JPH04169076A - Nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH04169076A
JPH04169076A JP2295802A JP29580290A JPH04169076A JP H04169076 A JPH04169076 A JP H04169076A JP 2295802 A JP2295802 A JP 2295802A JP 29580290 A JP29580290 A JP 29580290A JP H04169076 A JPH04169076 A JP H04169076A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
active material
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2295802A
Other languages
Japanese (ja)
Other versions
JPH0770329B2 (en
Inventor
Yasuhiko Mifuji
靖彦 美藤
Sukeyuki Murai
村井 祐之
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2295802A priority Critical patent/JPH0770329B2/en
Publication of JPH04169076A publication Critical patent/JPH04169076A/en
Publication of JPH0770329B2 publication Critical patent/JPH0770329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve a self-discharge characteristic by having a negative electrode composed of lithium, a lithium alloy or a lithium compound; a positive electrode having the active material of the composite oxide of a manganese main body; and a nonaqueous electrolyte; and adding an alkaline metal hydroxide to the positive electrode. CONSTITUTION:A battery is composed of a positive electrode 1, case 2, separator 3, negative electrode 4, sealing plate 5, and gasket 6. The battery has the negative electrode 4 composed of lithium, a lithium alloy, or a lithium compound; the positive electrode 1 having the active material of the composite oxide of a manganese main body represented in LiMn2-XMeXO4 (Me: at least one kind out of Co, Cu, Ni, Ta, and Zn): and a nonaqueous electrolyte and at least one kind of an alkaline metal hydroxide, such as lithium hydroxide LiOH, potassium hydroxide KOH, and sodium hydroxide NaOH, is added to the positive electrode 1. In this case, the alkaline metal hydroxide acts on the restraint of the resolution of an organic electrolyte or on reaction to resolution products. This can improve a self-discharge characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(友 非水電解液二次電池に関し 特に正極活物
質を改良した非水電解液二次電池およびその製造法に関
すa 従来の技術 リチウな リチウム、リチウム化合物を負極とする非水
電解液二次電池は高電圧で高エネルギー密度となること
が期待され 多くの研究が行なわれていも 特へ これら電池の正極活物質としてMnO*やTiS
*がよく検討されていも 最近 タックレイらによりL
iMnaQ4が正極活物質となることが報告されtも(
マテリアル リサーチ ブレチン1983年18巻46
1−472ページ)  LiMnaO4はスピネル構造
をした立方晶の結晶構造であり、電池の正極活物質とし
て用いた場合、電池の放電電圧が4ボルト程度の高い電
圧となり、正極活物質として有望と考えられていもLi
xMn2Q4正極活物質中のX値と開路電位の関係を第
4図に示す。4ボルト付近と2.8ボルト付近の2段の
電位曲線となム これまで、電位曲線の2.8ボルト付近の2段目に着目
し 充電電圧を4ボルト程度とし 放電を2ボルト程度
まで行なう充放電サイクルを行なわせることにより、サ
イクル特性の良好な電池を得る工夫がなされていも しかじ より高エネルギー密度を得るに(L4゜5ボル
トまで充電し3ボルトまで放電する電位曲線のうち1段
目を利用する充放電サイクル、つまりX値が1以下、好
ましくは龜 7以下になるまで充電LA X値が1にな
るまでまたζi1.85になるまで放電する方が有利で
あa しかLX値が0.7以下になるまで充電する1段
目の充放電のサイクル特性は悪く、約50サイクル程度
で放電容量は半分に低下した この劣化の度合cヨ2段
目の電位曲線を用いるサイクルに較べ極めて太きL〜 またX値が0.7を越える程度に充電した場合に(よ 
十分な放電容量を得ることができなl、%そこで、式 
L i xMvM n (*−v+ 04で表わされM
はC01CrX Ni、Ta、Znの中の少な(とも一
種であり、かつ 0.85≦X≦1.15であり、 0
.02≦Y≦0.3である正極活物質を用いる改良がな
され サイクル特性の向上が図られていも 発明が解決しようとする課題 上記の正極活物質を用いることによりサイクル特性の大
幅な向上が実現できる力(充電電圧が4Vを越えるた数
 充電後の電池の自己放電特性が不充分であるという問
題があっtも  非水電解液二次電池の自己放電につい
ては電池内部の微量水分や電解液溶媒の分解が原因とな
り、電池内部抵抗の増大や充放電容量の低下という問題
を引き起こす。特に電池電圧が高くなるほどこれらの現
象は顕著になり、また 高温保存時においてより著しい
ものとなも 本発明はこのような課題を解決するもので、自己放電特
性を向上した非水電解液二次電池およびその製造法を提
供することを目的とす4課題を解決するための手段 この課題を解決するため本発明の非水電解液二次電池お
よびその製造法(友 リチウム リチウム、リチウム化
合物を負楓L IM n 2−XMexoa(Me: 
Co、  Cr、  Ni、  Ta、  Znからな
る少なくとも一種)で表わされるマンガン主体の複合酸
化物を活物質とする正極 および非水電解液を有する非
水電解液二次電池において、前記正極に水酸化リチウム
Li0H1水酸化カリウムKOH1水酸化ナトリウムN
aOHなどのアルカリ金属水酸化物の少なくとも1種を
添加するものであム また アルカリ金属水酸化物の添加量が前記正極活物質
100gあたり0.05〜0. 1モルであることが望
ましく〜 作用 この構成により本発明の非水電解液二次電池およびその
製造法(友 二次電池内部におけるアルカリ金属水酸化
物の働きは明確ではない戟 その作用として(よ 有機
電解液の分解の抑制や分解生成物との反応などを挙げる
ことができも この結果溶媒分解生成物が原因と考えら
れる電池性能の低下を軽減できるものと思われも 実施例 以下本発明の一実施例の非水電解液二次電池およびその
製造法について図面を基にして説明すも(実施例1) 電池の製造は次のようにして行なった すなわち正極活
物質として、L iMn+、5coi、204100g
に導電剤としてアセチレンブラック3.0gを混合し 
さら番!  アルカリ金属水酸化物として水酸化リチウ
ムLi081. 5gを水溶液として添加し混合した 
この混合物を80℃で10時間乾燥し その後結着剤と
してのポリ4弗化エチレン樹脂460gを混合して正極
合剤とした 正極合剤0.1グラムを直径17.5mm
に1トン/Cm’でプレス成型して正極とじ九 製造し
た電池の断面図を第3図に示も 成型した正極lをケー
ス2に置く。正極1の上にセパレータ3としての多孔性
ポリプロピレンフィルムを置い九 負極4として直径1
7.5mm厚さ0.3mmのリチウム板を、ポリプロピ
レン製ガスケット6を付けた封口板5に圧着した 非水
電解液として、 1モル/lの過塩素酸リチウムを溶解
したプロピレンカーボネート溶液を用1.X、これをセ
パレータ3上および負極4上に加え九 その後電池を封
口した上記のようにして得られた電池をAとすム同様の
方法により水酸化カリウムKOHを添加した正極を用い
た電池をK 水酸化ナトリウムNaOHを添加した正極
を用いた電池をα 水酸化カリウムKOHと水酸化ナト
リウムNaOHをそれぞれ0.75g添加した正極を用
いた電池を■水酸化リチウムLi0H1水酸化カリウム
KOH1水酸化ナトリウムNaOHをそれぞれ0.50
g添加した正極を用いた電池をEとする。
[Detailed Description of the Invention] Industrial Application Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and in particular relates to a non-aqueous electrolyte secondary battery with an improved positive electrode active material and a method for manufacturing the same. Non-aqueous electrolyte secondary batteries that use lithium or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and although much research has been conducted on them, MnO* and TiS are particularly important as positive electrode active materials for these batteries.
Although * has been well studied, recently L
It has been reported that iMnaQ4 can be used as a positive electrode active material (
Material Research Bulletin 1983 Volume 18 46
(Page 1-472) LiMnaO4 has a cubic crystal structure with a spinel structure, and when used as a cathode active material in a battery, the battery discharge voltage is as high as about 4 volts, and it is considered to be a promising cathode active material. Teimo Li
FIG. 4 shows the relationship between the X value and the open circuit potential in the xMn2Q4 positive electrode active material. A two-stage potential curve near 4 volts and near 2.8 volts.So far, we have focused on the second stage of the potential curve near 2.8 volts, setting the charging voltage to about 4 volts and discharging to about 2 volts. Efforts have been made to obtain batteries with good cycle characteristics by performing charge-discharge cycles. It is more advantageous to charge and discharge the battery until the X value becomes 1 or less, preferably 7 or less, and then discharge until the X value reaches 1 and ζi1.85. The cycle characteristics of the first stage of charging and discharging, in which the battery is charged to 0.7 or less, were poor, and the discharge capacity decreased by half after about 50 cycles. Extremely thick L ~ Also, when charging to the extent that the X value exceeds 0.7 (
If sufficient discharge capacity cannot be obtained, the formula
L i xMvM n (*−v+ 04 and M
is C01CrX Ni, Ta, and Zn (both are one type, and 0.85≦X≦1.15, 0
.. Improvements have been made using positive electrode active materials with 02≦Y≦0.3, and even though the cycle characteristics have been improved, the problem to be solved by the invention: By using the above-mentioned positive electrode active materials, a significant improvement in cycle characteristics has been realized. There is a problem that the self-discharge characteristics of the battery after charging are insufficient (when the charging voltage exceeds 4 V).The self-discharge of non-aqueous electrolyte secondary batteries is caused by trace amounts of moisture and electrolyte inside the battery. The decomposition of the solvent causes problems such as an increase in battery internal resistance and a decrease in charge/discharge capacity.In particular, these phenomena become more pronounced as the battery voltage increases, and they become more pronounced during high-temperature storage. To solve these problems, the purpose is to provide a non-aqueous electrolyte secondary battery with improved self-discharge characteristics and a method for manufacturing the same. Nonaqueous electrolyte secondary battery of the present invention and its manufacturing method (Me:
In a non-aqueous electrolyte secondary battery having a positive electrode having a manganese-based composite oxide represented by at least one of Co, Cr, Ni, Ta, and Zn as an active material and a non-aqueous electrolyte, the positive electrode is hydrated. Lithium Li0H1 Potassium hydroxide KOH1 Sodium hydroxide N
At least one kind of alkali metal hydroxide such as aOH is added.Also, the amount of the alkali metal hydroxide added is 0.05 to 0.0% per 100 g of the positive electrode active material. The amount of alkali metal hydroxide is preferably 1 mole. Examples of this method include suppression of decomposition of the organic electrolyte and reaction with decomposition products.As a result, it is thought that the deterioration in battery performance that is thought to be caused by solvent decomposition products can be alleviated. An example of a non-aqueous electrolyte secondary battery and its manufacturing method will be explained based on the drawings (Example 1). The battery was manufactured as follows. Namely, as the positive electrode active material, LiMn+, 5coi , 204100g
3.0g of acetylene black was mixed as a conductive agent into
Sara's turn! Lithium hydroxide Li081. as alkali metal hydroxide. 5g was added as an aqueous solution and mixed.
This mixture was dried at 80°C for 10 hours, and then 460 g of polytetrafluoroethylene resin as a binder was mixed to prepare a positive electrode mixture. 0.1 g of the positive electrode mixture was made into a 17.5 mm diameter
A cross-sectional view of the manufactured battery is shown in Figure 3.The molded positive electrode is placed in case 2. A porous polypropylene film as a separator 3 is placed on top of the positive electrode 1. A porous polypropylene film with a diameter of 1 as the negative electrode 4 is placed on top of the positive electrode 1.
A 7.5 mm x 0.3 mm thick lithium plate was pressed onto a sealing plate 5 with a polypropylene gasket 6. As a non-aqueous electrolyte, a propylene carbonate solution in which 1 mol/l of lithium perchlorate was dissolved was used. .. X, add this to the separator 3 and the negative electrode 4, and then seal the battery. The battery obtained as described above is labeled A. A battery using a positive electrode to which potassium hydroxide KOH has been added is prepared by the same method. K A battery using a positive electrode to which sodium hydroxide NaOH has been added α A battery using a positive electrode to which 0.75 g of potassium hydroxide KOH and sodium hydroxide NaOH have been added ■ Lithium hydroxide Li0H1 Potassium hydroxide KOH1 Sodium hydroxide NaOH 0.50 each
A battery using a positive electrode containing g is designated as E.

比較例として、アルカリ金属水酸化物を添加しない電池
として、L iMn+、*co@、204100、アセ
チレンブラック3.0g、ポリ4弗化エチレン樹脂4.
0gを混合して正極合剤として使用し以下、同様に電池
を構成し九 この電池をFとする。
As a comparative example, as a battery to which no alkali metal hydroxide was added, LiMn+, *co@, 204100, acetylene black 3.0g, polytetrafluoroethylene resin 4.
0g was mixed and used as a positive electrode mixture to construct a battery in the same manner. This battery will be referred to as F.

前記電池A−Fの自己放電試験を次のようにして行なっ
九 すなわち上記の方法で得られた電池について、2m
Aの定電流で4.5ボルトまで充電L 3ボルトまで放
電し この充電 放電を10サイクル行なったallサ
イクル目の充電が終わった徽 60℃で4週間貯蔵した
 貯蔵後同じ条件で放電した ここて 自己放電率は次
のように定復すも 自己放電率=(10サイクル目の放電電気量−11サイ
クル目の放電電気量)/10サイクル目の放電電気量 上記各電池の60℃保存にともなう電池内部抵抗の変化
を第2図に示す。
A self-discharge test was conducted on the batteries A-F as follows.
Charged to 4.5 volts with a constant current of A, discharged to 3 volts, performed this charge for 10 cycles. Stored at 60°C for 4 weeks. Discharged under the same conditions after storage. Here. The self-discharge rate stabilizes as follows: Self-discharge rate = (Amount of electricity discharged at the 10th cycle - Amount of electricity discharged at the 11th cycle) / Amount of electricity discharged at the 10th cycle As each of the above batteries is stored at 60℃ Figure 2 shows the change in battery internal resistance.

従来構成の電池Fでは保存直後から急激な電池内部抵抗
の増加が認められ 4週間後には40Ω以上になム一方
  本実施例の電池A−Eにおいては 電池内部抵抗の
増加は小さいものであり、電池Fの115程度であa また 第1表に審ヨ  各電池の4週間後の自己放電率
を示す。
In battery F with the conventional configuration, a rapid increase in battery internal resistance was observed immediately after storage, and after 4 weeks, it rose to 40Ω or more.On the other hand, in batteries A to E of this example, the increase in battery internal resistance was small. Table 1 shows the self-discharge rate of each battery after 4 weeks.

電池Fは非常に大きな自己放電率であるカミ 本実施例
の電池A−Eでは10%以内に抑えられていも このよ
うに正極へアルカリ金属水酸化物を添加することは高温
保存にともなう自己放電を抑制する効果があり、水酸化
カリウムKOH1水酸化ナトリウ入 水酸化リチウムの
いずれを添加した場合にも効果があム さらに これらのアルカリ金属水酸化物を混合して添加
した場合にも同様の効果が認められる。
Battery F has a very high self-discharge rate.Although it was suppressed to within 10% in Batteries A-E of this example, adding an alkali metal hydroxide to the positive electrode in this way increases the self-discharge rate due to high-temperature storage. It has the effect of suppressing hydroxide, and it is effective when adding either potassium hydroxide, KOH, sodium hydroxide, or lithium hydroxide.Furthermore, the same effect is obtained when a mixture of these alkali metal hydroxides is added. is recognized.

表 (実施例2) さらに 正極への水酸化リチウムの添加量について検討
した 第1図に水酸化リチウムの添加量(活物質100gに対
するモル数)とこれらの正極を用いた電池の60t、4
週間保存後の電池内部抵抗との関係を示す。結果から正
極への水酸化リチウムの添加量が0.05モル〜0.1
モルの範囲で電池内部抵抗の増加を抑える効果がみられ
も したがって、正極への水酸化リチウムの添加量は活
物質100gに対して、 0.05モル〜0.1モルの
範囲が望ましし− また 水酸化カリウムK OH,水酸化ナトリウムの場
合にL 同様の結果が得られ 正極活物質としてL i
Mrz、sN is、204、L i Mrz、sCr
@、204、   L  i  M  n  +、*T
  a  1.2 04、   LiMn  1、−Z
n・、204Coを用いた場合にも同じ効果が認められ
九 以上のようi:x  L i M n 1.aCO@、
204を正極活物質とする非水電解質電池において、正
極中にアルカリ金属水酸化物を添加することにより、自
己放電特性の優れた非水電解質二次電池を得ることがで
きも 以上の実施例では 電解液として1モル/lの過塩素酸
リチウムを溶解したプロピレンカーボネート溶液を用い
た場合の結果である力t 電解液としてこれ以外番! 
溶質として過塩素酸9チウム6フツ化燐酸リチウムやト
リフロロメタンスルフォン酸すチウへ ホウフッ化リチ
ウ八 溶媒としてプロピレンカーボネート、エチレンカ
ーボネートなどのカーボネート類 ガンマ−ブチロラク
トン、酢酸メチルなどのエステル類を用いた電解液が良
好であった しかしなか収 ジメトキシエタンやテトラ
ヒドロフランなどのエーテル類を使用した場合に(よ 
自己放電特性は悪く、正極中にアルカリ金属水酸化物を
添加することによる自己放電特性の向上は認められず、
本実施例で示したプロピレンカーボネートを用いた場合
の約2倍であっ九 本実施例では正極は4V以上の電圧
となるたべ エーテル類は酸化されるためと考えていも
発明の効果 以上の実施例の説明で明らかなように本発明の非水電解
液二次電池およびその製造法によれはリチウム リチウ
ム、リチウム化合物を負楓 L iMnt−xMe*o
n (Me:  Co、Cr、Ni、Ta、Znの中の
少なくとも一種)で表わされるマンガン主体の複合酸化
物を活物質とする正極 および非水電解液を有し 前記
正極にアルカリ金属水酸化物を正極活物質100gあた
り0゜05〜0.1モル添加したことにより、自己放電
特性が良好な非水電解液二次電池を得ることができ、産
業上の意義は太き(〜
Table (Example 2) Figure 1 further examines the amount of lithium hydroxide added to the positive electrode.
The relationship between the internal resistance of the battery and the battery after storage for a week is shown. From the results, the amount of lithium hydroxide added to the positive electrode is 0.05 mol to 0.1 mol.
Although the effect of suppressing the increase in battery internal resistance is observed in the molar range, the amount of lithium hydroxide added to the positive electrode is preferably in the range of 0.05 mol to 0.1 mol per 100 g of active material. - Similar results were obtained with potassium hydroxide (KOH) and sodium hydroxide (Li as the positive electrode active material).
Mrz, sN is, 204, L i Mrz, sCr
@, 204, L i M n +, *T
a 1.2 04, LiMn 1, -Z
The same effect was observed when using n., 204Co, and the result was 9 or more i:x L i M n 1. aCO@,
In a non-aqueous electrolyte battery using 204 as the positive electrode active material, by adding an alkali metal hydroxide to the positive electrode, a non-aqueous electrolyte secondary battery with excellent self-discharge characteristics can be obtained. The force t is the result when a propylene carbonate solution containing 1 mol/l of lithium perchlorate is used as the electrolyte.
Electrolysis using nine tium perchlorate, lithium hexafluorophosphate, and trifluoromethanesulfonate as a solute, lithium fluoroborate, carbonates such as propylene carbonate and ethylene carbonate, and esters such as gamma-butyrolactone and methyl acetate as a solvent. The liquid was good, but the yield was poor.When using ethers such as dimethoxyethane and tetrahydrofuran (
The self-discharge characteristics were poor, and no improvement in self-discharge characteristics was observed by adding alkali metal hydroxide to the positive electrode.
This is about twice as high as when using propylene carbonate as shown in this example.9 In this example, the positive electrode has a voltage of 4 V or more. As is clear from the explanation, the non-aqueous electrolyte secondary battery of the present invention and the method for manufacturing the same require that lithium, lithium, and lithium compounds be used in a negative manner.
a positive electrode having a manganese-based composite oxide represented by n (Me: at least one of Co, Cr, Ni, Ta, and Zn) as an active material; and a non-aqueous electrolyte, the positive electrode containing an alkali metal hydroxide. By adding 0.05 to 0.1 mol of per 100 g of positive electrode active material, a non-aqueous electrolyte secondary battery with good self-discharge characteristics can be obtained, which has great industrial significance (~

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例および従来の非水電解液二次
電池およびその製造法の水酸化リチウムの添加量(正極
活物質100gあたりのモル数)と、これらの正極を用
いた電池の60\ 4週間保存後の電池内部抵抗との関
係を示すグラフ、第2図は同電池の60℃保存にともな
う電池内部抵抗の変化を示すグラフ、第3図は同試験に
用いた電池の縦断置皿 第4図は同LixMnaOn正
極活物質の活物質中のX値と開路電位の関係を示すグラ
フであム 第1図 t; ot−t  4 fin t ((71// 100/ −LIl’ln、1,1CO
a、A冨2図 初期   /     Z     J     4鐸
8n間(還) 篇3図
Figure 1 shows the amount of lithium hydroxide added (number of moles per 100 g of positive electrode active material) of an embodiment of the present invention and a conventional non-aqueous electrolyte secondary battery and its manufacturing method, and batteries using these positive electrodes. Figure 2 is a graph showing the change in battery internal resistance as the battery was stored at 60°C, Figure 3 is a graph showing the relationship between the battery internal resistance after storage for 4 weeks, and Figure 3 is the graph showing the relationship between the battery internal resistance and the battery used in the test. Figure 4 is a graph showing the relationship between the X value in the active material and the open circuit potential of the same LixMnaOn cathode active material. 'ln,1,1CO
a, A-tou 2 figure early / Z J 4-taku 8n (return) version 3 figure

Claims (3)

【特許請求の範囲】[Claims] (1)リチウム、リチウム合金またはリチウム化合物を
負極、LiMn_2_−_xMe_xO_4(Me:C
o、Cr、Ni、Ta、Znの中の少なくとも一種)で
表わされるマンガン主体の複合酸化物を活物質とする正
極、および非水電解液を有し、前記正極にアルカリ金属
水酸化物を添加した非水電解液二次電池。
(1) Lithium, lithium alloy or lithium compound is used as a negative electrode, LiMn_2_-_xMe_xO_4(Me:C
a positive electrode whose active material is a manganese-based composite oxide represented by at least one of O, Cr, Ni, Ta, and Zn), and a non-aqueous electrolyte, and an alkali metal hydroxide is added to the positive electrode. Non-aqueous electrolyte secondary battery.
(2)アルカリ金属水酸化物の添加量が正極活物質10
0gあたり0.05〜0.1モルである請求項1記載の
非水電解液二次電池。
(2) The amount of alkali metal hydroxide added to the positive electrode active material is 10
The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount is 0.05 to 0.1 mol per 0 g.
(3)リムウム、リチウム合金またはリチウム化合物を
負極、LiMn_2_−_xMe_xO_4(Me:C
o、Cr、Ni、Ta、Znの中の少なくとも一種)で
表わされるマンガン主体の複合酸化物を活物質とする正
極、および非水電解液を有し、前記正極にアルカリ金属
水酸化物を添加した非水電解液二次電池の製造法。
(3) LiMn_2_-_xMe_xO_4 (Me:C
a positive electrode whose active material is a manganese-based composite oxide represented by at least one of O, Cr, Ni, Ta, and Zn), and a non-aqueous electrolyte, and an alkali metal hydroxide is added to the positive electrode. A method for manufacturing a non-aqueous electrolyte secondary battery.
JP2295802A 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0770329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295802A JPH0770329B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295802A JPH0770329B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04169076A true JPH04169076A (en) 1992-06-17
JPH0770329B2 JPH0770329B2 (en) 1995-07-31

Family

ID=17825357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295802A Expired - Fee Related JPH0770329B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0770329B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778629A1 (en) * 1995-12-06 1997-06-11 Kerr-Mcgee Chemical Corporation Lithium manganese oxide compound and method of preparation
JP2002298845A (en) * 2001-03-30 2002-10-11 Sony Corp Positive electrode active material and method for synthesizing the same, and battery and method of manufacturing the same
KR100378012B1 (en) * 2000-11-09 2003-03-29 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP2013534031A (en) * 2010-06-30 2013-08-29 ベリー スモール パーティクル カンパニー リミテッド Improved adhesion of active electrode materials to metal electrode substrates
US8609283B2 (en) 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116330U (en) * 1984-01-10 1985-08-06 原ヘルス工業株式会社 health bath equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254865A (en) * 1988-08-20 1990-02-23 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolytic secondary battery and positive electrode active material used therefor
JPH02199770A (en) * 1989-01-27 1990-08-08 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254865A (en) * 1988-08-20 1990-02-23 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolytic secondary battery and positive electrode active material used therefor
JPH02199770A (en) * 1989-01-27 1990-08-08 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778629A1 (en) * 1995-12-06 1997-06-11 Kerr-Mcgee Chemical Corporation Lithium manganese oxide compound and method of preparation
KR100378012B1 (en) * 2000-11-09 2003-03-29 삼성에스디아이 주식회사 Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP2002298845A (en) * 2001-03-30 2002-10-11 Sony Corp Positive electrode active material and method for synthesizing the same, and battery and method of manufacturing the same
US9105926B2 (en) 2009-07-24 2015-08-11 Sony Corporation Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
US8609283B2 (en) 2009-09-09 2013-12-17 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US8808920B2 (en) 2009-09-09 2014-08-19 Sony Corporation Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP2013534031A (en) * 2010-06-30 2013-08-29 ベリー スモール パーティクル カンパニー リミテッド Improved adhesion of active electrode materials to metal electrode substrates

Also Published As

Publication number Publication date
JPH0770329B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JPH04355065A (en) Nonaqueous electrolyte secondary battery
KR100332269B1 (en) Non-aqueous electrolyte secondary batteries
JPS62290072A (en) Organic electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH04169076A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3232636B2 (en) Non-aqueous electrolyte battery
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2015037018A (en) Sealed type nonaqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JPH04188571A (en) Secondary battery with non-aqueous electrolyte
JPH0495362A (en) Nonaqueous electrolytic battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPH0558224B2 (en)
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2000021445A (en) Nonaqueous electrolyte secondary battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees