JP2751136B2 - Method for producing self-grading composite particles - Google Patents

Method for producing self-grading composite particles

Info

Publication number
JP2751136B2
JP2751136B2 JP5200988A JP20098893A JP2751136B2 JP 2751136 B2 JP2751136 B2 JP 2751136B2 JP 5200988 A JP5200988 A JP 5200988A JP 20098893 A JP20098893 A JP 20098893A JP 2751136 B2 JP2751136 B2 JP 2751136B2
Authority
JP
Japan
Prior art keywords
plasma
particles
composite particles
powder
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5200988A
Other languages
Japanese (ja)
Other versions
JPH0731873A (en
Inventor
隆正 石垣
佑介 守吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP5200988A priority Critical patent/JP2751136B2/en
Publication of JPH0731873A publication Critical patent/JPH0731873A/en
Application granted granted Critical
Publication of JP2751136B2 publication Critical patent/JP2751136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、自己傾斜型複合粒子
の製造方法に関するものである。さらに詳しくは、この
発明は、触媒、センサー、構造材料、および、電気磁気
材料等の製造に有用な、自己傾斜型複合粒子とその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing self-gradient composite particles. More specifically, the present invention relates to a self-grading composite particle useful for producing a catalyst, a sensor, a structural material, an electromagnetic material, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】従来より、粒子を複合化する
ことによって、各種の構成成分の欠点を補完して新たな
機能を有する複合粒子を創出する試みがなされてきてお
り、その製造方法にも多くの工夫がなされている。この
ような複合粒子は、一般的には分散型複合粒子と被覆型
複合粒子の2つに大別される。このうちの分散型複合粒
子は、例えば図1(a)に例示したように、2種以上の
粒子(11)(12)を均一あるいは不均一に分散混合
した状態からなるものであり、一般的に、混合法により
製造されている。
2. Description of the Related Art Conventionally, attempts have been made to create composite particles having new functions by compensating for the disadvantages of various constituent components by compounding the particles. Many innovations have been made. Such composite particles are generally broadly classified into two types: dispersion-type composite particles and coating-type composite particles. Among these, the dispersion-type composite particles are, for example, as shown in FIG. 1 (a), in a state where two or more kinds of particles (11) and (12) are uniformly or non-uniformly dispersed and mixed. In addition, it is manufactured by a mixing method.

【0003】一方、被覆型複合粉末は、例えば図1
(b)に例示したように、粒子表面に異種相をコーティ
ングした粉末であり、内側成分(13)と外側成分(1
4)の2相以上からなり、一般的に、ゾル・ゲル法や化
学メッキ法等の湿式法により製造されている。しかしな
がら、混合法により製造される分散型複合粒子は2種以
上の粒子の単なる物理的な混合体であり、この2種以上
の粒子の異種成分間の相互作用は各粒子表面の接触によ
り起こるだけなので、粉末全体の性能が構成成分の加成
的な性能を越えることは難しく、機能性には自ずと限界
が生じる。
On the other hand, a coated composite powder is, for example, shown in FIG.
As exemplified in (b), this is a powder in which a heterogeneous phase is coated on the particle surface, and the inner component (13) and the outer component (1)
4) It is composed of two or more phases and is generally manufactured by a wet method such as a sol-gel method or a chemical plating method. However, the dispersion-type composite particles produced by the mixing method are merely a physical mixture of two or more types of particles, and the interaction between the different components of the two or more types of particles occurs only by the contact between the respective particle surfaces. Therefore, it is difficult for the performance of the whole powder to exceed the additive performance of the constituent components, and the functionality is naturally limited.

【0004】一方、ゾル・ゲル法や化学メッキ法などの
湿式法により製造される被覆型複合粒子は、内側成分と
被覆成分との境界構造を有している。このため分散型複
合粒子とは異なり各異種成分間の接触面積は増加する
が、化学結合による相互作用を利用する複合機能等の向
上は期待できず、この被覆型複合粒子においても、その
機能性には自ずと限界がある。
On the other hand, coated composite particles produced by a wet method such as a sol-gel method or a chemical plating method have a boundary structure between an inner component and a coated component. Therefore, unlike the dispersed composite particles, the contact area between the different components increases, but the improvement of the composite function utilizing the interaction by chemical bonding cannot be expected. Has its own limitations.

【0005】そこでこのような従来の複合粒子の欠点を
補い、さらに発展させて高機能化させた複合粒子として
例えば図1(c)に例示したように、自己傾斜型複合粒
子が考えられる。この自己傾斜型複合粒子では、粒子内
部から表面に向かって連続的に化学組成または結晶相が
変化しており、この自己傾斜型複合粒子の場合には、そ
の機能性を中心部から表面に向かって連続的または不連
続的に変化する自己傾斜機能を有している。そこで、内
側成分と表面成分の機能性、および、界面での両成分の
相互作用を利用して、センサ、触媒などの化学的機能、
電気・磁気的機能、高靱化や高強度化などの機械的機能
性の実現が期待される。
Therefore, self-gradient composite particles, as exemplified in FIG. 1 (c), can be considered as a composite particle which compensates for the disadvantages of the conventional composite particles and is further developed and enhanced in function. In the self-graded composite particles, the chemical composition or crystal phase is continuously changed from the inside of the particles toward the surface, and in the case of the self-graded composite particles, the functionality is increased from the center toward the surface. And has a self-tilt function that changes continuously or discontinuously. Therefore, utilizing the functionality of the inner component and the surface component, and the interaction of both components at the interface, chemical functions such as sensors and catalysts,
It is expected to realize electrical and magnetic functions and mechanical functions such as toughening and high strength.

【0006】しかしながら、自己傾斜型複合型粒子には
以上のような新しい機能性の実現が期待されているもの
の、現在までその製造方法は確立されていなのが実情で
ある。この発明は、以上の通りの事情に鑑みてなされた
ものであり、従来の複合粒子の技術的限界を克服し、新
しい機能性を実現することのできる自己傾斜型複合粒子
の製造方法を提供することを目的としている。
[0006] However, although the self-graded composite particles are expected to realize the above-described new functionality, the manufacturing method has not been established until now. The present invention has been made in view of the above circumstances, and provides a method for producing self-grading composite particles capable of overcoming the technical limitations of conventional composite particles and realizing new functionality. It is intended to be.

【0007】[0007]

【課題を解決するための手段】本発明は、その目的を達
成するため、1トール〜大気圧の雰囲気下で3000〜
15000℃の温度で発生させた高温プラズマガス中に
粉末を注入し、高温プラズマに粉末を短時間接触させる
ことにより粒子の表層部に格子欠陥又は空孔を生成さ
せ、該表層部の化学組成又は結晶層が連続的又は不連続
的な傾斜分布をもつ自己傾斜型複合粒子を製造すること
を特徴とする。プラズマ下流部には、反応ガスを注入す
ることができる。
SUMMARY OF THE INVENTION In order to achieve the object, the present invention provides a method in which the pressure of 3,000 to 3,000 Torr under an atmosphere of 1 Torr to atmospheric pressure.
The powder is injected into a high-temperature plasma gas generated at a temperature of 15000 ° C., and the powder is brought into contact with the high-temperature plasma for a short time to generate lattice defects or vacancies in the surface portion of the particle, and the chemical composition of the surface portion or It is characterized by producing self-gradient composite particles in which the crystal layer has a continuous or discontinuous gradient distribution. A reaction gas can be injected downstream of the plasma.

【0008】[0008]

【作用】本発明は、圧力1〜760トール,温度300
0〜15000℃の条件で発生する高温プラズマガス中
に原料粉末を注入し、その粉末をプラズマ中に通過させ
ることにより、粉末を形成する粒子の内部から表面に連
続層又は不連続層を任意に制御し得るとの知見に基づい
て完成されたものである。
The present invention has a pressure of 1 to 760 Torr and a temperature of 300.
By injecting the raw material powder into a high-temperature plasma gas generated under the condition of 0 to 15000 ° C. and passing the powder through the plasma, a continuous layer or a discontinuous layer can be optionally formed from the inside to the surface of the particles forming the powder. It has been completed based on the knowledge that it can be controlled.

【0009】つまり、この発明においては、プラズマと
粒子との間の物理的および化学的相互作用に着目し、種
々の条件で発生したプラズマ内に粒子を通過させ処理す
ることにより、粒子の格子欠陥の生成、粒子構成原子と
プラズマ中の化学種との化学反応や、急冷による非平衡
状態の瞬時の凍結により粒子の内部から表面に連続的ま
たは不連続的に異種相(化学組成や結晶・アモルファス
相)を形成させ、コーティング等をすることなしに、1
個1個の粒子そのものを複合化する。
That is, in the present invention, attention is paid to the physical and chemical interaction between plasma and particles, and particles are passed through plasma generated under various conditions to be processed, whereby lattice defects of the particles are reduced. The formation of particles, the chemical reaction between the constituent atoms of the particles and the chemical species in the plasma, and the instantaneous freezing of the non-equilibrium state due to rapid cooling, continuously or discontinuously from the inside of the particle to the surface of the heterogeneous phase (chemical composition, crystal, amorphous Phase), without coating, etc.
The individual particles themselves are compounded.

【0010】もちろん、この発明においては、プラズマ
は高周波プラズマや直流プラズマ等の各種のプラズマを
用いることができる。プラズマの発生と固体粒子との相
互作用のためのガスとしては、アルゴン、ヘリウム等の
希ガス、水素、窒素、酸素、炭化水素をはじめとする有
機物、さらには水蒸気、アンモニア、ジボラン、シラン
等の水素化物の1種以上のものを使用することができ
る。
Of course, in the present invention, various types of plasma such as high-frequency plasma and DC plasma can be used as the plasma. Examples of the gas for generating plasma and interacting with the solid particles include rare gases such as argon and helium, hydrogen, nitrogen, oxygen, organic substances including hydrocarbons, and water vapor, ammonia, diborane, and silane. One or more of the hydrides can be used.

【0011】これらのうちの適宜なものを反応ガスとし
て使用することもできる。対象とする粒子の種類に特に
制約は内が、酸化物,非酸化物系セラミックス粒子,金
属,合金,セラミック・金属等の粒子が好適に選ばれ
る。圧力が1トール未満又は大気圧を超える場合には、
製造に好適なプラズマの発生及びその安定化が難しくな
り、また温度が3000℃未満又は15000℃を超え
る場合にも同様に必要な高温プラズマが安定して得られ
ない。
Appropriate of these can be used as the reaction gas. Although there are no particular restrictions on the type of target particles, particles such as oxides, non-oxide ceramic particles, metals, alloys, and ceramics / metals are suitably selected. If the pressure is below 1 Torr or above atmospheric pressure,
It is difficult to generate and stabilize plasma suitable for production, and when the temperature is lower than 3000 ° C. or higher than 15000 ° C., similarly, a necessary high-temperature plasma cannot be stably obtained.

【0012】粒子の径や注入量、さらにはガスの供給量
は、目的とする粒子に応じて適宜に決定される。もちろ
ん、反応装置の形式、構造にも特に限定はない。またさ
らに、この発明においては、プラズマ下流部に反応ガス
を供給するようにしてもよい。
The diameter and injection amount of the particles and the supply amount of the gas are appropriately determined according to the target particles. Of course, the type and structure of the reactor are not particularly limited. Still further, in the present invention, a reaction gas may be supplied to a downstream portion of the plasma.

【0013】以下実施例を示し、さらにこの発明につい
て詳しく説明する。
Hereinafter, the present invention will be described in detail with reference to Examples.

【0014】[0014]

【実施例】実施例1 図2に示す高周波プラズマ反応装置を用いて、高周波プ
ラズマを発生させ、自己傾斜型複合粉末を製造した。こ
の高周波プラズマ反応装置は、水冷構造プラズマ反応管
(3)の周囲に、高周波コイル(2)を巻き付け、上部
からシースガス(5)およびプラズマガス(6)を、下
部からは反応ガス(8)を供給し、さらに、粉末注入プ
ローブ(4)から、原料粉末とキャリアーガス(7)を
注入する構造を有している。反応ガス(8)は原料粉体
の種類によっては使用する必要はなく、実際、この実施
例1においては、反応ガス(8)は使用しなかった。
EXAMPLE 1 Using a high-frequency plasma reactor shown in FIG. 2, high-frequency plasma was generated to produce a self-tilting composite powder. In this high-frequency plasma reactor, a high-frequency coil (2) is wound around a water-cooled plasma reaction tube (3), and a sheath gas (5) and a plasma gas (6) are supplied from an upper portion, and a reaction gas (8) is supplied from a lower portion. It has a structure in which the raw material powder and the carrier gas (7) are supplied from a powder injection probe (4). It is not necessary to use the reaction gas (8) depending on the type of the raw material powder, and in fact, in Example 1, the reaction gas (8) was not used.

【0015】この反応装置を用い、シースガス(5)と
してアルゴンと水素をそれぞれ6リットル/分および5
リットル/分の供給速度で、さらに、プラズマガス
(6)としてアルゴンを6リットル/分の供給速度で、
それぞれ水冷構造プラズマ反応管(3)中に供給し、高
周波コイル(2)に50kWの高周波電力を供給して水
冷構造プラズマ反応管(3)内に圧力200Torrの
条件でプラズマ(1)を発生させた。
Using this reactor, argon and hydrogen were supplied as sheath gas (5) at 6 l / min and 5 l / min, respectively.
At a feed rate of 6 liters / minute, and at a feed rate of 6 liters / minute with argon as the plasma gas (6).
Each of them is supplied into a water-cooled structure plasma reaction tube (3), and a high-frequency power of 50 kW is supplied to a high-frequency coil (2) to generate plasma (1) in the water-cooled structure plasma reaction tube (3) at a pressure of 200 Torr. Was.

【0016】粉末注入プローブ(4)からキャリアーガ
スとしてアルゴンを4リットル/分の供給速度で導入
し、平均粒径1.3μmの炭化チタン粉末(組成TiC
0.97)を5g/分の供給速度でプラズマ(1)内に注入
した。プラズマ処理後の炭化チタン粒子を走査型電子顕
微鏡で観察した結果、例えば図3に例示したように、融
解して球状化していることが確認された。この粒子は平
均組成TiC0.91となり、プラズマ処理により炭化チタ
ンの炭素サイトの空孔が生成していることがわかる。熱
濃硫酸で溶解させて炭素含有量の熔解時間による変化を
調べた結果、炭素サイトの空孔は粒子表面から200〜
300nmの部分に生成しており、その濃度は内側に向
かって連続的に減少していることが確認された。実施例2 実施例1と同条件で生成させたプラズマ中に実施例1で
用いた炭化チタン原料粉末を注入し、さらに、プラズマ
(1)下流部に反応ガス(8)としてアンモニアガスを
5リットル/分の供給速度で半径方向に注入し、自己傾
斜型複合粒子を製造した。
Argon was introduced as a carrier gas from the powder injection probe (4) at a supply rate of 4 liters / min, and titanium carbide powder having an average particle size of 1.3 μm (composition TiC
0.97 ) was injected into the plasma (1) at a feed rate of 5 g / min. As a result of observing the titanium carbide particles after the plasma treatment with a scanning electron microscope, it was confirmed that the titanium carbide particles were melted and spherical as shown in FIG. 3, for example. These particles have an average composition of TiC 0.91 , which indicates that vacancies at the carbon sites of titanium carbide have been generated by the plasma treatment. As a result of examining the change in the carbon content with the melting time by dissolving with hot concentrated sulfuric acid, the vacancies of the carbon sites were 200 to
It was generated at a portion of 300 nm, and it was confirmed that the concentration continuously decreased toward the inside. Example 2 The titanium carbide raw material powder used in Example 1 was injected into the plasma generated under the same conditions as in Example 1, and further, 5 L of ammonia gas was used as a reaction gas (8) downstream of the plasma (1). / Min at a feed rate of / min to produce self-grading composite particles.

【0017】プラズマ処理を行なった炭化チタン粒子の
組成分析を行なったところ、2重量%の窒素が含有され
ていた。熱濃硫酸で溶解させて窒素含有量の時間変化を
調べ、プラズマ処理後の炭化チタン粒子の窒素含有量が
原料粉末と同程度になったところで粒径を比較したとこ
ろ、窒素は粒子表面から200〜300nmまでの部分
に固溶しており、その濃度は内側に向かって連続的に減
少していることが確認された。実施例3 実施例1と同様に生成させたプラズマ中に、平均粒径
1.5μmのα−アルミナ粉末を5g/分の供給速度で
高周波プラズマ反応装置に注入し、自己傾斜型複合粒子
を製造した。
Analysis of the composition of the titanium carbide particles subjected to the plasma treatment revealed that 2% by weight of nitrogen was contained. Dissolved in hot concentrated sulfuric acid and examined the time change of nitrogen content, and compared the particle size when the nitrogen content of the titanium carbide particles after the plasma treatment was almost the same as the raw material powder. It was confirmed that the solid solution was dissolved in the portion up to 〜300 nm, and the concentration continuously decreased toward the inside. Example 3 Into plasma generated in the same manner as in Example 1, α-alumina powder having an average particle size of 1.5 μm was injected into a high-frequency plasma reactor at a supply rate of 5 g / min to produce self-gradient composite particles. did.

【0018】プラズマ処理後のα−アルミナ粒子を透過
型電子顕微鏡で調べた結果、粒子は球状化していること
がわかり、さらに、中心部はγ相およびδ相の混合、中
間相はθ相、表面近傍はα相から構成されていることが
確認された。
Examination of the α-alumina particles after the plasma treatment with a transmission electron microscope revealed that the particles were spherical, the center was a mixture of a γ phase and a δ phase, the intermediate phase was a θ phase, It was confirmed that the vicinity of the surface was composed of the α phase.

【0019】[0019]

【発明の効果】以上詳しく説明した通り、この発明によ
り、粒子の中心部から表面へ化学組成もしくは結晶構造
が連続的または非連続的に変化する自己傾斜型複合粒子
を製造することが可能となり、この自己傾斜型複合粒子
を利用することにより、まったく新しい化学的、電気磁
気的、機械的機能性の実現が期待される。
As described above in detail, according to the present invention, it is possible to produce self-graded composite particles in which the chemical composition or crystal structure changes continuously or discontinuously from the center of the particles to the surface, By utilizing the self-grading composite particles, it is expected that a completely new chemical, electromagnetic and mechanical functionality will be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)(c)は、各々、分散型、被覆
型、傾斜型の複合粒子の構造の模式図である。
1 (a), 1 (b) and 1 (c) are schematic views of the structure of dispersed, coated and inclined composite particles, respectively.

【図2】この発明の高周波プラズマによる自己傾斜型複
合粒子の製造方法とそのための装置を例示した模式図で
ある。
FIG. 2 is a schematic view illustrating a method for producing self-gradient composite particles by high-frequency plasma and an apparatus therefor according to the present invention.

【図3】実施例としてのプラズマ処理後の炭化チタン粒
子の走査型電子顕微鏡写真像図である。
FIG. 3 is a scanning electron micrograph image of titanium carbide particles after plasma treatment as an example.

【符号の説明】[Explanation of symbols]

11 粒子 12 粒子 13 内側成分 14 外側成分 1 プラズマ 2 高周波コイル 3 水冷構造プラズマ反応管 4 粉末注入プローブ 5 シースガス 6 プラズマガス 7 粉末とキャリアーガス 8 反応ガス REFERENCE SIGNS LIST 11 particle 12 particle 13 inner component 14 outer component 1 plasma 2 high-frequency coil 3 water-cooled plasma reaction tube 4 powder injection probe 5 sheath gas 6 plasma gas 7 powder and carrier gas 8 reaction gas

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1トール〜大気圧の雰囲気下で3000
〜15000℃の温度で発生させた高温プラズマガス中
に粉末を注入し、高温プラズマに粉末を短時間接触させ
ることにより粒子の表層部に格子欠陥又は空孔を生成さ
せ、該表層部の化学組成又は結晶層が連続的又は不連続
的な傾斜分布をもつ自己傾斜型複合粒子を製造すること
を特徴とする自己傾斜型複合粒子の製造方法。
1. 3000 under an atmosphere of 1 Torr to atmospheric pressure.
In high temperature plasma gas generated at a temperature of ~ 15000 ° C
Powder and then contact the powder with high-temperature plasma for a short time.
Lattice defects or vacancies on the surface of the particles.
And producing a self-grading composite particle having a chemical composition or a crystal layer in the surface layer portion having a continuous or discontinuous gradient distribution.
【請求項2】 プラズマ下流部に反応ガスを注入するこ
とを特徴とする請求項1記載の自己傾斜型複合粒子の製
造方法。
2. The method for producing self-gradient composite particles according to claim 1, wherein a reaction gas is injected into a downstream portion of the plasma.
JP5200988A 1993-07-21 1993-07-21 Method for producing self-grading composite particles Expired - Lifetime JP2751136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200988A JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing self-grading composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200988A JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing self-grading composite particles

Publications (2)

Publication Number Publication Date
JPH0731873A JPH0731873A (en) 1995-02-03
JP2751136B2 true JP2751136B2 (en) 1998-05-18

Family

ID=16433643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200988A Expired - Lifetime JP2751136B2 (en) 1993-07-21 1993-07-21 Method for producing self-grading composite particles

Country Status (1)

Country Link
JP (1) JP2751136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693989C1 (en) * 2018-08-21 2019-07-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of producing structurally gradient powder materials (versions)
RU2725457C1 (en) * 2019-09-04 2020-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of producing structurally gradient and dispersion-strengthened powder materials (versions)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5628472B2 (en) * 2004-04-19 2014-11-19 エスディーシーマテリアルズ, インコーポレイテッド High-throughput material discovery method by vapor phase synthesis
JP4624006B2 (en) * 2004-06-02 2011-02-02 財団法人電力中央研究所 Spherical composite particle manufacturing method and manufacturing apparatus thereof
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
KR102103131B1 (en) * 2012-06-28 2020-04-21 닛신 엔지니어링 가부시키가이샤 Method for production of titanium carbide microparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2015013545A1 (en) 2013-07-25 2015-01-29 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters
JP2016535664A (en) 2013-10-22 2016-11-17 エスディーシーマテリアルズ, インコーポレイテッド Lean NOx trap composition
KR20160074566A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
RU2692144C1 (en) * 2018-10-05 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Device for production of structurally gradient powder materials (versions)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884107A (en) * 1982-09-24 1983-05-20 Shunpei Yamazaki Plasma nitriding method
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693989C1 (en) * 2018-08-21 2019-07-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of producing structurally gradient powder materials (versions)
RU2725457C1 (en) * 2019-09-04 2020-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of producing structurally gradient and dispersion-strengthened powder materials (versions)

Also Published As

Publication number Publication date
JPH0731873A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP2751136B2 (en) Method for producing self-grading composite particles
JPH11513051A (en) Heat treatment method for carbon materials
Borsella et al. Laser‐driven synthesis of nanocrystalline alumina powders from gas‐phase precursors
WO2011005807A2 (en) Process to make electrochemically active/ inactive nanocomposite material
CN109979701A (en) A kind of bilayer inorganic insulation cladding soft magnetic powder and preparation method thereof
Yoshida The future of thermal plasma processing
Gui et al. Synthesis and characterization of ZnO nanostructures by two-step oxidation of Zn nano-and microparticles
Gitzhofer Induction plasma synthesis of ultrafine SiC
Kim et al. Thermal plasma synthesis of ceramic nanomaterials
Liu et al. Experimental phase diagram of SiC in CH3SiCl3–Ar–H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications
JPH01306510A (en) Improvement for manufacturing super fine particle powder
KR101432970B1 (en) Manufacturing method of graphen structure using carbon black
JPS5924119B2 (en) Manufacturing method of graphite whiskers
US20050019567A1 (en) Process for producing silicon carbide fibrils and product
JP2794173B2 (en) Method of forming composite carbon coating
JP2003049201A (en) Spherical powder of metal and metallic compound, and manufacturing method thereof
JP2004182546A (en) beta-Ga2O3 NANO WHISKER AND ITS MANUFACTURING METHOD
Tang et al. Preparation of ultrafine CVD WC powders deposited from WCl6 gas mixtures
Radwan et al. Growth of Quasi‐Aligned AlN Nanofibers by Nitriding Combustion Synthesis
Wang et al. Preparation of hollow SiC spheres by combustion synthesis
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
KR20070013451A (en) Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders
CN113086974B (en) Nitrogen-doped graphene and preparation method and application thereof
KR100447167B1 (en) Method for developing carbon nanotube perpendicularly
JPS6247968B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term