JPH06173068A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPH06173068A
JPH06173068A JP43A JP35263392A JPH06173068A JP H06173068 A JPH06173068 A JP H06173068A JP 43 A JP43 A JP 43A JP 35263392 A JP35263392 A JP 35263392A JP H06173068 A JPH06173068 A JP H06173068A
Authority
JP
Japan
Prior art keywords
anode
silver
electrolytic cell
anode chamber
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP3167054B2 (en
Inventor
Hideji Nakamatsu
秀司 中松
Yoshinori Nishiki
善則 錦
Takahiro Ashida
高弘 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora SpA
De Nora Permelec Ltd
Original Assignee
De Nora Permelec SpA
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Nora Permelec SpA, Permelec Electrode Ltd filed Critical De Nora Permelec SpA
Priority to JP35263392A priority Critical patent/JP3167054B2/en
Publication of JPH06173068A publication Critical patent/JPH06173068A/en
Application granted granted Critical
Publication of JP3167054B2 publication Critical patent/JP3167054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To enhance the cost effectiveness of an anode chamber by using specific alloys in constituting a part of the component members of the anode chamber of an electrolytic cell which forms proton by oxidizing hydrogen.
CONSTITUTION: At least a part of the component members of the anode chamber 3 of the electrolytic cell 1, for example, a current collector 6 consists of zirconium, molybdenum, silver and their alloys or silver plated zirconium, silver plated titanium and silver plated titanium alloys. As a result, this member has resistance to corrosion by an electrolyte at the time of electrolysis and does not cause the contamination of the electrolyte by dissolution. Even more, the electrolytic voltage stabilizes at a low value and, therefore, the effect similar to the effect obtainable in the case costly gold and platinum is used is obtd. and the execution of a cost effective electrolysis by using inexpensive materials is made possible.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陽極集電体及び陽極室
内壁等の陽極を除く陽極室構成部材を特定の材料で構成
した電解槽に関し、より詳細には水素をプロトンに酸化
して陽極室で酸を生成する電解プロセス、例えば中性塩
からの酸とアルカリの回収に用いる前記陽極室構成部材
を特定の材料で構成した電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell in which an anode chamber constituent member excluding an anode such as an anode current collector and an anode chamber inner wall is made of a specific material, and more specifically, hydrogen is oxidized into protons. The present invention relates to an electrolytic cell for producing an acid in an anode chamber, for example, an anode chamber constituent member made of a specific material for use in recovering an acid and an alkali from a neutral salt.

【0002】[0002]

【従来技術とその問題点】従来から各種電気化学プロセ
ス用電極として種々の材料が提案され使用されている。
これらの電極は所定の電解反応に対する活性を有しなけ
ればならないことは勿論、電解液中に溶解して電解生成
物を汚染しないことが要求される。一方電極以外の電解
液に接触する電解槽構成部材、例えば電極集電体や電解
槽内壁は電解反応に対する活性は必要とされないが電解
液中に溶解すると電解生成物を汚染するため、電解液に
対する耐久性は電極の場合と同等に要求される。しかし
前記電解槽構成部材は電極と異なり電解反応に関与せず
しかも使用する材料の量が電極より遙に多いためさほど
高価な材料を使用することはできない。
2. Description of the Related Art Conventionally, various materials have been proposed and used as electrodes for various electrochemical processes.
These electrodes must have activity for a predetermined electrolytic reaction, and need not dissolve in an electrolytic solution to contaminate electrolytic products. On the other hand, the electrolytic cell constituent members that come into contact with the electrolytic solution other than the electrodes, such as the electrode current collector and the inner wall of the electrolytic cell, are not required to have activity for the electrolytic reaction, but when dissolved in the electrolytic solution, they contaminate the electrolytic product, so Durability is required to be equivalent to that of electrodes. However, unlike the electrodes, the above-mentioned components of the electrolytic cell do not participate in the electrolytic reaction, and the amount of material used is much larger than that of the electrodes, so it is not possible to use so expensive materials.

【0003】例えば米国特許4,561,945 号には、陽極室
内壁材料として、タンタルや黒鉛、陽極集電体として
金、白金、黒鉛、ニオブ、チタン−パラジウム合金、チ
タン−ニッケル−モリブデン合金等が開示されている。
これらの陽極室構成材料のうち、タンタルは耐食性に優
れているが非常に高価でかつ入手も容易ではない。黒鉛
は壊れやすく重量が嵩むので取扱いや加工が難しく電解
槽全体の重量が相当なものになる。
For example, US Pat. No. 4,561,945 discloses tantalum or graphite as an anode interior wall material, and gold, platinum, graphite, niobium, titanium-palladium alloy, titanium-nickel-molybdenum alloy, etc. as an anode current collector. There is.
Among these anode chamber constituent materials, tantalum has excellent corrosion resistance, but is very expensive and not easily available. Since graphite is fragile and heavy, it is difficult to handle and process, and the total weight of the electrolytic cell becomes considerable.

【0004】又陽極集電体としての金や白金は十分な耐
食性と導電性を有しているが極めて高価でありそのまま
材料として用いることはできない。又金めっき又は白金
めっきとして用いる場合でも十分な厚みを必要とするた
め高価であることに変わりはない。黒鉛は上述の通り壊
れやすく重量が大きいという難点がある。又チタン−パ
ラジウムをはじめとする各種チタン合金は酸化雰囲気で
は安定であっても、陽極で水素をプロセスに酸化する電
解条件では十分な耐食性を示さず、これは水素雰囲気下
ではチタンの十分な耐食性酸化皮膜が成長しないためと
推測される。
Further, gold and platinum as an anode current collector have sufficient corrosion resistance and conductivity, but are extremely expensive and cannot be used as a material as they are. Even when it is used as gold plating or platinum plating, it is still expensive because it requires a sufficient thickness. As described above, graphite has the drawback that it is fragile and heavy. Further, although various titanium alloys such as titanium-palladium are stable in an oxidizing atmosphere, they do not show sufficient corrosion resistance under the electrolytic conditions in which hydrogen is oxidized in the process in the anode. It is presumed that the oxide film does not grow.

【0005】[0005]

【発明の目的】本発明は、叙上の問題点を解決し陽極室
で水素をプロトンに酸化する電解条件において十分な導
電性と十分な耐食性を有しかつ比較的安価な材料から成
る電解槽構成部材を有する電解槽を提供することを目的
とする。
It is an object of the present invention to solve the above problems and to provide an electrolytic cell made of a relatively inexpensive material which has sufficient conductivity and corrosion resistance under the electrolytic conditions of oxidizing hydrogen into protons in the anode chamber. It is an object to provide an electrolytic cell having constituent members.

【0006】[0006]

【問題点を解決するための手段】本発明に係わる電解槽
は、水素を供給してプロトンに酸化する陽極を具備し、
電解液に接触する前記陽極を除く陽極室構成部材の少な
くとも一部が、ジルコニウム、モリブデン、銀及びこれ
らの合金から成る群から選択される金属又は合金から成
ることを特徴とする電解槽であり、これらの材料は銀め
っきしたジルコニウム、銀めっきしたモリブデン、銀め
っきしたチタン及び銀めっきしたチタン合金であっても
良い。そして前記陽極室構成部材は主として陽極集電体
及び陽極室内壁である。以下本発明を詳細に説明する。
The electrolytic cell according to the present invention comprises an anode for supplying hydrogen to oxidize protons.
At least a part of the anode chamber constituent members except for the anode in contact with the electrolytic solution is an electrolytic cell characterized by comprising a metal or an alloy selected from the group consisting of zirconium, molybdenum, silver and alloys thereof, These materials may be silver plated zirconium, silver plated molybdenum, silver plated titanium and silver plated titanium alloys. The anode chamber constituent members are mainly the anode current collector and the anode chamber inner wall. The present invention will be described in detail below.

【0007】本発明における電解槽は、陽極で水素をプ
ロトンに酸化する電解槽に限定され、該陽極は通常ガス
電極である。該ガス電極は溶液と接する側に形成される
親水層とガスに接する側に形成される撥水層とから構成
され、電解槽内に設置されて電極室例えば陽極室を溶液
室とガス室とに区画する。前記陽極室には電解液に接触
する部材として陽極以外に該陽極に電流を供給するため
の集電体と電解槽内壁がある。前述した通りこれらの陽
極室構成部材は電解液に溶解しないできる限り安価な材
料で構成することが望ましく、本発明者らは前記陽極室
構成部材として使用可能な各種金属材料及び合金材料を
鋭意検討した結果、ジルコニウム、モリブデン、銀及び
これらの合金例えばジルコニウム合金、モリブデン合金
及びジルコニウム−モリブデン合金等が前記条件に合致
することを見出し、本発明に到達したものである。
The electrolytic cell in the present invention is limited to an electrolytic cell which oxidizes hydrogen into protons at the anode, which is usually a gas electrode. The gas electrode is composed of a hydrophilic layer formed on the side in contact with the solution and a water-repellent layer formed on the side in contact with the gas, and is installed in the electrolytic cell so that an electrode chamber such as an anode chamber is provided with a solution chamber and a gas chamber. Partition into In the anode chamber, there are a current collector for supplying a current to the anode and an inner wall of the electrolytic cell as members that come into contact with the electrolytic solution, in addition to the anode. As described above, it is desirable that these anode chamber constituent members be made of materials that are as inexpensive as possible so long as they do not dissolve in the electrolytic solution, and the present inventors diligently studied various metallic materials and alloy materials that can be used as the anode chamber constituent members. As a result, they have found that zirconium, molybdenum, silver and alloys thereof such as zirconium alloys, molybdenum alloys and zirconium-molybdenum alloys meet the above conditions, and have reached the present invention.

【0008】これらの金属や合金はチタンに比べれば高
価であるが金や白金よりも非常に安価である。そして水
素雰囲気下で水素をプロトンに酸化する条件下でも十分
な導電性と耐食性を示す。前記金属のうち銀は単独の銀
としてだけでなく、集電体の基体や陽極室内壁にめっき
して使用することができ、この場合の基体や内壁はジル
コニウムとモリブデン以外により安価なチタンやチタン
合金として製造コストを更に減少させることもできる。
これらの金属や合金あるいは銀めっき金属又は合金によ
り構成された陽極集電体は陽極室内に前記陽極に接続し
た状態で設置され、該陽極の溶液室側あるいはガス室側
のいずれに位置しても良く、更に前記陽極内に埋め込ん
でも良い。該陽極集電体への給電は直接行っても良い
が、特に大電流の場合には通常電解槽の陽極室枠から給
電する。従って溶接を容易にするために陽極集電体と陽
極室内壁を含む陽極室枠は同一材料で構成することが望
ましい。
Although these metals and alloys are more expensive than titanium, they are much less expensive than gold and platinum. It also exhibits sufficient conductivity and corrosion resistance under the conditions of oxidizing hydrogen into protons in a hydrogen atmosphere. Among the above metals, silver can be used not only as a single silver but also by plating on the base body of the current collector or the inner wall of the anode. In this case, the base body or inner wall is made of inexpensive titanium or titanium other than zirconium and molybdenum. As an alloy, the manufacturing cost can be further reduced.
An anode current collector composed of these metals or alloys or silver-plated metals or alloys is installed in the anode chamber in a state of being connected to the anode, and located either on the solution chamber side or the gas chamber side of the anode. Alternatively, it may be embedded in the anode. Power may be supplied to the anode current collector directly, but in the case of a large current, power is usually supplied from the anode chamber frame of the electrolytic cell. Therefore, in order to facilitate welding, it is desirable that the anode current collector and the anode chamber frame including the anode chamber inner wall be made of the same material.

【0009】又陽極室内壁は陽極集電体との溶接とは別
に、電解液に溶解する可能性があるため、前述のジルコ
ニウム等の金属や合金又は銀めっきした金属や合金で構
成することが望ましく、これにより電解生成物の汚染を
抑制するとともに、その使用量が電極や集電体より遙に
大きいために製造コストの低減に大きく寄与することが
できる。
In addition to welding with the anode current collector, the interior wall of the anode may dissolve in the electrolytic solution, so it may be formed of the above-mentioned metal or alloy such as zirconium or silver-plated metal or alloy. Desirably, this can suppress the contamination of the electrolysis product and can greatly contribute to the reduction of the manufacturing cost because the amount of the electrolysis product used is much larger than that of the electrode or the current collector.

【0010】次に添付図面に基づいて本発明の電解槽の
一例を説明する。図1は本発明に係わる電解槽の一例を
示す概略縦断面図である。内壁がジルコニウム等で形成
された箱型電解槽1は、隔膜であるイオン交換膜2によ
り陽極室3と陰極室4に区画され、該陽極室3内の前記
イオン交換膜2に密着する部分に例えばフッ素樹脂や触
媒が担持されたグラファイト等を基体に被覆して成るガ
ス電極5が形成され、更に該ガス電極5の陽極室3側に
メッシュ状のジルコニウム等から成る集電体6が位置
し、かつ該集電体6は給電ロッド7に接続されている。
Next, an example of the electrolytic cell of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic vertical sectional view showing an example of the electrolytic cell according to the present invention. The box-type electrolytic cell 1 whose inner wall is made of zirconium or the like is divided into an anode chamber 3 and a cathode chamber 4 by an ion-exchange membrane 2 which is a diaphragm, and in the portion of the anode chamber 3 which is in close contact with the ion-exchange membrane 2. For example, a gas electrode 5 is formed by coating a substrate with, for example, a fluororesin or graphite carrying a catalyst, and a mesh-shaped current collector 6 made of zirconium or the like is located on the side of the anode chamber 3 of the gas electrode 5. Further, the current collector 6 is connected to the power feeding rod 7.

【0011】前記イオン交換膜2−ガス電極5−集電体
6は互いに接着されず、陰極室4側の水圧により給電ロ
ッド7に向かって押圧され互いに密着している。陰極室
4側の電解槽1側壁は陰極8として機能し、該陰極8に
は給電ロッド9から電気が供給される。なお10及び11は
それぞれ陽極室3上下の電解槽壁に設置された水素ガス
供給口及び水素及びドレーン水排出口、12は陰極室4上
壁に設置された水素排出口である。図示の電解槽では、
電解槽内壁及び集電体6がジルコニウム等の電解条件で
安定な金属や合金で形成されているため、電解液による
腐食に対して耐性があり溶解して電解液を汚染すること
が殆どなく、しかも電解電圧が低い値で安定するため、
高価な金や白金を使用する場合と同様の効果を得ること
ができる。
The ion exchange membrane 2-gas electrode 5-current collector 6 are not adhered to each other, but are pressed against the power supply rod 7 by the water pressure on the cathode chamber 4 side and are in close contact with each other. The side wall of the electrolytic cell 1 on the cathode chamber 4 side functions as a cathode 8, and electricity is supplied to the cathode 8 from a power supply rod 9. In addition, 10 and 11 are hydrogen gas supply ports and hydrogen and drain water discharge ports installed on the upper and lower electrolytic cell walls of the anode chamber 3, and 12 is a hydrogen discharge port installed on the upper wall of the cathode chamber 4. In the electrolytic cell shown,
Since the inner wall of the electrolytic cell and the current collector 6 are formed of a metal or alloy that is stable under electrolysis conditions such as zirconium, they are resistant to corrosion by the electrolytic solution and hardly dissolve to contaminate the electrolytic solution. Moreover, since the electrolysis voltage is stable at a low value,
The same effect as when using expensive gold or platinum can be obtained.

【0012】[0012]

【実施例】次に本発明の電解槽の陽極室構成部材として
使用可能な各種金属及び合金の耐食試験及び本発明の電
解槽による電解の実施例を記載するが、本発明の電解槽
はこれらに限定されるものではない。
EXAMPLES Examples of corrosion resistance test of various metals and alloys that can be used as the anode chamber constituent members of the electrolytic cell of the present invention and electrolysis by the electrolytic cell of the present invention will be described below. It is not limited to.

【実施例1】本発明に使用可能な各種金属及び合金、及
びチタン、チタン合金及び白金のプレートを、電解環境
に近い条件、つまり80℃の15%硫酸中に水素ガスをバブ
リングしながら浸漬する条件で表面の腐食速度を測定し
た。その結果を表1に示した。
Example 1 Various metals and alloys usable in the present invention, and plates of titanium, titanium alloy and platinum are immersed in 15% sulfuric acid at 80 ° C. while bubbling hydrogen gas under conditions close to an electrolytic environment. The surface corrosion rate was measured under the conditions. The results are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【実施例2】陽極側の硫酸室と陽極室構成部材を組み合
わせて電解槽に組み込み電解試験を行った。20重量%の
白金を担持したカーボン粉末(田中貴金属工業株式会社
製)とテトラフルオロエチレン樹脂粉末の水懸濁液(30
J、三井フロロケミカル株式会社製)とソルベントナフ
サ(和光純薬工業株式会社製)を重量比で4:4:2の
割合で混合して得たペースト状物質をローラを用いて厚
さ0.2 mmのシートに成形しこれを陽極触媒層とした。
Example 2 The sulfuric acid chamber on the anode side and the components of the anode chamber were combined and assembled in an electrolytic cell to conduct an electrolytic test. An aqueous suspension of carbon powder (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) carrying 20% by weight of platinum and tetrafluoroethylene resin powder (30
J., manufactured by Mitsui Fluorochemical Co., Ltd.) and solvent naphtha (manufactured by Wako Pure Chemical Industries, Ltd.) at a weight ratio of 4: 4: 2, and a paste-like substance having a thickness of 0.2 mm using a roller. Was formed into a sheet and used as an anode catalyst layer.

【0015】この陽極触媒層をカーボン繊維織物(日本
カーボン株式会社製GF−20−P7)上に展開し、ホッ
トプレスにより130 ℃で5分間30kg/cm2 の圧力下
で成形しガス電極とした。触媒層のある側をガス電極の
前面とすると、このガス電極の後面に集電体としてジル
コニウム製エキスパンドメッシュ(孔の長径4mm、短
径2mm、厚さ0.3 mm)を重ね、後面側をカーボン製
配電部材(直径10mmのロッド)で固定しかつ前面側に
陽イオン交換膜ナフィオン117 (デュポン社製)を配置
して陽極構造体とした。
This anode catalyst layer was spread on a carbon fiber woven fabric (GF-20-P7 manufactured by Nippon Carbon Co., Ltd.) and molded by a hot press at 130 ° C. for 5 minutes under a pressure of 30 kg / cm 2 to form a gas electrode. . When the side with the catalyst layer is the front surface of the gas electrode, an expanded mesh made of zirconium (hole major diameter 4 mm, minor diameter 2 mm, thickness 0.3 mm) is stacked on the rear surface of this gas electrode as a current collector, and the rear surface side is made of carbon. The anode structure was fixed with a power distribution member (rod having a diameter of 10 mm) and a cation exchange membrane Nafion 117 (manufactured by DuPont) was arranged on the front side.

【0016】該陽極構造体を図1に示したパイレックス
製電解槽に組み込み、後面側から水素ガスを供給し、前
面側には電解質として70℃の15重量%の硫酸を供給し
た。陰極としてカーボン板を使用し極間を5mmとし
た。電解槽の有効表面積は18.8cm2 であり、この電解
槽に80cc/分の割合で水素ガスを供給しながら30A/
dm2 の電流を印加し10日間電解を行った。電解中の槽
電圧は1.2 Vで安定し、電解室中の硫酸及び陽極裏面の
水素ガス室に生成するドレーン水分中のジルコニウム濃
度をICP(誘導結合プラズマ発光分光分析法)を用い
て測定したところ、いずれも0.05ppm以下であり、ジ
ルコニウム集電体を使用した場合の電解液中への溶解が
殆どなく、実用上使用可能であることが判った。
The anode structure was incorporated into the Pyrex electrolytic cell shown in FIG. 1, hydrogen gas was supplied from the rear side, and 15 wt% sulfuric acid at 70 ° C. was supplied as an electrolyte to the front side. A carbon plate was used as the cathode and the distance between the electrodes was set to 5 mm. The effective surface area of the electrolyzer is 18.8 cm 2 , and 30 A / cm while supplying hydrogen gas at a rate of 80 cc / min.
A current of dm 2 was applied and electrolysis was performed for 10 days. The cell voltage during electrolysis was stable at 1.2 V, and the zirconium concentration in the sulfuric acid in the electrolysis chamber and the water content of the drain formed in the hydrogen gas chamber on the back surface of the anode was measured using ICP (inductively coupled plasma emission spectroscopy). It was found that each of them was 0.05 ppm or less, and when the zirconium current collector was used, there was almost no dissolution in the electrolytic solution, and thus it was practically usable.

【0017】[0017]

【実施例3】ジルコニウム製集電体の代わりにモリブデ
ン製集電体を使用したこと以外は実施例2と同一条件で
電解しモリブデン製集電体の評価を行い、電解後の電解
室及びガス室のドレーン水中のモリブデン濃度を測定し
たところ、それぞれ0.05ppm及び0.1 ppmであり、
電解中の槽電圧は1.3 Vで安定していた。
Example 3 A molybdenum current collector was electrolyzed under the same conditions as in Example 2 except that a molybdenum current collector was used in place of the zirconium current collector, and the molybdenum current collector was evaluated. When the concentration of molybdenum in the drain water of the chamber was measured, it was 0.05 ppm and 0.1 ppm, respectively,
The cell voltage during electrolysis was stable at 1.3 V.

【0018】[0018]

【実施例4】ジルコニウム製の集電体の代わりに銀製の
網(20メッシュ、厚さ0.3 mm)を使用したこと以外は
実施例2と同一条件で電解し銀製集電体の評価を行い、
電解後の電解室及びガス室のドレーン水中の銀濃度を測
定したところ、いずれも0.01ppm以下であり、電解中
の槽電圧は1.0 Vで安定していた。
[Example 4] The silver current collector was evaluated by electrolysis under the same conditions as in Example 2 except that a silver net (20 mesh, thickness 0.3 mm) was used in place of the zirconium current collector.
When the silver concentration in the drain water of the electrolysis chamber and the gas chamber after electrolysis was measured, both were 0.01 ppm or less, and the cell voltage during electrolysis was stable at 1.0 V.

【0019】[0019]

【比較例1】ジルコニウム製集電体の代わりにチタン製
エキスパンドメッシュを集電体として使用したこと以外
は実施例2と同一条件で電解しチタン製集電体の評価を
行い、電解後の電解室及びガス室のドレーン水中のチタ
ン濃度を測定したところ、それぞれ50ppm及び2g/
リットルであった。又電解中の槽電圧は1.2 Vから1.5
Vに上昇した。更に電解後のチタン集電体には腐食を受
けた形跡が明瞭に認められた。
[Comparative Example 1] The titanium current collector was evaluated under the same conditions as in Example 2 except that a titanium expanded mesh was used as the current collector instead of the zirconium current collector, and the titanium current collector was evaluated. The concentration of titanium in the drain water of the chamber and the gas chamber was measured to be 50 ppm and 2 g /
It was liter. The cell voltage during electrolysis is 1.2 V to 1.5
Rose to V. Furthermore, a trace of corrosion was clearly observed on the titanium current collector after electrolysis.

【0020】[0020]

【実施例5】比較例1のチタンメッシュに次の条件で前
もって銀めっきを施した。シアン化銀50g/リットル、
シアン化ナトリウム100 g/リットル及び炭酸ナトリウ
ム15g/リットルに光沢剤(日進化成株式会社製)を少
量添加して銀めっき浴を構成し、30℃に維持したこのめ
っき浴中に前記チタンメッシュを浸漬し、0.8 A/dm2
の電流密度でめっきを行い40μmの厚さの銀めっきを施
した。
Example 5 The titanium mesh of Comparative Example 1 was preliminarily silver-plated under the following conditions. Silver cyanide 50 g / liter,
A silver plating bath was constructed by adding a small amount of a brightening agent (manufactured by Nikkosei Co., Ltd.) to 100 g / liter of sodium cyanide and 15 g / liter of sodium carbonate, and the titanium mesh was placed in this plating bath maintained at 30 ° C. Immerse, 0.8 A / dm 2
The plating was carried out at the current density of 40 .mu.m and the thickness of the silver plating was 40 .mu.m.

【0021】実施例2と同一条件で電解しこの銀めっき
チタン集電体の評価を行い、電解後の電解室及びガス室
のドレーン水中のチタン濃度を測定したところ、それぞ
れ0.1 ppm及び0.04ppmであり、又銀濃度はそれぞ
れ0.02ppm及び0.05ppmであり、電解中の槽電圧は
1.0 Vで安定していた。又電解後の銀めっきチタン集電
体には局部的な腐食の痕跡は認められなかった。
This silver-plated titanium current collector was electrolyzed under the same conditions as in Example 2, and the titanium concentration in the drain water in the electrolysis chamber and the gas chamber after electrolysis was measured. The concentrations were 0.1 ppm and 0.04 ppm, respectively. Yes, the silver concentration was 0.02ppm and 0.05ppm respectively, and the cell voltage during electrolysis was
It was stable at 1.0 V. No trace of local corrosion was observed on the silver-plated titanium current collector after electrolysis.

【0022】[0022]

【発明の効果】本発明に係わる電解槽は、水素を供給し
てプロトンに酸化する陽極を具備し、電解液に接触する
前記陽極を除く陽極室構成部材の少なくとも一部が、ジ
ルコニウム、モリブデン、銀及びこれらの合金から成る
群から選択される金属又は合金から成ることを特徴とす
る電解槽である。この電解槽を使用して電解を行うと、
陽極室における電解条件において陽極集電体や陽極室内
壁等の陽極室構成部材であるジルコニウム、モリブデ
ン、銀及びこれらの合金が電解液による腐食に対して耐
性があり溶解して電解液を汚染することが殆どなく、し
かも電解電圧が低い値で安定するため、高価な金や白金
を使用する場合と同様の効果を得ることができ、安価な
材料を使用して経済的な電解を行うことができる分、高
価な金や白金を使用する場合より有利である。
The electrolytic cell according to the present invention comprises an anode for supplying hydrogen to oxidize to protons, and at least a part of the anode chamber constituent members other than the anode in contact with the electrolytic solution is zirconium, molybdenum, An electrolytic cell comprising a metal or an alloy selected from the group consisting of silver and alloys thereof. When electrolysis is performed using this electrolytic cell,
Under the electrolysis conditions in the anode chamber, zirconium, molybdenum, silver and their alloys, which are the components of the anode chamber such as the anode current collector and the inner wall of the anode, are resistant to corrosion by the electrolyte and dissolve to contaminate the electrolyte. In most cases, the electrolysis voltage is stable at a low value, so the same effect as when using expensive gold or platinum can be obtained, and economical electrolysis can be performed using inexpensive materials. As much as possible, it is more advantageous than using expensive gold or platinum.

【0023】更に安価な材料を使用して経済性を高める
ために、本発明に係わる電解槽では前記陽極室構成部材
の少なくとも一部を、銀めっきしたジルコニウム、銀め
っきしたモリブデン、銀めっきしたチタン及び銀めっき
したチタン合金で形成することができる。これらの材料
は前述の銀単独の場合より使用する銀の量を低減でき、
しかも単独では使用できない遙に安価なチタンの使用を
可能にする。
In order to increase the economical efficiency by using a cheaper material, in the electrolytic cell according to the present invention, at least a part of the components of the anode chamber is silver-plated zirconium, silver-plated molybdenum, or silver-plated titanium. And a silver-plated titanium alloy. These materials can reduce the amount of silver used compared with the case of silver alone,
Moreover, it enables the use of much cheaper titanium that cannot be used alone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる電解槽の一例を示す概略縦断面
図である。
FIG. 1 is a schematic vertical sectional view showing an example of an electrolytic cell according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・電解槽 2・・・イオン交換膜 3・・・陽極
室 4・・・陰極室 5・・・ガス電極 6・・・集電体 7・・・給電ロッ
ド 8・・・陰極 9・・・給電ロッド
DESCRIPTION OF SYMBOLS 1 ... Electrolyte tank 2 ... Ion exchange membrane 3 ... Anode chamber 4 ... Cathode chamber 5 ... Gas electrode 6 ... Current collector 7 ... Feed rod 8 ... Cathode 9 ... Power supply rods

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中松 秀司 神奈川県藤沢市大庭5568−4パピヨングレ ースII102号 (72)発明者 錦 善則 神奈川県藤沢市藤沢1丁目1番の23 (72)発明者 芦田 高弘 神奈川県座間市立野台66 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuji Nakamatsu 5568-4 Ooba, Fujisawa-shi, Kanagawa Papillon Grace II 102 (72) Inventor Yoshinori Nishiki 1-1-1, Fujisawa, Kanagawa Prefecture (72) Invention Takahiro Ashida 66 Nodai, Zama City, Kanagawa Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素を供給してプロトンに酸化する陽極
を具備し、電解液に接触する前記陽極を除く陽極室構成
部材の少なくとも一部が、ジルコニウム、モリブデン、
銀及びこれらの合金から成る群から選択される金属又は
合金から成ることを特徴とする電解槽。
1. An anode chamber for supplying hydrogen to oxidize protons to oxidize protons, wherein at least a part of the anode chamber constituent member except for the anode in contact with an electrolyte is zirconium, molybdenum,
An electrolytic cell comprising a metal or an alloy selected from the group consisting of silver and alloys thereof.
【請求項2】 水素を供給してプロトンに酸化する陽極
を具備し、電解液に接触する前記陽極を除く陽極室構成
部材の少なくとも一部が、銀めっきしたジルコニウム、
銀めっきしたモリブデン、銀めっきしたチタン及び銀め
っきしたチタン合金から成る群から選択される金属又は
合金から成ることを特徴とする電解槽。
2. An anode chamber component for supplying hydrogen to oxidize protons to oxidize protons, wherein at least a part of the anode chamber constituent members except the anode in contact with an electrolytic solution is silver-plated zirconium,
An electrolytic cell comprising a metal or alloy selected from the group consisting of silver plated molybdenum, silver plated titanium and silver plated titanium alloys.
JP35263392A 1992-12-10 1992-12-10 Electrolytic cell Expired - Fee Related JP3167054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35263392A JP3167054B2 (en) 1992-12-10 1992-12-10 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35263392A JP3167054B2 (en) 1992-12-10 1992-12-10 Electrolytic cell

Publications (2)

Publication Number Publication Date
JPH06173068A true JPH06173068A (en) 1994-06-21
JP3167054B2 JP3167054B2 (en) 2001-05-14

Family

ID=18425383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35263392A Expired - Fee Related JP3167054B2 (en) 1992-12-10 1992-12-10 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP3167054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095164A (en) * 2006-10-16 2008-04-24 Toshiba Corp Hydrogen production apparatus and method for assembling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095164A (en) * 2006-10-16 2008-04-24 Toshiba Corp Hydrogen production apparatus and method for assembling the same

Also Published As

Publication number Publication date
JP3167054B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JP2648313B2 (en) Electrolysis method
Chamoulaud et al. Biomass conversion II: simultaneous electrosyntheses of furoic acid and furfuryl alcohol on modified graphite felt electrodes
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
JPH03173789A (en) Filter type electrolytic bath for preparing peroxy or perhalogenated compound
JPH0581677B2 (en)
CA2449512A1 (en) Electrolysis cell for restoring the concentration of metal ions in electroplating processes
US7056424B2 (en) Cathode for electrochemical regeneration of permanganate etching solutions
JP3655975B2 (en) Gas diffusion cathode and salt water electrolytic cell using the gas diffusion cathode
US5733430A (en) Gas diffusion electrode and electrolytic method using it
JPH0841671A (en) Electrolytical reduction of disulfide compound
JP2510422B2 (en) Copper plating method for printed circuit boards
GB2056495A (en) Process for the preparation of low hydrogen overvoltage cathodes
JPH06173068A (en) Electrolytic cell
JP3928013B2 (en) Insoluble anode for plating
US5232561A (en) Electrolytic method of preparing compounds with a gas permeable electrode
JPH11172484A (en) Gas diffusion electrode structural body and its production
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure
JP3222972B2 (en) Electrolytic cell
JP3257831B2 (en) Lead dioxide electrode and method for producing the same
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JP3664519B2 (en) Method for producing active cathode
JP2001262388A (en) Electrode for electrolysis
JPH11200080A (en) Gas diffusion electrode structural body
KR20240031601A (en) Anodic electrode, water electrolysis device including the same and method for preparing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees