JP2510422B2 - Copper plating method for printed circuit boards - Google Patents

Copper plating method for printed circuit boards

Info

Publication number
JP2510422B2
JP2510422B2 JP63128078A JP12807888A JP2510422B2 JP 2510422 B2 JP2510422 B2 JP 2510422B2 JP 63128078 A JP63128078 A JP 63128078A JP 12807888 A JP12807888 A JP 12807888A JP 2510422 B2 JP2510422 B2 JP 2510422B2
Authority
JP
Japan
Prior art keywords
anode
copper
diaphragm
plating
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63128078A
Other languages
Japanese (ja)
Other versions
JPH01297884A (en
Inventor
和宏 平尾
賢一 上野
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP63128078A priority Critical patent/JP2510422B2/en
Publication of JPH01297884A publication Critical patent/JPH01297884A/en
Application granted granted Critical
Publication of JP2510422B2 publication Critical patent/JP2510422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、不溶性電極を使用してプリント基板へ銅メ
ッキを行うための方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for copper plating on printed circuit boards using insoluble electrodes.

(従来技術とその問題点) 両面に銅箔層を形成したプリント基板の表面及び裏面
の回路部分を接続するには、必要な部分に貫通孔つまり
スルーホールを形成し、該スルーホールの内面に銅メッ
キを施して前記両回路部分を接続するようにしている。
該スルーホールメッキを行う場合には、前記プリント基
板に前記スルーホールを形成した後、パラジウム含有浴
を使用して活性化を行い、次いで無電解銅メッキをプリ
ント基板全体に行いメッキ薄層を付着させた後、更に電
解銅メッキを行うようにする。無電解銅メッキのみで全
体のメッキを行わず電解銅メッキを併用する理由は、第
1に無電解メッキは析出速度が遅く無電解メッキのみで
は長時間を要すること第2に無電解銅メッキ液が高価だ
からである。
(Prior art and its problems) In order to connect the circuit parts on the front and back surfaces of a printed circuit board with copper foil layers formed on both sides, through holes, or through holes, are formed in the necessary parts and the inner surface of the through holes is formed. Copper plating is applied to connect both circuit parts.
When performing the through-hole plating, after forming the through-hole on the printed board, activation is performed using a palladium-containing bath, and then electroless copper plating is performed on the entire printed board to deposit a thin plating layer. After this, electrolytic copper plating is further performed. The reason why electrolytic copper plating is used only without electroless copper plating is that electroless plating has a slow deposition rate and requires a long time only with electroless plating. Secondly, electroless copper plating solution. Is expensive.

該電解銅メッキは、エッチングを均一に行うこと及び
直径0.3mm以下のスルーホール内に均一にメッキする必
要があるため極めて厳しい管理が、つまり直径0.3mm以
下のスルーホール内に均一に銅が入り込むようつきまわ
りが良好であること、銅メッキが適度の硬さを有するこ
と、ひび割れ等が生じないこと、光沢がありヤケ等が起
こらないこと等が要求される。これらの多種の要求を満
足させるために通常は多種類の添加剤をメッキ液中に含
有させるようにしている。
The electrolytic copper plating is extremely strict control because it is necessary to perform etching uniformly and to uniformly plate the through holes having a diameter of 0.3 mm or less, that is, copper is evenly introduced into the through holes having a diameter of 0.3 mm or less. It is required that the fitting contact is good, that the copper plating has an appropriate hardness, that cracks and the like do not occur, and that it has gloss and does not cause burns and the like. In order to satisfy these various requirements, many kinds of additives are usually contained in the plating solution.

該添加剤としては、1,3−ジオキソラン重合体又はポ
リプロピレングリコール、ポリプロピレンプロパノール
等のポリエーテル類及び有機硫黄化合物、有機窒素化合
物等が使用されているが、いずれも陽分極によって酸化
分解され易いという問題点を有し、該添加剤の分解は陽
極の平衡電位が高いほど生じ易い。従って従来の銅メッ
キ方法では陽極として銅又は銅合金の溶性陽極を使用し
て平衡電位を下げ前記添加剤の分解を防止するようにし
ている。即ち銅や銅合金を使用した場合の陽極(Cu→Cu
2++2e)の平衡電位は0.345V(vsNHZ)と極めて低いの
に対し、不溶性金属電極を使用した場合の陽極反応は通
常の酸素発生反応(2OH-+2e→1/2O2+H2O)となりその
平衡電位が1.24VvsNHZ(pH=0)となり、1V近く高くな
ってしまう。
As the additive, polyethers such as 1,3-dioxolane polymer or polypropylene glycol, polypropylene propanol and organic sulfur compounds, organic nitrogen compounds and the like are used, but they are easily oxidized and decomposed by anodic polarization. There is a problem, and the decomposition of the additive easily occurs as the equilibrium potential of the anode increases. Therefore, in the conventional copper plating method, a soluble anode made of copper or a copper alloy is used as an anode to lower the equilibrium potential and prevent decomposition of the additive. That is, the anode when using copper or copper alloy (Cu → Cu
Equilibrium potential 2+ + 2e) whereas very low 0.345V (vsNHZ), anodic reaction in the case of using an insoluble metal electrode is normally oxygen evolution reaction (2OH - + 2e → 1 / 2O 2 + H 2 O) becomes The equilibrium potential becomes 1.24V vs NHZ (pH = 0), which is higher than 1V.

しかしながら陽極が純銅の溶性電極の場合はこのよう
な低い電位においても前記添加剤の分解が生じるため、
常に該添加剤を補給して該添加剤量をほぼ一定に維持す
る必要があるとともに、溶性電極の常としてメッキ量と
該溶性電極の溶出量のアンバランスを回避し電解浴中の
銅イオン濃度の変化を最小限に抑制し更に溶解した溶性
陽極を交換する等の電解液や電極の保守管理が必要とな
るという問題点がある。
However, when the anode is a pure copper soluble electrode, decomposition of the additive occurs even at such a low potential,
It is necessary to constantly replenish the additive to maintain the additive amount substantially constant, and to avoid an imbalance between the plating amount and the elution amount of the soluble electrode, which is the usual condition for the soluble electrode, to avoid the copper ion concentration in the electrolytic bath. However, there is a problem in that the electrolytic solution and the electrode need to be maintained and managed by, for example, suppressing the change of the electrolyte to a minimum and replacing the soluble anode.

通常の硫酸銅浴による銅メッキでは、前記問題点を解
消するために含リン銅を袋状体に収容して電解を行うメ
ッキ法が採用されている。該メッキ法では、溶性陽極で
ある銅の表面にリン酸塩の被膜が形成され該被膜が前記
添加剤の前記銅陽極への接触度を減少させて前記添加剤
分解を抑制するとともに銅の過剰溶出を抑えると考えら
れている。しかし該方法では前記含リン銅が高価である
こと及びスラッジが生成する等の問題点を有するととも
に、前記添加剤分解防止及び銅の過剰溶出防止も完全で
はないため保守作業の軽減化に直接は繋がらないという
大きな問題点を有している。
In copper plating using a normal copper sulfate bath, a plating method in which phosphorus-containing copper is contained in a bag-shaped body and electrolysis is adopted in order to solve the above problems. In the plating method, a phosphate coating is formed on the surface of copper, which is a soluble anode, and the coating reduces the degree of contact of the additive with the copper anode to suppress the decomposition of the additive and to prevent excess copper. It is believed to suppress elution. However, this method has problems that the phosphorus-containing copper is expensive and that sludge is generated, and since the prevention of additive decomposition and the prevention of excessive elution of copper are not perfect, the maintenance work is directly reduced. It has a big problem of not being connected.

上記各方法の問題点を克服するためにピロリン酸銅浴
を使用する方法が提案されている。この方法では添加剤
分解が比較的少なく又陽極として純銅を使用した場合で
も比較的安定した電解を行うことができる等の利点を有
しているが、ピロリン酸の価格が極めて高価であり、経
済的ではないという問題点がある。
In order to overcome the problems of each of the above methods, a method of using a copper pyrophosphate bath has been proposed. This method has the advantages that the decomposition of additives is relatively small and that relatively stable electrolysis can be performed even when pure copper is used as the anode, but the price of pyrophosphoric acid is extremely high, and the economy is low. There is a problem that it is not the target.

そのため最近では、電解液の銅イオンを別個の銅溶解
槽を使用して補給し、該電解液を不溶性陽極を設置した
銅メッキ槽に供給する方法が提案されている。該方法に
よると前記した溶性陽極を使用する場合の問題点は解消
されるが依然として前記添加剤の分解の問題が残り、こ
れを解消するために前記添加剤を耐酸化性の化合物に換
えることが試みられているが、前記スルーホールメッキ
のような特殊な条件下で安定な添加剤は未だ見出されて
いないのが現状であり、工業的に使用されるには至って
いない。
Therefore, recently, a method has been proposed in which copper ions of an electrolytic solution are supplied using a separate copper dissolving tank and the electrolytic solution is supplied to a copper plating tank in which an insoluble anode is installed. According to this method, the problem in the case of using the above-mentioned soluble anode is solved, but the problem of decomposition of the additive still remains, and in order to solve this, the additive may be replaced with an oxidation resistant compound. Attempts have been made, but it is the present situation that an additive that is stable under special conditions such as the above-mentioned through-hole plating has not been found yet, and it has not been industrially used yet.

(発明の目的) 本発明は、前記した従来技術の問題点つまり添加剤の
分解や高価な試薬の使用等を解決し、スルーホールメッ
キされた品質の高い被メッキ材を得ることのできるメッ
キ方法を提供することを目的とする。
(Object of the Invention) The present invention solves the above-mentioned problems of the prior art, that is, the decomposition of additives, the use of expensive reagents, etc., and a plating method capable of obtaining a high-quality plated material through-hole plated. The purpose is to provide.

(問題点を解決するための手段) 本発明は、チタン系基材上に被覆した不溶性金属電極
から成る陽極とプリント基板用被メッキ材から成る陰極
を、隔膜により分離し、銅イオン及び添加材含有液を電
解液として電解し、前記被メッキ材の表面及びスルーホ
ールのメッキを行うプリント基板の銅メッキ方法におい
て、前記不溶性金属電極がチタン系基材上に白金族金属
酸化物を被覆した電極であり、前記電解を陽極室側を加
圧しながら行うことを特徴とする方法である。
(Means for Solving Problems) The present invention separates an anode composed of an insoluble metal electrode coated on a titanium-based base material and a cathode composed of a material to be plated for a printed circuit board by a diaphragm to separate copper ions and an additive material. In a copper plating method for a printed circuit board, wherein a contained liquid is electrolyzed as an electrolytic solution to plate the surface of the material to be plated and through holes, the insoluble metal electrode is an electrode obtained by coating a platinum group metal oxide on a titanium-based substrate. The method is characterized in that the electrolysis is performed while applying pressure to the anode chamber side.

以下本発明を詳細に説明する。 The present invention will be described in detail below.

本発明に係わる銅メッキ方法では、白金族金属酸化物
をチタン系基材上に被覆した不溶性金属電極から成る陽
極を隔膜により被メッキ材から成る陰極から分離しかつ
陽極室側を加圧することにより、添加剤を含有する電解
液の大部分が前記陽極に接触することを防止し、これに
より前記添加剤の分解を防止し、該添加剤の補給なしに
継続して被メッキ材であるプリント基板のスルーホール
に銅メッキを施すようにしている。
In the copper plating method according to the present invention, an anode composed of an insoluble metal electrode coated with a platinum group metal oxide on a titanium-based substrate is separated from a cathode composed of a material to be plated by a diaphragm and pressure is applied to the anode chamber side. A printed circuit board which is a material to be plated continuously, which prevents most of the electrolyte solution containing the additive from coming into contact with the anode, thereby preventing the decomposition of the additive and continuously supplying the additive. Copper plating is applied to the through holes.

本発明方法では、陽極としては白金族金属酸化物をチ
タン基材に被覆して成る不溶性陽極所謂DSE電極を使用
する。該DSE電極は、溶性陽極と比較すると陽極電位
(酸素発生電位)が約1000mV高いが、白金族金属を基材
に被覆した電極や鉛電極と比較すると陽極電位が500〜8
00mV低いため添加剤分解を有効に防止することができ
る。該不溶性陽極の形状は、多孔状、板状、棒状、上部
が開口するボックス状等任意とすることができる。該陽
極を電解槽内に設置するには、通常の食塩電解槽のよう
に底部から給電棒を立設し該給電棒に連結するようにし
ても、電解槽の上縁間にビームを架設し、該ビームに前
記陽極に連結した例えば逆J字型の給電体の上端を吊下
げるようにしてもよい。
In the method of the present invention, a so-called DSE electrode, which is an insoluble anode formed by coating a platinum base metal oxide on a titanium substrate, is used as the anode. The DSE electrode has an anode potential (oxygen generation potential) of about 1000 mV higher than that of a soluble anode, but the anode potential is 500 to 8 when compared with an electrode in which a platinum group metal is coated on a substrate or a lead electrode.
Since it is lower than 00 mV, the decomposition of additives can be effectively prevented. The shape of the insoluble anode may be any shape such as porous, plate-like, rod-like, and box-like with an open top. In order to install the anode in the electrolytic cell, a beam is installed between the upper edges of the electrolytic cell even if a power feeding rod is erected from the bottom and connected to the power feeding rod like a normal salt electrolytic cell. The upper end of, for example, an inverted J-shaped power supply unit connected to the beam may be suspended from the beam.

又陰極は、メッキすべきプリント基板用被メッキ材と
し、該被メッキ材は例えば合成樹脂上に銅箔を薄く被覆
しかつ所定位置に多数の貫通孔つまりスルーホールを穿
設した複合板である。該被メッキ材は、本発明方法によ
り電気メッキする前に該電気メッキを円滑に行うために
その表面に化学メッキにより薄い銅メッキ層を形成して
おくことが望ましい。該被メッキ材は通常30cm×30cm程
度の板であるが、本発明方法では一度の操業で多数の被
メッキ材を処理できるよう多数の被メッキ材を上下及び
左右方向に並べ合わせて1枚の大きな平板状とし所定の
治具で電解槽内に設置することが好ましい。
The cathode is a material to be plated for a printed circuit board, and the material to be plated is, for example, a composite plate in which a synthetic resin is thinly coated with copper foil and a large number of through holes or through holes are formed at predetermined positions. . Before the electroplating according to the method of the present invention, it is desirable that a thin copper plating layer is formed on the surface of the material to be plated by chemical plating in order to smoothly perform the electroplating. The material to be plated is usually a plate of about 30 cm × 30 cm, but in the method of the present invention, a large number of materials to be plated are arranged in the vertical and horizontal directions so that a large number of materials to be plated can be processed in one operation. It is preferable to form a large flat plate and install it in the electrolytic cell with a predetermined jig.

使用する隔膜は、添加剤の通過をほぼ完全に抑止する
ものでなければならない。該添加剤は液中でイオンでは
なくコロイド状態で存在することが多く、該添加剤を粒
径は互いに凝集しあるいは周囲に水分子を伴って数μ〜
数十μとなっていると考えられるので、前記隔膜の目開
きは10μ以下とすることが望ましい。
The septum used should be one that almost completely blocks the passage of additives. The additive often exists in a liquid in a colloidal state rather than an ion, and the additive has a particle size of agglomerated with each other or is accompanied by water molecules in the periphery of several μ to
Since it is considered to be several tens of μ, it is desirable that the opening of the diaphragm is 10 μ or less.

本発明方法では、被メッキ材表面に十分銅イオンを送
り込みかつ陰極室内で発生するガスを除去するため空気
を送って液撹拌を行うため液の流通が極めて良好にな
る。前記隔膜は該流通メッキ液の陽極への接触を防止す
るためのもので、陽極室と陰極室を区画し前記メッキ液
の浸透を防止できれば電解槽にどのように設置してもよ
いが、袋状として前記陽極に近接させ該陽極を包み込む
形状でかつ発生ガスの放出のため上部が開口しているこ
とが好ましく、この他に複数の陽極室及び陰極室を平面
状の隔膜が区画して所謂フィルタプレス型の電解槽を構
成するようにしてもよい。
According to the method of the present invention, since the copper ions are sufficiently sent to the surface of the material to be plated and the air is sent to remove the gas generated in the cathode chamber to stir the liquid, the flow of the liquid becomes extremely good. The diaphragm is for preventing the contact of the circulating plating solution with the anode, and may be installed in any electrolytic cell as long as it can separate the anode chamber and the cathode chamber and prevent the penetration of the plating solution. It is preferable that the shape is close to the anode and encloses the anode, and the upper part is opened for the release of generated gas. In addition to this, a plurality of anode chambers and cathode chambers are divided by a planar diaphragm, so-called You may make it comprise a filter press type electrolytic cell.

又該隔膜の材質は特に限定されないが、液の不透過性
及び抵抗損の観点からイオン交換膜が最適である。
The material of the diaphragm is not particularly limited, but an ion exchange membrane is most suitable from the viewpoint of liquid impermeability and resistance loss.

本発明方法に使用する電解槽は、新規なものを製造し
てもよいが、従来の溶性陽極用として使用されてきた電
解槽を転換して使用することが好ましく、該転換は前記
溶性陽極を不溶性陽極と交換し該陽極及び陰極を隔膜で
区画し、かつ銅イオンを外部から供給するラインを設置
するという比較的簡単な作業で行うことができる。
The electrolytic cell used in the method of the present invention may be a new one, but it is preferable to convert and use the electrolytic cell that has been used for the conventional soluble anode. This can be performed by a relatively simple operation of replacing the insoluble anode with the diaphragm and partitioning the anode and the cathode, and installing a line for supplying copper ions from the outside.

使用する電解液は、陰極液は銅イオンを含みかつ前述
の添加剤例えば1,3−ジオキソラン重合体又はポリプロ
ピレングリコール、ポリプロピレンプロパノール等のポ
リエーテル類及び有機硫黄化合物、窒素化合物(フェナ
ジン染料等)を含有する電解液とし、陽極液は任意の導
電性物質を含む電解液とする。
The electrolytic solution used is such that the catholyte contains copper ions and the aforementioned additives such as 1,3-dioxolane polymer or polypropylene glycol, polyethers such as polypropylene propanol and organic sulfur compounds, nitrogen compounds (phenazine dyes, etc.). The contained electrolyte solution is used, and the anolyte solution is an electrolyte solution containing an arbitrary conductive substance.

電流濃度、印加電圧、電流密度、液温等の電解条件自
体は従来の溶性陽極を使用する銅メッキ方法と同様で良
く、例えば電流濃度は0.5〜10.0A/、印加電圧は2.5〜
3.5V、陽極電流密度は1〜10A/dm2、陰極電流密度は1
〜6A/dm2、液温は15〜35℃程度とする。
Electrolysis conditions such as current concentration, applied voltage, current density, and liquid temperature may be the same as the conventional copper plating method using a soluble anode, for example, current concentration is 0.5 to 10.0 A /, applied voltage is 2.5 to
3.5V, anode current density is 1-10A / dm 2 , cathode current density is 1
〜6A / dm 2 , liquid temperature is about 15〜35 ℃.

銅イオンの供給は電解液に適宜の銅化合物、例えば炭
酸銅を溶解して電解槽の陰極室に加え、該電解液を循環
させて、被メッキ材にメッキされて減少した分の銅を該
電解液に再溶解して陰極室内の銅イオン濃度がほぼ一定
に維持されるようにすることが好ましい。
Copper ions are supplied by dissolving an appropriate copper compound in an electrolytic solution, for example, copper carbonate, and adding it to the cathode chamber of the electrolytic cell, and circulating the electrolytic solution to reduce the amount of copper that has been reduced by plating the material to be plated. It is preferable to redissolve it in the electrolytic solution so that the copper ion concentration in the cathode chamber is maintained substantially constant.

なお電解に際しては、陽極室側を僅かに加圧すると、
前記隔膜を通しての陰極液の液拡散による前記添加剤の
陽極室への浸透が減少し、該添加剤の分解をより有効に
防止することができる。該加圧は、例えば陽極室側に廃
ガス放散用のバルブを設け、該バルブにより廃ガス放散
量を調節することあるいは陽極室内の水位を常時陰極室
の水位より高く保つこと等により行うことができる。
During electrolysis, if the anode chamber side is slightly pressurized,
Penetration of the additive into the anode chamber due to liquid diffusion of the catholyte through the diaphragm is reduced, and the decomposition of the additive can be prevented more effectively. The pressurization can be performed, for example, by providing a valve for discharging waste gas on the anode chamber side and adjusting the amount of waste gas discharged by the valve, or by keeping the water level in the anode chamber always higher than the water level in the cathode chamber. it can.

本発明方法によると、表面及びスルーホール内にほぼ
均一厚の銅メッキ層が形成された複合板が製造され、該
複合板は洗浄等の処理の後、プリント基板製造のための
後続の工程に送られる。
According to the method of the present invention, a composite board having a copper plating layer having a substantially uniform thickness formed on the surface and in the through holes is manufactured, and the composite board is subjected to a process such as cleaning and then subjected to a subsequent step for manufacturing a printed circuit board. Sent.

(実施例) 以下本発明方法の実施例を記載するが、該実施例は本
発明を限定するものではない。
(Examples) Hereinafter, examples of the method of the present invention will be described, but the examples do not limit the present invention.

実施例1〜2 市販のCuSO4・5H2O70g/、H2SO410容量%、Cl-50ppm
から成る硫酸銅型メッキ浴に添加剤として荏原ユージラ
イト株式会社製商品名キュブライトTHを5ml/となるよ
うに加え連続ハルセル試験を行った。
Examples 1-2 Commercially available CuSO 4 .5H 2 O 70 g /, H 2 SO 4 10% by volume, Cl - 50 ppm
A continuous Hull cell test was carried out by adding a Cubleite TH (trade name, manufactured by EBARA Eugelite Co., Ltd.) as an additive to the copper sulfate type plating bath consisting of 5 ml /.

該試験は、ハルセル容量267ml、電流値2A(平均陰極
電流密度4A/dm2)、温度25℃とし、空気による液撹拌を
行いながら、電解時間を10分/回とし陰極と交換しなが
ら12回繰り返して行った。陰極として純銅板を使用し、
イオン交換膜としては陽イオン交換膜商品名ナフィオン
#117(デュポン社製、実施例1)及び中性隔膜商品名
ユミクロンY9025(湯浅電池株式会社製、実施例2)を
使用し、該隔膜により主成分が酸化イリジウムである複
合酸化物をコーティングしたチタン電極(以下酸化イリ
ジウム電極という)である陽極の周囲を覆った。比較例
として同一電極を隔膜で覆わなかったもの、含リン銅溶
性陽極及び白金メッキチタン電極を使用して同一陰極の
銅メッキを行った。試験中、メッキ浴中の添加剤の追加
は一切行わず、メッキ量に相当する炭酸銅溶液を加える
ことにより銅イオンの補給を行った。結果を第1表に示
す。
The test was conducted with a Hull cell capacity of 267 ml, a current value of 2 A (average cathode current density of 4 A / dm 2 ), a temperature of 25 ° C., an electrolytic time of 10 minutes / time while stirring the liquid with air, and 12 times while exchanging with the cathode. I went over again. Using a pure copper plate as the cathode,
As the ion exchange membrane, a cation exchange membrane, trade name Nafion # 117 (manufactured by DuPont, Example 1) and a neutral diaphragm, trade name Yumicron Y9025 (manufactured by Yuasa Battery Co., Example 2), are used. The periphery of an anode, which is a titanium electrode (hereinafter referred to as an iridium oxide electrode) coated with a complex oxide whose component is iridium oxide, was covered. As a comparative example, copper plating of the same cathode was performed using the same electrode not covered with a diaphragm, a phosphorus-containing copper-soluble anode and a platinum-plated titanium electrode. During the test, no additive was added to the plating bath, and copper ions were supplemented by adding a copper carbonate solution corresponding to the plating amount. The results are shown in Table 1.

第1表から分かるように、隔膜を使用しないと白金メ
ッキチタン電極(比較例1)又は酸化イリジウム電極
(比較例2)のいずれの電極を使用しても2回目以降に
曇りが生じてしまい、これは添加剤の分解が生じている
ことを示している。一方陽極として白金メッキチタン電
極を使用し該陽極をナフィオン(比較例4)又はユミク
ロン(比較例5)で覆った場合には、いずれも含リン銅
溶性陽極(比較例3)を使用した場合と同等又はそれに
近い特性を示した。白金メッキチタン電極を使用した場
合より酸化イリジウム電極を使用した場合の方が添加剤
の分解は少なかった。これは酸素過電圧が白金メッキチ
タン電極よえ酸化イリジウム電極の方が300〜400mV低い
ことによると推測される。又含リン銅溶性陽極に見られ
る後半の銅濃度過剰によるメッキ表面のざらつきは本実
施例では全く見られなかった。
As can be seen from Table 1, if a diaphragm is not used, no matter whether the platinum-plated titanium electrode (Comparative Example 1) or the iridium oxide electrode (Comparative Example 2) is used, clouding will occur after the second time. This indicates that decomposition of the additive has occurred. On the other hand, when a platinum-plated titanium electrode was used as the anode and the anode was covered with Nafion (Comparative Example 4) or Yumicron (Comparative Example 5), both were compared with the case of using the phosphorus-containing copper-soluble anode (Comparative Example 3). The characteristics are equivalent or close to it. Decomposition of the additive was less with the iridium oxide electrode than with the platinum-plated titanium electrode. It is speculated that this is because the oxygen overvoltage of the iridium oxide electrode is lower than that of the platinum-plated titanium electrode by 300 to 400 mV. Further, the roughness of the plating surface due to the excessive copper concentration in the latter half, which was observed in the phosphorus-containing copper-soluble anode, was not seen at all in this example.

なお、使用した両不溶性陽極のうち、白金メッキチタ
ン電極よりも酸化イリジウム電極の方が添加剤の分解は
少なかった。これは酸素過電圧が白金メッキチタン電極
より酸化イリジウム電極の方が300〜400mV低いことによ
ると推測される。
Of the two insoluble anodes used, the iridium oxide electrode decomposed less additive than the platinum-plated titanium electrode. It is speculated that this is because the oxygen overvoltage of the iridium oxide electrode is lower than that of the platinum-plated titanium electrode by 300 to 400 mV.

実施例3〜4 陽極として酸化イリジウムを使用した以外は実施例1
及び2と同様にして前記陽極を隔膜で覆いながら銅メッ
キを行い、繰り返しを20回に増加し、前記隔膜の周りの
状態の比較を行った。実施例3及び4では隔膜を袋状と
し陽極側にガス抜きパイプを取付け該パイプを調節して
メッキ浴中に0.5〜1cm水柱程度の正圧が前記袋状隔膜に
掛かるようにした。比較例6及び7は隔膜の上面を開い
て圧力差が生じないようにした。その結果を第2表に示
す。
Examples 3-4 Example 1 except that iridium oxide was used as the anode.
In the same manner as 2 and 2, copper plating was performed while covering the anode with a diaphragm, and the number of repetitions was increased to 20 times to compare the conditions around the diaphragm. In Examples 3 and 4, the diaphragm was formed into a bag shape, and a gas vent pipe was attached to the anode side so that the pipe was adjusted so that a positive pressure of about 0.5 to 1 cm of water column was applied to the bag-like diaphragm in the plating bath. In Comparative Examples 6 and 7, the upper surface of the diaphragm was opened so that no pressure difference was generated. Table 2 shows the results.

第2表から、隔膜を袋状とし陽極側に若干の圧力を掛
けることで添加剤の分解がより抑制されることが分かっ
た。
From Table 2, it was found that the decomposition of the additive was further suppressed by making the diaphragm into a bag shape and applying a slight pressure to the anode side.

実施例5 実施例1〜4を基にして、工業的規模にスケールアッ
プした銅メッキを行った。
Example 5 Copper plating scaled up to an industrial scale was performed based on Examples 1 to 4.

電解槽の構成は次の通りとした。 The structure of the electrolytic cell was as follows.

陰極:銅箔を張った積層板(ガラスエポキシ基板)
にスルーホール穴明けを行い、この基板(長さ330mm×
高さ250mm×厚さ1.6mm)12枚を上下方向を向く逆J字形
の棒状専用治具(カソードラック)4個に、前記1枚の
基板により1枚の平板状陰極が形成されるようにセット
し、該陰極を前記専用治具により横方向に架設されたカ
ソードビームに吊り下げた。前記基板の外周にエッジカ
レントによるメッキ厚異常が生ずることを避ける ため、該部分に窓枠状に幅5cmの銅板を所謂「おとり」
電極として設置した。全陰極投影面積は約1.2m2であっ
た。
Cathode: Copper foil-clad laminate (glass epoxy substrate)
Through holes are drilled in this board (length 330 mm ×
Twelve sheets (height 250 mm x thickness 1.6 mm) are placed in four inverted J-shaped rod-shaped jigs (cathode racks) that face up and down so that one plate cathode is formed by one substrate. The cathode was set, and the cathode was suspended by the dedicated jig from a cathode beam laid horizontally. Avoiding abnormal plating thickness due to edge current on the outer periphery of the substrate Therefore, a copper plate with a width of 5 cm in a window frame shape is so-called "bait" in that part.
It was installed as an electrode. The total cathode projected area was about 1.2 m 2 .

陽極:チタンラスで長さ1420mm×高さ850mm×厚さ7
5mm)の上部が開口するボックスを作製し、該ボックス
内部に上下方向を向く逆J字形の2本のチタン棒を給電
体として接続し、該給電体の先端部を横方向に架設され
たアノードビームに吊り下げた。この構造体の電極部分
に酸化イリジウムコーティングを施し陽極とした。該陽
極は前記陰極の両面から給電するため2個用意した。
Anode: Titanium lath, length 1420 mm x height 850 mm x thickness 7
A box with an open upper part (5 mm) is made, two inverted J-shaped titanium rods facing up and down are connected to the inside of the box as a power feeding body, and the tip of the power feeding body is laid horizontally in the anode. I hung it on the beam. The electrode portion of this structure was coated with iridium oxide to serve as an anode. Two anodes were prepared for supplying power from both sides of the cathode.

隔膜:デュポン社製ナフィオン#117を、前記陽極
を完全に覆うことができるように上部が開口する袋状に
熱圧着法により成形した。該隔膜で前記陽極を覆い電解
槽内に設置した。
Diaphragm: Nafion # 117 manufactured by DuPont was molded by a thermocompression bonding method into a bag shape having an open top so that the anode could be completely covered. The anode was covered with the diaphragm and placed in an electrolytic cell.

電解槽:有効容積が1800mm×1200mm×420mm=0.91m
3である電解槽を使用した。カソードビーム受けはカソ
ードロッカー棒に連結し往復運動できる機構を付加し
た。アノードビーム受けはカソードを挟む位置に2ケ所
固定した。底部にはエアバブリングのための散気管を設
置した。又槽外のフィルタ及び銅イオン供給塔との間で
連続循環できるようノズル設置した。
Electrolyzer: Effective volume is 1800mm × 1200mm × 420mm = 0.91m
An electrolytic cell of 3 was used. The cathode beam receiver was connected to a cathode rocker rod and added with a mechanism capable of reciprocating motion. The anode beam receivers were fixed at two positions sandwiching the cathode. An air diffuser for air bubbling was installed at the bottom. Further, a nozzle was installed so that it could be continuously circulated between the filter outside the tank and the copper ion supply tower.

銅イオン供給塔:上部に塩基性炭酸銅を連続的に投
入できるホッパーを設置した円筒体とし、該円筒体内に
撹拌装置を組み入れた。下部より電解液を導入し、溶解
後の上澄液をオーバーフローさせ、フィルタ通過後前記
電解槽を戻すようにした。
Copper ion supply tower: A cylindrical body provided with a hopper capable of continuously supplying basic copper carbonate to the upper part thereof, and a stirring device was incorporated in the cylindrical body. The electrolytic solution was introduced from the lower part, the supernatant liquid after dissolution was allowed to overflow, and the electrolytic cell was returned after passing through the filter.

まずスルーホール穴明け工程後の前記基板を端面研磨
後、脱脂洗浄し、化学銅メッキ浴にて露出前面に約0.5
μ厚の銅メッキを施した。次いで前記基板を固定した前
記カソード用治具(ラック)を電解槽の所定位置に垂下
し、エアバブリングを行いながらカソードロックを動作
させ、銅イオンを供給しつつ電気メッキを開始した。電
流600Aで陰極電流密度が2.5A/dm2となるように48分間電
解を行った。炭酸銅の溶解速度は銅析出の電流効率が96
%であると仮定して算出し、21.4g/分(CuCO3・Cu(O
H)・H2Oとして)とした。光沢剤は荏原ユージライト
株式会社製のキュブライトTHとし、これを2.25ml/分で
注入した。浴中の銅イオンを濃度変化は殆ど見られなか
った。電気メッキ後の基板は光沢ある正常な外観を呈
し、メッキ厚(銅箔の厚さ+化学メッキの厚さ+電気メ
ッキの厚さ)は41μでほぼ均一な厚さであった。
First, after the end face polishing of the substrate after the through hole drilling process, degreasing and cleaning, and exposed to about 0.5 on the exposed front surface with a chemical copper plating bath
Copper plating of μ thickness was applied. Next, the cathode jig (rack) to which the substrate was fixed was hung down to a predetermined position in the electrolytic cell, the cathode lock was operated while air bubbling was performed, and electroplating was started while supplying copper ions. Electrolysis was carried out for 48 minutes at a current of 600 A and a cathode current density of 2.5 A / dm 2 . The dissolution rate of copper carbonate depends on the current efficiency of copper deposition of 96.
21.4 g / min (CuCO 3 · Cu (O
H) 2 · H 2 O). The brightener was Cublite TH manufactured by Ebara-Udylite Co., Ltd., which was injected at 2.25 ml / min. Almost no change was observed in the concentration of copper ions in the bath. The substrate after electroplating had a glossy and normal appearance, and the plating thickness (copper foil thickness + chemical plating thickness + electroplating thickness) was 41 μ, which was a substantially uniform thickness.

破壊検査により、スルーホール部のつきまわり性、コ
ナークラックの発生の有無を調べたが、問題は無かっ
た。又引張強度、伸び、硬度も正常であり、エッチング
性、半田濡れ性、熱サイクル試験、熱干渉試験も異常が
無く、メッキ品質はプリント基板用として十分使用でき
るものであった。
By the destructive inspection, the throwing power of the through hole portion and the presence or absence of a conner crack were examined, but there was no problem. The tensile strength, elongation, and hardness were normal, and there were no abnormalities in the etching property, solder wettability, heat cycle test, and heat interference test, and the plating quality was sufficient for use as a printed circuit board.

前記操業を繰り返し、化学分析値により電解液中の銅
イオン濃度等を補正しながら500回繰り返しメッキを行
ったが、メッキ外観、物性共に建浴時と同様良好に維持
できた。又陽極及び隔膜共に変色、変形等の異常は見ら
れなかった。
The above operation was repeated, and the plating was repeated 500 times while correcting the copper ion concentration in the electrolytic solution based on the chemical analysis value, but the appearance and physical properties of the plating could be maintained as well as during the construction. No abnormalities such as discoloration and deformation were observed in both the anode and the diaphragm.

(発明の効果) 本発明による銅メッキ方法は、白金族金属酸化物をチ
タン系基材上に被覆した不溶性金属電極から成る陽極と
プリント基板用被メッキ材から成る陰極を、隔膜により
分離し、銅イオン及び添加剤含有液を電解液として陽極
室側を加圧しながら電解し、前記被メッキ材の表面及び
スルーホールのメッキを行うようにしている。
(Effect of the invention) The copper plating method according to the present invention, an anode composed of an insoluble metal electrode coated with a platinum group metal oxide on a titanium-based substrate and a cathode composed of a material to be plated for a printed circuit board are separated by a diaphragm, Electrolysis is performed while applying pressure to the anode chamber side using a liquid containing copper ions and an additive as an electrolytic solution to plate the surface of the material to be plated and the through holes.

従って第1に、陰極室内の添加剤が隔膜を通して陽極
室側に透過して陽極に接触し分解されることが殆ど無い
ため、高価な添加剤を殆ど消耗することなく経済的に操
業を行うことができ、更に陽極室を加圧してあるため、
前記添加剤の隔膜を通しての陽極室側への透過がより以
上に防止される。しかも電極として白金族金属電極より
更に過電圧の小さい白金族金属酸化物電極を使用してい
るため、添加剤の消耗はほぼ完全に回避される。これに
より本発明方法における前記添加剤の消耗を、陽極電位
が本発明方法の電位よりも低い従来の溶性陽極又は白金
族金属電極を使用する銅メッキ方法における該添加剤の
消耗より小さく抑えることが可能になり、更に前記隔膜
としてイオン交換膜のように緻密な膜を使用すると前記
添加剤分解は更に完全に防止される。
Therefore, firstly, since the additive in the cathode chamber hardly permeates to the anode chamber side through the diaphragm and contacts the anode to be decomposed, the expensive additive is scarcely consumed to operate economically. And because the anode chamber is pressurized,
Permeation of the additive through the diaphragm to the side of the anode chamber is further prevented. Moreover, since the platinum group metal oxide electrode having an overvoltage smaller than that of the platinum group metal electrode is used as the electrode, the consumption of the additive is almost completely avoided. Thereby, the consumption of the additive in the method of the present invention can be suppressed to be smaller than the consumption of the additive in the copper plating method using the conventional soluble anode or the platinum group metal electrode whose anode potential is lower than the potential of the method of the present invention. If possible, and if a dense membrane such as an ion exchange membrane is used as the diaphragm, the decomposition of the additive can be completely prevented.

第2に、陽極が不溶性であるため、従来のように消耗
した溶性陽極の交換のために操業を停止しかつ刺激性の
電解液から該溶性陽極を取りだし交換するといった手間
及び熟練を要する作業が不要となるため、作業能率が大
きく向上する。
Secondly, since the anode is insoluble, it takes time and skill to stop the operation and replace the exhausted soluble anode from the irritating electrolytic solution to replace the exhausted soluble anode. Since it is unnecessary, work efficiency is greatly improved.

第3に、陽極室が隔膜によりメッキすべき被メッキ材
と区画されているため、仮に陽極室内にスラッジ等が発
生しても該スラッジ等が前記被メッキ材上に析出するこ
とがなく、表面状態の良好なメッキされた被メッキ材を
得ることができる。
Thirdly, since the anode chamber is partitioned from the material to be plated by the diaphragm, even if sludge or the like is generated in the anode chamber, the sludge or the like does not deposit on the material to be plated, and the surface A plated material in good condition can be obtained.

第4に、隔膜を袋状とすると、従来の溶性陽極を不溶
性陽極に換え、該不溶性陽極を前記袋状隔膜に収容する
こと及び外部に銅供給ラインを設置するのみで、従来の
溶性陽極を使用する電解槽を本発明方法に使用する電解
槽に容易に転換することができる。
Fourthly, if the diaphragm is formed in a bag shape, the conventional soluble anode is replaced with an insoluble anode, the insoluble anode is housed in the bag-shaped diaphragm, and a copper supply line is externally provided. The electrolytic cell used can be easily converted into the electrolytic cell used in the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−26689(JP,A) 特開 昭59−193295(JP,A) 実開 昭62−166265(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-26689 (JP, A) JP-A-59-193295 (JP, A) Practical application Sho-62-166265 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン系基材上に被覆した不溶性金属電極
から成る陽極とプリント基板用被メッキ材から成る陰極
を、隔膜により分離し、銅イオン及び添加剤含有液を電
解液として電解し、前記被メッキ材の表面及びスルーホ
ールのメッキを行うプリント基板の銅メッキ方法におい
て、前記不溶性金属電極がチタン系基材上に酸化イリジ
ウムを被覆した電極であり、前記電解を陽極室側から加
圧しながら行うことを特徴とする方法。
1. An anode composed of an insoluble metal electrode coated on a titanium base material and a cathode composed of a material to be plated for a printed circuit board are separated by a diaphragm and electrolyzed using a solution containing copper ions and an additive as an electrolytic solution, In the copper plating method of a printed circuit board for plating the surface of the material to be plated and through holes, the insoluble metal electrode is an electrode in which iridium oxide is coated on a titanium-based substrate, and the electrolysis is pressurized from the anode chamber side. A method characterized by doing while.
【請求項2】隔膜を上部が開口する袋状とし、該隔膜に
より陽極を覆って該陽極と陰極を分離するようにした請
求項1に記載の方法。
2. The method according to claim 1, wherein the diaphragm is in the shape of a bag having an open top, and the diaphragm covers the anode to separate the anode and the cathode.
【請求項3】隔膜がイオン交換膜である請求項1に記載
の方法。
3. The method according to claim 1, wherein the diaphragm is an ion exchange membrane.
JP63128078A 1988-05-25 1988-05-25 Copper plating method for printed circuit boards Expired - Lifetime JP2510422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128078A JP2510422B2 (en) 1988-05-25 1988-05-25 Copper plating method for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128078A JP2510422B2 (en) 1988-05-25 1988-05-25 Copper plating method for printed circuit boards

Publications (2)

Publication Number Publication Date
JPH01297884A JPH01297884A (en) 1989-11-30
JP2510422B2 true JP2510422B2 (en) 1996-06-26

Family

ID=14975881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128078A Expired - Lifetime JP2510422B2 (en) 1988-05-25 1988-05-25 Copper plating method for printed circuit boards

Country Status (1)

Country Link
JP (1) JP2510422B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352081B2 (en) 2001-02-01 2002-12-03 株式会社アスカエンジニアリング Printed circuit board copper plating equipment
US10633757B2 (en) 2016-06-07 2020-04-28 Ebara Corporation Plating apparatus, plating method, and recording medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444377U (en) * 1990-08-15 1992-04-15
JPH04284691A (en) * 1991-03-13 1992-10-09 Arumetsukusu:Kk Electrically plating method for printed circuit board
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode
JP5676515B2 (en) * 2012-04-11 2015-02-25 マテックス・ジャパン株式会社 Insoluble metal electrode, electrolysis apparatus, and plating method
JP5805055B2 (en) * 2012-11-24 2015-11-04 丸仲工業株式会社 Horizontal conveyance type electroplating equipment
JP2015021154A (en) * 2013-07-18 2015-02-02 ペルメレック電極株式会社 Method and apparatus for continuous product of electrolytic metal foil
JP6285199B2 (en) 2014-02-10 2018-02-28 株式会社荏原製作所 Anode holder and plating apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193295A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Method and apparatus for nickel plating
JPS6026689A (en) * 1983-07-26 1985-02-09 Sumitomo Metal Ind Ltd Method and device for producing metallic foil by electrodeposition
JPS62166265U (en) * 1986-04-08 1987-10-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352081B2 (en) 2001-02-01 2002-12-03 株式会社アスカエンジニアリング Printed circuit board copper plating equipment
US10633757B2 (en) 2016-06-07 2020-04-28 Ebara Corporation Plating apparatus, plating method, and recording medium

Also Published As

Publication number Publication date
JPH01297884A (en) 1989-11-30

Similar Documents

Publication Publication Date Title
CN101532160B (en) Continuous copper electroplating method
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
EP0462943B1 (en) Method of copper plating
CN101855390A (en) Anode assembly for electroplating
JP2003503598A5 (en)
CA2449512A1 (en) Electrolysis cell for restoring the concentration of metal ions in electroplating processes
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
JP2510422B2 (en) Copper plating method for printed circuit boards
KR20020084086A (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
JP3352081B2 (en) Printed circuit board copper plating equipment
JP6653799B2 (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
JPH04362199A (en) Electroplating device
US4734175A (en) Process for regenerating an electroless copper plating bath
JPH0673393B2 (en) Copper plating method for printed circuit boards
KR100545664B1 (en) Method for electro copperplating substrates
AU2008265451B2 (en) Method for improving nickel cathode morphology
EP2606163B1 (en) METHOD FOR THE ADJUSTMENT OF NICKEL CONTENT AND pH OF A PLATING SOLUTION
US3497426A (en) Manufacture of electrode
KR100426159B1 (en) Electrodeposition method of metal film and apparatus therefor
US4507183A (en) Ruthenium coated electrodes
US3578572A (en) Electrodes for use in aqueous alkali metal chloride electrolytes
CZ281552B6 (en) Process of electroplating strips
JPH04284691A (en) Electrically plating method for printed circuit board
JPH0343354B2 (en)
JPH06173068A (en) Electrolytic cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13