に固体酸を
添加した非水電解液二次電池。
1. A non-aqueous electrolyte comprising a positive electrode using a composite oxide represented by LiCoO2 as an active material, a negative electrode capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte, with a solid acid added to the positive electrode. Liquid secondary battery.
【請求項2】固体酸が無水SiO2,Al2O3,V2
O5,IrO2から選ばれる少なくとも1つである請求
項1記載の非水電解液二次電池。
Claim 2: The solid acid is anhydrous SiO2, Al2O3, V2
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte is at least one selected from O5 and IrO2.
【請求項3】固体酸の添加量が1モルのLiCoO2に
対して0.002モルから0.2モルである請求項1記
載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the solid acid added is from 0.002 mol to 0.2 mol per 1 mol of LiCoO2.
JP12732091A 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3245886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12732091A JP3245886B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12732091A JP3245886B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04355056A true JPH04355056A (en) 1992-12-09
JP3245886B2 JP3245886B2 (en) 2002-01-15

Family

ID=14957019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12732091A Expired - Fee Related JP3245886B2 (en) 1991-05-30 1991-05-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3245886B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
JP2005093371A (en) * 2003-09-19 2005-04-07 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006261132A (en) * 2006-05-17 2006-09-28 Nichia Chem Ind Ltd Positive electrode active material for lithium secondary battery and its manufacturing method
JP2010003642A (en) * 2008-06-23 2010-01-07 Tdk Corp Electrode, lithium-ion secondary battery, and method for manufacturing electrode
US7799462B2 (en) 2005-10-26 2010-09-21 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
JP2014186837A (en) * 2013-03-22 2014-10-02 Toyota Industries Corp Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2018123671A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471765B2 (en) 2017-11-20 2024-04-22 王子ホールディングス株式会社 Animal bedding and method for disposing of animal bedding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753112B2 (en) 2000-12-27 2004-06-22 Kabushiki Kaisha Toshiba Positive electrode active material and non-aqueous secondary battery using the same
JP2005093371A (en) * 2003-09-19 2005-04-07 Toshiba Corp Nonaqueous electrolyte secondary battery
JP4503964B2 (en) * 2003-09-19 2010-07-14 株式会社東芝 Nonaqueous electrolyte secondary battery
US7799462B2 (en) 2005-10-26 2010-09-21 Lg Chem, Ltd. Mixture for anode of improved adhesive strength and lithium secondary battery containing the same
JP2006261132A (en) * 2006-05-17 2006-09-28 Nichia Chem Ind Ltd Positive electrode active material for lithium secondary battery and its manufacturing method
JP4736943B2 (en) * 2006-05-17 2011-07-27 日亜化学工業株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP2010003642A (en) * 2008-06-23 2010-01-07 Tdk Corp Electrode, lithium-ion secondary battery, and method for manufacturing electrode
JP2014186837A (en) * 2013-03-22 2014-10-02 Toyota Industries Corp Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2018123671A1 (en) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JPWO2018123671A1 (en) * 2016-12-28 2019-10-31 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3245886B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JPH04355065A (en) Nonaqueous electrolyte secondary battery
US20160301104A1 (en) Electrolyte of High-Voltage Lithium-Ion Battery and High-Voltage Lithium-Ion Battery
JPH1027626A (en) Lithium secondary battery
CN108717977A (en) A kind of lithium ion battery with excellent zero volt storage performance
JPH04355057A (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH04355056A (en) Nonaqueous electrolyte secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
CN114583282B (en) Multifunctional electrolyte for absorbing and supplementing lithium agent and decomposing to generate gas and application thereof
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
CN112467218B (en) Lithium metal battery based on copper nitrate electrolyte additive
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH04169076A (en) Nonaqueous electrolyte secondary battery and its manufacture
CN105355965A (en) An electrolyte containing phosphate additives, a preparing method thereof and applications of the electrolyte
JPH04328258A (en) Nonaqueous electrolyte secondary battery
CN109950612A (en) A kind of nonaqueous electrolytic solution and lithium ion battery
JPH04188571A (en) Secondary battery with non-aqueous electrolyte
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH04171674A (en) Nonaqueous-electrolyte secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JPH04169075A (en) Nonaqueous electrolyte battery
JPH04289658A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees