JP3061826B2 - 建設機械の油圧駆動装置 - Google Patents

建設機械の油圧駆動装置

Info

Publication number
JP3061826B2
JP3061826B2 JP1505693A JP50569389A JP3061826B2 JP 3061826 B2 JP3061826 B2 JP 3061826B2 JP 1505693 A JP1505693 A JP 1505693A JP 50569389 A JP50569389 A JP 50569389A JP 3061826 B2 JP3061826 B2 JP 3061826B2
Authority
JP
Japan
Prior art keywords
pressure
valve
control
actuator
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1505693A
Other languages
English (en)
Inventor
東一 平田
玄六 杉山
勇輔 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Application granted granted Critical
Publication of JP3061826B2 publication Critical patent/JP3061826B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • F15B2211/50527Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は油圧ショベル等の建設機械の油圧駆動装置に
係わり、特に、油圧ショベルの旋回体を駆動する旋回モ
ータ及びブームを駆動するブームシリンダ等、比較的負
荷圧力の差が大きくなる複数のアクチュエータに油圧ポ
ンプの油圧を確実に分流して供給し、複合操作を行うの
に適した建設機械の油圧駆動装置に関する。
背景技術 近年、油圧ショベル、油圧クレーン等、複数の被駆動
体を駆動する複数の油圧アクチュエータを備えた建設機
械の油圧駆動装置においては、油圧ポンプの吐出圧力を
負荷圧力又は要求流量に連動して制御すると共に、流量
制御弁に関連して圧力補償弁を配置し、この圧力補償弁
で流量制御弁の前後差圧を制御して、複合駆動時の供給
流量を安定して制御することが行われている。このう
ち、油圧ポンプの吐出圧力を負荷圧力に連動して制御す
るものの代表例としてロードセンシング制御がある。
ロードセンシング制御とは、油圧ポンプの吐出圧力が
複数の油圧アクチュエータの最大負荷圧力よりも一定値
だけ高くなるよう油圧ポンプの吐出量を制御するもので
あり、これにより油圧アクチュエータの負荷圧力に応じ
て油圧ポンプの吐出量を増減し、経済的な運転が可能と
なる。
ところで、油圧ポンプの吐出量には上限、即ち最大可
能吐出量があるので、複数のアクチュエータの複合駆動
時、油圧ポンプが最大可能吐出両に達すると、ポンプ吐
出量の不足状態が生じる。このことは一般的に油圧ポン
プのサチュレーションとして知られている。サチュレー
ションが生じると、油圧ポンプから出力された油圧が低
圧側のアクチュエータに優先的に流れ、高圧側のアクチ
ュエータに十分な圧油が供給されなくなり、複数のアク
チュエータの複合駆動ができなくなる。
このような問題を解決するため、DE−A1−3422165
(特開昭60−11706号に対応)に記載の油圧駆動装置で
は、流量制御弁の前後差圧を制御する各圧力補償弁に、
前後差圧の目標値を設定するばねの代わりに開弁方向及
び閉弁方向に作用する2つの駆動部を設け、開弁方向に
作用する駆動部に油圧ポンプの吐出圧力を導き、閉弁方
向に作用する駆動部に複数のアクチュエータの最大負荷
圧力を導き、ポンプ吐出圧力と最大負荷圧力との差圧に
基づく制御力を開弁方向に作用させ、この制御力で前後
差圧の目標値を定めるようにしている。この構成によ
り、油圧ポンプのサチュレーションが生じると、これに
対応してポンプ吐出圧力と最大負荷圧力との差圧が減少
するので、各圧力補償弁における流量制御弁の前後差圧
の目標値も小さくなり、低圧側アクチュエータに係わる
圧力補償弁が更に絞られ、油圧ポンプからの圧油が低圧
側アクチュエータに優先的に流れることが阻止される。
これにより、油圧ポンプからの圧油は流量制御弁の要求
流量(弁開度)の割合に応じて分流されて複数のアクチ
ュエータに供給され、適切な複合駆動が可能となる。
このように、油圧ポンプの吐出状態の如何に係わら
ず、油圧ポンプからの油圧を確実に分流して複数のアク
チュエータに供給することを可能とする圧力補償弁の機
能を、本明細書中では便宜上「分流補償」と言い、その
圧力補償弁を「分流補償弁」と言う。
ところで、この従来の油圧駆動装置においては、複数
のアクチュエータとして、負荷圧力の差が比較的大きく
なるアクチュエータ、例えば油圧ショベルの旋回体とブ
ームを駆動する旋回モータ及びブームシリンダを採用
し、旋回体とブームの複合操作を行う場合には、両者の
負荷圧力の差に起因して次のような問題があった。
旋回モータとブームシリンダを駆動して旋回とブーム
上げの複合操作を行い、トラックに土砂を積込む作業を
行う場合、この複合操作の開始時には、上述した分流補
償弁の機能により旋回モータとブームシリンダには旋回
用流量制御弁及びブーム用流量制御弁の要求流量の割合
に応じて流量が分配される。これにより旋回体はその分
配流量に応じて増速しようとするが、実際には旋回体は
慣性が大きく、旋回モータの負荷圧力が相当大きくなる
ので、旋回モータに供給される流量のほとんどはリリー
フ弁から逃げて有効エネルギとして活用されない。ま
た、このときポンプ吐出圧力は、ロードセンシング制御
により最大負荷圧力側である旋回モータの加速圧力より
も一定値だけ高くなるよう制御されるが、このポンプ吐
出圧力が仮に250kg/cm2であるとすると、ブーム上げに
要する圧力はおよそ100kg/cm2程度であることから、差
分の150kg/cm2はブームシリンダに係わる分流補償弁で
絞られ、熱として捨てられてしまう。
従って、従来の油圧駆動装置にあっては、旋回とブー
ム上げの複合操作に際して、エネルギ損失が多大になっ
て不経済であり、またブームシリンダに供給される流量
も旋回のために不必要に振り分けられることから、ブー
ムの上昇量が規制され、ブーム上げ動作に支障をきたす
ことがあり、作業性が低下し易いという問題がある。
本発明の目的は、負圧圧力の差が比較的大きくなる2
つの油圧アクチュエータの複合駆動に際してエネルギ損
失の抑制と低負荷圧力側アクチュエータの作動量の確保
を図ることができる建設機械の油圧駆動装置を提供する
ことである。
発明の開示 上記目的を達成するため、本発明によれば、油圧ポン
プと、前記受圧ポンプから供給される油圧によって駆動
される複数の油圧アクチュエータと、これらアクチュエ
ータに供給される圧油の流れをそれぞれ制御する複数の
流量制御弁と、これら流量制御弁の前後差圧をそれぞれ
制御する複数の分流補償弁とを備え、前記複数のアクチ
ュエータは、比較的負荷圧力が大きくなる第1のアクチ
ュエータと、前記第1のアクチュエータに比べて負荷圧
力の小さい第2のアクチュエータとを含む建設機械の油
圧駆動装置において、前記第1及び第2のアクチュエー
タの複合駆動時に、前記第2のアクチュエータに係わる
流量制御弁の前後差圧を前記第1のアクチュエータに係
わる流量制御弁の前後差圧よりも大きくなるように該第
2のアクチュエータに係わる分流補償弁を制御する分流
制御手段を設けたことを特徴とする建設機械の油圧駆動
装置が提供される。
このように構成された本発明においては、第1及び第
2のアクチュエータの複合駆動時には、第2のアクチュ
エータに係わる流量制御弁の前後差圧が第1のアクチュ
エータに係わる流量制御弁の前後差圧よりも大きくなる
ように制御されることから、第2のアクチュエータには
油圧ポンプの吐出量を2つの流量制御弁の開度比で配分
した本来の流量よりも多い流量が供給され、第1のアク
チュエータには開度比で配分した本来の流量よりも少な
い流量が供給される。このため、第2のアクチュエータ
の作動量を十分に確保することができると共に、第1の
アクチュエータに供給される流量でリリーフ弁から逃げ
る流量が少なくなる。また、第2のアクチュエータに係
わる流量制御弁の前後差圧が大きくなるように制御され
ることは分流補償弁の開度が大きくなるように制御され
ることであるので、当該分流補償弁における発熱が少な
くなる。
一方、第2のアクチュエータと、第1及び第2のアク
チュエータ以外の第3のアクチュエータとの複合駆動時
には、制御力発生手段が機能することはないので、第1
及び第3のアクチュエータに係わる分流補償弁は従来通
り機能する。即ち、これら分流補償弁は、関連する流量
制御弁の前後差圧がそれぞれ等しくなるように動作し、
第1及び第3のアクチュエータには2つの流量制御弁の
開度比に応じて分流された本来の流量がそれぞれ供給さ
れ、複合駆動を適切に行うことができる。
本発明の1つの側面において、前記第1及び第2のア
クチュエータに係わる分流補償弁は、それぞれ、前述し
たDE−A1−3422165に記載の型の分流補償弁、即ち、関
連する流量制御弁の前後差圧に基づく第1の制御力を閉
弁方向に付与する第1の駆動手段、及びその前後差圧の
目標値を定める第2の制御力を開弁方向に付与する第2
の駆動手段を有する分流補償弁とすることができ、この
場合は、前記分流制御手段は、前記第1及び第2のアク
チュエータの複合駆動時に、前記第2のアクチュエータ
に係わる分流補償弁に付与される前記第2の制御力を前
記第1のアクチュエータに係わる分流補償弁に付与され
る第2の制御力よりも大きくなるように制御する。
一実施例において、前記第1及び第2のアクチュエー
タに係わる分流補償弁の第2の駆動手段は、それぞれ、
該分流補償弁を第3の制御力で開弁方向に付勢する第3
の駆動手段と、前記第3の制御力よりも小さい第4の制
御力で閉弁方向に付勢する第4の駆動手段とを有し、こ
の第3の制御力と第4の制御御力との差により前記第2
の制御力を付与し、前記分流制御手段は、前記第1のア
クチュエータの駆動に応答して前記第4の駆動手段の第
4の制御力を減少させる制御力減少手段を有する。
他の実施例において、前記第1及び第2のアクチュエ
ータに係わる分流補償弁の前記第2の駆動手段は、それ
ぞれ、該分流補償弁を前記第2の制御力で開弁方向に付
勢する単一の駆動手段であり、前記分流制御手段は、少
なくとも前記第1のアクチュエータの駆動を検出する駆
動検出手段と、この駆動検出手段により前記第1のアク
チュエータの駆動が検出されたときに、前記第2のアク
チュエータに係わる分流補償弁の前記第2の駆動手段が
付与する前記第2の制御力として、前記第1のアクチュ
エータに係わる分流補償弁の前記第2の駆動手段が付与
する前記第2の制御力よりも大きな制御力を付与する制
御力発生手段とを含む構成であってもよい。
この場合、前記駆動検出手段は前記第1のアクチュエ
ータの駆動に応答して電気信号を出力する駆動検出セン
サからなり、前記制御力発生手段は、前記油圧ポンプの
吐出圧力と前記複数のアクチュエータの最大負荷圧力と
の差圧を検出し、その差圧に対応する電気信号を出力す
る差圧センサと、前記駆動検出センサから出力される電
気信号と前記差圧センサから出力される電気信号とに応
じて、前記第2のアクチュエータに係わる分流補償弁の
前記第2の駆動手段が付与する前記第2の制御力の値を
演算し、その値に応答する電気信号を出力するコントロ
ーラと、このコントローラから出力される電気信号に応
じた制御圧力を発生し、これを前記第2のアクチュエー
タに係わる分流補償弁の前記第2の駆動手段に出力する
制御圧力発生手段とを含む構成とすることができる。
代替的に、前記駆動出手段は前記第1のアクチュエー
タの駆動に応答して油圧信号を出力する油圧誘導手段か
らなり、前記制御力発生手段は、前記油圧ポンプの吐出
圧力と前記複数のアクチュエータの最大負荷圧力との差
圧と、前記油圧誘導手段から出力される油圧信号とに対
応した制御圧力を発生し、これを前記第2のアクチュエ
ータに係わる分流補償弁の前記第2の駆動手段に出力す
る制御圧力発生手段を含む構成であってもよい。
また、代替的に、前記駆動検出手段は前記第1のアク
チュエータの駆動に応答して電気信号を出力する第1の
駆動検出センサと、前記第2のアクチュエータの2つの
駆動方向の一方の駆動に応答して電気信号を出力する第
2の駆動検出センサとからなり、前記制御力発生手段
は、前記油圧ポンプの吐出圧力と前記複数のアクチュエ
ータの最大負荷圧力との差圧を検出し、その差圧に対応
する電気信号を出力する差圧センサと、前記第1及び第
2の駆動検出センサから出力される電気信号と前記差圧
センサから出力される電気信号とに応じて、前記第2の
アクチュエータに係わる分流補償弁の前記第2の駆動手
段が付与する前記第2の制御力の値を演算し、その値に
応答する電気信号を出力するコントローラと、このコン
トローラから出力される電気信号に応じた制御圧力を発
生し、これを前記第2のアクチュエータに係わる分流補
償弁の前記第2の駆動手段に出力する制御圧力発生手段
とを含む構成であってもよい。
また、前記複数のアクチュエータが前記第1及び第2
のアクチュエータと異なる第3のアクチュエータを有す
る場合には、前記第3のアクチュエータに係わる分流補
償弁が、前記第1及び第2のアクチュエータに係わる分
流補償弁と同様に、関連する流量制御弁の前後差圧に基
づく第1の制御力を閉弁方向に付与する第1の駆動手
段、及びその前後差圧の目標値を定める第2の制御力を
開弁方向に付与する第2の駆動手段を有し、前記駆動検
出手段は前記第1のアクチュエータの駆動に応答して電
気信号を出力する駆動検出センサからなり、前記制御力
発生手段は、前記油圧ポンプの吐出圧力と前記複数のア
クチュエータの最大負荷圧力との差圧を検出し、その差
圧に対応する電気信号を出力する差圧センサと、前記駆
動検出センサから出力される電気信号と前記差圧センサ
から出力される電気信号とに応じて、前記第1、第2及
び第3のアクチュエータに係わる分流補償弁の前記第2
の駆動手段がそれぞれ付与する前記第2の制御力の値を
演算し、その値に対応する電気信号を出力するコントロ
ーラと、このコントローラから出力される電気信号に応
じた制御圧力をそれぞれ発生し、これを前記第1、第2
及び第3のアクチュエータに係わる分流補償弁の前記第
2の駆動手段にそれぞれ出力する制御圧力発生手段とを
含み、前記コントローラは、前記第2のアクチュエータ
に係わる分流補償弁が付与する前記第2の制御力の値と
して、前記駆動検出センサから電気信号が出力されない
ときは第1の値を演算し、前記駆動検出センサから電気
信号が出力されたときには前記第1の値よりも大きい第
2の値を演算する構成であってもよい。
本発明の更に他の側面において、前記複数の分流補償
弁は、それぞれ、米国特許4,425,759、GB−A2195745、J
P−B2−58−31486号に記載の型の分流補償弁、即ち、関
連する流量制御弁の下流側に配置されると共に、関連す
る流量制御弁の下流側の圧力を開弁方向に受け、前記複
数のアクチュエータの最大負荷圧力を閉弁方向に受ける
ピストン手段を有する分流補償弁とすることができる。
この場合、前記第1のアクチュエータに係わる分流補償
弁のピストン手段は、関連する流量制御弁の下流側の圧
力を受け開弁方向に作用する第1の受圧部と、前記最大
負荷圧力を受け閉弁方向に作用する第2の受圧部を有
し、前記第2のアクチュエータに係わる分流補償弁のピ
ストン手段は、関連する流量制御弁の下流側の圧力を受
け開弁方向に作用する第3の受圧部と、前記複数のアク
チュエータの最大負荷圧力を受け閉弁方向に作用する第
4及び第5の受圧部を有し、前記第4及び第5の受圧部
は、それらの受圧面積の合計が前記第3の受圧部の受圧
面積にほぼ等しくされ、前記分流制御手段は、前記第1
のアクチュエータの駆動に応答して前記第4及び第5の
受圧部の一方の前記最大負荷圧力との連通を遮断する圧
力減少手段手段を有する。
また、この場合、前記第2のアクチュエータに係わる
分流補償弁の前記ピストン手段は、該第2のアクチュエ
ータの動作方向に対応して2つのピストンを有し、前記
2つのピストンの前記第4及び第5の受圧部の他方を相
互に異なる受圧面積としてもよい。
なお、分流補償弁は通常は主回路に配置されるが、米
国特許4,535,809号に記載の型の流量制御弁手段、即
ち、主回路に配置されたシート型の主弁と、前記主弁に
関して設けられたパイロット回路と、前記パイロット回
路に配置され、前記主弁を制御するパイロット弁とを有
する少なくとも1つのシート弁組立体を含むシート弁型
の流量制御弁手段を用いた場合は、分流補償弁はパイロ
ット回路に配置され、分流補償弁は流量制御弁として機
能するパイロット弁の前後差圧を制御する。
図面の簡単な説明 第1図は本発明の第1の実施例による建設機械の油圧
駆動装置の回路図であり、第2図はコントローラに設定
される差圧Ps−Pamaxと制御力Fcとの関係を示す図であ
り、第3図は本発明の油圧駆動装置が適用される建設機
械の代表例である油圧ショベルの側面図であり、第4図
は油圧ショベルの上面図であり、第5図は本発明の第2
の実施例による油圧駆動装置の回路図であり、第6図は
本発明の第3の実施例による油圧駆動装置の回路図であ
り、第7図は第1のシート弁組立体の詳細図であり、第
8図はブームシリンダに係わる流量制御弁における分流
補償弁に対する制御力減少手段の詳細図であり、第9図
は本発明の第4の実施例による油圧駆動装置の回路図で
あり、第10図は第4の実施例の変形例によるブームシリ
ンダに係わる弁装置の断面図であり、第11図は本発明の
第5の実施例による油圧駆動装置の回路図であり、第12
図はブームシリンダに係わる分流補償弁の拡大図であ
り、第13図はコントローラに設定される、ロードセンシ
ング差圧ΔPLSと旋回モータに係わる分流補償弁の制御
力Fc1との関数関係を示す図であり、第14図はコントロ
ーラに設定される、ロードセンシング差圧ΔPLSとブー
ムシリンダに係わる分流補償弁の制御力Fc2との2つの
関数関係を示す図であり、第15図はコントローラに設定
される、ロードセンシング差圧ΔPLSとアームシリンダ
に係わる分流補償弁の制御力Fc3との関数関係を示す図
であり、第16図はコントローラで実施される処理内容を
示すフローチャートであり、第17図は第5の実施例の変
形例による油圧駆動装置の回路図であり、第18図は第5
の実施例の他の変形例による油圧駆動装置の回路図であ
る。
発明を実施するための最良の形態 以下、本発明の好適実施例を油圧ショベルに適用され
た場合につき、図面を参照して説明する。
第1の実施例 まず、本発明の第1の実施例を第1図及び第2図によ
り説明する。
第1図において、本実施例の油圧駆動装置は、斜板式
の可変容量型油圧ポンプ1と、油圧ポンプ1からの圧油
によって駆動される複数の油圧アクチュエータとを備
え、これらアクチュエータには、油圧ショベルの旋回体
を駆動する第1の油圧アクチュエータ、即ち旋回モータ
2と、油圧ショベルのブームを駆動する第2の油圧アク
チュエータ、即ちブームシリンダ3が含まれている。ま
た、油圧駆動装置は、電気信号a1,a2及びb1,b2によって
それぞれ駆動され、旋回モータ2及びブームシリンダ3
に供給される圧油の流れをそれぞれ制御する電磁式の流
量制御弁4,5と、流量制御弁4,5の前後差圧をそれぞれ制
御する分流補償弁6,7とを備えている。
分流補償弁6は、旋回モータ2の負荷圧力である流量
制御弁4の出口圧力PL1が導かれ分流補償弁6を開弁方
向に付勢する駆動部8と、流量制御弁4の入口圧力PZ1
が導かれ分流補償弁6を閉弁方向に付勢する駆動部9と
を有し、これにより分流補償弁6には流量制御弁4の前
後差圧PZ1−PL1に基づく第1の制御力が閉弁方向に付
与される。また、分流補償弁6は、分流補償弁6を力f
で開弁方向に付勢するばね10と、後述する制御圧力Pcが
導かれ分流補償弁6を閉弁方向に制御力Fcで付勢する駆
動部11とを備え、これにより分流補償弁6にはばね10の
力fから制御圧力Pcに基づく制御力Fcを差し引いた第2
の制御力f−Fcが開弁方向に付与される。このように第
1及び第2の制御力が対向して作用することにより分流
補償弁の絞り量が変えられ、流量制御弁4の前後差圧が
制御される。ここで、ばね10と駆動部11により得られる
第2の制御力f−Fcは流量制御弁4の前後差圧の目標値
を意味する。
分流補償弁7も、同様に、ブームシリンダ3の負荷圧
力である流量制御弁5の出口圧力PL2が導かれ分流補償
弁7を開弁方向に付勢する駆動部12と、流量制御弁5の
入力圧力PZ2が導かれ分流補償弁7を閉弁方向に付勢す
る駆動部13と、分流補償弁7を力fで開弁方向に付勢す
るばね14と、後述する制御圧力Pcが導かれ分流補償弁7
を制御力Fcで閉弁方向に付勢する駆動部15とを備えてい
る。
油圧ポンプ1には、電気信号cにより斜板の傾転量即
ち押しのけ容積を変え、吐出量を制御するポンプレギュ
レータ16が設けられ、油圧ポンプ1の吐出管路17には、
電気信号dにより設定圧力を変え、油圧ポンプ1の吐出
圧力をその設定圧力に保持するアンロード弁18が接続さ
れている。
流量操作弁4,5の駆動は操作装置19,20により制御され
る。操作装置19,20はそれぞれ操作レバーの操作量及び
操作方向に応じて電気信号E1,E2及びE3,E4を出力する。
電気信号E1,E2及びE3,E4は第1のコントローラ21に入力
され、コントローラ21ではこの電気信号E1,E2及びE3,E4
に基づいて流量制御弁4,5を駆動するための電気信号a1,
a2,b1,b2を作成し、これを流量制御弁4,5の駆動部に出
力する。また、コントローラ21は電気信号E1,E2及びE3,
E4に基づいて油圧ポンプ1の押しのけ容積を定める電気
信号cとアンロード弁18の設定圧力を定める電気信号d
を作成し、これをポンプレギュレータ16及びアンロード
弁18に出力する。
コントローラ21での電気信号c,dの作成は次のように
して行われる。
コントローラ21には、操作装置19の操作量と油圧ポン
プ1の押しのけ容積との関係、操作装置20の操作量とポ
ンプ押しのけ容積との関係、操作装置19の操作量とアン
ロード弁18の設定圧力との関係、操作装置20とアンロー
ド弁18の設定圧力との関係が予め記憶されている。操作
装置19,20の操作量とポンプ押しのけ容積との関係は、
それぞれ、操作装置19,20の操作量が示す要求流量より
も若干量だけ多めのポンプ吐出量が得られるように設定
されている。操作装置19,20の操作量とアンロード弁18
の設定圧力は、それぞれ、操作装置19,20の操作量に応
じたポンプ吐出圧力が得られるように設定されている。
操作装置19又は20を単独で操作したときは、上記の関
係からそれぞれの操作量に対応するポンプ押しのけ容積
及び設定圧力を演算し、これを電気信号c,dとしてそれ
ぞれ出力する。操作装置19,20を同時に操作したとき
は、ポンプ押しのけ容積に対しては上記の関係からそれ
ぞれの操作量に対応するポンプ押しのけ容積を求め、両
者を合計し、これを電気信号cとして出力し、アンロー
ド弁18の設定圧力に対しては、上記の関係からそれぞれ
の操作量に対応する設定力を求め、両者の高値を選択
し、これを電気信号dとして出力する。これにより、総
要求流量に足りるポンプ吐出量が得られると共に、吐出
量が総要求流量よりも多いため吐出管路17には圧力が立
ち、アンロード弁の18の設定圧力に対応した吐出圧力が
得られる。
分流補償弁6,7の駆動弁11,15に制御力Fcを発生させる
ための制御圧力Pcは制御力発生手段22によって作られ
る。制御力発生手段22は、油圧ポンプ1の吐出圧力Psと
シャトル弁23,24を介して導かれる旋回モータ2、ブー
ムシリンダ3を含む複数のアクチュエータの最大負荷圧
力Pamaxとの差圧を検出し、その差圧に応じた電気信号
eを出力する差圧検出装置25と、電気信号eに基づいて
制御力Fcを演算し、その制御力に応じた電気信号gを出
力する第2のコントローラ26と、電気信号gにより作動
し、油圧源27の一定のパイロット圧から電気信号gに比
例した制御圧力Pcを生成する電磁比例弁28とを備えてい
る。
コントローラ26は、電気信号eを入力する入力部29
と、電気信号eが示す差圧Ps−Pamaxと制御力Fcとの関
数関係が記憶されている記憶部30と、入力部29から入力
された電気信号eに基づいて記憶部30の設定内容を読み
出し、差圧Ps−Pamaxに対応する制御力Fcを求める演算
部31と、演算部31で求めた制御力Fcを電気信号g上とし
て出力する出力部32とを備えている。
記憶部30に記憶された差圧Ps−Pamaxと制御力Fcとの
関数関係は第2図に示すようになっている。即ち、差圧
Ps−Pamaxが所定値ΔPoよりも大きい範囲では制御力Fc
は一定値Fcoであり、差圧Ps−Pamaxが所定値ΔPoよりも
小さくなると、制御力Fcは差圧の減少に比例して増大
し、差圧Ps−Pamax−0でばね10,14の力fに等しい最大
値Fcmaxになる。後者の差圧Ps−Pamaxと制御力Fcとの関
係を式で表せば以下のようになる。
Fc=f−α(Ps−Pamax) (1) (αは比例定数) ここで、所定値ΔPoは油圧ポンプ1が最大可能吐出量
に達し、サチュレーションを開始する差圧Ps−Pamaxの
値である。
分流補償弁7の駆動部15には制御力減少手段33が設け
られている。制御力減少手段33は、制御圧力Pcを駆動部
15に導く油圧ライン34に設けられた絞り35と、駆動部15
をタンク36に連絡する油圧ライン37と、油圧ライン37に
設けられた絞り38及び開閉弁39とを備えている。開閉弁
39は電気信号a1,a2に応答して作動する電磁切換式であ
り、電気信号a1又はa2がないときは図示の閉位置にあ
り、電気信号a1又はa2が入力されると開位置に切換えら
れる。絞り35は比較的絞り量を大きく設定し、絞り38は
比較的絞り量を小さく設定してある。この絞り35,38の
設定により、開閉弁39が閉位置にあるときには、駆動部
15に導かれる制御圧力Pcは分流補償弁6の駆動部11に導
かれる制御圧力Pcと同じになり、開閉弁39が開位置に切
換えられると、駆動部15に導かれる制御圧力Pcは減圧さ
れ、駆動部15の制御力Fcは小さくなる。
本実施例の油圧駆動装置を備えた油圧ショベルは、第
3図及び第4図に示すように、左右の走行体50,51、走
行体50,51上に旋回可能に搭載された旋回体52、旋回体5
2に垂直平面内を回動自在に装架されたフロントアタッ
チメント53を有し、フロントアタッチメント53は、ブー
ム54、アーム55、バケット56を有している。旋回体52及
びブーム54は前述した旋回モータ2及びブームシリンダ
3により駆動され、左右の走行体50,51、アーム55、バ
ケット56はそれぞれ左右走行モータ57,58、アームシリ
ンダ59、バケットシリンダ60により駆動される。
第1図には図示していないが、油圧ポンプ1からの油
圧によって駆動される複数の油圧アクチュエータには、
走行モータ56(複数)、アームシリンダ57、バケットシ
リンダ58も適宜含まれ、これらアクチュエータに対して
も同様な流量制御弁及び分流補償弁が設けられている。
旋回体52には運転室61、原動機62、油圧ポンプ1(第
1図参照)等の種々の設備が装荷され、かつ上述したよ
うにフロント機構が取り付けられているので、旋回体52
は極めて慣性の大きな負荷を構成する。このため、旋回
体52とブーム54の複合操作の典型例として、掘削した土
砂をトラック等に積み込む作業を行うときに実施する旋
回とブーム上げの複合操作があるが、この複合操作の開
始時には、旋回モータ2の負荷圧力はリリーフ圧まで上
昇するのに対して、ブームシリンダ3の負荷圧力はそれ
程は高くならない。即ち、旋回モータ2は比較的負荷圧
力が大きくなるアクチュエータであり、ブームシリンダ
3は旋回モータ2に比べて負荷圧力の小さいアクチュエ
ータである。
次に、このように構成した本実施例の動作を説明す
る。
操作装置19又は20を単独で操作して、旋回体52又はブ
ーム54の単独操作を行うときは、油圧ポンプ1は吐出量
の上限、即ち最大可能吐出量に達しないのが普通であ
り、差圧Ps−Pamaxは通常所定値ΔPo以上となる。この
ため、コントローラ26では第2図に示す関数関係から一
定の制御力Fcoが求められ、電磁比例弁28では一定の制
御力Fcoに対応した制御圧力Pcが生成される。このと
き、旋回体52の単独操作時は、電気信号a1又はa2により
開閉弁39は開位置に切換えられるが、絞り35の存在によ
り電磁比例弁28での制御圧力Pcの生成には影響を与えな
い。この制御圧力Pcは、分流補償弁6の駆動部11又は分
流補償弁7の駆動部15に導かれ、駆動部11又は15に一定
の制御力FCOを発生させ、分流補償弁6又は7に開弁方
向に一定の制御力f−Fcoを付与する。その結果、流量
制御弁4又は5の前後差圧が一定となるように制御さ
れ、旋回モータ2又はブームシリンダ3には、負荷圧力
の変動に係わらず、流量制御弁4又は5の開度に対応し
た流量が供給される。
土砂を掘削するときに行うブームとアームの複合操作
等、ブーム54と、旋回体52以外の被駆動体との複合操作
を行うときには、コントローラ26で第2図に示す関数関
係から差圧Ps−Pamaxに対応する制御力Fcが求められ、
電磁比例弁28では制御力Fcに対応した制御圧力Pcが生成
される。この制御圧力Pcは分流補償弁7の駆動部15と図
示しない他のアクチュエータに係わる分流補償弁の駆動
部に同じ圧力として導かれ、2つの駆動部に等しい制御
圧力Fcを発生させ、2つの分流補償弁に開弁方向に等し
い制御力f−Fcを付与する。このため、2つのアクチュ
エータの負荷圧力に差がある場合には低負荷圧力側のア
クチュエータに係わる分流補償弁がより多く閉弁方向に
作動する、即ち絞られることにより、流量制御弁5及び
他のアクチュエータに係わる流量制御弁の前後差圧がそ
れぞれ等しくなるように制御される。これにより、低負
荷圧力側のアクチュエータに優先的に圧油が流れること
が抑制され、2つのアクチュエータには2つの流量制御
弁の要求流量(開度)の割合に応じて分流された流量が
それぞれ供給され、ブーム54と他の被駆動体の複合操作
を適切に行うことができる。
なお、このとき、油圧ポンプ1が最大可能吐出量に達
する前は、差圧Ps−Pamaxは一定で制御力FcもFcoの一定
となり、流量制御弁5及び他のアクチュエータに係わる
流量制御弁の前後差圧がそれぞれ一定となるように制御
される。油圧ポンプ1が最大可能吐出量に達した後は、
差圧Ps−Pamaxは所定値ΔPo以下となり、制御力Fcは差
圧Ps−Pamaxの減少に応じて増加する。このため、2つ
の分流補償弁に付与される開弁方向の制御力f−Fcは差
圧Ps−Pamaxの減少に応じて減少し、2つの流量制御弁
の前後差圧が差圧Ps−Pamaxの減少に応じて減少するよ
う制御される。これにより、油圧ポンプ1が最大可能吐
出量に達した後でも、2つのアクチュエータには適切に
分流された流量が供給され、円滑な複合操作を行うこと
ができる。
次に、操作装置19,20を同時に操作して、旋回体52と
ブーム54との複合操作を行うとき、例えば旋回とブーム
上げの複合操作を行うときについて説明する。この複合
操作を行うときは、一般的には油圧ポンプ1は最大可能
吐出量に達し、油圧ポンプ1はサチュレーション状態に
なる。このため、差圧Ps−Pamaxは所定値ΔPo以下とな
り、コントローラ26では第2図に示す関数関係から差圧
Ps−Pamaxの減少に応じて増加する制御力Fcが求めら
れ、電磁比例弁28ではこの制御力Fcに応じた制御圧力Pc
が生成される。一方、このとき、開閉弁39には電気信号
a1又はa2が付与され、開閉弁39は開位置に切換えられ
る。このため、電磁比例弁28で生成された制御圧力Pcは
分流補償弁6の駆動部11にはそのまま導かれ、分流補償
弁7の駆動部15には減圧されて導かれる。このため、駆
動部15に発生する制御力Fcは分流補償弁6の駆動部11に
発生する制御力Fcよりも小さくなり、分流補償弁7に開
弁方向に付与される制御力f−Fcは分流補償弁6に付与
されるそれよりも大きくなる。
このように、分流補償弁7の開弁方向の制御力f−Fc
が分流補償弁6のそれよりも大きくなる結果、旋回とブ
ーム上げの複合操作の開始時において、低負荷圧力側と
なるブームシリンダ3に係わる分流補償弁7が制御力f
−Fcにより絞られる程度が小さくなり、分流補償弁7は
制御圧力Pcがそのまま導かれた場合に比べて開き気味と
なる。このため、流量制御弁5の前後差圧は流量制御弁
4の前後差圧よりも大きくなるよう制御され、ブームシ
リンダ3には油圧ポンプ1の吐出量(最大可能吐出量)
を流量制御弁4,5の開度比で配分した流量よりも多い流
量が供給され、一方、旋回モータ2には流量制御弁4,5
の開度比で配分した流量よりも少ない流量が供給され
る。その結果、旋回とブーム上げの複合操作を確実に行
えると共に、ブーム上げ速度が速く、旋回が比較的緩や
かになる複合操作が実施される。
以上のように本実施例においては、旋回体52と、ブー
ム54の複合操作以外の複合操作においては、流量制御弁
の前後差圧を等しくなるように制御することにより、適
切な複合操作を行うことができる。また、旋回とブーム
上げの複合操作においては、ブームシリンダ3に係わる
流量制御弁5の前後差圧を旋回モータ2に係わる流量制
御弁4の前後差圧よりも大きくなるように制御すること
により、ブームシリンダ3にはポンプ吐出量を流量制御
弁6,7の開度比で配分した流量よりも多い流量が供給さ
れ、ブームシリンダ3の上昇量を十分に確保することが
でき、優れた作業性を確保することができる。また、旋
回モータ2に供給される流量が少なくなることから、旋
回モータ駆動時の圧油のリリーフ量が少なくなると共
に、ブームシリンダ3に係わる分流補償弁7の開度が大
きくなることから、高圧の圧油が流れることによる発熱
が減少し、エネルギ損失の抑制を図ることができる。
第2の実施例 本発明の第2の実施例を第5図により説明する。図
中、第1図に示す部材と同等の部材には同じ符号を付し
てある。本実施例は分流補償弁としてDE−A3,422,165に
記載の型の弁を用いた実施例である。
第5図において、旋回モータ2に供給される圧油の流
れを制御する流量制御弁4、及びブームシリンダ3に供
給される圧油の流れを制御する流量制御弁5は、共に、
図示しない操作装置で発生したパイロット圧力A1,A2及
びB1,B2によって駆動されるパイロット式に構成してあ
る。
流量制御弁4,5の上流にはDE−A3,422,165に記載の型
の分流補償弁70,71が配置されている。即ち、分流補償
弁70は、旋回モータ2の負荷圧力である流量制御弁4の
出口圧力PL1が導かれ分流補償弁70を開弁方向に付勢す
る駆動部8と、流量制御弁4の入力圧力PZ1が導かれ分
流補償弁70を閉弁方向に付勢する駆動部9とを有し、こ
れにより分流補償弁6には流量制御弁4の前後差圧PZ1
−PL1に基づく第1の制御力が閉弁方向に付与される。
また、分流補償弁70は、第1の実施例のばね10と駆動部
11の代わりに、分流補償弁70を開弁方向に付勢する駆動
部72と、閉弁方向に付勢する駆動部73を有し、駆動部72
には油圧ポンプ1の吐出圧力Psが導かれ、駆動部73には
チェック弁76,77を介して取り出された旋回モータ2及
びブームシリンダ3を含む複数のアクチュエータの最大
負荷圧力Pamaxが導かれ、これにより分流補償弁70には
ポンプ吐出圧力と最大負荷圧力との差圧Ps−Pamaxに基
づく第2の制御力が開弁方向に付与される。この上圧Ps
−Pamaxに基づく第2の制御力はそれぞれ流量制御弁4
の前後差圧PZ1−PL1の目標値となる。
分流補償弁71も、同様に、ブームシリンダ5の負荷圧
力である流量制御弁5の出口圧力PL2が導かれ分流補償
弁7を開弁方向に付勢する駆動部12と、流量制御弁5の
入力圧力PZ2が導かれ分流補償弁7を閉弁方向に付勢す
る駆動部13と、油圧ポンプ1の吐出圧力Psが導かれ分流
補償弁71を開弁方向に付勢する駆動部74と、最大負荷圧
力Pamaxが導かれ分流補償弁71を閉弁方向に付勢する駆
動部75とを備えている。
ブームシリンダ3に係わる分流補償弁71の駆動部75に
は制御力減少手段78が設けられている。制御力減少手段
78は駆動部75に最大負荷圧力Pamaxを導く油圧ライン79
に設けられた切換弁80を有し、切換弁80はシャトル弁81
により取り出される流量制御弁4に付与されるパイロッ
ト圧力A1又はA2により作動するパイロット操作式であ
る。切換弁80は、パイロット圧力A1又はA2がないときは
駆動部75に最大負荷圧力Pamaxを導く図示の位置にあ
り、パイロット圧力A1又はA2が、伝達されると図示の位
置から切換えられ、駆動部75をタンク36に連通させる。
これにより、パイロット圧力A1又はA2が伝達されたとき
には、駆動部75にはタンク圧が導かれるので、分流補償
弁71に開弁方向に付与される第2の制御力は大きくな
る。
油圧ポンプ1には、吐出圧力Psが最大負荷圧力Pamax
よりも一定値だけ高くなるようにポンプ吐出量を制御す
るロードセンシング制御方式のポンプレギュレータ82が
設けられている。ポンプレギュレータ82は、油圧ポンプ
1の斜板を駆動し、押しのけ容積を変える油圧シリンダ
83と、油圧シリンダ83の変位を調整する制御弁84とから
なり、制御弁84の一端の駆動部にはばね85が配置される
と共に最大負荷圧力Pamaxが導かれ、他端の駆動部には
ポンプ吐出圧力Psが導かれている。最大負荷圧力Pamax
が上昇すると、それに応答して制御弁84が作動し、油圧
シリンダ83の変位を調整して油圧ポンプ1の押しのけ容
積を増大させ、ポンプ吐出量を増大させる。これによ
り、油圧ポンプ1の吐出圧力Psはばね85により定まる一
定の値だけ高い圧力に保持される。
次に、このように構成した本実施例の動作を説明す
る。
旋回体又はブームの単独操作を行うときは、油圧ポン
プ1の吐出量がロードセンシング制御されることによ
り、吐出圧力Psと負荷圧力Pamaxとの差圧が一定に保持
され、旋回モータ2又はブームシリンダ3には流量制御
弁4又は5の開度に応じた流量が供給される。このと
き、分流補償弁70、71は駆動部72,73又は74,75により付
与される差圧Ps−Pamaxに基づく開弁方向の制御力によ
り全開位置に保持され、流量制御弁4又は5の前後差圧
は差圧Ps−Pamaxにほぼ一致する。従って、旋回モータ
2又はブームシリンダ3にはには負荷圧力の変動に係わ
らず流量制御弁4又は5の開度に応じた流量が供給され
る。
ブームと、旋回体以外の被駆動体との複合操作を行う
ときには、分流補償弁71の駆動部74,75と図示しない他
のアクチュエータに係わる分流補償弁の対応する駆動部
とにそれぞれ同じ圧力であるポンプ吐出圧力Psと最大負
荷圧力Pamaxとが導かれ、2つの分流補償弁の開弁方向
に差圧Ps−Pamaxに基づく等しい制御力が付与される。
このため、第1の実施例と同様、流量制御弁5及び他の
アクチュエータに係わる流量制御弁の前後差圧がそれぞ
れ等しくなるように制御され、2つのアクチュエータに
は2つの流量制御弁の要求流量(開度)の割合に応じて
分流された流量がそれぞれ供給され、ブームと他の被駆
動体の複合操作を適切に行うことができる。
このとき、油圧ポンプ1が最大可能吐出量に達する前
は、差圧Ps−Pamaxは一定であり、2つの分流補償弁に
付与される開弁方向の制御力も一定となるので、流量制
御弁5及び他のアクチュエータに係わる流量制御弁の前
後差圧はそれぞれ一定となるよう制御される。油圧ポン
プ1が最大可能吐出量に達した後は、差圧Ps−Pamaxは
減少し、2つの分流補償弁に付与される開弁方向の制御
力も減少し、2つの流量制御弁の前後差圧はそれぞれ差
圧Ps−Pamaxの減少に応じて減少するよう制御される。
これにより、油圧ポンプ1が最大可能吐出量に達した後
でも、2つのアクチュエータには適切に分流された流量
が供給され、円滑な複合操作を行うことができる。
次に、操作装置19,20を同時に操作して、旋回とブー
ム上げの複合操作を行うときは、一般的には油圧ポンプ
1は最大可能吐出量に達し、油圧ポンプ1はサチュレー
ション状態になる。このため、差圧Ps−Pamaxは一定値
以下に減少し、分流補償弁70には開弁方向にこの減少し
た差圧Ps−Pamaxに基づく制御力が付与され、流量制御
弁4の前後差圧は差圧Ps−Pamaxの減少に応じて減少す
るよう制御される。即ち、旋回モータ2は高負荷圧力側
のアクチュエータであるので、分流補償弁70はほぼ全開
位置に保持される。
一方、このとき、切換弁80にはシャトル弁81を介して
旋回用の流量制御弁4を駆動するためのパイロット圧力
A1又はA2が付与され、切換弁80は図示の位置から切換え
られる。このため、分流補償弁71の駆動部75はタンク36
に連通し、分流補償弁71には駆動部74に導かれるポンプ
吐出圧力Psのみに基づく開弁方向の制御力が付与され
る。このため、分流補償弁71は全開位置に保持される。
以上のように、2つの分流補償弁70,71が全開位置に
保持される結果、旋回モータ2とブームシリンダ3はパ
ラレルに接続されたのと同じ状態となり、旋回モータと
ブームシリンダをパラレルに接続した一般的な油圧回路
と同様、旋回モータ2は徐々に加速されるよう圧油が供
給されると共に、残りの圧油は低負荷圧力側のアクチュ
エータであるブームシリンダ3に供給され、ブーム上げ
速度が速く、旋回が比較的緩やかになる旋回ブーム上げ
の複合操作を行うことができる。
従って、本実施例においても、旋回体とブームの複合
操作以外の複合操作においては、適切な複合操作を行う
ことができると共に、旋回とブーム上げの複合操作にお
いては、ブームシリンダ3の上昇量を十分に確保し、優
れた作業を確保することができ、また、旋回モータ2の
駆動に伴う圧油のリリーフ量が少なくなると共に分流補
償弁71での発熱が減少、エネルギ損失の抑制を図ること
ができる。
第3の実施例 以下、本発明の第3の実施例を第6図〜第8図により
説明する。本実施例は流量制御弁と米国特許第4,535,80
9号に記載の型の弁を用いた実施例である。
第6図において、旋回モータ2に供給される圧油の流
れを制御する流量制御弁100、及びブームシリンダ3に
供給される圧油の流れを制御する流量制御弁101は、そ
れぞれ、第1〜第4の4つのシート弁組立体102〜105,1
02A〜105Aからなっている。
第1の流量制御弁100において、第1のシート弁組立
体102は旋回モータ2を例えば右方向に回転させるよう
に駆動するときの主回路であるメータイン回路160〜162
に配置され、第2のシート弁組立体103は旋回モータ2
を例えば左方向に回転させるように駆動するときの主回
路であるメータイン回路163〜165に配置され、第3のシ
ート弁組立体104は、旋回モータ2と第2のシート弁組
立体103の間で、旋回モータ2を右方向に回転させるよ
うに駆動するときの主回路であるメータアウト回路165,
166に配置され、第4のシート弁組立体105は、旋回モー
タ2と第1のシート弁組立体102の間で、旋回モータ2
を左方向に回転させるように駆動するときの主回路であ
るメータアウト回路162,167に配置されている。
第1のシート弁組立体102と第4のシート弁組立体105
との間のメータイン回路ライン161には第1のシート弁
組立体への圧油の逆流を防止するチェック弁110が配置
されており、第2のシート弁組立体103と第3のシート
弁組立体104との間メータイン回路ライン164には第2の
シート弁組立体への圧油の逆流を防止するチェック弁11
1が配置されている。また、メータイン回路ライン161の
チェック弁110の上流側及びメータイン回路ライン164の
チェック弁111の上流側にはそれぞれ負荷ライン168,169
が接続され、負荷ライン168,169には更にそれぞれチェ
ック弁170,171を介して共通の負荷ライン172が接続され
ている。
第2の流量制御弁101においても、第1〜第4のシー
ト弁組立体102A〜105Aは同様な配列になっており、かつ
負荷ライン172と同様な負荷ライン172Aを有している。
2つの負荷ライン172,172Aは更に共通の負荷ライン17
2Bにより相互に接続され、負荷ライン172,172A,172Bに
は旋回モータ2及びブームシリンダ3を含む複数のアク
チュエータの最も高い負荷圧力が導かれ、最大負荷圧力
が検出される。
第1の流量制御弁100において、第1〜第4のシート
弁組立体102〜105は、シート弁型の主弁112〜115と、主
弁に対するパイロット回路116〜119と、パイロット回路
に配置されたパイロット弁120〜123とを有し、第1及び
第2のシート弁組立体102,103は更に、パイロット回路
のパイロット弁上流側に配置された分流補償弁124,125
を有している。
第1のシート弁組立体102の詳細構造を第7図により
説明する。
第1のシート弁組立体102において、シート型の主弁1
12は入口130と出口131を開閉する弁体132を有し、弁体1
32には、弁体132の位置即ち主弁の開度に比例して開度
を変化させる可変絞り133として機能する複数のスリッ
トが設けられ、弁体132の反出口131側には可変絞り133
を介して入口130に連絡する背圧室134が形成されてい
る。また、弁体132には主弁112の入口圧力即ち油圧ポン
プ1の吐出圧力Psを受ける受圧部132Aと、背圧室134の
圧力即ち背圧Pcを受ける受圧部132Bと、主弁112の出口
圧力PL1を受ける受圧部132Cとが設けられている。
パイロット回路116は背圧室134を主弁112の出口131に
連絡するパイロットライン135〜137からなっている。パ
イロット弁120はパイロットピストン138により駆動さ
れ、パイロットライン136とパイロットライン137間の通
路を開閉する可変絞り弁を構成する弁体139からなり、
パイロットピストン138は図示しない操作レバーの操作
量に応じて生成されたパイロット圧A1によって駆動され
る。
以上のように主弁112とパイロット弁120との組み合わ
せからなるシート弁組立体は米国特許第4,535,809号か
ら公知である。この公知の構成においては、パイロット
弁120が操作されるとパイロット回路116にパイロット弁
120の開度に応じたパイロット流量が形成され、可変絞
り133と背圧室134の作用により主弁112はパイロット流
量に比例した開度に開き、パイロット流量に比例して増
幅されたメイン流量が主弁112を通して入口130から出口
131へ流れる。
本実施例においては、パイロット回路116に更に分流
補償弁124が配置されている。分流補償弁124は可変絞り
弁を構成する弁体140と、弁体140を開弁方向に付勢する
第1の駆動室141と、第1の駆動室141に対向して位置
し、弁体140を閉弁方向に付勢する第2、第3及び第4
の駆動室142,143,144とを有し、弁体140には第1〜第4
の駆動室141〜144に対応してそれぞれ第1〜第4の受圧
部145〜148が設けられている。第1の駆動室141はパイ
ロットライン149及びパイロットライン135を介して主弁
112の背圧室134に連絡され、第2の駆動室142はパイロ
ットライン136に連絡され、第3の駆動室143はパイロッ
トライン150を介して最大負荷ライン172に連絡され、第
4の駆動室144はパイロットライン152を介して主弁112
の入口130に連絡されている。このような構成により、
第1の受圧部145には背圧室134の圧力即ち背圧Pcが導か
れ、第2の受圧部146にはパイロット弁120の入口圧力Pz
が導かれ、第3の受圧部147には最大負荷圧力Pamaxが導
かれ、第4の受圧部148には油圧ポンプ1の吐出圧力Ps
が導かれている。
ここで、第1の受圧部145の受圧面積をac、第2の受
圧部146の受圧面積をaz、第3の受圧部147の受圧面積
をam、第4の受圧部148の受圧面積をasとし、前述し
た主弁112の弁体132における受圧部132Aの受圧面積をA
s、受圧部132Bの受圧面積をAcとした場合の両者の比をA
s/Ac=K(K<1)とすると、受圧面積ac,az,am,asは
1:1−K:K(1−K):K2の比になるように設定されてい
る。
第2のシート弁組立体103の詳細構造は第1のシート
弁組立体102と同じである。
第3及び第4のシート弁組立体104,105の詳細構造
は、第1のシート弁組立体102の分流補償弁124を除去し
たのと同じ構成である。
第2の流量制御弁101において、第1〜第4のシート
弁組立体102A〜105Aの構成は、以下の点を除いて第1の
流量制御弁100の第1〜第4のシート弁組立体102〜105
とそれぞれ同じであり、図中、第1〜第4のシート弁組
立体102A〜105Aの構成部品には必要に応じ第1〜第4の
シート弁組立体102〜105の対応するものを示す参照数字
に“A"を付して示している。
そして、第1のシート弁組立体102Aにおいては、第8
図に拡大して示すように、分流補償弁124Aの駆動室143A
に制御力減少手段108が設けられている。制御力減少手
段180は駆動室143Aに最大負荷圧力Pamaxを導く油圧ライ
ン150Aに設けられた、第2の実施例と同様な切換弁80を
有し、切換弁80は通常は駆動室143Aに最大負荷圧力Pama
xが導かれる図示の位置にあり、パイロット弁120,121を
駆動するパイロット圧力A1又はA2が作用すると図示の位
置から切換えられ、駆動室143Aをタンク36に連通させ
る。
油圧ポンプ1には又第2の実施例と同様、油圧ポンプ
1の吐出圧力をロードセンシング制御するポンプレギュ
レータ82が設けられている。
次に、このように構成された本実施例の動作を説明す
る。
まず、第1のシート弁組立体102において、主弁112の
弁体132に働く力の釣り合いは、前述したAs/Ac=K(K
<1)の関係から以下の式で表わされる。
Pc=KPs+(1−K)PL1 (2) 一方、分流補償弁124における弁体143に働く力の釣り
合いは、前述したように受圧部145の受圧面積acが1、
受圧部146の受圧面積azが1−K、受圧部147の受圧面
積amがK(1−K)、受圧部148の受圧面積asがK2
あることから、 Pc=(1−K)Pz+K(1−K)Pamax+K2Ps (3) の式で表される。
この(3)式と上述の(2)式とからパイロット弁12
0の入力圧力と出口圧力の差圧Pz−PL1を求めると、 Pz−PL1=K(Ps−Pamax) (4) が成立する。
この(4)式は、分流補償弁124はパイロット弁120の
前後差圧Pz−PL1をK(Ps−Pamax)に一致するように
制御することを意味する。
シート弁組立体103,103Aの分流補償弁125,125A、及び
切換弁80が動作していないときのシート弁組立体102Aの
分流補償弁124Aも同様に機能する。
一方、シート弁組立体102Aにおいては、パイロット圧
力A1又はA2の付与により切換弁80が切換られたときは、
分流補償弁124Aの駆動室143Aに導かれる圧力が最大負荷
圧力Pamaxからタンク圧に減少し、分流補償弁124Aは全
開位置に保持される。
ここで、上述の(4)式における右辺のPs−Pamaxは
ロードセンシング制御される油圧ポンプ1の吐出圧力Ps
と最大負荷圧力Pamaxとの差圧である。従って、パイロ
ット弁120,121,120A,121Aに対する分流補償弁124,125,1
24A,125Aの関係は、第2の実施例の流量制御弁4,5に対
する分流補償弁70,71の関係と実質的に同じとなり、複
合操作においてパイロット弁120,121,120A,121Aの通過
流量、即ちパイロット回路116,117,116A,117Aを流れる
流量は第2の実施例の流量制御弁4,5の通過流量と同様
に制御される。
一方、主弁112,113,112A,113Aには、前述したように
パイロット回路116,117,116A,117Aを流れる流量を比例
増幅した流量が流れるので、パイロット流量が第2の実
施例の流量制御弁4,5の通過流量と同様に制御されるこ
とは、主弁112,113,112A,113Aの通過流量が流量制御弁
4,5の通過流量と同様に制御されることに等しい。
従って、本実施例においても、第2の実施例と同様の
効果を得ることができる。即ち、旋回体とブームの複合
操作以外の複合操作においては、適切な複合操作を行う
ことができる。また、旋回とブーム上げの複合操作を行
うときは、パイロット圧力A1,A2により切換弁80は図示
の位置から切換えられ、分流補償弁124Aの駆動室143Aは
タンク圧となるので、分流補償弁124Aは全開位置に保持
され、旋回モータ2とブームシリンダ3はパラレルに接
続されたのと同じ状態となり、ブームシリンダ3の上昇
量を十分に確保し、優れた作業性を確保することができ
る。また、旋回モータ2の駆動に伴う圧油のリリーフ量
が少なくなると共に、主弁112A及び分流補償弁124Aでの
発熱が減少し、エネルギ損失の抑制を図ることができ
る。
なお、本件出願人は、分流補償弁をパイロット回路に
備えたシート弁組立体からなる流量制御弁の発明を特願
昭63−163646号として昭和63年6月30日に出願してお
り、上述した第3の実施例において、シート弁組立体10
2,103,102A,103Aの分流補償弁124,125,124A,125Aの構造
及び配置はこの先願発明に教示に従って種々の変更が可
能であり、いずれにしても、分流補償弁を閉弁方向に付
勢するパイロット圧力の少なくとも1つをタンク圧とす
るように切換弁を配置すればよい。
第4の実施例 本発明の第4の実施例を第9図により説明する。図
中、第1図等に示す部材と同等の部材には同じ符号を付
している。本実施例は、米国特許第4,425,759号、GB−A
2,195,745号、JP−B2,58−31486号等に記載の型の分流
補償弁を用いた実施例である。
第9図において、旋回モータ2及びブームシリンダ3
に係わる流量制御弁4,5の下流には分流補償弁200,201が
配置されている。
分流補償弁200は、ピストン202、ピストン200を開弁
方向に付勢する駆動室203、ピストン202を閉弁方向に付
勢する駆動室204、及びピストン202を閉弁方向に軽く付
勢するばね205を有し、駆動室203には流量制御弁4の出
口圧力PL1が導かれ、駆動室204にはシャトル弁206,207
を介して取り出された最大負荷圧力Pamaxが導かれてい
る。ピストン202の駆動室203に位置する第1の受圧部20
8と駆動室204に位置する第2の受圧部209は同一面積と
されている。
分流補償弁201は、ピストン210、ピストン210開弁方
向に付勢する駆動室211、ピストン210を閉弁方向に付勢
する2つの駆動室212,213、及びピストン210を閉弁方向
に軽く付勢するばね214を有し、駆動室211には流量制御
弁5の出口圧力PL2が導かれ、駆動室212,213にはシャ
トル弁206,207を介して取り出された最大負荷圧力Pamax
が導かれている。ピストン210の駆動室211に位置する第
1の受圧部215と、ピストン210の駆動室212に位置する
第2の受圧部216及び駆動室213に位置する第3の受圧部
217は、第2及び第3の受圧部216,217の面積の合計が第
1の受圧部215の面積に等しくなるようにされ、その結
果、第2の受圧部216は第1の受圧部215よりも小さな面
積とされている。
第1の受圧部215と第2の受圧部216の面積比は旋回モ
ータ2とブームシリンダ3の複合操作における作業性、
即ち相対的速度関係を考慮して決定される。本実施例で
は、一例として、第1の受圧部215と第2の受圧部216と
の面積比は1:0.75に設定されている。
そして、分流補償弁201の駆動室213には制御力減少手
段218が設けられている。制御力減少手段218は駆動室21
3に最大負荷圧力Pamaxを導く油圧ライン219に設けられ
た切換弁80を有し、切換弁80は旋回モータ2に係わる流
量制御弁4を駆動するパイロット圧力A1又はA2に応答し
て作動するパイロット操作式であり、パイロット圧力A1
又はA2がないときは駆動室213に最大負荷圧力Pamaxを導
く図示の位置にあり、パイロット圧力A1又はA2が伝達さ
れると図示の位置から切換えられ、駆動室213をタンク3
6に連通させる。
油圧ポンプ1には、吐出圧力Psが最大負荷圧力Pamax
よりも一定値だけ高くなるようにポンプ吐出量を制御す
ると共に、油圧ポンプ1の入力トルクが予め定めた制限
値を越えないように油圧ポンプ1の押しのけ容積を制限
するポンプレギュレータ221が設けられている。
ポンプレギュレータ221は、油圧ポンプ1の斜板1aを
駆動するサーボシリンダ222と、サーボシリンダ222の変
位を調整するロードセンシング制御用の第1の制御弁22
3及び入力トルク制限用の第2の制御弁224とを有してい
る。
第1の制御弁223の一端の駆動部にはばね225が配置さ
れると共に最大負荷圧力Pamaxが導かれ、他端の駆動部
にはポンプ吐出圧力Psが導かれている。最大負荷圧力Pa
maxが上昇すると、それに応答して制御弁223が作動し、
サーボシリンダ222の変位を調整して油圧ポンプ1の押
しのけ容積を増大させ、ポンプ吐出量を増大させる。こ
れにより、油圧ポンプ1の吐出圧力Psはばね225により
定まる一定の値だけ高い圧力に保持される。
一方、第2の制御弁224の一端の駆動部にはばね226が
配置されると共にタンク圧が導かれ、他端の駆動部には
ポンプ吐出圧力Psが導かれている。ばね226は、図示は
しないが、油圧ポンプ1の斜板1aの傾転量の増大に連動
して変位し、設定値を減少するように構成されている。
これにより、油圧ポンプ1の押しのけ容積の増大に伴い
減少するばね226の設定値とポンプ吐出圧力とのバラン
スにより第2の制御弁224が動作し、サーボシリンダ222
の変位を制限し、油圧ポンプ1の入力トルクが制限され
る。その結果、油圧ポンプ1を駆動する図示しないない
原動機の馬力制限制御がなされる。
旋回モータ2の油圧回路にはリリーフ弁227,228が設
けられている。
次に、このように構成された本実施例の動作を説明す
る。
旋回体又はブームの単独操作、例えば旋回体の単独操
作を意図してオペレータが図示しない旋回用の操作装置
を操作し、パイロット圧力A1又はA2、例えばパイロット
圧力A1が流量制御弁4に伝達されると、流量制御弁4は
図示左側の位置に切換えられ、油圧ポンプ1からの油圧
は流量制御弁4の可変絞りを経て分流補償弁200の駆動
室203に流入する。駆動室203に流入した圧油はピストン
202の第1の受圧部208に作用し、ピストン202を全開位
置に押し上げて分流補償弁200を通過し、再度、流量制
御弁4を経た後、図示左側の主管路から旋回モータ2に
供給される。これにより、旋回モータ2は一方向に旋回
し始める。このとき、旋回体の慣性は極めて大きいの
で、旋回モータ2の負荷圧力はリリーフ弁227の設定圧
まで上昇し、余分の圧油はタンク36に排出される。ま
た、その負荷圧力は分流補償弁200の駆動室204に導か
れ、ピストン202の第2の受圧部209に作用し、ピストン
202を閉弁方向に付勢する。
一方、このとき、ポンプレギュレータ221にはその負
荷圧力が最大負荷圧力Pamaxとして導入され、油圧ポン
プ1の吐出量は吐出圧力Psが負荷圧力Pamaxよりも一定
値だけ高くなるように制御される。このため、分流補償
弁200のピストン202は負荷圧力による閉弁方向の付勢に
対向して全開位置に保持される。このことは、駆動室20
3の圧力、即ち流量制御弁4の出口圧力PL1はばね205の
力を無視すればほぼ負荷圧力と等しくなることを意味す
る。従って、流量制御弁4の前後差圧は吐出圧力Psと負
荷圧力Pamaxとの差圧に一致することになり、この差圧
はロードセンシング制御により一定に保持されているの
で、旋回モータ2には負荷圧力の変動に係わらず流量制
御弁4の開度に応じた流量が供給される。
ブームシリンダ3の単独操作の場合も、切換弁80は図
示の位置にあり、駆動室213にも負荷圧力が導かれるの
で、上述した旋回モータ2の場合と同様の制御が行われ
る。
ブームと、旋回体以外の被駆動体との複合操作を行う
ときには、分流補償弁201の駆動室212,213と、図示しな
い他のアクチュエータに係わる分流補償弁の駆動室204
に相当する駆動室とにそれぞれ同じ最大負荷圧力Pamax
が導かれ、2つの分流補償弁のピストンは閉弁方向に同
じ力で付勢される。このため、高負荷圧力側のアクチュ
エータに係わる分流補償弁のピストンは単独操作の場合
と同様全開位置に保持されるのに対して、低負荷圧力側
のアクチュエータに係わる分流補償弁のピストンは閉弁
方向に駆動され、流量制御弁の出口圧力が最大負荷圧力
Pamaxに一致するように制御される。即ち、2つの流量
制御弁の前後差圧が共に差圧Ps−Pamaxに一致するよう
制御される。従って、油圧ポンプ1が入力トルク制限制
御による最大可能吐出量に達する前、後のいずれの場合
も、2つの流量制御弁の前後差圧は等しくなるように制
御され、2つのアクチュエータには2つの流量制御弁の
開度比に応じて分流された流量がそれぞれ供給され、適
切な複合操作を行うことが可能となる。
次に、旋回体とブームの複合操作、例えば旋回とブー
ム上げの複合操作を行うときは、旋回モータ2が高負荷
圧力側のアクチュエータとなり、旋回モータ2の単独操
作の場合と同様、分流補償弁200のピストン202は全開位
置に保持され、流量制御弁4の前後差圧は差圧Ps−Pama
xに一致するよう制御される。
一方、このとき、切換弁80はパイロット圧力A1又はA2
により切換えられ、分流補償弁201の駆動室213はタンク
36に連通される。このため、ピストン210に作用する閉
弁方向の制御力は駆動室212に導かれる最大負荷圧力Pam
axが受圧部216に作用する力のみとなり、受圧部216と受
圧部215の面積差に起因して駆動室211の圧力は最大負荷
圧力Pamaxよりも小さくなる。即ち、流量制御弁5の前
後差圧は差圧Ps−Pamaxよりも大きくなる。
以上のように、流量制御弁5の前後差圧が流量制御弁
4の前後差圧よりも大きくなるよう制御される結果、第
1の実施例と同様、ブームシリンダ3には油圧ポンプ1
の吐出量(最大可能吐出量)を流量制御弁4,5の開度比
で配分した流量よりも多い流量が供給され、一方、旋回
モータ2には流量制御弁4,5の開度比で配分した流量よ
りも少ない流量が供給される。これにより、旋回とブー
ム上げの複合操作を確実に行えると共に、ブーム上げ速
度が速く、旋回が比較器緩やかになる複合操作が実施さ
れる。
以上の旋回とブーム上げにおける動作を、第1の受圧
部215と第2の受圧部216の面積比を前述したように1:0.
75に設定した場合につき具体的数値例で説明すれば、以
下のようである。
リリーフ弁227,228の設定圧力を280barとすると、旋
回モータ2の負荷圧力はこのリリーフ弁227又は228の設
定圧力まで上昇し、280barとなる。一方、低負荷圧力側
のアクチュエータであるブームシリンダ3の負荷圧力を
100barとする。シャトル弁206,207では高圧側の負荷圧
力280barが検出される。一方、ポンプレギュレータ221
の第1の制御弁223に設けられたばね225の設定を20bar
相当とすると、負荷圧力280barがポンプレギュレータ22
1に導かれ、油圧ポンプ1の吐出圧力は負荷圧力280bar
に20barを加算した圧力、即ち300barとなる。
ここで、旋回モータ2に係わる分流補償弁200におい
ては、駆動室204に負荷圧力280barが導かれ、第1の受
圧部208と第2の受圧部209は同一面積とされているの
で、駆動室203の圧力も280barとなり、流量制御弁4の
入口圧力が300bar、出口圧力が280barとなり、前後差圧
が20barとなる。
一方、ブームシリンダ3に係わる分流補償弁201にお
いては、駆動室212の圧力は280barであるが、駆動室213
はタンク圧であるため、駆動室211の圧力は第1の受圧
部215と第2の受圧部216の面積比1:0.75に対応して減少
し、280bar×0.75=210barの圧力となる。このため、流
量制御弁5の入口圧力は300bar、出口圧力は210barとな
り、前後差圧は90barとなる。即ち、旋回モータ2に係
わる流量制御弁4の前後差圧は20barであるのに対し
て、ブームシリンダ3に係わる流量制御弁5の前後差圧
は90barに増加する。
ここで、流量制御弁通る流量は前後差圧の平方根に比
例する(ベルヌーイの定理)ので、前後差圧が20barの
流量制御弁4を流れる流量に対して前後差圧が90barの
流量制御弁5を流れる流量は2.12倍となる。即ち、ブー
ムシリンダ3の駆動速度は従来の2倍以上となる。一
方、ブームシリンダ3へ供給される流量が増加した分、
旋回モータ2に供給される流量は減少するので、軌道時
におけるリリーフ弁227又は228のリリーフ量は減少し、
エネルギ損失も減少する。また、分流補償弁201におい
て生じる圧力損失は210bar−100bar=110barとなり、第
1の受圧部215と第2の受圧部216を同じ面積とした場合
の280bar−100bar=180barに比べて大幅に減少する。
従って、本実施例においても、前述して実施例と同
様、旋回体とブームの複合操作以外の複合操作において
は、適切な複合操作を行うことができると共に、旋回と
ブーム上げの複合操作においては、優れた作業性を確保
することができ、かつエネルギ損失の抑制を図ることが
できる。
第4の実施例の変形 次に、第4の実施例の変形例を第10図により説明す
る。図中、第9図に示す部材と同等の部材には同じ符号
を付している。本実施例は、前述した実施例のブームシ
リンダ3に係わる流量制御弁と分流補償弁を一体に構成
すると共に、分流補償弁として、ブームシリンダ3の圧
油の供給方向に対応して異なる特性の2つの分流補償弁
を設けた実施例である。
第10図において、230は流量制御弁231と2つの分流補
償弁232B,232Rを一体に構成した弁装置であり、弁装置2
30は、弁ハウジング233と、弁ハウジング233内に軸線方
向に往復動可能に支持され、流量制御弁231の弁体を構
成するスプール234とを有し、スプール234の両端部には
パイロット圧力B1,B2が加えられる。
弁ハウジング234は、油圧ポンプ1の吐出管路17に接
続されるポンプポートPと、ポンプポートPに連通する
室235と、ブームシリンダ3のボトム側3B及びロッド側3
R(第9図参照)にそれぞれ接続されるポート236B,236R
と、ポート236B,236Rにそれぞれ連通する室237B,237R
と、流量制御弁231と分流補償弁232B,232Rとを連通する
室238と、室238とへや237B、室238とへや237Rをそれぞ
れ連通する通路239B,239Rと、タンク36に接続されるタ
ンクポートTとを有している。スプール234には絞り部2
40B,240Rを提供するノッチが形成されている。
分流補償弁232B,232Rは、それぞれ段付ピストン241B,
241Rと、通の駆動室242及び243とを有し、段付ピストン
241B,241Rには、それぞれ、第1の駆動室を構成する室2
38に位置する第1の受圧部244B,244Rと、駆動室242に位
置する第2の受圧部245B,245Rと、駆動し何時243に位置
する第3の受圧部246B,246Rとが設けられている。
段付ピストン241Bの第1の受圧部244Bと段付ピストン
241Rの第1の受圧部244Rの受圧面積は等しくされ、第2
の受圧部245B及び245Rは前者が後者よりも大きくされて
いる。即ち、241B=241R>245B>245Rの関係になってい
る。その結果、段付ピストン241Bにおける第1の受圧部
244Bに対する第2の受圧部245Bの面積比は段付ピストン
241Rにおける第1の受圧部244Rに対する第2の受圧部24
5Rの面積比より大きくされている。これら面積比は、旋
回とブーム上げの複合操作及び旋回とブーム下げの複合
操作における作業性を考慮して決定される。
駆動室242には直接最大負荷圧力Pamaxが導かれ、駆動
室243には切換弁80を介して最大負荷圧力Pamaxが導かれ
ている。
次に、このように構成された弁装置230の動作を説明
する。
ブーム上げを行う場合には、パイロット圧力B1がスプ
ール234の図示左端に加えられ、スプール234は図示右方
に移動する。このため、室235内の圧油は絞り部240Bを
通って室238に流入し、分流補償弁232Bのピストン241B
を押し上げ、通路239B、室237B、ポート236Bを経てブー
ムシリンダ3のボトム側3Bに供給される。一方、スプー
ル234の右方移動によりポート236R、室237Rはタンクポ
ートTと連通するので、ブームシリンダ3のロッド側3B
の圧油はタンク36に排出される。
また、通路239Bの圧力はシャトル弁206に導かれ、ブ
ーム上げの単独操作時は駆動室242にその圧力が負荷圧
力Pamaxとして導かれる。ブーム上げを含む複合操作時
は、シャトル弁206,207により取り出されたその時の最
大負荷圧力Pamax、旋回とブーム上げの複合操作は旋回
モータ2の負荷圧力が駆動室242に導かれる。室235に
は、ポンプレギュレータ221によりロードセンシング制
御された油圧ポンプ1の吐出圧力Psが導かれる。
ここで、ブーム上げの単独操作時は、前述したように
切換弁80は図示の位置にあり、駆動室243にも負荷圧力P
amaxが導かれる。その結果、室238の圧力は負荷圧力Pam
axとほぼ等しくなり、差圧Ps−Pamaxにほぼ等しい前後
差圧で絞り部240Bを流れる圧油の流量が制御される。
旋回とブーム上げの複合操作時は、切換弁80はパイロ
ット圧力A1又はA2により切換えられ、駆動室243はタン
ク圧となる。このため、室238の圧力はピストン241Bの
第1の受圧部244Bに対する第2の受圧部245Bの面積比に
対応して駆動室242の圧力Pamaxよりも低い圧力となり、
絞り部240Bの前後差圧は差圧Ps−Pamaxよりも増加す
る。その結果、流量制御弁231を流れる流量は単独操作
時に比べて大となり、ブーム上げ速度も大きくなる。
ブーム下げの場合の動作も上述したブーム上げの場合
と実質的に同じである。ただし、この場合は、分流補償
弁232Rが機能するので、旋回とブーム下げの複合操作時
の室238の圧力は、上述した受圧部の面積比の関係か
ら、ブーム上げの場合よりも低くなり、ブーム下げをよ
り速く行うことができる。
なお、段付ピストン241B,241Rは大径部と小径部を別
体に構成してもよい。
このように本実施例では、先の実施例の効果に加え、
旋回との複合操作に際してのブーム上げとブーム下げの
速度を別々に設定することができ、作業性を一層向上す
ることができる。また、流量制御弁と分流補償弁を一体
に構成したので、全体を小形化できる。
第5の実施例 本発明の第5の実施例を第11図〜第16図により説明す
る。図中、第1図等に示す部材と同等の部材には同じ符
号を付している。
第11図において、本実施例の油圧駆動装置は、前述し
た実施例と同様、比較的負荷圧力が高くなる第1のアク
チュエータ、例えば旋回体52(第3図参照)を駆動する
旋回モータ2と、第1のアクチュエータの負荷圧より小
さい負荷圧力となる第2のアクチュエータ、例えばブー
ム54(第3図参照)を駆動するブームシリンダ3とを備
え、これらの第1及び第2のアクチュエータとは別の第
3のアクチュエータとして、例えばアーム55(第3図参
照)を駆動するアームシリンダ59を備え、これらアクチ
ュエータには油圧ポンプ1から圧油が供給され、駆動さ
れる。また、旋回モータ2に供給される油圧の流れを制
御する流量制御弁4と、ブームシリンダ3に供給される
圧油の流れを制御する流量制御弁5と、アームシリンダ
59に供給される圧油の流れを制御する流量制御弁300
と、旋回用流量制御弁4の前後差圧Pz1−PL1を制御す
る分流補償弁301と、ブーム用流量制御弁5の前後差圧P
z2−PL2を制御する分流補償弁302(第12図参照)と、
アーム用流量制御弁300の前後差圧Pz3−PL3を制御する
分流補償弁303とを備えている。
流量制御弁4,5,300はパイロット操作式になってお
り、このうち旋回用流量制御弁4はパイロット弁304の
操作により生成されるパイロット圧力A1,A2により駆動
し、ブーム用流量制御弁5はパイロット弁305の操作に
より生成されるパイロット圧力B1,B2により駆動し、ア
ーム用流量制御弁300は図示しないパイロット弁の操作
により生成されるパイロット圧力C1,C2により駆動する
ようになっている。
分流補償弁301は、流量制御弁4の出口圧力PL1及び
出口圧力Pz1がそれぞれ導かれ、分流補償弁301に流量制
御弁4の前後差圧PZ1−PL1に基づく第1の制御力を閉
弁方向に付与する駆動部8,9と、制御圧力Pc1が導かれ、
分流補償弁301に前後差圧PZ1−PL1の目標値となる第
2の制御力Fc1を開弁方向に付与する駆動部306とを有し
ている。分流補償弁302,303も、同様に、駆動部12,13,3
07及び駆動部308,309,310を有し、それぞれ前後差圧Pz2
−PL2,Pz3−PL3に基づく閉弁方向の第1の制御力及び
パイロット圧力Pc2,Pc3に基づく開弁方向の第2の制御
力Fc1,Fc2が付与される。制御圧力Pc1,Pc2,Pc3は制御力
発生手段311により生成される。
また、本実施例は、第2のアクチュエータ即ち旋回モ
ータ2の駆動を検出する駆動検出手段311と、上述した
制御圧力Pc1,Pc2,Pc3を生成すると共に、駆動検出手段3
11により旋回モータ2の駆動が検出されたときに、ブー
ムシリンダ3に係わる分流補償弁302に付与される第2
の制御力Fc2が旋回モータ2に係わる分流補償弁301に付
与される第2の制御力Fc1よりも大きくなるようにする
制御力発生手段312とを備えている。
駆動検出手段311は、パイロット弁304の操作に伴って
発生するパイロット圧力A1又はA2を取り出すシャトル弁
313と、このシャトル弁313から取り出されたパイロット
圧力の大きさに応じた電気信号を出力する駆動検出セン
サ、例えば圧力センサ314とからなっている。
制御力発生手段312は、ポンプ圧Psとアクチュエータ
の負荷圧力のうち最大負荷圧力Pamaxとの差圧、即ちロ
ードセンシング差圧ΔPLS(=Ps−Pamax)を検出する
差圧センサ25と、この差圧センサ25から出力される差圧
ΔPLSを示す電気信号(以下、便宜上この信号をΔPLS
で示す)と、圧力センサ314から出力される旋回駆動を
示す電気信号Xとを入力し、上述した制御力Fc1,Fc2,Fc
3を演算するコントローラ315と、このコントローラ315
で演算された制御力Fc1,Fc2,Fc3に対応して分流補償弁3
01,302,303の駆動部307,308,310に与えられる制御圧力P
c1,Pc2,Pc3を発生させる制御圧力発生手段316とを備え
ている。
コントローラ315は、電気信号ΔPLS及びXを入力す
る入力部317と、電気信号ΔPLSと制御力Fc1,Fc2,Fc3の
関数関係が記憶されている記憶部318と、入力部317から
入力された電気信号ΔPLS及びXに基づいて記憶部318
の設定内容を読み出し、差圧ΔPLSに対応する制御力を
求める演算部319と、演算部319で求めた制御力を電気信
号g1,g2,g3として出力する出力部320とを備えている。
記憶部318に記憶されたロードセンシング差圧ΔPLS
と制御力Fc1,Fc2,Fc3の関数関係は、それぞれ第13図〜
第15図に示すようになっている。即ち、第13図に示す関
数関係は旋回用流量制御弁に係る分流補償弁301に対応
するもので、特性線321で示すように、ロードセンシン
グ差圧ΔPLSが大きくなるに従って分流補償弁301の駆
動部306が付与する制御力Fc1が次第に大きくなる関数関
係とされている。
第14図に示す関数関係はブーム用流量制御弁5に係る
分流補償弁302に対応するもので、特性線322,323で示す
ように2つの関数関係を有しており、これらの特性線32
2,323のいずれもロードセンシング差圧ΔPLSが大きく
なるに従って分流補償弁302の駆動部307が与える制御力
Fc2が大きくなる関係であるが、特性線323の傾きは特性
線322の傾きに比べて大きくして設定してある。特性線3
22は旋回とブームの複合操作以外の操作に対応する第1
の関数関係を示す特性線である。特性線323は旋回とブ
ームの複合操作時に対応する第2の関数関係を示す特性
線である。
また、第15図に示す関数関係はアーム用流量制御弁30
0に係る分流補償弁303に対応するもので、特性線324で
示すように、ロードセンシング差圧ΔPLSが大きくなる
に従って分流補償弁303の駆動部310が与える制御力Fc3
が次第に大きくなる関数関係にされている。
第11図に戻り、制御圧力発生手段316は、油圧ポンプ
1と同期して駆動するパイロット油圧源、即ちパイロッ
トポンプ325と、このパイロットポンプ325のパイロット
圧力を規定するリリーブ弁326と、コントローラ315から
の電気信号g1に基づきパイロットポンプ325のパイロッ
ト圧力を制御圧力Fc1に変えて分流補償弁301の駆動部30
6に与える電磁比例弁327と、電気信号g2に基づきパイロ
ットポンプ325のパイロット圧力を制御圧力FC2に変え
て分流補償弁302の駆動部307に与える電磁比例弁328
と、電気信号g3に基づきパイロットポンプ325のパイロ
ット圧力を制御圧力Fc3に変えて分流補償弁303の駆動部
310に与える電磁比例弁329とを備えている。
油圧ポンプ1には、第9図に示す第4の実施例と同
様、吐出圧力Psが最大負荷圧力Pamaxよりも一定値だけ
高くなるようにポンプ吐出量をロードセンシング制御す
ると共に、油圧ポンプ1の入力トルクが予め定めた制限
値を越えないように油圧ポンプ1の押しのけ容積を制限
する入力トルク制限制御を行うポンプレギュレータ221
が設けられている。
このように構成した実施例における動作は以下の通り
である。
例えば、土砂の掘削作業を意図してパイロット弁30
5、及びアームシリンダ59に係る図示しないパイロット
弁が操作され、ブーム用流量制御弁5とアーム用流量制
御弁300が適宜切換えられたとすると、コントローラ315
の演算部319で第16図に示す手順にしたがった処理がお
こなわれる。
始めに、手順S1において、差圧センサ25で検出された
ロードセンシング差圧ΔPLSと、圧力センサ31で検出さ
れた旋回駆動信号Xとがコントローラ315の入力部317を
介して演算部319に読み込まれる。次いで手順S2に移
り、演算部319で旋回駆動信号Xが入力されているかど
うか判断される。今、旋回は意図されず、旋回駆動信号
Xが出力されていないので、同手段S2における判断は満
足される、手順S3に移る。
手順S3では、記憶部318に記憶されている設定内容か
ら、分流補償弁302に係わる第14図の特性線322の第1の
関数関係と、分流補償弁303に係わる第15図の特性線324
の関数関係とが演算部319に読み出され、ロードセンシ
ング差圧ΔPLSに対応する制御力Fc2,Fc3がそれぞれ求
められ、手順S4に移る。
手順S4では、出力部320から手順S3で得られた制御力F
c2,Fc3に相当する電気信号g2,g3が電磁比例弁328,329の
駆動部に出力される。これにより電磁比例弁328,329が
作動し、パイロットポンプ325のパイロット圧力がこれ
らの電磁比例弁328,329を介して制御圧力Pc2,Pc3に変え
られて、分流補償弁302,303の駆動部307,310のそれぞれ
に与えられる。これに応じて分流補償弁302,303には開
弁方向に制御力Fc2,Fc3が付与され、分流補償弁302,303
の開度が適宜調整され、油圧ポンプ1の圧油が分流補償
弁302及び流量制御弁5を介してブームシリンダ3に供
給され、同時に分流補償弁303及び流量制御弁300を介し
てアームシリンダ59に供給され、ブームシリンダ3とア
ームシリンダ59との複合駆動、すなわちブームとアーム
の複合操作による掘削作業を行うことができる。
このようにブームとアームの複合操作におけるブーム
シリンダ3に係る分流補償弁302に作用する力の釣り合
いは、第12図に示すように駆動部12,13の受圧面積をそ
れぞれaL2,az2とすると、 P2L・aL2+Fc2=Pz2・az2 (5) が成り立つ。ここで、第14図の第1の関数関係を示す特
性線322における比例定数をα1とすると、F=2α1
・ΔPLSと表わすことができる。従って、aL2=az2と
設定すると、流量制御弁5の前後差圧Pz2−PL2は、 Pz2−PL2=(α1/aL2)ΔPLS (6) となる。
同様に、アームシリンダ59に係る分流補償弁303に作
用する力の釣り合いは、駆動部308,309を受圧面積をそ
れぞれaL3,az3とすると、 PL3・aL3+Fc3=Pz3・az3 (7) が成り立つ。ここで、第15図の特性線324の比例定数を
βとすると、F3=β・ΔPLSと表わすことができる。従
って、aL3=az3=aL2と設定すると、流量制御弁300の
前後差圧Pz3−PL3は、 Pz3−PL3=(β/aL2)ΔPLS (8) となる。
ところで、一般に流量制御弁を通過する流量Qと、こ
の流量制御弁の前後差圧ΔPと、この流量制御弁の開口
面積Aとの間には、比例定数をKとすると、 の関係がある。従って、流量制御弁5を通過する流量を
Q1、そのフルストローク時の開口面積をA1、比例定数を
K1とすると、上記(6)式から、 が成り立つ。同様にアーム用流量制御弁300を通過する
流量をQ2、そのフルストローク時の開口面積をA2、比例
定数をK2とすると、上記(8)式から、 が成り立つ。上記した(11)、(12)式から、ブームシ
リンダ3、アームシリンダ59に供給される流量の分流比
Q1/Q2は、 となる。ここで、K1,A1,α1,K2,A2,βは定数であり、従
って分流比Q1/Q2は一定となる。即ち、この実施例にあ
っても、ブームシリンダ3とアームシリンダ59との複合
駆動時には、互いに他の負荷圧力の変動の影響を受ける
ことなく、一定の割合で油圧ポンプ1の流量がそれぞれ
のアクチュエータに分配され、ブームシリンダ3とアー
ムシリンダ59のそれぞれは流量制御弁5,300の操作量、
即ち開始面積に応じた複合駆動を実現させることができ
る。
また、掘削した土砂のトラック等への積込み作業を意
図してパイロット弁304とパイロット弁305とが操作さ
れ、ブーム用流量制御弁5と共に旋回用流量制御弁4が
切換えられたとすると、圧力センサ314からの旋回駆動
信号Xがコントローラ315の入力部317を介して演算部31
9に読み込まれる。そして、第16図の手順S2の判断が満
足され、手順S5に移る。この手順S5では、演算部319
で、旋回モータ2に係る分流補償弁301については第13
図の特性線321で示す関数関係に基づいて、ブームシリ
ンダ3に係る分流補償弁302については第14図の特性線3
23で示す第2の関数関係に基づき、制御力Fc1,Fc2をそ
れぞれ求める演算が行われる。
次いで、手順S4に移り、出力部320から手順S5で得ら
れた制御力Fc1に相応する電気信号g1を電磁比例弁33の
駆動部に出力し、制御力Fc2に相応する電気信号g2を電
磁比例弁32の駆動部に出力する。これにより第11図に示
す電磁比例弁327,328が作動し、パイロットポンプ325の
パイロット圧力がこれらの電磁比例弁327,328を介して
制御圧力Pc1,Pc2に変えられて分流補償弁301,302の駆動
部306,307のそれぞれに与えられる。これに応じて分流
補償弁301,302には開弁方向に制御力Fc1,Fc2が付与さ
れ、分流補償弁301,302の開度が適宜調整され、油圧ポ
ンプ1の圧油が分流補償弁301及び流量制御弁4を介し
て旋回モータ2に供給され、同様に分流補償弁302及び
流量制御弁5を介してブームシリンダ3に供給され、旋
回モータ2とブームシリンダ3との複合駆動、即ち旋回
とブームの複合操作によるトラック等への土砂の積込み
作業を行うことができる。
このような旋回とブームの複合操作におけるブームシ
リンダ3に係る分流補償弁302に作用する力のつり合い
は、上記(5)式に示すようになるが、このとき、第14
図の第2の関数関係を示す特性線323における比例定数
をα2(>α1)とすると、Fc2=α2・ΔPLSと表わ
すことができ、この場合のブーム用流量制御弁5の前後
差圧Pz2−PL2は、 Pz2−PL2=(α2/aL2)ΔPLS (13) となる。また、旋回モータ2に係る分流補償弁301に作
用する力のつり合いは、駆動部8,9の受圧面積をそれぞ
れaL1,aL2とすると、 PL1・aL1+Fc1=Pz1・az1 (14) が成り立つ。ここで、第13図の特性線321の比例定数を
γとすると、Fc1=γ・ΔPLSと表わすことができる。
従って、aL1=az1=aL2と設定すると、流量制御弁4の
前後差圧Pz1−PL1は、 Pz1−PL1=(γ/aL2)ΔPLS (15) となる。
また、このとき流量制御弁5を通過する流量Q1は前述
の(10),(11)式から、 となる。同様に旋回用流量制御弁4を通過する流量をQ
3、そのフルストローク時の開口面積をA3、比例定数をK
3とすると、上記(15)式から、 となる。ここでK1,A1,α2,K3,A3,γは定数であり、従っ
て分流比Q1/Q3は一定となる。即ち、旋回モータ2とブ
ームシリンダ3との複合駆動時にあっても、互いに他の
負荷圧力の変動の影響を受けることはなく、一定の割合
で油圧ポンプ1の流量がそれぞれのアクチュエータに分
配され、旋回モータ2とブームシリンダ3のそれぞれは
流量制御弁4,5の操作量、即ち開口面積に応じた複合駆
動を実現させることができる。
このように構成した実施例にあっては、上述したよう
にブームとアームの複合操作、即ちブームシリンダ3と
アームシリンダ59との複合操作時には、ブームシリンダ
4には第14図の特性線322の比較的小さい値である比例
定数α1に応じた(10)式で示す比較的小さい流量Q1が
供給され、アームシリンダ59には第15図の特性線324の
比例定数βに応じた(11)式で示す十分に大きな流量Q2
が供給される。このため、ブームシリンダ3側に過度に
流量が供給されることがなく、これによりアーム速度の
低下を生じることのない良好な複合操作を実現できる。
また、上述したように旋回とブームの複合操作、即ち
旋回モータ2とブームシリンダ3との複合操作時には、
ブームシリンダ3には第14図の特性線323の比較的大き
い値である比例定数α2に応じた(16)式で示す比較的
大きい流量Q1が供給され、このブームシリンダ3の作動
量を十分に確保することができ、旋回モータ2には第13
図の特性線321の比例定数γに応じた(17)式で示す流
量が供給され、この旋回モータ2の駆動を行なわせるこ
とができると共に、ブームシリンダ3側に多くの流量が
流されることによりタンクに流れる不要な流量が減少
し、エネルギ損失の抑制を図ることができる。
第5の実施例の変形 次に、第5の実施例の変形例を第17図により説明す
る。図中、第11図に示す部材と同等の部材には同じ符号
を付している。
この変形実施例は、駆動検出手段として、旋回モータ
2の駆動を検出する駆動検出手段311に加えて、ブーム
上げを行なわせるブームシリンダ3の駆動を検出する駆
動検出手段340を有し、駆動検出手段340は流量制御弁5
を図示右側の位置に駆動するパイロット圧力B2を検出
し、このパイロット圧力B2の大きさに応じた電気信号Y
を出力する圧力センサ341からなっている。制御発生手
段312においては、コントローラ312の演算部344におけ
る第16図の手順S5で示す演算は、圧力センサ314から出
力される旋回駆動を示す電気信号Xと、圧力センサ341
から出力されるブーム上げを示す電気信号Yの双方が入
力された場合に限り行うようになっている。その他の構
成は前述した第11図に示す実施例と同等である。
このように構成した実施例では、旋回とブーム上げの
複合操作にのみブームシリンダ3に比較的大きな流量を
供給でき、土砂のトラック等の積込み作業をより確実に
作業能率よく行うことができる。
第5の実施例の他の変形例を第18図により説明する。
この実施例は、旋回モータ2の駆動を検出する駆動検
出手段350が、パイロット304によって発生したパイロッ
ト圧A1又はA2を取り出すシャトル弁313と、シャトル弁3
13で取り出されたパイロット圧力A1又はA2を導く誘導ラ
イン351とからなっている。また、制御力発生手段352
は、油圧ポンプ1の吐出圧力Psと最大負荷圧力Pamaxと
の差圧であるロードセンシング差圧ΔPLSが閉弁方向に
作用し、パイロットポンプ325で発生したパイロット圧
力を差圧ΔPLSに応じて減圧して制御圧力Pc1を生成
し、これを分流補償弁301の駆動部306に供給する絞り弁
353と、ロードセンシング差圧ΔPLSが閉弁方向に作用
すると共に、これに対向して上述した誘導ライン351を
介して導かれるパイロット圧力A1又はA2が開弁方向に作
用し、パイロットポンプ325で発生したパイロット圧力
を差圧ΔPLSの付勢力とパイロット圧力A1又はA2の差に
応じて減圧して制御圧力Pc2を生成し、これを分流補償
弁302の駆動部307に供給する絞り弁354と、ロードセン
シング差圧ΔPLSが開弁方向に作用し、パイロットポン
プ325で発生したパイロット圧力を差圧ΔPLSに応じて
減圧して制御圧力Pc3を生成し、これを分流補償弁303の
駆動部310に供給する絞り弁355とを含む構成にしてあ
る。
このように構成した本実施例にあっては、旋回とブー
ムの複合操作時にはパイロット弁304も操作されること
から、シャトル弁313及び誘導ライン351を介して導かれ
たパイロット圧力A1又はA2によってブームシリンダ3に
係る絞り弁354が強制的に開く方向に作動し、これによ
って分流補償弁302の駆動部307に大きな制御圧力Fc2が
導かれ、分流補償弁302には開弁方向に大きな制御力Fc2
が付与され、ブームシリンダ3側に比較的大きな流量が
供給される。また、ブームとアームの複合操作時には、
パイロット弁304が操作されないことから、絞り弁354,3
55のそれぞれはロードセンシング差圧ΔPLSによって制
御され、これによりブームシリンダ3側に過度に流量が
供給されることがなく、アームシリンダ59側にも十分な
流量を供給できる。
以上のように、制御力発生手段352を油圧的に構成し
ても第5の実施例と同様の効果が得られる。
なお、上述した第5の実施例及びそ第1の変形例で
は、旋回モータ2の駆動を検出する駆動検出手段として
圧力センサ314を設け、またブーム上げを検出する駆動
検出手段として圧力センサ341を設けてあるが、本発明
はこのような駆動検出手段として圧力センサを設けるこ
とは限定されず、この圧力センサに代えて圧力トランジ
ューサやアナログ的に信号を処理する手段を設けてもよ
い。
また、上記第5の実施例では実施例では流量制御弁4,
5等がパイロット操作式のものになっているが、本発明
はこのように流量制御弁がパイロット操作式のものに限
定されず、手動操作式であってもよく、その場合、旋回
モータ2の駆動を検出する手段を、旋回モータ2に係わ
る流量制御弁4のスプールの移動を検出するカムを含む
構成とすることができる。
以上、本発明の幾つかの実施例を、比較的負荷圧力が
高くなるアクチュエータとして旋回モータを有し、それ
よりも負荷圧力の低いアクチュエータとしてブームシリ
ンダを有する場合につき説明したが、本発明はこれらの
アクチュエータに限定されるものではなく、複合駆動に
際して同様の負荷特性を持つ他のアクチュエータにも適
用できるものである。
産業上の利用可能性 本発明は建設機械の油圧駆動装置は、以上のように構
成したことから、比較的負荷圧力が大きくなる第1のア
クチュエータと、第1のアクチュエータに比べて負荷圧
力の小さい第2のアクチュエータとの複合駆動に際し
て、エネルギ損失を抑制できると共に、第2のアクチュ
エータの作動量を十分に確保し、作業性を向上させるこ
とができる。また、第2のアクチュエータと、第1のア
クチュエータ以外のアクチュエータとの複合駆動に際し
ては、マッチングを損うことなく従来通りの良好な複合
駆動を実施でき、優れた複合操作性を維持することがで
きる。
フロントページの続き (56)参考文献 特開 昭62−147102(JP,A) 特開 昭63−92801(JP,A) 特開 昭59−226702(JP,A) 特開 昭60−11706(JP,A) 特開 昭57−116965(JP,A) 特公 昭58−31486(JP,B2) 英国特許出願公開2195745(GB,A) (58)調査した分野(Int.Cl.7,DB名) F15B 11/00 - 11/22

Claims (13)

    (57)【特許請求の範囲】
  1. 【請求項1】油圧ポンプ(1)と、前記油圧ポンプから
    供給される油圧によって駆動される複数の油圧アクチュ
    エータ(2,3)と、これらアクチュエータに供給される
    圧油の流れをそれぞれ制御する複数の流量制御弁(4,
    5)と、これら流量制御弁の前後差圧をそれぞれ制御す
    る複数の分流補償弁(6,7)とを備え、前記複数のアク
    チュエータは、比較的負荷圧力が大きくなる第1のアク
    チュエータ(2)と、前記第1のアクチュエータに比べ
    て負荷圧力の小さい第2のアクチュエータ(3)とを含
    む建設機械の油圧駆動装置において、 前記第1及び第2のアクチュエータ(2,3)の複合駆動
    時に、前記第2のアクチュエータ(3)に係わる流量制
    御弁(5)の前後差圧(Pz2−PL2)を前記第1のアク
    チュエータ(2)に係わる流量制御弁の前後差圧(Pz1
    −PL1)よりも大きくなるように該第2のアクチュエー
    タに係わる分流補償弁(7)を制御する分流制御手段
    (22,23)を設けたことを特徴とする建設機械の油圧駆
    動装置。
  2. 【請求項2】請求の範囲第1項記載の建設機械の油圧駆
    動装置において、 前記第1及び第2のアクチュエータ(2,3)に係わる分
    流補償弁(6,7)は、それぞれ、関連する流量制御弁
    (4,5)の前後差圧に基づく第1の制御力を閉弁方向に
    付与する第1の駆動手段(8,9;12,13)、及びその前後
    差圧の目標値を定める第2の制御力(f−Fc)を開弁方
    向に付与する第2の駆動手段(10,11;14,15)を有し、 前記分流制御手段(22,23)は、前記第1及び第2のア
    クチュエータの複合駆動時に、前記第2のアクチュエー
    タ(3)に係わる分流補償弁(7)に付与される前記第
    2の制御力を前記第1のアクチュエータ(2)に係わる
    分流補償弁(6)に付与される第2の制御力よりも大き
    くなるように制御することを特徴とする建設機械の油圧
    駆動装置。
  3. 【請求項3】請求の範囲第2項記載の建設機械の油圧駆
    動装置において、 前記第1及び第2のアクチュエータ(2,3)に係わる分
    流補償弁(6,7)の第2の駆動手段は、それぞれ、該分
    流補償弁を第3の制御力(f)で開弁方向に付勢する第
    3の駆動手段(10,14)と、前記第3の制御力よりも小
    さい第4の制御力(Fc)で閉弁方向に付勢する第4の駆
    動手段(11,15)とを有し、この第3の制御力と第4の
    制御力との差により前記第2の制御力(f−Fc)を付与
    し、 前記分流制御手段は、前記第1のアクチュエータ(2)
    の駆動に応答して前記第4の駆動手段の第4の制御力を
    減少させる制御力減少手段(33)を有することを特徴と
    する建設機械の油圧駆動装置。
  4. 【請求項4】請求の範囲第2項記載の建設機械の油圧駆
    動装置において、 前記第1及び第2のアクチュエータ(2,3)に係わる分
    流補償弁(301,302)の前記第2の駆動手段は、それぞ
    れ、該分流補償弁を前記第2の制御力(Fc1,Fc2)で開
    弁方向に付勢する単一の駆動手段(306,307)であり、 前記分流制御手段は、少なくとも前記第1のアクチュエ
    ータ(2)の駆動を検出する駆動検出手段(311)と、
    この駆動検出手段により前記第1のアクチュエータの駆
    動が検出されたときに、前記第2のアクチュエータ
    (3)に係わる分流補償弁(302)の前記第2の駆動手
    段(307)が付与する前記第2の制御力(Fc2)として、
    前記第1のアクチュエータに係わる分流補償弁(301)
    の前記第2の駆動手段(306)が付与する前記第2の制
    御力(Fc1)よりも大きな制御力を付与する制御力発生
    手段(312)とを含むことを特徴とする建設機械の油圧
    駆動装置。
  5. 【請求項5】請求の範囲第4項記載の建設機械の油圧駆
    動装置において、 前記駆動検出手段(311)は前記第1のアクチュエータ
    (2)の駆動に応答して電気信号を出力する駆動検出セ
    ンサ(314)からなり、 前記制御力発生手段(312)は、前記油圧ポンプ(1)
    の吐出圧力(Ps)と前記複数のアクチュエータ(2,3,5
    9)の最大負荷圧力(Pamax)との差圧を検出し、その差
    圧に対応する電気信号(ΔPLS)を出力する差圧センサ
    (25)と、前記駆動検出センサから出力される電気信号
    (X)と前記差圧センサから出力される電気信号(ΔP
    LS)とに応じて、前記第2のアクチュエータ(3)に係
    わる分流補償弁(302)の前記第2の駆動手段(307)が
    付与する前記第2の制御力(Fc2)の値を演算し、その
    値に対応する電気信号(g2)を出力するコントローラ
    (315)と、このコントローラから出力される電気信号
    に応じた制御圧力(Pc2)を発生し、これを前記第2の
    アクチュエータに係わる分流補償弁の前記第2の駆動手
    段に出力する制御圧力発生手段(316)とを含むことを
    特徴とする建設機械の油圧駆動装置。
  6. 【請求項6】請求の範囲第5項記載の建設機械の油圧駆
    動装置において、 前記制御圧力発生手段(316)は、一定のパイロット圧
    を発生する油圧源(325)と、このパイロット圧を前記
    コントローラ(315)から出力された電気信号(g2)に
    対応した制御圧力(Pc2)に変換する電磁比例弁(328)
    とを含むことを特徴とする建設機械の油圧駆動装置。
  7. 【請求項7】請求の範囲第4項記載の建設機械の油圧駆
    動装置において、 前記駆動検出手段(350)は前記第1のアクチュエータ
    (2)の駆動に対応して油圧信号を出力する油圧誘導手
    段(315,351)からなり、 前記制御力発生手段は、前記油圧ポンプ(1)の吐出圧
    力(Ps)と前記複数のアクチュエータの最大負荷圧力
    (Pamax)との差圧と、前記油圧誘導手段から出力され
    る油圧信号とに対応した制御圧力(Pc2)を発生し、こ
    れを前記第2のアクチュエータ(3)に係わる分流補償
    弁(302)の前記第2の駆動手段(307)に出力する制御
    圧力発生手段(352)を含むことを特徴とする建設機械
    の油圧駆動装置。
  8. 【請求項8】請求の範囲第7項記載の建設機械の油圧駆
    動装置において、 前記制御圧力発生手段(352)は、一定のパイロット圧
    を発生する油圧源(325)と、このパイロット圧を前記
    差圧の付勢力と前記油圧信号の付勢力との差に応じて減
    圧し、前記制御圧力(Pc2)を生成する絞り弁手段(35
    4)とを含むことを特徴とする建設機械の油圧駆動装
    置。
  9. 【請求項9】請求の範囲第4項記載の建設機械の油圧駆
    動装置において、 前記駆動検出手段は前記第1のアクチュエータ(2)の
    駆動に応答して電気信号(X)を出力する第1の駆動検
    出センサ(311,314)と、前記第2のアクチュエータ
    (3)の2つの駆動方向の一方の駆動に応答して電気信
    号(Y)を出力する第2の駆動検出センサ(340,341)
    とからなり、 前記制御力発生手段(342)は、前記油圧ポンプ(1)
    の吐出圧力(Ps)と前記複数のアクチュエータ(2,3)
    の最大負荷圧力(Pamax)との差圧を検出し、その差圧
    に対する電気信号(ΔPLS)を出力する差圧センサ(2
    5)と、前記第1及び第2の駆動検出センサから出力さ
    れる電気信号と前記差圧センサから出力される前記信号
    とに応じて、前記第2のアクチュエータに係わる分流補
    償弁(302)の前記第2の駆動手段(307)が付与する前
    記第2の制御力(Fc2)の値を演算し、その値に対応す
    る電気信号(g2)を出力するコントローラ(343)と、
    このコントローラから出力される電気信号に応じた制御
    圧力(Pc2)を発生し、これを前記第2のアクチュエー
    タに係わる分流補償弁の前記第2の駆動手段に出力する
    制御圧力発生手段(328)とを含むことを特徴とする建
    設機械の油圧駆動装置。
  10. 【請求項10】前記複数のアクチュエータが前記第1及
    び第2のアクチュエータ(23)と異なる第3のアクチュ
    エータ(59)を有する請求の範囲第4項記載の建設機械
    の油圧駆動装置において、 前記第3のアクチュエータに係わる分流補償弁(303)
    が、前記第1及び第2のアクチュエータに係わる分流補
    償弁(301,302)と同様に、関連する流量制御弁(300)
    の前後差圧(Pz3−PL3)に基づく第1の制御力を閉弁
    方向に付与する第1の駆動手段(308,309)、及びその
    前後差圧の目標値を定める第2の制御力(Fc3)を開弁
    方向に付与する第2の駆動手段(310)を有し、 前記駆動検出手段(311)は前記第1のアクチュエータ
    (2)の駆動に応答して電気信号(X)を出力する駆動
    検出センサ(314)からなり、 前記制御力発生手段(312)は、前記油圧ポンプ(1)
    の吐出圧力(Pc)と前記複数のアクチュエータの最大負
    荷圧力(Pamax)との差圧を検出し、その差圧に対応す
    る電気信号(ΔPLS)を出力する差圧センサ(25)と、
    前記駆動検出センサから出力される電気信号と前記差圧
    センサから出力される電気信号とに応じて、前記第1、
    第2及び第3のアクチュエータに係わる分流補償弁(30
    1,302,303)の前記第2の駆動手段(306,307,310)がそ
    れぞれ付与する前記第2の制御力(Fc1,Fc2,Fc3)の値
    を演算し、その値に対応する電気信号(g1,g2,g3)を出
    力するコントローラ(315)と、このコントローラから
    出力される電気信号に応じた制御圧力(Pc1,Pc2,Pc3)
    をそれぞれ発生し、これを前記第1、第2及び第3のア
    クチュエータに係わる分流補償弁の前記第2の駆動手段
    にそれぞれ出力する制御圧力発生手段(316,327,328,32
    9)とを含み、 前記コントローラは、前記第2のアクチュエータ(3)
    に係わる分流補償弁(302)が付与する前記第2の制御
    力(Fc2)の値として、前記駆動検出センサから電気信
    号が出力されないときは第1の値(322)を演算し、前
    記駆動検出センサから電気信号が出力されたときには前
    記第1の値よりも大きい第2の値(323)を演算するこ
    とを特徴とする建設機械の油圧駆動装置。
  11. 【請求項11】請求の範囲第1項記載の建設機械の油圧
    駆動装置において、 前記複数の分流補償弁(200,201)は、それぞれ、関連
    する流量制御弁(4,5)の下流側に配置されると共に、
    前記第1のアクチュエータ(2)に係わる分流補償弁
    (200)は、関連する流量制御弁(4)の下流側の圧力
    (PL1)を受け開弁方向に作用する第1の受圧部(20
    8)と、前記複数のアクチュエータ(2,3)の最大負荷圧
    力(Pamax)を受け閉弁方向に作用する第2の受圧部(2
    09)を有するピストン手段(202)を有し、前記第2の
    アクチュエータ(3)に係わる分流補償弁(201)は、
    関連する流量制御弁(5)の下流側の圧力(PL2)を受
    け開弁方向に作用する第3の受圧部(215)と、前記複
    数のアクチュエータの最大負荷圧力を受け閉弁方向に作
    用する第4及び第5の受圧部(216,217)を有するピス
    トン手段(210)を有し、前記第4及び第5の受圧部
    は、それらの受圧面積の合計が前記第3の受圧部の受圧
    面積にほぼ等しくされ、 前記分流制御手段は、前記第1のアクチュエータの駆動
    に応答して前記第4及び第5の受圧部の一方(217)の
    前記最大負荷圧力との連通を遮断する圧力減少手段手段
    (80)を有することを特徴とする建設機械の油圧駆動装
    置。
  12. 【請求項12】請求の範囲第11項記載の建設機械の油圧
    駆動装置において、 前記第2のアクチュエータ(3)に係わる分流補償弁
    (232B,232R)の前記ピストン手段は、該第2のアクチ
    ュエータの動作方向に対応して2つのピストン(241B,2
    41R)を有し、 前記2つのピストンの前記第4及び第5の受圧部(245
    B,246B;245R,246R)の他方(245B,245R)を相互に異な
    る受圧面積としたことを特徴とする建設機械の油圧駆動
    装置。
  13. 【請求項13】請求の範囲第1項記載の建設車両の油圧
    駆動装置において、 主回路に配置されたシート型の主弁(112,112A)と、前
    記主弁に関して設けられたパイロット回路(116,116A)
    と、前記パイロット回路に配置され、前記主弁を制御す
    るパイロット弁(120,120A)とを有する少なくとも1つ
    のシート弁組立体(102,102A)を含み、前記複数のアク
    チュエータ(2,3)に供給される圧油の流れをそれぞれ
    制御する複数のシート弁型流量制御弁手段(100,101)
    を有し、これらシート弁型流量制御弁のパイロット弁が
    前記複数の流量制御弁としてそれぞれ機能し、前記複数
    の分流補償弁(124,124A)がこれらシート弁型流量制御
    弁手段のパイロット回路にそれぞれ配置され、前記パイ
    ロット弁の前後差圧を制御することを特徴とする建設機
    械の油圧駆動装置。
JP1505693A 1988-05-10 1989-05-10 建設機械の油圧駆動装置 Expired - Fee Related JP3061826B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP63-111453 1988-05-10
JP11145388 1988-05-10
JP1-31204 1989-02-13
JP3120489 1989-02-13
JP8151089 1989-04-03
JP1-81510 1989-04-03
PCT/JP1989/000479 WO1989011041A1 (en) 1988-05-10 1989-05-10 Hydraulic drive unit for construction machinery

Publications (1)

Publication Number Publication Date
JP3061826B2 true JP3061826B2 (ja) 2000-07-10

Family

ID=27287244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1505693A Expired - Fee Related JP3061826B2 (ja) 1988-05-10 1989-05-10 建設機械の油圧駆動装置

Country Status (6)

Country Link
US (1) US5134853A (ja)
EP (1) EP0366815B1 (ja)
JP (1) JP3061826B2 (ja)
DE (1) DE68910940T2 (ja)
IN (1) IN171480B (ja)
WO (1) WO1989011041A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531949B2 (ja) 1992-04-06 2004-05-31 レックスロウト−シグマ 圧力の補償と最大圧力の選択とを組合わせ、フィードポンプを制御する油圧方向制御弁と複数のそのような制御弁を含む多連型油圧制御装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002903A1 (en) * 1989-08-16 1991-03-07 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit device
DE4005966C2 (de) * 1990-02-26 1999-08-26 Mannesmann Rexroth Ag Ventilanordnung für die Ansteuerung zweier gleichzeitig betätigbarer hydraulischer Verbraucher
DE4005967C2 (de) * 1990-02-26 1996-05-09 Rexroth Mannesmann Gmbh Steueranordnung für mehrere hydraulische Verbraucher
WO1992001163A1 (en) * 1990-07-05 1992-01-23 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system and valve device
DE4036720C2 (de) * 1990-11-17 2001-09-13 Linde Ag Steuerschaltung für die lastunabhängige Aufteilung eines Druckmittelstromes
JPH05504819A (ja) * 1990-12-15 1993-07-22 バルマーク アクチエンゲゼルシヤフト 液圧システム
EP0515639B1 (de) * 1990-12-15 1995-03-08 Barmag Ag Hydrauliksystem
JP3216815B2 (ja) * 1991-01-23 2001-10-09 株式会社小松製作所 圧力補償弁を有する油圧回路
EP0537369B1 (en) * 1991-05-09 1996-09-18 Hitachi Construction Machinery Co., Ltd. Hydraulic driving system in construction machine
DE4140423A1 (de) * 1991-12-07 1993-06-09 Mannesmann Rexroth Gmbh, 8770 Lohr, De Vorrichtung zur einstellung des arbeitsfluessigkeitsdruckes
US5249421A (en) * 1992-01-13 1993-10-05 Caterpillar Inc. Hydraulic control apparatus with mode selection
EP0564939B1 (de) * 1992-04-04 1995-12-13 Mannesmann Rexroth AG Hydraulische Steuereinrichtung für mehrere Verbraucher
DE4235707B4 (de) * 1992-10-22 2007-10-18 Linde Material Handling Gmbh Hydrostatisches Antriebssystem
DE4235709A1 (de) * 1992-10-22 1994-04-28 Linde Ag Hydrostatisches Antriebssystem
US5794510A (en) * 1993-09-28 1998-08-18 Komatsu Ltd. Pressurized fluid feed system
JP3477687B2 (ja) * 1993-11-08 2003-12-10 日立建機株式会社 流量制御装置
JP3664733B2 (ja) * 1995-07-10 2005-06-29 日立建機株式会社 油圧駆動装置
JP3762480B2 (ja) * 1996-04-30 2006-04-05 株式会社不二越 油圧駆動装置
US6202014B1 (en) * 1999-04-23 2001-03-13 Clark Equipment Company Features of main control computer for a power machine
DE10219717B3 (de) * 2002-05-02 2004-02-05 Sauer-Danfoss (Nordborg) A/S Hydraulische Ventilanordnung
JP4726684B2 (ja) * 2006-04-11 2011-07-20 ボッシュ・レックスロス株式会社 可変容量ポンプの制御方法
DE102007014550A1 (de) * 2007-03-27 2008-10-09 Hydac Filtertechnik Gmbh Ventilanordnung
US8621855B2 (en) * 2007-06-08 2014-01-07 Deere & Company Electro-hydraulic auxiliary mode control
US8631650B2 (en) * 2009-09-25 2014-01-21 Caterpillar Inc. Hydraulic system and method for control
JP5537734B2 (ja) * 2010-06-28 2014-07-02 ボルボ コンストラクション イクイップメント アーベー 建設機械の油圧ポンプの流量制御システム
JP5714703B2 (ja) * 2010-06-30 2015-05-07 ボルボ コンストラクション イクイップメント アーベー 建設機械の油圧ポンプ制御装置
KR101778225B1 (ko) 2010-07-19 2017-09-26 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압펌프 제어방법
JP5356427B2 (ja) * 2011-02-03 2013-12-04 日立建機株式会社 ハイブリッド式建設機械
FR2993613B1 (fr) * 2012-07-20 2014-08-15 Poclain Hydraulics Ind Circuit hydraulique de mise en cylindree progressive d'un appareil hydraulique
CA2891709C (en) * 2012-11-23 2017-10-24 Volvo Construction Equipment Ab Apparatus and method for controlling preferential function of a construction machine
CN103016466B (zh) * 2012-12-24 2015-03-25 中联重科股份有限公司 液压供油单元、液压泵站及液压供油单元的供油控制方法
US10030678B2 (en) 2016-06-16 2018-07-24 Deere & Company Pressure compensated load sense hydraulic system efficiency improvement system and method
IT201700023749A1 (it) * 2017-03-02 2018-09-02 Walvoil Spa Dispositivo valvolare con messa a scarico attiva in circuiti di tipo load sensing
IT201700056889U1 (it) * 2017-05-25 2018-11-25 Faster Spa Attacco per applicazioni oleodinamiche equipaggiato con almeno un sensore di rilevamento
JP7006350B2 (ja) * 2018-02-15 2022-01-24 コベルコ建機株式会社 旋回式油圧作業機械
JP6860519B2 (ja) * 2018-03-26 2021-04-14 株式会社日立建機ティエラ 建設機械
DE112019002773T5 (de) * 2018-05-29 2021-03-04 Hitachi Automotive Systems, Ltd. Federungsvorrichtung
US10858806B2 (en) 2019-03-12 2020-12-08 Caterpillar Inc. Modular manifold having at least two control modules for controlling operation of at least two hydraulic actuators of an earthmoving machine
CN113027847B (zh) * 2021-03-23 2022-04-26 中联重科股份有限公司 液压***的流量分配控制方法、设备和装置以及液压***
US11608615B1 (en) * 2021-10-26 2023-03-21 Cnh Industrial America Llc System and method for controlling hydraulic valve operation within a work vehicle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1436829A (en) * 1974-08-29 1976-05-26 Nisshin Sangyo Co Multiple compensated flow control valve device of parallel connection used with fixed displacement pump
US3987622A (en) * 1976-02-02 1976-10-26 Caterpillar Tractor Co. Load controlled fluid system having parallel work elements
US4087968A (en) * 1977-04-28 1978-05-09 Caterpillar Tractor Co. Flow control valve for combining two dissimilar independent systems to a common pressure source
US4165613A (en) * 1978-03-27 1979-08-28 Koehring Company Control apparatus for a plurality of simultaneously actuatable fluid motors
DE3044144A1 (de) * 1980-11-24 1982-09-09 Linde Ag, 6200 Wiesbaden Hydrostatisches antriebssystem mit einer einstellbaren pumpe und mehreren verbrauchern
JPS5831486A (ja) * 1981-08-18 1983-02-24 株式会社東芝 紙葉束放出装置
SE439342C (sv) * 1981-09-28 1996-11-18 Bo Reiner Andersson Ventilanordning för styrning av en linjär eller roterande hydraulmotor
IT1157048B (it) * 1982-06-14 1987-02-11 Fiat Allis Europ Circuito idraulico per l'alimentazione di fluido in pressione ad una pluralita di camere utilizzatrici provvisto di mezzi selezionatori per l'alimentazione prioritaria di una o piu delle suddette camere utilizzatrici
JPS59226702A (ja) * 1983-06-03 1984-12-19 Sumiyoshi Seisakusho:Kk 負荷感応型油圧装置
DE3321483A1 (de) * 1983-06-14 1984-12-20 Linde Ag, 6200 Wiesbaden Hydraulische einrichtung mit einer pumpe und mindestens zwei von dieser beaufschlagten verbrauchern hydraulischer energie
DE3422165A1 (de) * 1983-06-14 1984-12-20 Linde Ag, 6200 Wiesbaden Hydraulische einrichtung mit einer pumpe und mindestens zwei von dieser beaufschlagten verbrauchern hydraulischer energie
US4635439A (en) * 1985-04-11 1987-01-13 Caterpillar Industrial Inc. Fluid operated system control
DE3532816A1 (de) * 1985-09-13 1987-03-26 Rexroth Mannesmann Gmbh Steueranordnung fuer mindestens zwei von mindestens einer pumpe gespeiste hydraulische verbraucher
DE3644736C2 (de) * 1985-12-30 1996-01-11 Rexroth Mannesmann Gmbh Steueranordnung für mindestens zwei von mindestens einer Pumpe gespeiste hydraulische Verbraucher
DE3634728A1 (de) * 1986-10-11 1988-04-21 Rexroth Mannesmann Gmbh Ventilanordnung zum lastunabhaengigen steuern mehrerer gleichzeitig betaetigter hydraulischer verbraucher
DE3702002A1 (de) * 1987-01-23 1988-08-04 Hydromatik Gmbh Steuervorrichtung fuer ein hydrostatisches getriebe fuer wenigstens zwei verbraucher
JP2582266B2 (ja) * 1987-09-29 1997-02-19 新キヤタピラー三菱株式会社 流体圧制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531949B2 (ja) 1992-04-06 2004-05-31 レックスロウト−シグマ 圧力の補償と最大圧力の選択とを組合わせ、フィードポンプを制御する油圧方向制御弁と複数のそのような制御弁を含む多連型油圧制御装置

Also Published As

Publication number Publication date
WO1989011041A1 (en) 1989-11-16
EP0366815B1 (en) 1993-11-24
DE68910940D1 (de) 1994-01-05
DE68910940T2 (de) 1994-04-21
EP0366815A1 (en) 1990-05-09
EP0366815A4 (en) 1990-09-26
US5134853A (en) 1992-08-04
IN171480B (ja) 1992-10-24

Similar Documents

Publication Publication Date Title
JP3061826B2 (ja) 建設機械の油圧駆動装置
US5447027A (en) Hydraulic drive system for hydraulic working machines
US5277027A (en) Hydraulic drive system with pressure compensting valve
US5186000A (en) Hydraulic drive system for construction machines
EP0795690A1 (en) Hydraulic driving device
JP2002031104A (ja) 油圧駆動機械のアクチュエータ制御装置
JPH0213164B2 (ja)
JPH06193602A (ja) ハイドロスタティック式の駆動系
JP2003004003A (ja) 油圧ショベルの油圧制御回路
KR100491696B1 (ko) 유압구동장치
JP2933806B2 (ja) 建設機械の油圧駆動装置
KR20010034258A (ko) 유압구동장치
JP3403538B2 (ja) 建設機械の制御装置
JP3056220B2 (ja) 油圧駆動装置
JP3692009B2 (ja) 作業機械の制御装置
JP2592502B2 (ja) 油圧駆動装置及び油圧建設機械
JP2555287B2 (ja) 油圧制御装置
JP2615207B2 (ja) 油圧駆動装置
KR920006661B1 (ko) 건설기계의 유압구동장치
JP3403535B2 (ja) 建設機械の制御装置
JP3175992B2 (ja) 油圧駆動機械の制御装置
JP2555361B2 (ja) ロ−ドセンシング制御油圧回路装置
JPH0830481B2 (ja) 油圧駆動装置
JP3666830B2 (ja) 油圧機械の油圧再生回路
JP2758335B2 (ja) 建機の油圧回路構造

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees