JP2004182546A - beta-Ga2O3 NANO WHISKER AND ITS MANUFACTURING METHOD - Google Patents

beta-Ga2O3 NANO WHISKER AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2004182546A
JP2004182546A JP2002353068A JP2002353068A JP2004182546A JP 2004182546 A JP2004182546 A JP 2004182546A JP 2002353068 A JP2002353068 A JP 2002353068A JP 2002353068 A JP2002353068 A JP 2002353068A JP 2004182546 A JP2004182546 A JP 2004182546A
Authority
JP
Japan
Prior art keywords
nanowhiskers
beta
carbon
powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353068A
Other languages
Japanese (ja)
Other versions
JP3972093B2 (en
Inventor
Yoshio Bando
義雄 板東
Gao Yihua
ガオ・イオハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002353068A priority Critical patent/JP3972093B2/en
Publication of JP2004182546A publication Critical patent/JP2004182546A/en
Application granted granted Critical
Publication of JP3972093B2 publication Critical patent/JP3972093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize mass production of β-Ga<SB>2</SB>O<SB>3</SB>nano whiskers having fine structure and high uniformity in a short time; and to reduce the residual amount of impurities. <P>SOLUTION: The β-Ga<SB>2</SB>O<SB>3</SB>nano whiskers are manufactured by heating/holding a mixture of a Ga<SB>2</SB>O<SB>3</SB>powder and a high purity amorphous activated carbon powder at 1,300-1,400°C in an atmosphere or a stream of an inert gas. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明はβ型Ga(β−Ga)ナノウイスカーとその製造方法に関するものである。さらに詳細には、この出願の発明はナノスケール電子回路用部品、ナノスケール電気光学用材料、断熱材、高温耐熱複合材料用添加剤、さらには薬品の濾過材料、吸着剤、化学センサー等として有用なβ型酸化ガリウムナノウイスカーとその製造方法に関するものである。
【0002】
【従来の技術】
可視光に対して透明で、電気的には半導体であるβ−Gaは、透明電極、紫外活性蛍光材料等の電気光学用材料として期待されている。またこのβ−Gaナノウイスカーは高温で安定であり、酸化物としての特徴を生かして、耐熱性、耐酸化性に優れた構造材料としての複合材料の添加剤としても期待される。
【0003】
このようなβ−Gaナノウイスカーの製造に関してはこれまでに幾つかの方法が報告されている。それらは、Ga金属を酸化性雰囲気で直接蒸発させるものや、酸化ケイ素と鉄の混合触媒を利用するもの、金を皮膜したGaAs結晶を酸化するもの、窒化ガリウム(GaN)粒子を酸化するもの等である(文献1−5)。
【0004】
しかしこれらの従来の方法には、形状が微細で均一なβ−Gaナノウイスカーが得られにくいことをはじめ、製造に多くの時間を要することや、残存した触媒の後処理が困難であること、生成したβ−Gaナノウイスカーの性能を阻害する不純物が混在する等の問題点がある。
【0005】
【文献】
【表1】

Figure 2004182546
【0006】
【発明が解決しようとする課題】
そこで、この出願の発明は上記の課題を解決するものとして、構造材料や耐熱材料の補強材等として有用な、形状が微細で均一性が高く、これまでに知られていない形状規模のナノウイスカーをも提供し、また、製造時間が短縮でき、不純物を残存させず、また大量生産が容易な製造方法を提供することを課題としている。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、長さが50μm以下で、直径が10〜100nmの範囲のβ−Gaナノウイスカーを提供する。
【0008】
また、この出願の発明は、第2には、出発原料としてGaと高純度非晶質活性炭素粉末(AAC)との混合体を用い、これを不活性ガスの雰囲気または気流中で1300℃から1400℃に加熱保持することにより、β−Gaナノウイスカーを製造する方法を提供する。
【0009】
そして、第3には、Ga粉末と高純度炭素粉末とを混合する際の重量比;X(=Ga/C)を6〜10とすることを特徴とする方法を、第4には、β−Gaナノウイスカーを炭素繊維を巻いたグラファイト製円筒の炭素繊維部分に析出させる方法を提供する。
【0010】
さらにまた、この出願の発明は、第5には、β−Gaナノウイスカー生成時に触媒として機能したと考えられるGa金属または炭素の残存物質を取り除くため、生成物全体を空気中で600℃〜800℃の温度範囲で熱処理する方法を提供する。
【0011】
【発明の実施の形態】
この出願の発明は、上記の通りの構成を特徴とするものであるが、その実施の形態について説明すると、まず重要なことは、構造材料または耐熱材料の補強材として有効である、長さが50μm以下で、直径が10〜100nmの形状のβ−Gaナノウイスカーが提供されることである。
【0012】
このように微細で均一性の高いβ−Gaナノウイスカーはこの出願の発明によってはじめて提供されるものである。そしてまた、強調されるべきことは、この出願の発明によって、ナノスケール電子回路部品として、またはナノスケールの電気光学材料または光透過性電気伝導材料として、β−Gaがナノウイスカーの形状で提供されることである。
【0013】
この出願の発明のβ−Gaナノウイスカーの製造方法においては、Ga粉末と高純度非晶質活性炭素粉末(AAC)の混合体を1300℃以上の温度で処理するが、この処理によって、次式で示される反応に従って気相の酸化ガリウムが生成される。
【0014】
Ga(固相)+2C=GaO(気相)+2CO(気相)
気相のGaOは約1000℃の低温部で固相のβ−Gaナノウイスカーと液相のGa金属として析出される。この際、液相の金属Gaが触媒の働きをして、高純度のβ−Gaナノウイスカーが短時間で、容易、かつ大量に製造される。
【0015】
Ga粉末と高純度非晶質活性炭素粉末は、各々、特にその粒径については限定はないが、反応の促進、そして混合等のための取扱いの観点を考慮して、たとえば一般的には数mm以下とすることが好ましい。500μm以下であることがさらに好ましい。また、その混合比については、特に限定的ではないが、反応促進の観点より、重量比X(=Ga/C)として、6〜10の範囲とするのが好ましい。
【0016】
また、1300℃以上の加熱処理については、その温度は1400℃以下とすることが好ましく、実際的には、1350℃から1400℃の範囲とするのが好適である。1300℃未満では上記の反応は円滑でなく、また、1400℃を超えるとβ−Gaの生成が難しくなる。このような加熱処理は、不活性ガス、たとえば、N(窒素)、あるいはAr(アルゴン)等の希ガスの雰囲気、もしくは気流中で行うこととする。大気中あるいは10vol%以上の酸素含有雰囲気は好ましくない。
【0017】
1300℃以上の温度での加熱保持は、一般的には10分以上、より好ましくは1時間以上の保持とすることが好ましい。
【0018】
また、以上の加熱処理によるβ−Gaナノウイスカーの製造については、より実際的には前記混合体の炭素坩堝内への装入と、たとえば縦型の高周波誘導加熱炉での処理が好適な例として考慮される。炭素坩堝、さらには炭素サセプターや炭素保温材の使用は、β−Gaナノウイスカーの生成を安定に、かつ促進するものとして有用である。
【0019】
前記の反応により気相のGaOより生成されるβ−Gaは、たとえば、炭素繊維を巻きつけたグラファイト製円筒の外側の表面に析出させる。つまり、β−Gaナノウイスカーを、炭素繊維上に析出させることで、直径が10〜100nmの範囲にあるナノスケールのウイスカーを容易に製造することが可能となる。
【0020】
また、この出願の発明によれば、β−Gaナノウイスカー生成物中に残存している、Ga金属または炭素を取り除くため、生成物全体を600℃〜800℃の温度範囲で空気中で処理する方法も提供される。これによって高純度のβ−Gaナノウイスカーが実現される。
【0021】
なお、以上の発明においては、「ナノウイスカー」との用語を用いているが、「ナノロッド」あるいは「ナノワイヤー」と呼んでもよいことは言うまでもない。
【0022】
そこで、次に実施例により、さらに詳しくこの発明について説明する。もちろん、以下の例によって発明が限定されることはない。
【0023】
【実施例】
出発原料としてGaと市販の高純度非晶質活性炭素粉末(AAC)を、その重量比XをX=7.8とした混合体そして炭素坩堝に入れて、縦型高周波誘導加熱炉中のグラファイト製円筒(窒素導入管と排出管が取付けられている)の内部に設置し、この円筒を炭素繊維保温材で巻いた後に石英管(長さ50cm、内径12cm)内に設置し、炭素坩堝内とこの石英管の内部に高純度窒素ガスを導入し、1360℃で、2時間加熱保持した。
【0024】
加熱終了後、炭素坩堝内は空であり、炭素繊維の表面上には白色の析出物があった。この場合の炭素ファイバー付近の温度は約1000℃であった。析出物を炭素ファイバーと共に取り出し、X線回折法により構造解析を行った。図1はその結果を示したものである。この回折図形の解析の結果、これらのピークはa)非晶質炭素によるブロードな回折と、b)β−Gaの結晶からの回折線であることを確認した。
【0025】
さらに前記の白色をした試料をX線エネルギー分散スペクトルメーターにより元素分析を行った結果、図2に示したように、ガリウムと酸素であることが確認された。なお、図2において示された銅のピークは、試料を乗せているマイクログリッドによるものである。また、前記の白色の析出物の透過型電子顕微鏡写真(図3)から、これらの物質は、長さが50μm以下で、直径が10〜100nmのβ−Gaナノウイスカーであることが確認された。
【0026】
さらに、白色の析出物について、空気中で700℃の温度に15分間加熱したところ、残存していた金属Gaや炭素はほぼ完全に除去され、極めて高純度のβ−Gaナノウイスカーが得られることが確認された。
【0027】
【発明の効果】
以上詳しく説明したとおり、この出願の発明では、長さが50μm以下で、直径が10〜100nmのβ−Gaナノウイスカーが提供される。
【0028】
ナノスケールのウイスカーはミクロンスケールのウイスカーに比べ、約2倍の強度を持つと言われていることから、酸化物ナノウイスカーとしての酸化ガリウムは、大気中で使用される耐熱材料または構造材料の補強用の添加剤として有望である。またナノスケールであることから、大気中で使用可能な吸着剤、フィルター、センサー等への応用も期待される。
【0029】
さらにβ型の酸化ガリウムは新しい透明電極としての期待が高まっており、そのナノウイスカーとしての提供は、ナノスケールの電子回路部品、または電気光学用材料、または光透過型半導体としての応用に対する期待が大きい。
【図面の簡単な説明】
【図1】β型酸化ガリウム(β−Ga)ナノウイスカーと非晶質炭素のX線回折像。
a)非晶質炭素、b)β型酸化ガリウム(β−Ga)。
【図2】X線エネルギー分散スペクトルメーターにより元素組成を分析した結果を示した図である。
【図3】高分解能透過型透過電子顕微鏡を用いて観察した像の図面に代わる写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a β-type Ga 2 O 3 (β-Ga 2 O 3 ) nanowhisker and a method for producing the same. More specifically, the invention of this application is useful as a component for nanoscale electronic circuits, a material for nanoscale electro-optics, a heat insulating material, an additive for a high-temperature heat-resistant composite material, a filtering material for chemicals, an adsorbent, a chemical sensor, and the like. The present invention relates to a novel β-type gallium oxide nanowhisker and a method for producing the same.
[0002]
[Prior art]
Β-Ga 2 O 3 , which is transparent to visible light and electrically semiconductor, is expected as a material for electro-optics such as a transparent electrode and an ultraviolet active fluorescent material. Further, the β-Ga 2 O 3 nanowhiskers are stable at high temperatures, and are expected to be used as additives for composite materials as structural materials having excellent heat resistance and oxidation resistance by utilizing the characteristics of oxides.
[0003]
Several methods have been reported for the production of such β-Ga 2 O 3 nanowhiskers. These include those that directly evaporate Ga metal in an oxidizing atmosphere, those that use a mixed catalyst of silicon oxide and iron, those that oxidize GaAs crystals coated with gold, and those that oxidize gallium nitride (GaN) particles. (References 1-5).
[0004]
However, in these conventional methods, including the shape it is difficult to obtain a fine uniform β-Ga 2 O 3 nanowhiskers, and it takes a lot of time in the preparation, difficulty remaining post-treatment of the catalyst There is a problem that impurities that hinder the performance of the generated β-Ga 2 O 3 nanowhiskers are mixed.
[0005]
[Literature]
[Table 1]
Figure 2004182546
[0006]
[Problems to be solved by the invention]
Therefore, the invention of this application solves the above-mentioned problems, and is useful as a reinforcing material for structural materials and heat-resistant materials, and has a fine and uniform shape, a nanowhisker of a shape scale that has not been known so far. Another object of the present invention is to provide a manufacturing method which can reduce the manufacturing time, does not leave impurities, and is easy to mass-produce.
[0007]
[Means for Solving the Problems]
The invention of this application solves the above problems, and firstly, provides a β-Ga 2 O 3 nanowhisker having a length of 50 μm or less and a diameter of 10 to 100 nm.
[0008]
Secondly, the invention of this application uses, as a starting material, a mixture of Ga 2 O 3 and high-purity amorphous activated carbon powder (AAC), which is mixed in an inert gas atmosphere or air stream. Provided is a method for producing β-Ga 2 O 3 nanowhiskers by heating and holding at 1300 ° C. to 1400 ° C.
[0009]
Third, a method characterized in that the weight ratio when mixing the Ga 2 O 3 powder and the high-purity carbon powder; X (= Ga 2 O 3 / C) is set to 6 to 10, Fourth, a method for depositing β-Ga 2 O 3 nanowhiskers on the carbon fiber portion of a graphite cylinder wound with carbon fibers is provided.
[0010]
Furthermore, fifthly, the invention of the present application is to remove the remaining Ga metal or carbon material which is considered to have functioned as a catalyst during the production of β-Ga 2 O 3 nanowhiskers. A method for performing a heat treatment in a temperature range of from 800C to 800C is provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention of this application is characterized by the configuration as described above, and the embodiment will be described. First, it is important that the length is effective as a reinforcing material for a structural material or a heat-resistant material. The object is to provide a β-Ga 2 O 3 nanowhisker having a shape of 50 μm or less and a diameter of 10 to 100 nm.
[0012]
Such fine and highly uniform β-Ga 2 O 3 nanowhiskers are provided for the first time by the invention of this application. Also, it should be emphasized that, according to the invention of this application, β-Ga 2 O 3 is formed into a nanowhisker shape as a nanoscale electronic circuit component or as a nanoscale electro-optical material or a light-transmitting electrically conductive material. It is provided by.
[0013]
In the method for producing a β-Ga 2 O 3 nanowhisker of the invention of this application, a mixture of Ga 2 O 3 powder and high-purity amorphous activated carbon powder (AAC) is treated at a temperature of 1300 ° C. or more. By this treatment, gaseous gallium oxide is generated according to the reaction represented by the following equation.
[0014]
Ga 2 O 3 (solid phase) + 2C = Ga 2 O (gas phase) + 2CO (gas phase)
Vapor-phase Ga 2 O is deposited as a solid-phase β-Ga 2 O 3 nanowhisker and a liquid-phase Ga metal at a low temperature portion of about 1000 ° C. At this time, the liquid-phase metal Ga acts as a catalyst, and high-purity β-Ga 2 O 3 nanowhiskers can be produced in a short time, easily, and in large quantities.
[0015]
The Ga 2 O 3 powder and the high-purity amorphous activated carbon powder are not particularly limited in terms of their particle diameters. Is preferably several mm or less. More preferably, it is 500 μm or less. The mixing ratio is not particularly limited, but is preferably in the range of 6 to 10 as the weight ratio X (= Ga 2 O 3 / C) from the viewpoint of accelerating the reaction.
[0016]
Further, the temperature of the heat treatment at 1300 ° C. or higher is preferably set to 1400 ° C. or lower, and in practice, it is preferable to set the temperature in the range of 1350 ° C. to 1400 ° C. If the temperature is lower than 1300 ° C., the above reaction is not smooth, and if the temperature exceeds 1400 ° C., it becomes difficult to generate β-Ga 2 O 3 . Such a heat treatment is performed in an atmosphere of an inert gas, for example, a rare gas such as N 2 (nitrogen) or Ar (argon), or in an air stream. An atmosphere containing oxygen or an atmosphere containing 10 vol% or more of oxygen is not preferable.
[0017]
The heating and holding at a temperature of 1300 ° C. or more is generally preferably performed for 10 minutes or more, more preferably for 1 hour or more.
[0018]
Further, regarding the production of β-Ga 2 O 3 nanowhiskers by the above heat treatment, more practically, charging the mixture into a carbon crucible and, for example, treatment in a vertical high frequency induction heating furnace are required. Considered as a preferred example. The use of a carbon crucible, furthermore, a carbon susceptor or a carbon heat insulating material is useful for stably and promoting the production of β-Ga 2 O 3 nanowhiskers.
[0019]
Β-Ga 2 O 3 generated from gas phase Ga 2 O by the above reaction is deposited, for example, on the outer surface of a graphite cylinder around which carbon fibers are wound. That is, by depositing β-Ga 2 O 3 nanowhiskers on carbon fibers, nanoscale whiskers having a diameter in the range of 10 to 100 nm can be easily manufactured.
[0020]
Further, according to the invention of this application, in order to remove Ga metal or carbon remaining in the β-Ga 2 O 3 nanowhisker product, the entire product is heated in air at a temperature range of 600 ° C. to 800 ° C. There is also provided a method of processing at. This realizes a high-purity β-Ga 2 O 3 nanowhisker.
[0021]
In the above invention, the term “nano whisker” is used, but it goes without saying that it may be called “nano rod” or “nano wire”.
[0022]
Therefore, the present invention will be described in more detail with reference to examples. Of course, the invention is not limited by the following examples.
[0023]
【Example】
As a starting material, a mixture of Ga 2 O 3 and a commercially available high-purity amorphous activated carbon powder (AAC) having a weight ratio X of X = 7.8 and a carbon crucible were put into a vertical high-frequency induction heating furnace. It is installed inside a graphite cylinder (with a nitrogen inlet tube and a discharge tube attached) inside, and after winding this cylinder with a carbon fiber heat insulating material, it is installed inside a quartz tube (length 50 cm, inner diameter 12 cm), High-purity nitrogen gas was introduced into the carbon crucible and into the quartz tube, and was heated and maintained at 1360 ° C. for 2 hours.
[0024]
After the heating was completed, the inside of the carbon crucible was empty, and a white precipitate was present on the surface of the carbon fiber. In this case, the temperature near the carbon fiber was about 1000 ° C. The precipitate was taken out together with the carbon fiber, and the structure was analyzed by an X-ray diffraction method. FIG. 1 shows the result. As a result of analyzing the diffraction pattern, it was confirmed that these peaks were a) broad diffraction by amorphous carbon and b) diffraction lines from a crystal of β-Ga 2 O 3 .
[0025]
Further, the white sample was subjected to elemental analysis using an X-ray energy dispersion spectrometer, and as a result, it was confirmed that the sample was gallium and oxygen, as shown in FIG. Note that the copper peak shown in FIG. 2 is due to the microgrid on which the sample is placed. From the transmission electron micrograph (FIG. 3) of the white precipitate, it can be seen that these substances are β-Ga 2 O 3 nanowhiskers having a length of 50 μm or less and a diameter of 10 to 100 nm. confirmed.
[0026]
Furthermore, when the white precipitate was heated in air to a temperature of 700 ° C. for 15 minutes, the remaining metallic Ga and carbon were almost completely removed, and β-Ga 2 O 3 nanowhiskers of extremely high purity were obtained. It was confirmed that it could be obtained.
[0027]
【The invention's effect】
As described in detail above, the invention of this application provides a β-Ga 2 O 3 nanowhisker having a length of 50 μm or less and a diameter of 10 to 100 nm.
[0028]
It is said that nano-scale whiskers have about twice the strength of micron-scale whiskers. Therefore, gallium oxide as oxide nano-whiskers is used to reinforce heat-resistant or structural materials used in the atmosphere. Promising as an additive for In addition, since it is a nano-scale, it is expected to be applied to adsorbents, filters, sensors, and the like that can be used in the atmosphere.
[0029]
Furthermore, the expectation of β-type gallium oxide as a new transparent electrode is increasing, and its provision as a nanowhisker is expected to be applied to nanoscale electronic circuit components, electro-optic materials, or light-transmitting semiconductors. large.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction image of β-type gallium oxide (β-Ga 2 O 3 ) nanowhiskers and amorphous carbon.
a) amorphous carbon; b) β-type gallium oxide (β-Ga 2 O 3 ).
FIG. 2 is a diagram showing a result of analyzing an element composition by an X-ray energy dispersion spectrum meter.
FIG. 3 is a photograph replacing a drawing of an image observed using a high-resolution transmission electron microscope.

Claims (5)

長さが50μm以下で、直径が10〜100nmの範囲のβ−Gaナノウイスカー。Β-Ga 2 O 3 nanowhiskers having a length of 50 μm or less and a diameter of 10 to 100 nm. Ga粉末を高純度非晶質活性炭素粉末(AAC)と混合する工程と、それらの混合体を不活性ガスの雰囲気または気流中で、1300℃から1400℃に加熱保持する工程とによりβ−Gaナノウイスカーを製造することを特徴とするβ−Gaナノウィスカーの製造方法。Mixing the Ga 2 O 3 powder with high-purity amorphous activated carbon powder (AAC), and heating and maintaining the mixture at 1300 ° C. to 1400 ° C. in an inert gas atmosphere or air stream. A method for producing β-Ga 2 O 3 nanowhiskers, which comprises producing β-Ga 2 O 3 nanowhiskers. Ga粉末と高純度炭素粉末とを混合する際の重量比;X(=Ga/C)を6〜10とすることを特徴とする請求項2に記載のβ−Gaナノウイスカーの製造方法。Ga 2 O 3 weight ratio at the time of mixing the powder and high purity carbon powder; X (= Ga 2 O 3 / C) according to claim 2, characterized in that the the 6 to 10 beta-Ga 2 A method for producing O 3 nanowhiskers. β−Gaナノウイスカーを、炭素繊維を巻いたグラファイト製円筒の炭素繊維部分に析出させることを特徴とする請求項1ないし3のいずれかに記載のβ−Gaナノウイスカーの製造方法。beta-Ga a 2 O 3 nanowhiskers, the beta-Ga 2 O 3 nanowhiskers as claimed in any one of 3 claims 1, characterized in that to deposit the carbon fiber portion of the graphite cylinder wound with carbon fiber Production method. β−Gaナノウイスカー生成物質中に残存している、Ga金属または炭素を取り除くため、生成物全体を空気中、600℃〜800℃で熱処理することを特徴とする請求項2ないし5のいずれかに記載のβ−Gaナノウイスカーの製造方法。beta-Ga 2 O 3 remaining in the nanowhiskers generating substance, to remove the Ga metal or carbon, the entire product in air to claims 2, characterized in that a heat treatment at 600 ° C. to 800 ° C. 5 The method for producing a β-Ga 2 O 3 nanowhisker according to any one of the above.
JP2002353068A 2002-12-04 2002-12-04 β-Ga2O3 nano whisker and method for producing the same Expired - Lifetime JP3972093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353068A JP3972093B2 (en) 2002-12-04 2002-12-04 β-Ga2O3 nano whisker and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353068A JP3972093B2 (en) 2002-12-04 2002-12-04 β-Ga2O3 nano whisker and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004182546A true JP2004182546A (en) 2004-07-02
JP3972093B2 JP3972093B2 (en) 2007-09-05

Family

ID=32754477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353068A Expired - Lifetime JP3972093B2 (en) 2002-12-04 2002-12-04 β-Ga2O3 nano whisker and method for producing the same

Country Status (1)

Country Link
JP (1) JP3972093B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154209A (en) * 2003-11-26 2005-06-16 Nippon Light Metal Co Ltd Method for manufacturing metal oxide nanostructure and gallium oxide nanostructure manufactured by the method
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
CN111081825A (en) * 2019-12-20 2020-04-28 浙江大学 Preparation method of MSM type solar blind ultraviolet detector
WO2022059669A1 (en) * 2020-09-15 2022-03-24 株式会社ノベルクリスタルテクノロジー β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154209A (en) * 2003-11-26 2005-06-16 Nippon Light Metal Co Ltd Method for manufacturing metal oxide nanostructure and gallium oxide nanostructure manufactured by the method
JP4581381B2 (en) * 2003-11-26 2010-11-17 日本軽金属株式会社 Method for producing gallium oxide nanostructure
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
CN111081825A (en) * 2019-12-20 2020-04-28 浙江大学 Preparation method of MSM type solar blind ultraviolet detector
WO2022059669A1 (en) * 2020-09-15 2022-03-24 株式会社ノベルクリスタルテクノロジー β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME

Also Published As

Publication number Publication date
JP3972093B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
Yao et al. Formation of ZnO nanostructures by a simple way of thermal evaporation
WO2004071654A1 (en) Method for forming catalyst metal particles for production of single-walled carbon nanotube
Xu et al. Synthesis and characterization of high purity GaN nanowires
JP2012533155A (en) Method for producing electrochemically active / inactive nanocomposite materials
JP3972093B2 (en) β-Ga2O3 nano whisker and method for producing the same
WO2003010114A1 (en) A method of producing nanometer silicon carbide material
Luo et al. Synthesis of long indium nitride nanowires with uniform diameters in large quantities
Attolini et al. Synthesis and characterization of 3C–SiC nanowires
Chiew et al. Formation and characterization of SiOx nanowires and Si/SiOx core-shell nanowires via carbon-assisted growth
Fu et al. One-step synthesis and characterization of tree-like branched α-Si3N4 nano/submicron-structures by pyrolysis of a polymer precursor
Lin et al. Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders
Bao et al. Controlled synthesis of GaN@ SiO2 particles in preventing the hydrolysis of GaN
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP2006240932A (en) Carbon nanotube
JP2005139044A (en) Single crystal silicon nanotube and its manufacturing method
JP3834639B2 (en) Method for producing silicon nitride nanowire coated with boron nitride
JP2008100863A (en) Silicon carbide nanostructure and its producing method
JP3837540B2 (en) Method for producing single crystal tubular zinc oxide whisker
JP2004190183A (en) Boron nitride nanofiber having long period structure and method for producing the same
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
Hu et al. The First Template‐Free Growth of Crystalline Silicon Microtubes
JP2005350298A (en) Manufacturing method of aluminum nitride nano-ribbon
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers
Peng et al. Preparation and growth mechanism of clustered one-dimensional SiOx amorphous nanowires by catalytic pyrolysis of a polymer precursor
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Ref document number: 3972093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term