JP2697474B2 - 微細構造の製造方法 - Google Patents

微細構造の製造方法

Info

Publication number
JP2697474B2
JP2697474B2 JP4111125A JP11112592A JP2697474B2 JP 2697474 B2 JP2697474 B2 JP 2697474B2 JP 4111125 A JP4111125 A JP 4111125A JP 11112592 A JP11112592 A JP 11112592A JP 2697474 B2 JP2697474 B2 JP 2697474B2
Authority
JP
Japan
Prior art keywords
substrate
crystal
needle
substrate surface
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4111125A
Other languages
English (en)
Other versions
JPH05306200A (ja
Inventor
道生 岡嶋
修 楠本
隆夫 任田
和夫 横山
元司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4111125A priority Critical patent/JP2697474B2/ja
Priority to EP93303277A priority patent/EP0568316B1/en
Priority to DE69319784T priority patent/DE69319784T2/de
Priority to US08/055,728 priority patent/US5381753A/en
Publication of JPH05306200A publication Critical patent/JPH05306200A/ja
Application granted granted Critical
Publication of JP2697474B2 publication Critical patent/JP2697474B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は微細構造の製造方法に関
するもので、特に量子効果素子等の微細構造素子の作製
に利用される。
【0002】
【従来の技術】物質の構造がその物質中における電子の
位相コヒーレント距離あるいはド・ブロイ波長程度、具
体的には半導体中においてはそれぞれ100nm〜数μ
m及び数10nm程度以下になると、その中の電子は、
バルクでは観測されない電子波干渉効果、あるいはトン
ネル効果や量子準位やミニゾーンの形成に伴う効果等と
いったいわゆる量子効果が現れてくる。近年、これらの
効果を利用した素子を実現するために様々な研究が行わ
れている。現在までに、分子ビームエピタキシャル成長
法等の原子オーダー成膜技術を用いて良質の半導体超格
子構造や変調ドープ構造が作成され、それらを用いたH
EMT、HBT、MQWレーザー等が実現している。こ
れらは全て半導体膜の積層方向の電子の自由度を制約し
た微細構造である。これに対して、自由度制約の次元を
2次元あるいは3次元に高めたいわゆる量子細線あるい
は量子箱を作ることで、その中の電子の散乱消失効果や
離散的状態密度を反映した効果等のいわゆる2次元化、
3次元化に伴う効果を利用して、超高速トランジスタや
超低しきい値レーザー等を実現しようと様々な研究が行
われている。
【0003】量子細線や量子箱を作成する方法として現
在までに、1)超格子形成後集束イオンビーム等を用い
て部分的に超格子構造を除去あるいは混晶化しポテンシ
ャル障壁を形成する方法、2)オフ基板上への半原子層
交互エピタキシーによる形成方法、3)ファセット成長
や基板に形成した溝内での結晶成長など成長速度の結晶
方位依存性を利用した方法等様々な方法が考案されてい
る。
【0004】
【発明が解決しようとする課題】しかし、従来の1)超
格子形成後集束イオンビーム等を用いて部分的に超格子
構造を除去あるいは混晶化しポテンシャル障壁を形成す
る方法では、構成原子の相互拡散等によってその界面の
急峻性が不十分であったり、加工に伴う格子欠陥等が導
入され界面におけるキャリアの捕捉中心密度が大きくな
る等の問題があった。即ち、とりわけ単一キャリアを用
いる電子素子のように界面の反転層を利用できない光素
子等において、良好な量子構造を形成できないという課
題があった。一方、2)オフ基板上への半原子層交互エ
ピタキシーによる方法や、3)ファセット成長や溝内で
の結晶成長等による方法では、1)に比べ得られる微細
構造の界面の結晶性は良いものの、形成できる微細構造
の形状が基板の結晶方位に制約されるため、任意の形状
の構造を得ることができないという課題があった。
【0005】
【課題を解決するための手段】尖鋭な先端を有する導電
性の針を基板表面に近接させ、基板材料と共晶型相平衡
を示す金属を含有する所定の圧力の気体中で、針と基板
表面の間に所定の電界を印加しトンネル電流あるいは電
界放出電流を流すことにより基板表面に少なくとも前記
金属を局所的に析出させ、その後基板表面の温度を前記
金属と基板材料との共晶点温度以上かつそれぞれの融点
以下に設定することで、前記の金属析出場所に局所的な
合金液滴領域を形成し、気相−液相−固相反応を用いる
ことによりその液滴領域に接する基板表面上に結晶を局
所的に析出させる。
【0006】あるいは、尖鋭な先端を有する導電性の針
を基板表面に近接させ、基板材料と共晶型相平衡を示す
金属を含有する液体中で、針と基板表面の間に所定の電
界を印加しトンネル電流あるいは電界放出電流あるいは
イオン電流を流すことにより基板表面に少なくとも前記
金属を局所的に析出させた後、上記方法によりその領域
に結晶を局所的に析出させる。
【0007】あるいは、基板材料と共晶型相平衡を示す
金属を含有し、尖鋭な先端を有する導電性の針を基板表
面に近接させ、真空中あるいは所定の圧力の気体中ある
いは液体中で、針と基板表面の間に所定の電界を印加し
針先端からその構成元素を蒸発させ対向する基板表面に
局所的に付着させた後、上記方法によりその領域に結晶
を局所的に析出させる。
【0008】また、析出させる結晶を構成する元素の供
給元となる気体の種類あるいは混合比を時間的に変える
ことで析出結晶材料の構成元素あるいはその結晶構造あ
るいはその組成比が空間的に変調した微細構造を形成す
る。
【0009】また、所望の微細構造を基板上に析出させ
た後、基板表面上への結晶成長速度が大きくなるよう
に、基板温度、及び所望の金属を含む気体の分圧あるい
はその流量、及び基板表面の状態等の結晶成長条件を変
化させて、微細構造以外の基板表面上にも所定の結晶を
成長させ、微細構造領域の周囲が所定の結晶で被覆され
た構造をつくる。
【0010】
【作用】尖鋭な先端を有する導電性の針を基板表面に近
接させ、所定の金属元素を含有する例えば有機金属ガス
等の所定の圧力の気体中で、針と基板表面の間に所定の
電界を印加しトンネル電流あるいは電界放出電流を流す
と、前記気体が分解し前記金属もしくはそれを含有する
化合物あるいは混合物が基板表面に局所的に析出する。
同様に、所定の金属元素を含有する電解液等の液体中
で、針と基板表面の間に所定の電界を印加しトンネル電
流あるいは電界放出電流あるいはイオン電流を流すと、
前記液体から前記金属もしくはそれを含有する化合物あ
るいは混合物が基板表面に局所的に析出する。
【0011】あるいは、尖鋭な先端を有する導電性の針
を基板表面に近接させ、真空中あるいは所定の圧力の気
体中あるいは液体中で、針と基板表面の間に電界を印加
する。所定の電界を印加することで針先端からその構成
元素が蒸発し対向する基板表面に局所的に付着する。
【0012】上記いづれの場合も、金属は基板材料と共
晶型相平衡を示す材料でその共晶点温度は前記金属、前
記基板材料各々の融点より低いので、前記基板表面を前
記共晶点温度以上かつ各々の融点以下に加熱すること
で、金属が析出した場所のみ局所的に基板材料と金属が
合金化し融解した状態、即ち合金液滴領域が形成され
る。ここで、前記金属と前記基板材料がいづれもバルク
どうしの場合には、その融点および共晶点温度は一般の
平衡状態図に示される値を示す。しかし本発明の場合に
は、前記の析出金属の体積が非常に小さい状態が実現さ
れる。この場合には、バルクにおける共晶点温度以下で
も合金の融解が起こる。また金属単体においてもその融
点が下がる。本発明でいう融点あるいは共晶点温度は、
そういった微小な系における融解温度も意味する広義の
ものとする。
【0013】次に、上記状態の基板上にいわゆる気相−
液相−固相反応を生じさせる。具体的には下記の作用が
生じる。即ち、前記基板上に少なくとも基板材料構成元
素あるいは所定の元素を含むハロゲン化物あるいは有機
金属化合物あるいは水素化物等で構成される所定の圧力
の気体を直接、あるいは熱もしくは電磁波もしくはその
他のエネルギーを用いて分解して基板表面に曝す。その
際、気体原子は基板表面および前記合金液滴領域に単位
面積、単位時間に同じ数だけ衝突するが、その内凝集し
結晶成長に寄与する原子の割合(以後、適合係数と呼
ぶ)が両者で圧倒的に異なる成長条件が存在する。即ち
固体基板表面では、曝される気体の過飽和度が小さかっ
たり、系の温度が低かったり、あるいは基板表面に殻生
成のきっかけとなるステップや吸着物などが少なく結晶
表面の完全性が高い場合、その適合係数は非常に小さい
のに対して、液体表面は微視的に非常に凹凸が多く原子
を捕まえる能力が高く適合係数はほぼ1に近い。従って
上記のような条件下にこの系をおくと、気体原子は優先
的に合金液滴領域に取り込まれる。捕らえられた原子は
液滴中を拡散して下地基板との界面に到達し析出する。
即ち結晶は下地基板の局所的な領域においてのみエピタ
キシャル成長してゆくことになる。しかも、結晶はその
条件における最も成長速度の速い結晶方位(例えばSi
においては〈111〉)の方向に主に成長する。従っ
て、下地基板の結晶方位を選ぶことで基板面に対する結
晶の成長方向を制御することができる。
【0014】ここで、液滴を形成する金属の析出させる
結晶物質中における偏析係数は1より十分小さいので、
上記結晶物質中に上記金属はほとんど取り込まれない。
即ち成長が進んでも合金液滴領域はつねに成長する結晶
の上部に残存し、本成長機構を長く保つ。
【0015】以上の作用により、断面積が描画した液滴
領域の面積にほぼ等しい柱状あるいは針状の微細構造が
基板上に成長する。針を基板表面上で上記の加工作用を
させながら移動させれば、その軌跡を射影した任意の形
の柱の列や壁や庇等の微細構造が形成される。
【0016】また、結晶成長途中で気体の種類あるいは
混合比を変えると、それに対応して微細構造中に構成元
素あるいはその結晶構造あるいはその組成比が異なる層
が形成される。
【0017】針の尖鋭な先端を用いて描画する以上の製
法を用いることにより、数10nm以下の径の微細な柱
あるいはその肉厚の微細な壁を容易につくることができ
た。上記のように本製法を用いれば少なくとも2次元面
内では任意の形状の微細構造を作成することができるの
で、オフ基板上への半原子層交互エピタキシーやファセ
ット成長を利用して作成していた従来の微細構造作成方
法では製造が困難であった微細構造素子をつくることが
できる。さらにこれらの微細構造は、エピタキシャル機
構により成長したもので良質の単結晶である。即ち、集
束イオンビーム等を用いて形成していた従来の微細構造
に比べて、格子欠陥に起因するキャリアの捕捉中心や光
の吸収準位などが非常に少ない。これらの微細構造は、
そのままであるいはさらにその外側に例えばCVDやM
BEなどの手法を用いて所定の材料を被覆した構造で、
その中にキャリアを有効に閉じ込める作用を有する。
【0018】
【実施例】本発明の第1実施例の微細構造の製造方法を
以下に示す。高真空チャンバー内で、先端曲率が数10
0nm以下の金製の針を基板の表面に対峙して配置す
る。針は直径0.1〜1mmの金線を塩酸中で電界研磨
して作成した。これは機械的な切断あるいは研磨によっ
ても得られる。基板には表面が平滑な(111)面でそ
の比抵抗が1kΩcm程度以下のドープされたシリコン
単結晶を用いた。その比抵抗は後述の走査トンネル顕微
鏡様の装置で観察あるいは加工するためのトンネル電流
が流れる程度以下であればよい。
【0019】本発明における加工装置の構成ならびに駆
動機構は走査トンネル顕微鏡(STM)と同一のものを
用いた。即ち、針はピエゾ駆動機構により垂直方向に、
あるいはミクロンスケールの範囲を水平方向に自由に微
動できる。また本装置は針と基板を近接させて所定の電
圧を印加したときに流れるトンネル電流を検出して、垂
直方向のピエゾの動きをフィードバック制御することが
できる構成である。本装置を用いてまずSTM観察モー
ドで描画したい場所を観察した。針のバイアス電位Vt
は基板に対してVt=2V程度で、針と基板の間を流れ
るトンネル電流I t=0.5nA程度の定電流モードで観
察した。次にそのまま針の面内走査を停止し、典型的に
はVt =3〜10V程度、印加時間Δt=数nsec〜
数100msec程度のパルス電圧を印加した。次に針
を水平面内でX軸方向に50nm移動して同様にパルス
電圧を印加した。この作業をX軸方向に10回繰り返し
た。これをY軸方向にも10回繰り返し、450nm×
450nmの領域にマトリックス状に合計10個×10
個=100個の描画点を形成した。その後、再びこの領
域を観察モードで走査したところ、各描画点の位置に直
径数nm〜数10nm程度、高さ0.数nm〜数nm程
度の突起が形成されていることを確認した。その突起を
模式的に描いた図を図1(a)に示す。本実施例では針
側が正バイアスとなるパルス電圧を印加したが、極性を
変えても同様の結果がえられた。また、作業を大気中で
行っても概ね同じような結果がえられた。この突起は、
前記パルス電圧によってnmオーダーの距離の針・基板
間に誘起される106〜107V/cm以上の高電界によ
り針の先端の金原子がイオン化し蒸発して、あるいは針
先端の温度が局所的に上昇し蒸発して対峙する基板上に
堆積した等の原因によると考えられる。突起を形成する
には印加するパルス電圧にしきい値電圧Vt th が存在し
た。本実施例ではVt th は概ね3〜5V程度であった。
加工のための印加電圧Vt は、針側から金が蒸発し、か
つ基板側からはシリコンはほとんど蒸発しない範囲の電
圧が適当である。
【0020】次に、上記基板上にいわゆる気相−液相−
固相反応を生じさせた。具体的には下記の作業を行っ
た。即ち、突起群を形成した基板を開管CVD装置に設
置し、基板温度を前述したこの系における広義の共晶点
温度以上かつ広義の金の融点以下に加熱した。典型的に
は、おおよそ50℃以上1000℃以下の温度に設定し
た。この状態では、突起部分が局所的にシリコン基板と
金が合金化し融解した液滴状態になっている。
【0021】ここに、所定のモル比の純化した水素とS
iCl4 の混合気体を導入する。すると、還元反応によ
ってシリコンが供給され(水素還元法)、前記液滴の場
所のみシリコンが基板に垂直な方向に針状に成長した。
しかも針状に成長した結晶の先端には前記の合金液滴が
残存していた。その様子を図1(b)に示す。これらの
成長機構は以下の様である。即ち、シリコン基板1上に
は気中からシリコンはほとんど析出しないのに対して、
液体の適合係数は1に近いので金の液滴中には気中から
シリコンが効率よく取り込まれた。捕らえられた金の原
子は合金液滴5の中を拡散して下地のシリコン基板1と
の界面に到達し析出した。つまりシリコン結晶が下地基
板の局所的な領域においてのみエピタキシャル成長し
た。ここで、金のシリコン結晶中における偏析係数は1
ー4以下と、成長する針状結晶4中に金は殆ど取り込ま
れない。従って成長が進んでも合金液滴5は常に成長す
る結晶の上部に残存し、本成長機構を長く保った。以上
の作用により、断面積が描画した合金液滴5の面積にほ
ぼ等しい直径数nm〜数10nm程度のシリコン単結晶
よりなる針状結晶4が基板1上に成長した。
【0022】本実施例ではシリコンの供給源としてSi
Cl4 を用いたが、 その他にSiHCl3、SiH3
lを用いた水素還元法で行ってもよく、またSiH4
熱分解CVD法を用いてもよい。またガスの分解にプラ
ズマ、あるいはECRを利用してもよい。
【0023】また、針に金を用いる替わりに銀を用いて
同様の製法で作成を試みたところ、金を用いた場合同様
に良好な結果を得た。数V程度の所定の電圧Vt を、所
定の時間Δtだけ印加したところ銀の微細な突起がシリ
コン基板上に形成できた。次に突起群を形成した基板を
開管CVD装置に設置し、基板温度を典型的にはおおよ
そ50℃以上900℃以下の温度に設定し、ここに所定
のモル比の純化した水素とSiCl4 の混合気体を導入
したところ、金の液滴を用いた場合同様シリコンが基板
に垂直な方向に針状に成長した。金の液滴を用いた場合
に比べて先ぼそりの形の針状結晶が得られた。
【0024】金、銀以外にも銅、ニッケル、鉄等の針を
用いて先端からその構成金属を蒸発させ突起を形成し、
その局所的な液滴からシリコンを成長させることによ
り、上記実施例同様、針状の微細構造を得ることができ
た。
【0025】この針状の微細構造は、そのままで、ある
いはさらにその外側に、後述の実施例の様に、CVDな
どの手法を用いて所定の材料を被覆した構造で、その中
のキャリアを水平面内方向に制限することができる。径
が20nm程度以下の針状微細構造になると、水平面内
方向の電子状態は量子化され、その運動の自由度が残る
のは針の長手方向のみとなる。即ちいわゆる量子細線構
造となる。これらの微細構造はエピタキシャル機構によ
り成長したものなので良質の単結晶である。結晶内に種
々の格子欠陥に起因するキャリアの散乱中心や非輻射再
結合中心などが非常に少ない。従って、良好な量子細線
として機能する。
【0026】また、本実施例では針状のシリコンエピタ
キシャル単結晶を作成したが、針を基板表面上で所定の
条件で加工作用させながら移動させたところその軌跡に
金属の微小な畝が形成でき、さらにその上で前記の気相
−液相−固相反応を生じさせたところ例えば図2に示す
ような前記軌跡を射影した任意の形の壁状の微細構造等
を形成できた。
【0027】次に本発明の第2実施例を以下に示す。基
板には表面が平滑な(111)面でn型低抵抗のシリコ
ン単結晶を用い、まず金製の針を用いて第1実施例同様
の方法で直径数nm〜数10nm程度の突起を描画し
た。次に突起群を形成した基板を開管CVD装置に設置
し、基板温度を第1実施例同様この系における広義の共
晶点温度以上かつ広義の金の融点以下に加熱した。ここ
に、所定のモル比の純化した水素とSiCl4、及び微
量のPCl3よりなる混合気体を導入した。すると、還
元反応によってシリコンと微量のリンが供給され、前記
液滴の場所に断面積がそれとほぼ等しい、微量のリンが
ドープされたn型シリコン結晶が基板に垂直な方向に針
状に成長した。適当な高さに成長した段階で、混合ガス
の種類を変えた。即ち、所定のモル比の水素とSiCl
4、及び微量のBBr3よりなる混合気体を導入した。す
ると、還元反応によってシリコンと微量のボロンが供給
され、リンがドープされたn型シリコンの針状結晶上に
引き続いて今度はボロンがドープされたp型シリコンの
針状結晶が成長した。形成された針状微細構造を図3に
示す。典型的には直径数nm〜数10nm程度、長さ数
nm〜数10μm程度の針状微細構造が容易に得られ
た。
【0028】得られた針状微細構造を絶縁性ガラスでモ
ールドして折れないようにしたうえで、最上面と基板裏
面に電極をつけ、両電極間に電圧を印加したところ良好
なダイオード特性を示した。
【0029】次に本発明の第3実施例を以下に示す。上
記実施例ではすべて、下地基板にシリコンを用いたが、
後述の条件を満たせば他の材料を用いてもよい。
【0030】まず下地基板にゲルマニウム単結晶を用い
た例を示す。基板には表面が平滑な(111)面でその
比抵抗が1kΩcm程度以下のドープされたゲルマニウ
ム単結晶を用いた。第1実施例同様の方法で、高真空中
で金製の針をゲルマニウム基板に対峙させVt =3〜1
0V程度、印加時間Δt=数nsec〜数100mse
c程度のパルス電圧を印加したところ、直径数nm〜数
10nm程度、高さ0.数nm〜数nm程度の金の微小
な突起が形成された。本実施例では針側が正バイアスと
なるパルス電圧を印加したが、極性を変えても同様の結
果がえられた。また、作業を大気中で行っても概ね同じ
ような結果がえられた。次に突起を形成した基板を開管
CVD装置に設置し、基板温度を前述したこの系におけ
る広義の共晶点温度以上かつ広義のゲルマニウムの融点
以下に加熱した。典型的には、おおよそ50℃以上90
0℃以下の温度に設定し、ここに、所定のモル比の純化
した水素とGeCl4 の混合気体を導入したところ、第
1実施例同様、断面積が描画した液滴領域の面積にほぼ
等しい直径数nm〜数10nm程度のゲルマニウムの針
状結晶が基板に垂直な方向に成長した。
【0031】次に下地基板に化合物半導体を用いた例を
示す。基板には表面が平滑な(111)B面でその比抵
抗が1kΩcm程度以下のドープされたGaAs単結晶
を用いた。第1実施例同様の方法で、高真空中で金製の
針をGaAs基板に対峙させ所定のパルス電圧を印加し
たところ、直径数nm〜数10nm程度、 高さ0.数
nm〜数nm程度の金の微小な突起がGaAs基板上に
形成された。本実施例では針側が正バイアスとなるパル
ス電圧を印加したが、極性を変えても同様の結果がえら
れた。また、作業を大気中で行っても概ね同じような結
果がえられた。次に突起を形成した基板をMOVPE装
置に設置し、外部から高周波加熱により基板温度をおお
よそ100℃以上550℃以下の温度に設定し、ここ
に、所定の圧力で所定のモル比のトリメチルインジウム
と水素希釈したアルシンの混合気体を導入したところ、
第1実施例同様、断面積が描画した液滴領域の面積にほ
ぼ等しい直径数nm〜数10nm程度のInAsの針状
結晶が基板に垂直な方向に成長した。成長した結晶は良
質の単結晶であった。特に500℃以下の成長温度で選
択成長性の良好な結果が得られた。
【0032】上記実施例ではGaAs基板上にInAs
の針状結晶をヘテロエピタキシャル成長させた例を挙げ
たが、同様の製法でGaAs基板上にGaAsの微細針
状結晶をホモエピタキシャル成長させることもできた。
また同様の製法で例えばGaP等、他のIII-V 族あるい
はII-VI族あるいはIV-IV族等の2元系あるいは多元系の
化合物半導体の微細針状結晶を成長させることもでき
た。基板材料もGaAsのみならず他のIII-V 族あるい
はII-VI族あるいはIV-IV族等の2元系あるいは多元系の
化合物半導体を用いることができた。また例えばSi基
板上へのGaAsの微細針状結晶の成長等、異なる族の
単元素あるいは化合物半導体との間でもヘテロエピタキ
シャル成長により極微細構造を作成できた。
【0033】次に本発明の第4実施例を以下に示す。下
地基板には表面が平滑な(111)B面である低抵抗p
型GaAs単結晶を用いた。第1実施例同様の方法で金
製の針をGaAs基板に対峙させ所定のパルス電圧を印
加し、直径数nm〜数10nm程度、高さ0.数nm〜
数nm程度の金の微小な突起を基板上に形成した。その
後、この基板をMOVPE装置に設置し、外部から高周
波加熱により基板温度をおおよそ100℃以上550℃
以下の温度に設定し、まず所定の圧力で所定のモル比の
トリメチルアルミニウム及びトリメチルガリウム及び水
素希釈したアルシンと微量のジエチル亜鉛の混合気体を
導入したところ、第1実施例同様、断面積が描画した液
滴領域の面積にほぼ等しい直径数nm〜数10nm程度
の亜鉛がドープされたp型のAlGaAsの針状結晶が
基板に垂直な方向に成長した。適当な高さに成長した段
階で、混合ガスの種類を変えた。即ち、所定の圧力で所
定のモル比のトリメチルガリウム及び水素希釈したアル
シンと微量のジエチル亜鉛の混合気体を導入した。する
と、前記のp型AlGaAs針状結晶上に今度は亜鉛が
ドープされたp型GaAs領域が引き続いて成長した。
このGaAs領域が適当な長さに成長した後で、再びガ
スを、所定の圧力で所定のモル比のトリメチルアルミニ
ウム及びトリメチルガリウム及び水素希釈したアルシン
と微量のセレン化水素の混合気体に変えた。すると、前
記針状結晶の上に途中からセレンがドープされたn型の
AlGaAs領域が引き続いて成長した。以上のプロセ
スで、p型GaAs基板上にp型AlGaAs/p型G
aAs/n型AlGaAsの順で伝導型、バンドギャッ
プの異なる領域を有する直径数nm〜数10nm程度、
長さ数nm〜数10μmの針状の微細構造が得られた。
【0034】得られたダブルヘテロ型の針状微細構造を
絶縁性ガラスでモールドして折れないようにしたうえ
で、最上面と基板裏面にそれぞれAu/Ge/Ni合
金、Au/Zn合金製の電極をつけ両電極間に順バイア
ス電圧を印加したところ、効率よく発光した。図4にこ
の構造の断面図を示す。
【0035】本発明の他の実施例として、 例えば図4
に示したようなGaAs基板上のAlGaAs領域/G
aAs領域/AlGaAs領域の順に3領域より構成さ
れる直径10nm程度以下の針状の微細構造において、
そのGaAs領域の長さも20nm程度以下のものを、
上記実施例同様の製法を用いて作成することができた。
このGaAs領域は水平面内方向も垂直方向もそのサイ
ズが20nm程度以下で、その中の電子状態が3次元的
に量子化されたいわゆる量子箱構造である。
【0036】次に本発明の第5実施例として、基板に水
平な方向に向いた量子細線を作成できたことを説明す
る。下地基板には表面が平滑な(111)B面である低
抵抗GaAs単結晶を用い、その上に所定の厚さのAl
GaAsバッファ層を設けた。その上に第1実施例同様
の方法で金製の針を対峙させパルス電圧印加を所定のデ
ューティで繰り返しながら針を基板に水平な方向に移動
させた。すると表面に線幅数nm〜数10nm程度、高
さ0.数nm〜数nm程度の金の微小な畝が形成され
た。その後、この基板をMOVPE装置に設置し、外部
から高周波加熱により基板温度をおおよそ100℃以上
550℃以下の温度に設定し、所定の圧力で所定のモル
比のトリメチルガリウム及び水素希釈したアルシンの混
合気体を導入したところ、前記の畝の位置に同じ幅のG
aAsの帯状構造が成長した。その高さが20nm程度
以下に成長した段階で、混合ガスの種類を変えた。即
ち、所定の圧力で所定のモル比のトリメチルアルミニウ
ム及びトリメチルガリウム及び水素希釈したアルシンの
混合気体に変えた。すると、前記のGaAs帯状構造の
上に途中からAlGaAs領域が引き続いて成長し、こ
れらより成る積層微細構造が形成された。この後結晶成
長条件を変えた。具体的には、基板温度を550℃程度
以上に上げるなど、下地のAlGaAs層表面からも結
晶が直接エピタキシャル成長する条件に変えた。この条
件で全面にAlGaAs被覆層を所定の厚さ成長させ
た。この全領域において成長する成長モードは、分子ビ
ームエピタキシャル成長法等を用いておこなってもよ
い。図5に形成された微細構造を示す。以上のプロセス
により、断面の大きさが縦横とも20nm程度以下で、
四方をポテンシャル障壁となるAlGaAs結晶に囲ま
れたGaAs帯状微細構造が完成した。このGaAs帯
状微細構造とそれを包囲したAlGaAs結晶との界面
は、水平界面のみならず垂直界面においてもお互いにほ
ぼヘテロエピタキシャルな界面となった。本構造は、x
軸方向のみ電子の運動の自由度が残り、y軸及びz軸方
向には電子状態が量子化された量子細線構造である。本
微細構造も上記実施例同様エピタキシャル機構により成
長した良質の単結晶なので、結晶内に種々の格子欠陥に
起因するキャリアの散乱中心や非輻射再結合中心などが
非常に少ない。また周囲のAlGaAs結晶との界面も
良好で、界面準位密度が小さい。従って良好な量子細線
として機能する。
【0037】次に本発明の第6実施例を示す。上記実施
例では、局所的に成長させる結晶の成長速度が最も速い
下地基板の結晶方位と、その表面の面方位を一致させた
例を示してきた。この場合は針状あるいは壁状の微細構
造が基板表面と垂直に成長した。一方、両者間に角度を
つけることで、微細構造と基板表面のなす角度を直角以
外の任意の角度にすることができる。図6にその一例を
示す。表面の面方位が{011}面であるGaAs基板
を用いた。上記実施例同様の方法で金製の針を基板表面
に対峙させパルス電圧印加を所定のデューティで繰り返
しながら針を基板の[01−1]方向に移動させたとこ
ろ、線幅数nm〜数10nm程度の金の微小な畝が形成
された。その後、この基板をMOVPE装置に設置し、
外部から高周波加熱により基板温度をおおよそ100℃
以上550℃以下の温度に設定し、所定の圧力で所定の
モル比のトリメチルガリウム及び水素希釈したアルシン
の混合気体を導入したところ、前記の畝の位置にGaA
sの極薄の壁状構造が成長した。その壁と基板面のなす
角度は54.7°であった。
【0038】次に本発明の第7実施例を以下に示す。金
属の微小突起を形成する方法として上記実施例ではすべ
て、金属製の針先端からその構成金属元素自体を蒸発さ
せて基板上に付着させる方法を説明した。一方本実施例
では、所定の金属元素を含有する気体中で、基板に近接
して対峙させた先鋭な針と前記基板との間にトンネル電
流あるいは電界放出電流を流し、その作用により前記気
体を分解し基板上に微小突起を形成する。
【0039】C55Pt(C35)ガスをチャンバー内
に導入し、そのガス圧を典型的には5×10-6〜760
Torrにした。基板には表面が平滑な(111)面で
ある低抵抗シリコン単結晶を用いた。前記チャンバー内
で、タングステン製の針をシリコン基板に近接した距離
に対峙させ典型的には試料電圧Vs =1〜10V程度、
印加パルス時間Δt=数nsec〜数100msec程
度のパルス電圧を所定のデューティーで印加したとこ
ろ、直径数nm〜数100nm程度の微小な突起が形成
された。この微小な突起は前記ガスがトンネル電流ある
いは電界放出電流により分解され堆積したPtよりなる
ものと考えられる。本実施例では試料側が正バイアスと
なるパルス電圧を印加したが、極性を変えても同様の結
果がえられた。その後は上記実施例と同様のプロセスに
よりシリコンの針状微細構造が得られた。
【0040】本実施例に使用する有機金属ガスは上記の
55Pt(C35)以外のPtを含有する所定の有機
金属ガスであってもよく、また他のAu、Ag、Cu、
Pd、Ni等を含む有機金属を用いてもよい。また、針
としてはW以外にもPt、Au等を用いてもよい。本実
施例はシリコン基板以外の単元素半導体あるいは化合物
半導体に対しても有効であった。
【0041】次に本発明の第8実施例を以下に示す。希
釈したKAu(CN)2溶液中にPtIr針とシリコン
(111)基板を浸し、針を基板に近接させ典型的には
試料電圧Vs =−1〜−10V程度の負電圧を印加した
ところ、直径数nm〜数100nm程度の微小な突起が
形成された。光照射下でより良好な結果が得られた。こ
の微小な突起は前記の溶液中のAuイオンがトンネル電
流あるいは電界放出電流あるいはイオン電流により中性
化し、析出したものと考えられる。その後上記実施例と
同様のプロセスを施すことによりシリコンの針状微細構
造が得られた。
【0042】本実施例に使用する溶液は上記のKAu
(CN)2 以外のAuを含有する所定の溶液であっても
よく、また他のAg、Cu、Pt、Pd、Ni等を含む
溶液を用いてもよい。また、針としてはPtIr以外に
もW、Au等を用いてもよい。本実施例はシリコン基板
以外の単元素半導体あるいは化合物半導体に対しても有
効であった。
【0043】以上の実施例を行うにあたって、基板上に
形成する微小突起を成す金属及び基板材料に必要な条件
は次のように考えられる。即ち、前記金属は基板材料と
共晶型相平衡を示す材料でその共晶点温度が前記金属、
前記基板材料各々の融点より低いものであればよい。ま
た、前記金属の析出させる微小な結晶物質中における偏
析係数ができるだけ小さいほうが前記結晶物質中に前記
金属が取り込まれにくいので、針状あるいは壁状の微細
構造を作成する上で好ましい。
【0044】本発明の製法を用いることにより、数10
nm以下の径の微細な柱あるいはその肉厚の微細な壁を
容易につくることができた。上記のように本製法を用い
れば少なくとも2次元面内では任意の形状の微細構造を
作成することができるので、オフ基板上への半原子層交
互エピタキシーやファセット成長等を利用して作成して
いた従来の微細構造作成方法では製造が困難であった微
細構造素子をつくることができる。さらにこれらの微細
構造は、エピタキシャル機構により成長したもので良質
の単結晶である。即ち、集束イオンビーム等を用いて形
成していた従来の微細構造に比べて、格子欠陥に起因す
るキャリアの捕捉中心や光の吸収準位などが非常に少な
い。これらの微細構造は、そのままであるいはさらにそ
の外側に例えばCVDやMBEなどの手法を用いて所定
の材料を被覆した構造で、その中にキャリアを有効に閉
じ込めることができる。
【0045】以上のように、本製造方法によれば、従来
の微細構造の製造方法では困難であった、キャリアの捕
捉中心や光の吸収準位などが少なくかつ少なくとも2次
元面内では任意の形状を有する微細構造を作成すること
ができる。
【0046】
【発明の効果】本発明によれば、従来の微細構造の製造
方法では困難であった、キャリアの捕捉中心や光の吸収
準位などが少なくかつ少なくとも2次元面内では任意の
形状を有する微細構造を作成することができる。即ち素
子化しやすい量子細線や量子箱等の構造を形成すること
ができる。これにより、その中のキャリアの自由度が制
約されたことによって生じる量子効果等を利用した、例
えば超高速トランジスタや超低しきい値レーザー等とい
った高機能素子を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の製造方法により作成され
た微小突起及び微小針状結晶の斜視図
【図2】本発明の第1実施例の製造方法により作成され
た壁状微細構造の斜視図
【図3】本発明の第2実施例の製造方法により作成され
た針状微細構造の斜視図
【図4】本発明の第4実施例の製造方法により作成され
た針状微細構造の断面図
【図5】本発明の第5実施例の製造方法により作成され
たGaAs帯状構造の斜視図
【図6】本発明の第6実施例の製造方法により作成され
たGaAs壁状構造の斜視図
【符号の説明】
1 シリコン単結晶基板 2 基板表面 3 微小突起 4 針状結晶 5 合金液滴 6 壁状微細構造 7 n型シリコン結晶 8 p型シリコン結晶 9、14 針状微細構造 11 p型AlGaAs領域 12 p型GaAs領域 13 n型AlGaAs領域 15 絶縁性ガラス 16、17 電極 20 GaAs帯状構造 21 AlGaAs領域 22 積層微細構造 23 AlGaAs被覆層 25 GaAs壁状構造
───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 和夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 柴田 元司 大阪府門真市大字門真1006番地 松下電 器産業株式会社内

Claims (13)

    (57)【特許請求の範囲】
  1. 【請求項1】尖鋭な先端を有する導電性の針を基板表面
    に近接させ、基板材料と共晶型相平衡を示す金属を含有
    する所定の圧力の気体中で、針と基板表面の間に所定の
    電界を印加しトンネル電流あるいは電界放出電流を流す
    ことにより基板表面に少なくとも前記金属を局所的に析
    出させ、その後基板表面の温度を前記金属と基板材料と
    の共晶点温度以上かつそれぞれの融点以下に設定するこ
    とで、前記の金属析出場所に局所的な合金液滴領域を形
    成し、気相−液相−固相反応を用いることによりその液
    滴領域に接する基板表面上に結晶を局所的に析出させる
    ことを特徴とする微細構造の製造方法。
  2. 【請求項2】尖鋭な先端を有する導電性の針を基板表面
    に近接させ、基板材料と共晶型相平衡を示す金属を含有
    する液体中で、針と基板表面の間に所定の電界を印加し
    トンネル電流あるいは電界放出電流あるいはイオン電流
    を流すことにより基板表面に少なくとも前記金属を局所
    的に析出させることを特徴とする請求項1に記載の微細
    構造の製造方法。
  3. 【請求項3】基板材料と共晶型相平衡を示す金属を含有
    し、尖鋭な先端を有する導電性の針を基板表面に近接さ
    せ、真空中あるいは所定の圧力の気体中で、針と基板表
    面の間に所定の電界を印加し針先端からその構成元素を
    蒸発させ対向する基板表面に局所的に付着させることを
    特徴とする請求項1に記載の微細構造の製造方法。
  4. 【請求項4】気相−液相−固相反応が、少なくとも基板
    材料構成元素あるいは所定の元素を含むハロゲン化物あ
    るいは有機金属化合物あるいは水素化物等で構成される
    所定の圧力の気体を直接、あるいは熱もしくは電磁波も
    しくはその他のエネルギーを用いて分解して基板表面に
    曝すことで合金液滴領域に所望の元素を溶解させ、液滴
    領域に接する基板表面上に結晶を局所的に析出させる反
    応であることを特徴とする請求項1に記載の微細構造の
    製造方法。
  5. 【請求項5】局所的合金液滴領域からの結晶成長速度が
    その他の基板表面からの物質成長速度の2倍以上になる
    ように、基板温度、及び所望の金属を含む気体の分圧あ
    るいはその流量、及び基板表面の状態等の結晶成長条件
    を設定し、結晶を局所的に析出させることを特徴とする
    請求項1から3のいずれかに記載の微細構造の製造方
    法。
  6. 【請求項6】導電性の針を所定の条件で加工作用させな
    がら基板表面上で移動させることにより線状の金属を基
    板表面上に形成することを特徴とする請求項1から5の
    いずれかに記載の微細構造の製造方法。
  7. 【請求項7】析出させる結晶を構成する元素の供給元と
    なる気体の種類あるいは混合比を時間的に変えることで
    析出結晶材料の構成元素あるいはその結晶構造あるいは
    その組成比が空間的に変調した微細構造を形成すること
    を特徴とする請求項1から6のいずれかに記載の微細構
    造の製造方法。
  8. 【請求項8】所望の微細構造を基板上に析出させた後、
    基板表面上への結晶成長速度が大きくなるように、基板
    温度、及び所望の金属を含む気体の分圧あるいはその流
    量、及び基板表面の状態等の結晶成長条件を変化させ
    て、微細構造以外の基板表面上にも所定の結晶を成長さ
    せ、微細構造領域の周囲が所定の結晶で被覆された構造
    をつくることを特徴とする請求項1から7のいずれかに
    記載の微細構造の製造方法。
  9. 【請求項9】液滴を形成する金属がAu、Ag、Cu、
    Pt、Pd、Ni、Ir、Rh、Co、Os、Ru、F
    e、Hg、Cd、Znのいずれかを含むことを特徴とす
    る請求項1から3のいずれかに記載の微細構造の製造方
    法。
  10. 【請求項10】液滴を形成する金属の析出させる結晶物
    質中における偏析係数が1より小さいことを特徴とする
    請求項1から3のいずれかに記載の微細構造の製造方
    法。
  11. 【請求項11】析出させる結晶あるいは基板が、単元素
    半導体あるいは化合物半導体であることを特徴とする請
    求項1から3のいずれかに記載の微細構造の製造方法。
  12. 【請求項12】少なくとも液滴領域下部の基板表面が単
    結晶であることを特徴とする請求項1から3のいずれか
    に記載の微細構造の製造方法。
  13. 【請求項13】基板の結晶方位を変えることで微細構造
    と基板表面の成す角度を変えることを特徴とする請求項
    12に記載の微細構造の製造方法。
JP4111125A 1992-04-30 1992-04-30 微細構造の製造方法 Expired - Fee Related JP2697474B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4111125A JP2697474B2 (ja) 1992-04-30 1992-04-30 微細構造の製造方法
EP93303277A EP0568316B1 (en) 1992-04-30 1993-04-27 Fabrication method of fine structure
DE69319784T DE69319784T2 (de) 1992-04-30 1993-04-27 Verfahren zur Herstellung einer feinen Struktur
US08/055,728 US5381753A (en) 1992-04-30 1993-04-30 Fabrication method of fine structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111125A JP2697474B2 (ja) 1992-04-30 1992-04-30 微細構造の製造方法

Publications (2)

Publication Number Publication Date
JPH05306200A JPH05306200A (ja) 1993-11-19
JP2697474B2 true JP2697474B2 (ja) 1998-01-14

Family

ID=14553078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111125A Expired - Fee Related JP2697474B2 (ja) 1992-04-30 1992-04-30 微細構造の製造方法

Country Status (4)

Country Link
US (1) US5381753A (ja)
EP (1) EP0568316B1 (ja)
JP (1) JP2697474B2 (ja)
DE (1) DE69319784T2 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694059A (en) * 1991-12-24 1997-12-02 Hitachi Ltd. Buffer of fine connection structure for connecting an atom level circuit and a general semiconductor circuit
EP0887867B1 (en) * 1993-11-02 2004-04-21 Matsushita Electric Industrial Co., Ltd Semiconductor device comprising an aggregate of semiconductor micro-needles
US6734451B2 (en) 1993-11-02 2004-05-11 Matsushita Electric Industrial Co., Ltd. Aggregate of semiconductor micro-needles and method of manufacturing the same, and semiconductor apparatus and method of manufacturing the same
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
RU2099808C1 (ru) * 1996-04-01 1997-12-20 Евгений Инвиевич Гиваргизов Способ выращивания ориентированных систем нитевидных кристаллов и устройство для его осуществления (варианты)
JPH10106960A (ja) * 1996-09-25 1998-04-24 Sony Corp 量子細線の製造方法
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
GB2352562B (en) * 1998-04-30 2003-10-08 Asahi Chemical Ind Functional element for use in an electric, an electronic or an optical device and method for producing the same
US6810575B1 (en) 1998-04-30 2004-11-02 Asahi Kasai Chemicals Corporation Functional element for electric, electronic or optical device and method for manufacturing the same
US6458206B1 (en) * 1998-05-13 2002-10-01 Crystals And Technologies, Ltd. Cantilever with whisker-grown probe and method for producing thereof
GB9815820D0 (en) * 1998-07-22 1998-09-16 Secr Defence Improvements relating to micro-machining
US7252811B2 (en) * 2000-06-29 2007-08-07 University Of Louisville Low temperature synthesis of silicon fibers
US6806228B2 (en) 2000-06-29 2004-10-19 University Of Louisville Low temperature synthesis of semiconductor fibers
US7182812B2 (en) * 2002-09-16 2007-02-27 University Of Louisville Direct synthesis of oxide nanostructures of low-melting metals
EP2360298A3 (en) * 2000-08-22 2011-10-05 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
JP2002220300A (ja) * 2001-01-18 2002-08-09 Vision Arts Kk ナノファイバーおよびナノファイバーの作製方法
TW554388B (en) * 2001-03-30 2003-09-21 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US7713352B2 (en) * 2001-06-29 2010-05-11 University Of Louisville Research Foundation, Inc. Synthesis of fibers of inorganic materials using low-melting metals
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US7771689B2 (en) * 2002-11-08 2010-08-10 University Of Louisville Research Foundation, Inc Bulk synthesis of metal and metal based dielectric nanowires
EP1634334A1 (en) 2003-04-04 2006-03-15 Startskottet 22286 AB Nanowhiskers with pn junctions and methods of fabricating thereof
KR101108998B1 (ko) * 2003-04-04 2012-02-09 큐나노에이비 정밀하게 위치된 나노위스커, 나노위스커 어레이 및 그제조 방법
JP4563026B2 (ja) * 2003-12-25 2010-10-13 日本電信電話株式会社 三次元閉じ込め量子ナノ構造体の製造方法
US7354850B2 (en) * 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
WO2005082593A1 (en) * 2004-02-17 2005-09-09 Avery Dennison Corporation Method of making microneedles
CN101010780B (zh) * 2004-04-30 2012-07-25 纳米***公司 纳米线生长和获取的体系和方法
JP4813775B2 (ja) * 2004-06-18 2011-11-09 日本電信電話株式会社 多孔構造体及びその製造方法
US7528002B2 (en) * 2004-06-25 2009-05-05 Qunano Ab Formation of nanowhiskers on a substrate of dissimilar material
JP4923477B2 (ja) * 2004-11-24 2012-04-25 株式会社豊田中央研究所 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法
US7826336B2 (en) * 2006-02-23 2010-11-02 Qunano Ab Data storage nanostructures
US8049203B2 (en) * 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
WO2008079078A1 (en) 2006-12-22 2008-07-03 Qunano Ab Elevated led and method of producing such
CN101669219B (zh) * 2006-12-22 2011-10-05 昆南诺股份有限公司 带有直立式纳米线结构的led及其制作方法
US8183587B2 (en) * 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
JP5379811B2 (ja) * 2008-02-29 2013-12-25 インターナショナル・ビジネス・マシーンズ・コーポレーション 高アスペクト比ナノ構造体を用いた光起電デバイス及びその作成方法
US8592675B2 (en) 2008-02-29 2013-11-26 International Business Machines Corporation Photovoltaic devices with enhanced efficiencies using high-aspect-ratio nanostructures
US9304132B2 (en) 2009-04-16 2016-04-05 President And Fellows Of Harvard College Molecular delivery with nanowires
JP2010283381A (ja) * 2010-08-26 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> ヘテロ構造の製造方法
KR101912674B1 (ko) * 2011-01-21 2018-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 수소 발생체, 수소 발생 장치, 발전 장치 및 구동 장치
US20180169403A1 (en) 2015-01-09 2018-06-21 President And Fellows Of Harvard College Nanowire arrays for neurotechnology and other applications

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635753A (en) * 1967-09-21 1972-01-18 Bell Telephone Labor Inc Growth of needlelike vls crystals
US3580732A (en) * 1968-01-15 1971-05-25 Ibm Method of growing single crystals
NL6805300A (ja) * 1968-04-13 1969-10-15
US4058418A (en) * 1974-04-01 1977-11-15 Solarex Corporation Fabrication of thin film solar cells utilizing epitaxial deposition onto a liquid surface to obtain lateral growth
US4155781A (en) * 1976-09-03 1979-05-22 Siemens Aktiengesellschaft Method of manufacturing solar cells, utilizing single-crystal whisker growth
DE2639841C3 (de) * 1976-09-03 1980-10-23 Siemens Ag, 1000 Berlin Und 8000 Muenchen Solarzelle und Verfahren zu ihrer Herstellung
JPH04130733A (ja) * 1990-09-21 1992-05-01 Hitachi Ltd 半導体装置

Also Published As

Publication number Publication date
EP0568316A2 (en) 1993-11-03
DE69319784T2 (de) 1999-01-14
US5381753A (en) 1995-01-17
JPH05306200A (ja) 1993-11-19
EP0568316A3 (en) 1996-03-06
DE69319784D1 (de) 1998-08-27
EP0568316B1 (en) 1998-07-22

Similar Documents

Publication Publication Date Title
JP2697474B2 (ja) 微細構造の製造方法
JP2746312B2 (ja) 選択的結晶成長方法及びそれを用いた太陽電池の製造方法
Solanki et al. Atomic layer deposition of ZnSe/CdSe superlattice nanowires
KR101147053B1 (ko) 나노구조체 및 그 제조 방법
US6103600A (en) Method for forming ultrafine particles and/or ultrafine wire, and semiconductor device using ultrafine particles and/or ultrafine wire formed by the forming method
US5682041A (en) Electronic part incorporating artificial super lattice
US4831628A (en) Denices fabricated using method of selective area epitaxial growth using ion beams
Saidov et al. Structural Studies of the Epitaxial Layer of a Substitutional Solid Solution (GaAs) 1− x (ZnSe) x with Nanocrystals
US5746826A (en) Method and apparatus for forming microstructure body
JP3341387B2 (ja) 微細構造材料の製造方法並びにその製造装置、および微細構造を有する発光素子
JPH05315647A (ja) 窒化物系半導体素子およびその製造方法
Borgstrom et al. Electron beam prepatterning for site control of self-assembled quantum dots
JPH04118916A (ja) 半導体装置およびその製造方法
JP3527941B2 (ja) 半導体スーパーアトムとその結合体の作製方法
JP2005228899A (ja) 半導体量子ドット及び微細配線形成方法、及びこれらを用いた半導体デバイスとその製造方法
JPH0645613A (ja) 半導体素子およびその製造方法
JPH05347251A (ja) 三−五族化合物半導体気相成長方法および半導体装置
KR100485874B1 (ko) 수소 및 불활성기체에 의한 화합물반도체 박막의 양자점 생성방법
KR20010054538A (ko) 자발형성 양자점과 전류차단층의 자기정렬 성장을 위한반도체 소자 제조방법
JP2803555B2 (ja) 極微細トンネル障壁の作製方法
JP2004281954A (ja) 量子ドットの作製方法
Diaz Rivas Growth of gaN nanowires: a study using in situ transmission electron microscopy
JP2004250314A (ja) GaN単結晶基板、窒化物系半導体エピタキシャル基板、電界放出型陰極装置、フィールドエミッション表示装置及びその製造方法
JPH104069A (ja) 半導体微細構造の作製方法
JPH04216616A (ja) 分子線エピタキシャル成長薄膜結晶の伝導型制御方法及び当該制御方法を使用する分子線エピタキシャル装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees