JP2822659B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2822659B2
JP2822659B2 JP2295803A JP29580390A JP2822659B2 JP 2822659 B2 JP2822659 B2 JP 2822659B2 JP 2295803 A JP2295803 A JP 2295803A JP 29580390 A JP29580390 A JP 29580390A JP 2822659 B2 JP2822659 B2 JP 2822659B2
Authority
JP
Japan
Prior art keywords
battery
separator
secondary battery
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2295803A
Other languages
Japanese (ja)
Other versions
JPH04169077A (en
Inventor
靖彦 美藤
祐之 村井
修二 伊藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2295803A priority Critical patent/JP2822659B2/en
Publication of JPH04169077A publication Critical patent/JPH04169077A/en
Application granted granted Critical
Publication of JP2822659B2 publication Critical patent/JP2822659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池に関し、特にセパレー
タを改良した非水電解二次電池に関する。
Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved separator.

従来の技術 リチウム、リチウム合金またはリチウム化合物を負極
とする非水電解液二次電池は高電圧で高エネルギー密度
となることが期待され、多くの研究が行なわれている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium, a lithium alloy or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and much research has been conducted.

特に、これら電池の正極活物質としてMnO2やTiS2がよ
く検討されている。最近、タックレイらによりLiMn2O4
が正極活物質となることが報告された。(マテリアル
リサーチ ブレチン1983年18巻461−472ページ)LiMn2O
4はスピネル構造をした立方晶の結晶構造であり、電池
の正極活物質として用いた場合、電池の放電電圧は4ボ
ルト程度の高い電圧となり、正極活物質として有望と考
えられている。
In particular, MnO 2 and TiS 2 are often studied as the positive electrode active material of these batteries. Recently, Tuckray et al. Reported that LiMn 2 O 4
Was reported to be a positive electrode active material. (material
Research Bulletin 1983, 18: 461-472) LiMn 2 O
Reference numeral 4 denotes a cubic crystal structure having a spinel structure. When used as a positive electrode active material of a battery, the discharge voltage of the battery is as high as about 4 volts, and is considered to be promising as a positive electrode active material.

LiXMn2O4正極活物質のX値と開路電位の関係を第4図
に示す。4ボルト付近と2.8ボルト付近の2段の電位曲
線となる。
FIG. 4 shows the relationship between the X value of the Li X Mn 2 O 4 positive electrode active material and the open circuit potential. There are two potential curves near 4 volts and 2.8 volts.

ここで、高エネルギー密度を得るには、4.5ボルトま
で充電し3ボルトまで放電する電位曲線のうち1段目を
利用する充放電サイクル、つまりX値が1以下、好まし
くは0.7以下になるまで充電し、X値が1になるまでま
たは、1.85になるまで放電することが望まれる。しか
し、X値が0.7以下になるまで充電する1段目の充放電
のサイクル特性は悪く、約50サイクル程度で放電容量は
半分に低下してしまう。
Here, in order to obtain a high energy density, a charge / discharge cycle using the first stage of a potential curve of charging to 4.5 volts and discharging to 3 volts, that is, charging until the X value becomes 1 or less, preferably 0.7 or less. Then, it is desired to discharge until the X value becomes 1 or 1.85. However, the charge / discharge cycle characteristics of the first stage of charging until the X value becomes 0.7 or less are poor, and the discharge capacity is reduced to half in about 50 cycles.

またX値が0.7を越える程度に充電した場合には、十
分な放電容量を得ることができない。
In addition, when the battery is charged so that the X value exceeds 0.7, a sufficient discharge capacity cannot be obtained.

そこで、式LixMYMn(2-Y)O4で表わされ、MはCo、Cr、
Ni、Ta、Znの中の少なくとも一種であり、かつ0.85≦X
≦1.15であり、0.02≦Y≦0.3である正極活物質を用い
る改良がなされ、サイクル特性の向上が図られている。
Therefore, it is represented by the formula Li x M Y Mn (2-Y) O 4 , where M is Co, Cr,
At least one of Ni, Ta and Zn, and 0.85 ≦ X
≤ 1.15 and improvement using a positive electrode active material satisfying 0.02 ≤ Y ≤ 0.3 has been made to improve cycle characteristics.

発明が解決しようとする課題 上記の正極活物質を用いることによりサイクル特性の
大幅な向上が実現できるが、充電電圧が4Vを越えるた
め、充電後の電池の自己放電特性が不充分であるという
問題があった。非水電解液二次電池の自己放電について
は電池内部の微量水分や電解液溶媒の分解が原因とな
り、電池内部抵抗の増大や充放電容量の低下という問題
を引き起こす。特に電池電圧が高くなるほどこれらの現
象は顕著になり、また、高温保持時においてより著しい
ものとなる。
Problems to be Solved by the Invention The use of the above-mentioned positive electrode active material can greatly improve the cycle characteristics, but since the charging voltage exceeds 4 V, the self-discharge characteristics of the battery after charging are insufficient. was there. The self-discharge of the non-aqueous electrolyte secondary battery is caused by the decomposition of a trace amount of water and the electrolyte solvent inside the battery, which causes problems such as an increase in battery internal resistance and a decrease in charge / discharge capacity. In particular, these phenomena become more remarkable as the battery voltage becomes higher, and become more remarkable when the battery is kept at a high temperature.

すなわち、4V級のリチウム二次電池においては、充電
時により高い電圧となるため、電解液溶媒の分解および
電極活物質材料と電解液との反応性など電気科学的な活
性度が高い状態にさらされる。したがって、セパレータ
を始めとする従来の構成材料をただちに4V級のリチウム
二次電池に適応できない恐れがある。
That is, since a higher voltage is applied to a 4V-class lithium secondary battery during charging, it is exposed to high electrochemical activity such as decomposition of the electrolyte solvent and reactivity between the electrode active material and the electrolyte. It is. Therefore, there is a possibility that conventional constituent materials such as a separator cannot be immediately applied to a 4V-class lithium secondary battery.

このように検討する必要のある従来の構成材料の1つ
にセパレータがあると考えた。セパレータは非水電解液
二次電池の場合、水分を含まず有機溶媒に侵されず、さ
らに、電池使用時に必要な電気特性を満足し、安価であ
ることが求められる。これらの要求事項を備えたものと
して主にポリオレフィン系樹脂が用いられている。
It was considered that a separator is one of the conventional constituent materials that need to be examined in this way. In the case of a non-aqueous electrolyte secondary battery, the separator is required to be inexpensive, not containing water, not being eroded by an organic solvent, and satisfying electric characteristics required when the battery is used. Polyolefin-based resins are mainly used to satisfy these requirements.

このようにセパレータ材料に関してもリチウム二次電
池の性能向上に寄与する努力がなされ、公称電圧3Vを示
すリチウム二次電池における自己放電性能は非常に優れ
たものとなっている。しかし、本発明で取り扱う4V級の
リチウム二次電池においては、その特性改良の余地があ
ると考えられる。
In this way, efforts have been made to improve the performance of the lithium secondary battery with respect to the separator material, and the self-discharge performance of the lithium secondary battery exhibiting a nominal voltage of 3 V has been extremely excellent. However, it is considered that there is room for improvement in the characteristics of the 4V-class lithium secondary battery handled in the present invention.

電池内部へ持ち込まれる水分については、電解液の蒸
留処理を始めとする精製および正極活物質の乾燥処理な
どにより電池内部への水分の持込みを抑える努力がなさ
れている。しかし、充放電を繰り返し行なう必要のある
二次電池の場合、特に、充電電圧が4Vを越える場合には
これら水分の除去だけでは良好な自己放電特性を得るこ
とができない。
With respect to the moisture brought into the battery, efforts have been made to suppress the introduction of moisture into the battery by purifying the electrolyte, such as distillation, and drying the positive electrode active material. However, in the case of a secondary battery that needs to be repeatedly charged and discharged, particularly when the charging voltage exceeds 4 V, good self-discharge characteristics cannot be obtained only by removing the water.

正極活物質と電解液溶媒との反応や、この反応により
生成した物質と負極リチウムとの反応が起こりやすくな
り、電池の性能低下が生じると考えられる。本発明はこ
のような課題を解決するもので、自己放電特性を向上し
た非水電解液二次電池およびその製造法を提供すること
を目的とする。
It is considered that the reaction between the positive electrode active material and the electrolyte solution solvent and the reaction between the substance generated by this reaction and the negative electrode lithium are likely to occur, and that the performance of the battery is reduced. An object of the present invention is to solve such a problem and to provide a non-aqueous electrolyte secondary battery having improved self-discharge characteristics and a method for manufacturing the same.

課題を解決するための手段 この課題を解決するため本発明の非水電解液二次電池
は、リチウム、リチウム合金またはリチウム化合物を負
極、LiMn2-XMeXO4(Me:Co、Cr、Ni、Ta、Znの中の少な
くとも一種)で表わされる複合酸化物を活物質とする正
極、リチウム塩を含む非水電解液およびセパレータを有
する非水電解液二次電池において、前記セパレータをあ
らかじめアルカリ水溶液に浸漬し、乾燥したものを用い
るものである。
Means for Solving the Problems In order to solve this problem, the nonaqueous electrolyte secondary battery of the present invention comprises lithium, a lithium alloy or a lithium compound as a negative electrode, LiMn 2-X Me X O 4 (Me: Co, Cr, A non-aqueous electrolyte secondary battery having a positive electrode, a non-aqueous electrolyte containing a lithium salt, and a separator using a composite oxide represented by at least one of Ni, Ta, and Zn) as an active material. It is immersed in an aqueous solution and dried.

また、前記セパレータ材料はポリオレフィン系樹脂で
あることが望ましい。
Preferably, the separator material is a polyolefin-based resin.

作用 この構成により本発明の非水電解液二次電池およびそ
の製造法は、自己放電特性に優れた4.0V級の非水電解液
二次電池を得ることができる。非水電解液二次電池内部
におけるセパレータのアルカリ処理の働きは明確ではな
いが、その作用としては、有機電解液の分解の抑制や分
解生成物との反応などを挙げることができる。この結
果、溶媒分解生成物が原因と考えられる電池性能の低下
を軽減できるものと思われる。
Effects With this configuration, the nonaqueous electrolyte secondary battery of the present invention and the method for producing the same can provide a 4.0 V class nonaqueous electrolyte secondary battery having excellent self-discharge characteristics. The function of the alkali treatment of the separator inside the non-aqueous electrolyte secondary battery is not clear, but examples of the function include suppression of decomposition of the organic electrolyte and reaction with decomposition products. As a result, it is considered that a decrease in battery performance attributed to a solvent decomposition product can be reduced.

実施例 以下本発明の一実施例の非水電解液二次電池およびそ
の製造法について図面を基にして説明する。
EXAMPLES Hereinafter, a non-aqueous electrolyte secondary battery according to an example of the present invention and a method for manufacturing the same will be described with reference to the drawings.

(実施例1) 電池の製造を次のようにして行なう。すなわち正極活
物質として、LiMn1.8Co0.2O4100gに導電剤としてアセチ
レンブラック3.0gを混合し、この混合物を80℃で10時間
乾燥し、その後、結着剤としてのポリ4弗化エチレン樹
脂4.0gを混合して正極合剤とした。正極合剤0.1グラム
を直径17.5mmに1トン/cm2でプレス成型して、正極とし
た。製造した電池の断面図を第3図に示す。成型した正
極1をケース2に置く。
(Example 1) A battery is manufactured as follows. That is, 3.0 g of acetylene black was mixed as a conductive agent with 100 g of LiMn 1.8 Co 0.2 O 4 as a positive electrode active material, and the mixture was dried at 80 ° C. for 10 hours. Thereafter, a polytetrafluoroethylene resin 4.0 as a binder was used. g was mixed to obtain a positive electrode mixture. 0.1 g of the positive electrode mixture was press-molded at 1 ton / cm 2 to a diameter of 17.5 mm to obtain a positive electrode. FIG. 3 shows a cross-sectional view of the manufactured battery. The molded positive electrode 1 is placed in the case 2.

次に、セパレータとして多孔性ポリプロピレンフィル
ムをあらかじめ、アルカリ金属水酸化物として水酸化リ
チウムLiOHの0.15モル/l濃度の水溶液中に30℃で1時間
浸漬した。その後取り出し、イオン交換水で十分に水洗
し80℃で10時間乾燥させた。
Next, a porous polypropylene film as a separator was immersed in advance in a 0.15 mol / l aqueous solution of lithium hydroxide LiOH as an alkali metal hydroxide at 30 ° C. for 1 hour. Thereafter, it was taken out, sufficiently washed with ion-exchanged water, and dried at 80 ° C. for 10 hours.

このようにして得られたセパレータ3を正極1の上に
置いた。負極4として直径17,5mm厚さ0.3mmのリチウム
板を、ポリプロピレン製ガスケット6を付けた封口板5
に圧着した。非水電解液として、1モル/lの過塩素酸リ
チウムを溶解したプロピレンカーボネート溶液を用い、
これをセパレータ3上および負極4上に加えた。その後
電池を封口した。上記のようにして得られた電池をAと
する。
The separator 3 thus obtained was placed on the positive electrode 1. A lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm as a negative electrode 4 and a sealing plate 5 with a polypropylene gasket 6 attached
Was crimped. As a non-aqueous electrolyte, using a propylene carbonate solution in which 1 mol / l lithium perchlorate is dissolved,
This was added on the separator 3 and the negative electrode 4. Thereafter, the battery was sealed. The battery obtained as described above is designated as A.

同様の方法により水酸化カリウムKOH水溶液に浸漬、
乾燥したセパレータを用いた電池をB、水酸化ナトリウ
ムNaOH水溶液に浸漬、乾燥したセパレータを用いた電池
をC、水酸化カリウムKOHと水酸化ナトリウムNaOHの混
合水溶液(0.15モル/l濃度)に浸漬、乾燥したセパレー
タを用いた電池をD、水酸化リチウムLiOH、水酸化カリ
ウムKOH、水酸化ナトリウムNAOHの混合水溶液(0.15モ
ル/l濃度)に浸漬、乾燥したセパレータを用いた電池を
Eとする。
Immerse in potassium hydroxide KOH aqueous solution by the same method,
B, the battery using the dried separator is immersed in a sodium hydroxide NaOH aqueous solution, and the battery using the dried separator is C, immersed in a mixed aqueous solution (0.15 mol / l concentration) of potassium hydroxide KOH and sodium hydroxide NaOH. The battery using the dried separator is referred to as D, and the battery using the separator immersed in a mixed aqueous solution (0.15 mol / l concentration) of lithium hydroxide LiOH, potassium hydroxide KOH, and sodium hydroxide NAOH is referred to as E.

比較例として、セパレータをアルカリ水溶液に浸漬せ
ず、乾燥のみ行なった場合の電池を構成した。この電池
をFとする。
As a comparative example, a battery was constructed in which only the separator was dried without being immersed in an aqueous alkaline solution. This battery is designated as F.

電池の自己放電試験を次の方法で行なう。すなわち上
記の方法で得られた電池について、2mAの定電流で4.5ボ
ルトまで充電し、3ボルトまで放電し、この充電、放電
を10サイクル行なった後、1サイクル目の充電が終わっ
た後、45℃で4週間貯蔵した。貯蔵後同じ条件で放電し
た。ここで、自己放電率は次のように定義した。
A self-discharge test of the battery is performed by the following method. That is, the battery obtained by the above method was charged to 4.5 volts at a constant current of 2 mA, discharged to 3 volts, and this charge and discharge were performed 10 cycles. Stored at 4 ° C. for 4 weeks. After storage, the battery was discharged under the same conditions. Here, the self-discharge rate was defined as follows.

自己放電率=(10サイクル目の放電電気量−11サイク
ル目の放電電気量)/10サイクル目の放電電気量 上記各電池の45℃保存にともなう電池内部抵抗の変化
を第1図に示す。
Self-discharge rate = (discharged electricity amount at the 10th cycle−discharged electricity amount at the 11th cycle) / 10 discharge electricity amounts at the 10th cycle FIG. 1 shows a change in internal resistance of each of the above batteries with storage at 45 ° C.

従来構成の電池Fでは保存直後から急激な電池内部抵
抗の増加が認められ、4週間後には40Ω以上になる。一
方、本実施例の電池A〜Eにおいては、電池内部抵抗の
増加は非常に小さいものである。
In the battery F of the conventional configuration, a sudden increase in the battery internal resistance is recognized immediately after storage, and the resistance becomes 40 Ω or more after 4 weeks. On the other hand, in the batteries A to E of this embodiment, the increase in the battery internal resistance is very small.

また、第1表には、各電池の4週間後の自己放電率を
示す。
Table 1 shows the self-discharge rate of each battery after 4 weeks.

電池Fは非常に大きな自己放電率であるが、本実施例
の電池A〜Eでは良好な自己放電特性を示す。このよう
にセパレータとしてあらかじめアルカリ水溶液に浸漬
し、乾燥したものを用いることは高温保存にともなう自
己放電を抑制する効果があり、アルカリ水溶液としては
水酸化カリウムKOH、水酸化ナトリウム、水酸化リチウ
ムのいずれを用いた場合にも効果がある。
The battery F has a very large self-discharge rate, but the batteries A to E of the present example show good self-discharge characteristics. The use of a separator immersed in an alkaline aqueous solution in advance and dried as described above has an effect of suppressing self-discharge accompanying high-temperature storage.As the alkaline aqueous solution, any of potassium hydroxide KOH, sodium hydroxide, and lithium hydroxide is used. It is also effective when using.

さらに、これらの混合水溶液を用いた場合にも同様の
効果が認められる。
Further, the same effect can be obtained when these mixed aqueous solutions are used.

(実施例2) セパレータとしてポリエチレン製不織布を用いた。こ
れをあらかじめ、アルカリ金属水酸化物として水酸化リ
チウムLiOHの0.15モル/l濃度の水溶液中に30℃で1時間
浸漬した。その後取り出し、イオン交換水にて充分に水
洗し、80℃で10時間乾燥させた。
(Example 2) A polyethylene nonwoven fabric was used as a separator. This was previously immersed in a 0.15 mol / l aqueous solution of lithium hydroxide LiOH as an alkali metal hydroxide at 30 ° C. for 1 hour. Thereafter, it was taken out, thoroughly washed with ion-exchanged water, and dried at 80 ° C. for 10 hours.

正極活物質としては、LiMn1.8Ni0.2O4100gを用いた。
この活物質に導電剤としてアセチレンブラック3.0gを混
合し、この混合物を80℃で10時間乾燥し、その後結着剤
としてのポリ4弗化エチレン樹脂4.0gを混合して正極合
剤とした。正極合剤0.1グラムを直径17.5mmに1トン/cm
2でプレス成型して正極とした。製造した電池の断面図
を第3図に示す。成型した正極1をケース2に置く。
As the positive electrode active material, 100 g of LiMn 1.8 Ni 0.2 O 4 was used.
3.0 g of acetylene black as a conductive agent was mixed with the active material, and the mixture was dried at 80 ° C. for 10 hours. Thereafter, 4.0 g of polytetrafluoroethylene resin as a binder was mixed to obtain a positive electrode mixture. 0.1 ton / cm of positive electrode mixture 0.1 g to 17.5 mm in diameter
Press molding was performed in 2 to obtain a positive electrode. FIG. 3 shows a cross-sectional view of the manufactured battery. The molded positive electrode 1 is placed in the case 2.

上記のようにして得られたセパレータ3を正極1の上
に置いた。負極4として直径17,5mm厚さ0.3mmのリチウ
ム板を、ポリプロピレン製ガスケット6を付けた封口板
5に圧着した。非水電解液として、1モル/lの過塩素酸
リチウムを溶解したプロピレンカーボネート溶液を用
い、これをセパレータ3上および負極4上に加えた。そ
の後電池を封口した。上記のようにして得られた電池を
1とする。
The separator 3 obtained as described above was placed on the positive electrode 1. A lithium plate having a diameter of 17.5 mm and a thickness of 0.3 mm as the negative electrode 4 was pressure-bonded to a sealing plate 5 having a gasket 6 made of polypropylene. A propylene carbonate solution in which 1 mol / l of lithium perchlorate was dissolved was used as the non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. Thereafter, the battery was sealed. The battery obtained as described above is designated as 1.

同様の方法により水酸化カリウムKOH水溶液に浸漬、
乾燥したセパレータを用いた電池を2、水酸化ナトリウ
ムNaOH水溶液に浸漬、乾燥したセパレータを用いた電池
を3、水酸化カリウムKOHと水酸化ナトリウムNaOHの混
合水溶液(0.15モル/l濃度)に浸漬、乾燥したセパレー
タを用いた電池を4、水酸化リチウムLiOH、水酸化カリ
ウムKOH、水酸化ナトリウムNaOHの混合水溶液(0.15モ
ル/l濃度)に浸漬、乾燥したセパレータを用いた電池を
5とする。
Immerse in potassium hydroxide KOH aqueous solution by the same method,
The battery using the dried separator was immersed in an aqueous solution of sodium hydroxide, and the battery using the dried separator was immersed in an aqueous solution (0.15 mol / l concentration) of potassium hydroxide KOH and sodium hydroxide. The battery using the dried separator is designated as 4, and the battery using the separator which is immersed in a mixed aqueous solution (0.15 mol / l concentration) of lithium hydroxide LiOH, potassium hydroxide KOH and sodium hydroxide NaOH is designated as 5.

比較例として、セパレータをアルカリ水溶液に浸漬せ
ず、乾燥のみ行なった場合の電池を構成した。この電池
を6とする。
As a comparative example, a battery was constructed in which only the separator was dried without being immersed in an aqueous alkaline solution. This battery is designated as 6.

電池の自己放電試験を実施例1と同様な条件で行なっ
た。
A self-discharge test of the battery was performed under the same conditions as in Example 1.

上記各電池の45℃保存にともなう電池内部抵抗の変化
を第2図に示す。
FIG. 2 shows the change in the internal resistance of the above-mentioned batteries during storage at 45 ° C.

従来構成の電池6では電池内部抵抗の増加が顕著であ
り、4週間後には40Ω以上になる。一方、本実施例の電
池1〜5においては、電池内部抵抗の増加は非常に小さ
く、劣化の小さい電池である。
In the battery 6 of the conventional configuration, the internal resistance of the battery is remarkably increased, and becomes 4Ω or more after 4 weeks. On the other hand, in the batteries 1 to 5 of the present embodiment, the increase in the battery internal resistance is very small, and the battery has a small deterioration.

また、第2表には、各電池の4週間後の自己放電率を
示す。
Table 2 shows the self-discharge rate of each battery after 4 weeks.

電池6は非常に大きな自己放電率であるが、本実施例
の電池1〜5では良好な自己放電特性を示す。
The battery 6 has a very high self-discharge rate, but the batteries 1 to 5 of the present example show good self-discharge characteristics.

また、正極活物質としてLiMn1.8Ni0.2O4、LiMn1.8Cr
0.2O4、LiMn1.8Ta0.2O4、LiMn1.8Zn0.2O4Coを用いた場
合にも同じ効果が認められた。
LiMn 1.8 Ni 0.2 O 4 , LiMn 1.8 Cr
The same effect was observed when using 0.2 O 4 , LiMn 1.8 Ta 0.2 O 4 , and LiMn 1.8 Zn 0.2 O 4 Co.

さらに、上記の実施例ではセパレータとして多孔性ポ
リプロピレン、またはポリエチレン不織布を示したが、
多孔性ポリエチレンおよび不織布ポリプロピレンを用い
た場合にも同様の効果が有ることは言うまでもない。
Further, in the above examples, porous polypropylene or polyethylene non-woven fabric was shown as the separator,
Needless to say, the same effect is obtained when porous polyethylene and non-woven polypropylene are used.

発明の効果 以上の実施例の説明で明らかなように本発明の非水電
解液二次電池およびその製造法によれば、リチウム、リ
チウム合金またはリチウム化合物を負極、LiMn2-XMeXO4
(Me:Co、Cr、Ni、Ta、Znの中の少なくとも一種)で表
わされる複合酸化物を活物質とする正極、リチウム塩を
含む非水電解液、およびセパレータを有し、前記セパレ
ータとしてあらかじめアルカリ水溶液に浸漬し、乾燥し
たものを用いることにより自己放電特性が良好な非水電
解液二次電池を得ることができ、産業上の意義は大き
い。
Effects of the Invention As is clear from the above description of the examples, according to the nonaqueous electrolyte secondary battery of the present invention and the method for producing the same, lithium, a lithium alloy or a lithium compound is used as a negative electrode, LiMn 2-X Me X O 4
(Me: at least one of Co, Cr, Ni, Ta, and Zn) having a positive electrode having a composite oxide represented by the active material, a nonaqueous electrolyte containing a lithium salt, and a separator. A non-aqueous electrolyte secondary battery having good self-discharge characteristics can be obtained by using a battery immersed in an alkaline aqueous solution and dried, and has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例および従来例の非水電解液二
次電池およびその製造法の、正極にLiMn1.8Co0.2O4を用
いた電池の45℃保存にともなう電池の内部抵抗の変化を
示したグラフ、第2図は同正極にLiMn1.8Ni0.2O4を用い
た電池の45℃保存にともなう電池の内部抵抗の変化を示
したグラフ、第3図は同試験に用いた電池の縦断面図、
第4図は同LiXMn2O4正極活物質中のX値と開路電圧の関
係を示すグラフである。
FIG. 1 shows the internal resistance of a non-aqueous electrolyte secondary battery according to one embodiment of the present invention and a conventional example and a method of manufacturing the same, in which the battery using LiMn 1.8 Co 0.2 O 4 as a positive electrode was stored at 45 ° C. FIG. 2 is a graph showing the change in the internal resistance of the battery using LiMn 1.8 Ni 0.2 O 4 for the positive electrode during storage at 45 ° C. FIG. 3 is a battery used in the test. Longitudinal sectional view of the
FIG. 4 is a graph showing the relationship between the X value and the open circuit voltage in the Li X Mn 2 O 4 positive electrode active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 10/36 - 10/40 H01M 2/14 - 2/18────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Kazuma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10 / 36-10/40 H01M 2/14-2/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム、リチウム合金またはリチウム化
合物を負極、LiMn2-xMexO4(Me:Co、Cr、Ni、Ta、Znの
中の少なくとも一種)で表わされる複合酸化物を活物質
とする正極、リチウム塩を含む非水電解液、およびセパ
レータを有し、前記セパレータとしてあらかじめアルカ
リ水溶液に浸漬し、乾燥したものを用いる非水電解液二
次電池。
1. A negative electrode of lithium, a lithium alloy or a lithium compound, LiMn 2-x Me x O 4: active material a composite oxide represented by (Me Co, Cr, Ni, Ta, at least one of: Zn) A non-aqueous electrolyte secondary battery having a positive electrode, a non-aqueous electrolyte containing a lithium salt, and a separator, wherein the separator is immersed in an aqueous alkali solution and dried in advance.
【請求項2】セパレータの材料がポリオレフィンである
請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the material of the separator is a polyolefin.
JP2295803A 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2822659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295803A JP2822659B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295803A JP2822659B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04169077A JPH04169077A (en) 1992-06-17
JP2822659B2 true JP2822659B2 (en) 1998-11-11

Family

ID=17825370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295803A Expired - Fee Related JP2822659B2 (en) 1990-10-31 1990-10-31 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2822659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088777A1 (en) * 2003-03-31 2004-10-14 Nec Corporation Secondary battery-use anode active material, secondary battery, and production method for secondary battery-use anode active material
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370949A (en) * 1993-07-09 1994-12-06 National Research Council Of Canada Materials for use as cathodes in lithium electrochemical cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
WO2004088777A1 (en) * 2003-03-31 2004-10-14 Nec Corporation Secondary battery-use anode active material, secondary battery, and production method for secondary battery-use anode active material

Also Published As

Publication number Publication date
JPH04169077A (en) 1992-06-17

Similar Documents

Publication Publication Date Title
JP2697365B2 (en) Non-aqueous electrolyte secondary battery
EP1119063A1 (en) Positive active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
KR100379979B1 (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JPH0845498A (en) Nonaqueous electrolytic liquid secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3245886B2 (en) Non-aqueous electrolyte secondary battery
CN217158273U (en) Button type battery and electronic equipment
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP2822659B2 (en) Non-aqueous electrolyte secondary battery
JP3223051B2 (en) Lithium secondary battery
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JP2940015B2 (en) Organic electrolyte secondary battery
JP2558957B2 (en) Non-aqueous electrolyte secondary battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPH0536401A (en) Lithium secondary battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JPH06325766A (en) Chemical cell
JPH0734367B2 (en) Non-aqueous electrolyte secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH0896848A (en) Nonaqueous electrolytic secondary battery
JPH06223833A (en) Chemical battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees