JP6653799B2 - Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same - Google Patents

Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same Download PDF

Info

Publication number
JP6653799B2
JP6653799B2 JP2017147707A JP2017147707A JP6653799B2 JP 6653799 B2 JP6653799 B2 JP 6653799B2 JP 2017147707 A JP2017147707 A JP 2017147707A JP 2017147707 A JP2017147707 A JP 2017147707A JP 6653799 B2 JP6653799 B2 JP 6653799B2
Authority
JP
Japan
Prior art keywords
anode
copper plating
electrolytic copper
electrolytic
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017147707A
Other languages
Japanese (ja)
Other versions
JP2019026894A (en
Inventor
義人 塚原
義人 塚原
利幸 重松
利幸 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meltex Inc
Original Assignee
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc filed Critical Meltex Inc
Priority to JP2017147707A priority Critical patent/JP6653799B2/en
Priority to TW107119157A priority patent/TWI683931B/en
Priority to KR1020207002324A priority patent/KR102381835B1/en
Priority to CN201880047492.6A priority patent/CN110997989A/en
Priority to PCT/JP2018/026178 priority patent/WO2019026578A1/en
Publication of JP2019026894A publication Critical patent/JP2019026894A/en
Application granted granted Critical
Publication of JP6653799B2 publication Critical patent/JP6653799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method

Description

本件発明は、電解銅めっき用陽極、及びそれを用いた電解銅めっき装置に関する。   The present invention relates to an anode for electrolytic copper plating and an electrolytic copper plating apparatus using the same.

従来より、プリント配線基板等に対して導体を形成する際には、電解銅めっき処理が行われている。電解銅めっき処理を行う場合には、陽極として、銅材からなる溶解性銅陽極を使用する方法と、白金、チタン、酸化イリジウム等からなる不溶性陽極を使用する方法とがある。また、電解銅めっき液には、めっき促進性やビアフィリング性等のめっき特性を向上させるために、ブライトナーやレベラー等の添加剤が添加される。   BACKGROUND ART Conventionally, when a conductor is formed on a printed wiring board or the like, electrolytic copper plating is performed. When performing electrolytic copper plating, there are a method using a soluble copper anode made of a copper material and a method using an insoluble anode made of platinum, titanium, iridium oxide or the like as the anode. In addition, additives such as brighteners and levelers are added to the electrolytic copper plating solution in order to improve plating characteristics such as plating acceleration and via filling.

ここで、現在電解銅めっき処理を行うに際しては、溶解性銅陽極を使用することが主流となっている。その理由として、溶解性銅陽極は、不溶性陽極に比べて、設備を簡素化することができ、メンテナンス費用もかからず、陽極自体も比較的安価であり、低コスト化を実現出来ることが挙げられる。   Here, in performing the electrolytic copper plating process, it is now mainstream to use a soluble copper anode. The reason is that the soluble copper anode can simplify the equipment compared to the insoluble anode, does not require maintenance costs, the anode itself is relatively inexpensive, and can realize low cost. Can be

しかし、溶解性銅陽極を用いると、めっき液中で銅電極が化学的に溶解してしまう反応に付随して、電解銅めっき液中にブライトナーとして添加するビス(3−スルホプロピル)ジスルフィド(以下、単に「SPS」と称す)が3−メルカプトプロパン−1−スルホン酸(以下、単に「MPS」と称す)に還元されてしまうことが知られている。このMPSが電解銅めっき液中に一定量以上存在すると、所望のめっき特性が得られなくなってしまうという問題がある。   However, when a soluble copper anode is used, bis (3-sulfopropyl) disulfide (B) added as a brightener to the electrolytic copper plating solution is accompanied by a reaction in which the copper electrode is chemically dissolved in the plating solution. Hereinafter, it is known that “SPS” is reduced to 3-mercaptopropane-1-sulfonic acid (hereinafter, simply referred to as “MPS”). If this MPS is present in a certain amount or more in the electrolytic copper plating solution, there is a problem that desired plating characteristics cannot be obtained.

上述した問題に対しては、例えば特許文献1に記載されているように、めっき液中に空気を吹き込むことによりめっき液中の溶存酸素濃度を高める試みがなされている。具体的には、特許文献1には、「オーバーフロー槽を併設しためっき本槽、当該めっき槽下部に設けためっき液噴流吐出部、銅アノードおよび被めっき品用バーを有する酸性銅用めっき装置において、オーバーフロー槽中にエア攪拌または酸素攪拌手段を設けたことを特徴とする酸性銅用めっき装置」が開示されている。   To solve the above-mentioned problem, for example, as described in Patent Document 1, attempts have been made to increase the dissolved oxygen concentration in the plating solution by blowing air into the plating solution. Specifically, Patent Literature 1 discloses "in a plating apparatus for acidic copper having a plating main tank provided with an overflow tank, a plating solution jet discharge unit provided in a lower part of the plating tank, a copper anode and a bar for a product to be plated. A plating apparatus for acidic copper, characterized in that an air stirring or oxygen stirring means is provided in an overflow tank.

特開2004−143478号公報JP-A-2004-143478

しかしながら、特許文献1に開示のめっき装置においては、オーバーフロー槽を別途設ける必要があり、めっき装置の構造が複雑となることから設備コストが高くなるという問題があった。   However, in the plating apparatus disclosed in Patent Literature 1, it is necessary to separately provide an overflow tank, and there is a problem in that the structure of the plating apparatus is complicated and equipment cost is increased.

以上のことから、本件発明は、装置構造を複雑化させずに、めっき促進性やビアフィリング性等のめっき特性の向上を図ることが出来る電解銅めっき用陽極及びそれを用いた電解銅めっき装置を提供することを目的とする。   From the above, the present invention provides an anode for electrolytic copper plating and an electrolytic copper plating apparatus using the same, which can improve plating characteristics such as plating acceleration and via filling without complicating the structure of the apparatus. The purpose is to provide.

そこで、本件発明者等は、鋭意研究を行った結果、以下の方法を採用することで、上記目的を達成するに到った。   The inventors of the present invention have conducted intensive studies, and as a result, have achieved the above object by employing the following method.

本件発明に係る電解銅めっき用陽極: 電解銅めっき液が貯留された電解処理槽内に配設する陽極であって、当該電解銅めっき液が、ジスルフィド化合物を含有した酸性電解銅めっき液であり、当該陽極が、溶解性銅陽極と不溶性陽極とを電気的に接続した状態で備えたことを特徴とする。 Anode for electrolytic copper plating according to the present invention: An anode disposed in an electrolytic treatment tank in which an electrolytic copper plating solution is stored, wherein the electrolytic copper plating solution is an acidic electrolytic copper plating solution containing a disulfide compound. The anode is provided with a soluble copper anode and an insoluble anode in an electrically connected state.

本件発明に係る電解銅めっき装置: 本件発明に係る電解銅めっき装置は、上述の電解銅めっき用陽極を備えたことを特徴とする。   Electrolytic copper plating apparatus according to the present invention: An electrolytic copper plating apparatus according to the present invention includes the above-described anode for electrolytic copper plating.

本件発明に係る電解銅めっき用陽極、及び電解銅めっき装置によれば、装置構造を複雑化させずに、めっき促進性やビアフィリング性等のめっき特性の向上を図ることが出来る。   ADVANTAGE OF THE INVENTION According to the anode for electrolytic copper plating and the electrolytic copper plating apparatus which concern on this invention, it can aim at improvement of plating characteristics, such as plating acceleration and via-filling property, without complicating an apparatus structure.

本件発明に係る溶解性銅陽極を電解銅めっき装置に用いた場合を例示した概略断面図である。It is the schematic sectional drawing which illustrated the case where the soluble copper anode which concerns on this invention was used for the electrolytic copper plating apparatus. 実施例1及び比較例1でのビアの充填状況を示す断面写真である。4 is a cross-sectional photograph showing a via filling state in Example 1 and Comparative Example 1. 実施例2及び比較例2でのビアの充填状況を示す断面写真である。4 is a cross-sectional photograph showing a via filling state in Example 2 and Comparative Example 2.

以下、図を用いながら、本件発明に係る電解銅めっき用陽極、及びそれを用いた電解銅めっき装置について説明する。図1は、本件発明に係る溶解性銅陽極を電解銅めっき装置に用いた場合を例示した概略断面図である。   Hereinafter, an anode for electrolytic copper plating according to the present invention and an electrolytic copper plating apparatus using the same will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating a case where the soluble copper anode according to the present invention is used in an electrolytic copper plating apparatus.

本件発明に係る電解銅めっき装置10は、本件発明に係る電解銅めっき用陽極1を備えたものである。当該電解銅めっき用陽極1は、電解銅めっき液21が貯留された電解処理槽20内に設置する陽極である。また、当該電解銅めっき液21が、ジスルフィド化合物(例えば、SPS)を含有した酸性電解銅めっき液であり、当該陽極1が、溶解性銅陽極2と不溶性陽極3とを電気的に接続した状態で備えたことを特徴とする。以下に、これらの構成について説明する。 The electrolytic copper plating apparatus 10 according to the present invention includes the electrolytic copper plating anode 1 according to the present invention. The anode 1 for electrolytic copper plating is an anode installed in an electrolytic treatment tank 20 in which an electrolytic copper plating solution 21 is stored. The electrolytic copper plating solution 21 is an acidic electrolytic copper plating solution containing a disulfide compound (for example, SPS), and the anode 1 is in a state where the soluble copper anode 2 and the insoluble anode 3 are electrically connected. and wherein the kite with in. Hereinafter, these configurations will be described.

本件発明に係る電解銅めっき装置10は、電解銅めっき液21を貯留した電解処理槽20内に被めっき部材Wを浸漬した状態で、当該被めっき部材(カソード)Wと陽極(アノード)1との間に給電し、当該被めっき部材Wの被処理面を電解処理する装置である。ここで、本件発明の被めっき部材Wは、回路配線をエポキシ樹脂等の絶縁材料によって積層したプリント配線基板又はウエハーとすることが出来る。また、これらプリント配線基板やウエハーは、スルーホール及び/又はビアホールを有するものを用いることが出来る。このスルーホールやビアホールは、一般に、10μm〜1000μm程度の微小径の穴であり、この穴を通して、信号層間の電気的接続がなされる。本件発明に係る電解めっき装置10によれば、これらスルーホールやビアホールの内部に銅を充填する電解処理を行うことが出来る。なお、本件発明に係る電解めっき装置10は、均一電着性等の向上を図るために、エアバブルを当該電解銅めっき液21中に拡散させたり、循環配管5と接続したノズル6から高圧エアーを噴出させる等して電解銅めっき液21を攪拌する構成を採用することも出来る。 The electrolytic copper plating apparatus 10 according to the present invention is configured such that the member to be plated (cathode) W and the anode (anode) 1 are immersed in the electrolytic processing tank 20 containing the electrolytic copper plating solution 21. And a device for electrolytically treating the surface to be processed of the member to be plated W. Here, the member to be plated W of the present invention can be a printed wiring board or a wafer in which circuit wiring is laminated with an insulating material such as epoxy resin. Further, as these printed wiring boards and wafers, those having through holes and / or via holes can be used. These through holes and via holes are generally holes having a small diameter of about 10 μm to 1000 μm, and electrical connection between signal layers is made through these holes. According to the electrolytic copper plating apparatus 10 according to the present invention, it is possible to perform an electrolytic treatment for filling the inside of these through holes and via holes with copper. The electrolytic copper plating apparatus 10 according to the present invention is designed to diffuse air bubbles into the electrolytic copper plating solution 21 or to supply high-pressure air from the nozzle 6 connected to the circulation pipe 5 in order to improve uniform electrodeposition. May be employed to stir the electrolytic copper plating solution 21 by, for example, jetting out.

また、本件発明の電解銅めっき液21は、ジスルフィド化合物を含有した酸性電解銅めっき液が用いられる。通常、酸性電解銅めっき液21は、硫酸銅・五水塩、硫酸、塩化物イオン及び添加剤からなるものが用いられる。例えば、酸性電解銅めっき液21の組成は、硫酸銅・五水塩30g/L〜250g/L、硫酸30g/L〜250g/L、塩化物イオン30mg/L〜75mg/Lの範囲で使用出来る。また、酸性電解銅めっき液21の温度は、通常15℃〜60℃の範囲で使用することができ、好ましくは20℃〜35℃である。硫酸銅・五水塩濃度の増加、又は硫酸濃度の増加に伴って硫酸銅・五水塩の結晶が銅陽極上に析出する場合があるので、両者の濃度管理には注意が必要である。ここで、当該酸性電解銅めっき液21における硫酸濃度は、30g〜400g/Lとすることが好ましい。硫酸濃度が、30g/L未満の場合、酸性電解銅めっき液21の導電性が低下し、当該酸性電解銅めっき液21に通電することが困難となる。一方、硫酸濃度が、400g/Lを越えると、酸性電解銅めっき液中に硫酸銅が沈澱し易くなり、めっき特性に悪影響を及ぼすこととなる。   Further, as the electrolytic copper plating solution 21 of the present invention, an acidic electrolytic copper plating solution containing a disulfide compound is used. Usually, the acidic electrolytic copper plating solution 21 is composed of copper sulfate pentahydrate, sulfuric acid, chloride ions and additives. For example, the composition of the acidic electrolytic copper plating solution 21 can be used in the range of 30 g / L to 250 g / L of copper sulfate / pentahydrate, 30 g / L to 250 g / L of sulfuric acid, and 30 mg / L to 75 mg / L of chloride ions. . The temperature of the acidic electrolytic copper plating solution 21 can be usually used in a range of 15 ° C to 60 ° C, and is preferably 20 ° C to 35 ° C. Care must be taken in controlling the concentrations of copper sulfate and pentahydrate since the concentration of copper sulfate and pentahydrate may increase on the copper anode as the concentration of copper sulfate and pentahydrate increases. Here, the concentration of sulfuric acid in the acidic electrolytic copper plating solution 21 is preferably 30 g to 400 g / L. When the sulfuric acid concentration is less than 30 g / L, the conductivity of the acidic electrolytic copper plating solution 21 decreases, and it becomes difficult to supply electricity to the acidic electrolytic copper plating solution 21. On the other hand, when the sulfuric acid concentration exceeds 400 g / L, copper sulfate easily precipitates in the acidic electrolytic copper plating solution, which adversely affects the plating characteristics.

本件発明に係る電解銅めっき装置10では、上述したように、電解処理槽20内に配置される溶解性銅陽極2と不溶性陽極3とが、電気的に接続されることで、陽極1として作用する。電解処理を行う場合に、SPSを含有した電解銅めっき液21が使用される場合、このSPSがMPSに変化し、このMPSが発生することにより、スルーホール浴ではスローイングパワーの低下やめっき外観不良、ビアフィル浴ではフィリング率の低下やめっき外観不良等が発生するという問題が生じる。ここで、電解停止して電解銅めっき液21を放置した場合においても、陽極1近傍でSPSが還元されてMPSが生成することが確認されている。このMPSの生成は、MPS−Cu錯体からなるアノードスラッジを発生させる原因にもなり得る。このアノードスラッジは、ビアのフィリング性や均一電着性等のめっき特性の低下を招くこととなる。しかし、本件発明に係る電解銅めっき用陽極1は、溶解性銅陽極2と不溶性陽極3とを電気的に接続した状態で電解処理槽20内に備えることで、当該不溶性陽極3が電解銅めっき液21中に酸素を供給することが出来る。この不溶性陽極3から発生した酸素は、MPSをSPSに酸化させて電解銅めっき液21中のMPS濃度の上昇を抑制しMPSの悪影響を排除することが可能である。従って、本件発明に係る電解銅めっき装置10によれば、電解銅めっき液21にブライトナーとしてSPSを含めたとしても所望のめっき特性を得ることが可能となる。 In the electrolytic copper plating apparatus 10 according to the present invention, as described above, the soluble copper anode 2 and the insoluble anode 3 arranged in the electrolytic treatment tank 20 are electrically connected to each other, thereby acting as the anode 1. I do. When performing electrolytic treatment, when the electrolytic copper plating solution 21 containing SPS is used, this SPS is changed to MPS, and this MPS is generated. In the via-fill bath, there is a problem that the filling rate is reduced and plating appearance is poor. Here, it has been confirmed that even when the electrolytic copper plating solution 21 is left after the electrolysis is stopped, SPS is reduced near the anode 1 to generate MPS. The formation of MPS can also cause generation of anode sludge composed of MPS-Cu + complex. The anode sludge causes a decrease in plating properties such as filling properties and throwing power of vias. However, the anode 1 for electrolytic copper plating according to the present invention is provided in the electrolytic treatment tank 20 in a state where the soluble copper anode 2 and the insoluble anode 3 are electrically connected, so that the insoluble anode 3 Oxygen can be supplied into the liquid 21. Oxygen generated from the insoluble anode 3 oxidizes MPS to SPS, thereby suppressing an increase in the MPS concentration in the electrolytic copper plating solution 21 and eliminating the adverse effect of MPS. Therefore, according to the electrolytic copper plating apparatus 10 of the present invention, even if the electrolytic copper plating solution 21 contains SPS as a brightener, desired plating characteristics can be obtained.

本件発明に係る電解銅めっき用陽極1を構成する溶解性銅陽極2は、電解時に消費される電解銅めっき液21中の銅イオン濃度を所定濃度に維持するのに用いられる。この溶解性銅陽極2は、その形状に関して限定されないが、表面積が極力大きくなる形状を採用することで、電解時に銅イオンをより多く発生させてめっき効率をより高めることが出来る。   The soluble copper anode 2 constituting the anode 1 for electrolytic copper plating according to the present invention is used to maintain the concentration of copper ions in the electrolytic copper plating solution 21 consumed during electrolysis at a predetermined concentration. The shape of the soluble copper anode 2 is not limited, but by adopting a shape having a surface area as large as possible, more copper ions can be generated during electrolysis and plating efficiency can be further improved.

また、本件発明の溶解性銅陽極2は、含リン銅材で構成されたものであることが好ましい。当該溶解性銅陽極2が含リン銅部材で構成されることで、電解時にCuPという「ブラックフィルム」と呼ばれる化合物の皮膜を含リン銅部材の表面に形成し、一価の銅イオンの発生を抑制してアノードスラッジの発生を効果的に抑制し、めっき特性の低下を防ぐことが可能となる。当該含リン銅部材のアノードスラッジの発生をより抑制する上では、リンの含有量は、0.02%〜0.06%程度とすることが好ましい。含リン銅部材を溶解性銅陽極2に使用することは、電解中の銅溶解をスムーズに行うことが可能となる点で有利である。 Further, it is preferable that the soluble copper anode 2 of the present invention is made of a phosphorous copper material. By forming the soluble copper anode 2 from a phosphorus-containing copper member, a film of a compound called “black film” called Cu 2 P is formed on the surface of the phosphorus-containing copper member during electrolysis, and monovalent copper ions are formed. The generation of anode sludge can be effectively suppressed by suppressing the generation, and it is possible to prevent the deterioration of plating characteristics. In order to further suppress the generation of anode sludge in the phosphorus-containing copper member, the phosphorus content is preferably set to about 0.02% to 0.06%. The use of a phosphorus-containing copper member for the soluble copper anode 2 is advantageous in that copper can be smoothly dissolved during electrolysis.

本件発明に係る電解銅めっき用陽極1を構成する不溶性陽極3は、電解銅めっき液21中で金属を溶出しない材質のものであれば任意の材質から成る陽極を使用することが出来る。例えば、酸化イリジウム、白金張りチタン、白金、グラファイト、フェライト、二酸化鉛及び白金族元素酸化物をコーティングしたチタン、ステンレススチール、鉛合金等の材質の陽極が挙げられるがこれらに限定されるものではない。また、不溶性陽極3は、基材に被覆物を被覆することにより構成することも出来る。この場合には、基材の全面を被覆してもよいが、不溶性陽極3として機能する範囲において、基材の一部のみを被覆してもよい。このときに、被覆の厚みは特に限定されるものではなく、耐久性とコストの観点からは、0.1μm〜10μmであることが好ましい。 As the insoluble anode 3 constituting the anode 1 for electrolytic copper plating according to the present invention, an anode made of any material can be used as long as it does not elute metal in the electrolytic copper plating solution 21. Examples include, but are not limited to, iridium oxide, platinum-clad titanium, platinum, graphite, ferrite, titanium dioxide coated with lead dioxide and platinum group oxides, stainless steel, lead alloys and other materials. . Also, insoluble anodes 3 can be Ri構 formed by the coating the coating to the substrate. In this case, the entire surface of the base material may be coated, but only a part of the base material may be coated as long as it functions as the insoluble anode 3. At this time, the thickness of the coating is not particularly limited, and is preferably 0.1 μm to 10 μm from the viewpoint of durability and cost.

また、本件発明の不溶性陽極3は、その形状に関して限定されない。不溶性陽極3は、電解中において、溶解性銅陽極2の溶解を妨害することなく効率よく酸素を発生させる形状及び寸法であることで、電解銅めっき液21中に存在するMPSを速やかに酸化してSPSに戻し、MPSが当該電解銅めっき液21中に蓄積されるのを抑制し、めっき特性の低下を防ぐことが出来る。   Further, the shape of the insoluble anode 3 of the present invention is not limited. The insoluble anode 3 has a shape and dimensions that efficiently generate oxygen without disturbing the dissolution of the soluble copper anode 2 during electrolysis, thereby quickly oxidizing MPS present in the electrolytic copper plating solution 21. To return to SPS, so that MPS can be prevented from accumulating in the electrolytic copper plating solution 21 and a decrease in plating characteristics can be prevented.

本件発明に係る電解銅めっき用陽極1は、MPSの生成抑制の観点から、溶解性銅陽極2と不溶性陽極3との電解銅めっき液21に浸漬した表面の面積比率が、10:1〜1:10であることが好ましい。溶解性銅陽極2と不溶性陽極3との電解銅めっき液21に浸漬した表面の面積比率が10:1未満であれば、不溶性陽極(例えば、酸化イリジウム部材)3表面からの酸素発生が極めて少なくなるため、電解銅めっき液21中におけるMPS濃度の上昇を十分に抑制することが出来ず、所望のめっき特性を得ることが出来ない。また、当該面積比率が1:10を超えると不溶性陽極(例えば、酸化イリジウム部材)3表面からの酸素発生が著しく増加するため、電解銅めっき液21中に含める添加剤を酸化分解して添加剤消耗量が増加する。さらに、この場合には、溶解性銅陽極2からの銅の供給が足りなくなり、電解銅めっき液21中の銅濃度を所定濃度に維持するために別途銅源の補給が必要となる。ここで、溶解性銅陽極2と不溶性陽極3との電解銅めっき液21に浸漬した表面の面積比率は、5:1〜1:5であることが、上述した効果を得る上でより好ましい。   The anode 1 for electrolytic copper plating according to the present invention has a surface area ratio of the soluble copper anode 2 and the insoluble anode 3 immersed in the electrolytic copper plating solution 21 of 10: 1 to 1 from the viewpoint of suppressing the generation of MPS. : 10 is preferred. When the area ratio of the surface of the soluble copper anode 2 to the surface of the insoluble anode 3 immersed in the electrolytic copper plating solution 21 is less than 10: 1, the generation of oxygen from the surface of the insoluble anode (for example, iridium oxide member) 3 is extremely small. Therefore, an increase in the MPS concentration in the electrolytic copper plating solution 21 cannot be sufficiently suppressed, and desired plating characteristics cannot be obtained. If the area ratio exceeds 1:10, the generation of oxygen from the surface of the insoluble anode (for example, iridium oxide member) 3 is significantly increased. The consumption amount increases. Further, in this case, supply of copper from the soluble copper anode 2 becomes insufficient, and it is necessary to separately supply a copper source to maintain the copper concentration in the electrolytic copper plating solution 21 at a predetermined concentration. Here, the area ratio of the surface of the soluble copper anode 2 to the surface of the insoluble anode 3 immersed in the electrolytic copper plating solution 21 is more preferably 5: 1 to 1: 5 in order to obtain the above-described effects.

また、本件発明に係る電解銅めっき装置10において、適用可能な陰極電流密度は、通常プリント配線基板の電解銅めっき処理に用いられている含リン銅部材を使用する範囲とすることが好ましい。具体的には、当該陰極電流密度は、0.1A/dm〜10A/dm程度、好ましくは0.5A/dm〜6A/dm、より好ましくは1A/dm〜5A/dmである。陽極電流密度は、通常0.1A/dm〜3A/dmで使用可能であるが、より好ましくは1A/dm〜3A/dmである。電解銅めっき液21中の銅濃度は、陽極電流密度が低すぎると上昇する傾向があり、陽極電流密度が高すぎると低下する傾向があるため、使用する陰極電流密度により陽極面積の調整が必要である。 Further, in the electrolytic copper plating apparatus 10 according to the present invention, it is preferable that the applicable cathode current density is in a range in which a phosphorous copper member which is usually used for electrolytic copper plating of a printed wiring board is used. Specifically, the cathode current density, 0.1A / dm 2 ~10A / dm 2 , preferably about 0.5A / dm 2 ~6A / dm 2 , more preferably 1A / dm 2 ~5A / dm 2 It is. The anode current density is usable in conventional 0.1A / dm 2 ~3A / dm 2 , more preferably 1A / dm 2 ~3A / dm 2 . The copper concentration in the electrolytic copper plating solution 21 tends to increase when the anode current density is too low, and tends to decrease when the anode current density is too high. Therefore, it is necessary to adjust the anode area according to the cathode current density used. It is.

ここで、本件発明に係る電解銅めっき用陽極1を用いた場合における、電解時及び電解停止時に得られる効果についてより具体的に説明する。通常は、電解時及び電解停止時において、溶解性銅陽極2では下記化1の式(1)のように溶解が起こる。また、電解時において、陰極では、下記化1の式(2)に示す反応が起こり銅が析出する。そして、電解銅めっき液21がジスルフィド化合物を含有した場合には、溶解性銅陽極2の溶解時に放出された電子により、下記化1の式(3)のようにSPSが還元されてMPSが生成する。生成したMPSは、下記化1の式(4)のように一部が酸化されてSPSに変換されるが、一価の銅イオンと結びついたCu(I)MPSは、下記化1の式(5)のようにMPSとなる。   Here, effects obtained at the time of electrolysis and at the time of stopping electrolysis when the anode 1 for electrolytic copper plating according to the present invention is used will be described more specifically. Usually, at the time of electrolysis and at the time of stopping electrolysis, dissolution occurs in the soluble copper anode 2 as in the following formula (1). At the time of electrolysis, a reaction represented by the following formula (2) occurs at the cathode, and copper is deposited. When the electrolytic copper plating solution 21 contains a disulfide compound, the SPS is reduced as shown in the following formula (3) by the electrons released when the soluble copper anode 2 is dissolved, and MPS is generated. I do. The generated MPS is partially oxidized and converted into SPS as shown in the following formula (4), but Cu (I) MPS associated with monovalent copper ion is converted into the following formula (4). It becomes MPS as in 5).

上記化1の(1),(3)〜(5)には、めっき特性の低下を招くMPSが生成する過程を示したが、本件発明に係る電解銅めっき用陽極1は、不溶性陽極3を溶解性銅陽極2と電気的に接続した状態で備えることで、電解銅めっき液21中のMPS濃度の上昇を抑制することが出来る。すなわち、電解時において、不溶性陽極3では、上記化1の(6)のように電解銅めっき液21中の水の電気分解が行われ、このときに発生した酸素によりMPSが酸化されてSPSに変換されることで、発生したMPSを減らすことが出来る。   In the above Chemical Formula 1, (1), (3) to (5) show the process of generating MPS which causes the deterioration of the plating characteristics. However, the anode 1 for electrolytic copper plating according to the present invention uses the insoluble anode 3 instead of the insoluble anode 3. By being provided in a state of being electrically connected to the soluble copper anode 2, an increase in the MPS concentration in the electrolytic copper plating solution 21 can be suppressed. That is, at the time of electrolysis, the water in the electrolytic copper plating solution 21 is electrolyzed at the insoluble anode 3 as shown in the above chemical formula (6), and MPS is oxidized by the oxygen generated at this time to SPS. By being converted, the generated MPS can be reduced.

本件発明に係る電解銅めっき装置10は、上述した構成を備えることで、電解銅めっき液21中におけるMPSの濃度上昇を抑制することが出来る。よって、本件発明に係る電解銅めっき用陽極1、及びそれを用いた電解銅めっき装置10によれば、長時間放置した電解銅めっき液21をそのまま用いて電解を開始したとしてもめっき外観不良が生じにくく、メンテナンスフリーを実現することが出来る。   Since the electrolytic copper plating apparatus 10 according to the present invention has the above-described configuration, an increase in the concentration of MPS in the electrolytic copper plating solution 21 can be suppressed. Therefore, according to the anode 1 for electrolytic copper plating according to the present invention and the electrolytic copper plating apparatus 10 using the same, even if electrolysis is started using the electrolytic copper plating solution 21 that has been left for a long time, the plating appearance is poor. It hardly occurs, and maintenance-free can be realized.

以上に、本件発明に係る溶解性銅陽極、及びそれを用いた電解銅めっき液の保存方法に関して説明したが、以下に本件発明の実施例を示し、本件発明をより詳細に説明する。なお、本件発明はこれらの例により何ら限定されるものではない。   As described above, the soluble copper anode according to the present invention and the method for preserving the electrolytic copper plating solution using the same have been described. Hereinafter, examples of the present invention will be described, and the present invention will be described in more detail. The present invention is not limited by these examples.

実施例1では、電解銅めっき用陽極として溶解性銅陽極と不溶性陽極とを電気的に接続した状態で併用した場合における効果を確認するための試験を行った。   In Example 1, a test was performed to confirm the effect when a soluble copper anode and an insoluble anode were used together in an electrically connected state as an anode for electrolytic copper plating.

この実施例1では、まず板厚1.0mm、ビア径100μm、深さ80μmの被めっき部材(プリント基板)に対し、メルプレートMLB−6001プロセス(メルテックス株式会社製)によりデスミア処理を行った。次いで、メルプレートCU−390プロセス(メルテックス株式会社製)により無電解銅めっきを行った。そして、このプリント基板をメルプレートPC−316(メルテックス株式会社製)による酸性脱脂、水洗、硫酸処理後、以下に示す条件にて電解銅めっきを行った。   In Example 1, first, a desmear treatment was performed on a member to be plated (printed circuit board) having a plate thickness of 1.0 mm, a via diameter of 100 μm, and a depth of 80 μm by a Melplate MLB-6001 process (manufactured by Meltex Corporation). . Next, electroless copper plating was performed by a Melplate CU-390 process (manufactured by Meltex Corporation). Then, the printed circuit board was subjected to acidic degreasing, washing with water, and sulfuric acid treatment using Melplate PC-316 (manufactured by Meltex Co., Ltd.), followed by electrolytic copper plating under the following conditions.

実施例1で用いる酸性電解銅めっき液は、硫酸銅・五水和物200g/L、濃硫酸100g/L、塩化物イオン50mg/Lを含むめっき液に、ルーセントカパーSVF−A(メルテックス株式会社製、ジスルフィド系)0.4mL/L、ルーセントカパーSVF−B(メルテックス株式会社製)20mL/L、ルーセントカパーSVF−L(メルテックス株式会社製)15mL/Lを添加して調整した3Lのビアフィル浴を使用した。また、当該酸性電解銅めっき液の温度は、25℃とした。   The acidic electrolytic copper plating solution used in Example 1 was a plating solution containing 200 g / L of copper sulfate pentahydrate, 100 g / L of concentrated sulfuric acid, and 50 mg / L of chloride ion, and was added to Lucent Copper SVF-A (Meltex Co., Ltd.). 3 L prepared by adding 0.4 mL / L, Lucent Copper SVF-B (manufactured by Meltex Corporation) 20 mL / L, and Lucent Copper SVF-L (manufactured by Meltex Corporation) 15 mL / L Was used. The temperature of the acidic electrolytic copper plating solution was 25 ° C.

そして、電解処理槽内には、収容されたビアフィル浴に浸漬させた状態で電解銅めっき用陽極を設置した。電解銅めっき用陽極は、溶解性銅陽極(50mm×120mmの含リン銅板)と不溶性陽極(50mm×120mmの酸化イリジウム被覆板)とを電気的に接続した状態で電解処理槽内に離間配置した。また、実施例1では、電解処理槽において、ポンプを用いてめっき液を循環させながら電解処理を行った。   Then, in the electrolytic treatment tank, an anode for electrolytic copper plating was installed while being immersed in the contained via-fill bath. The anode for electrolytic copper plating was separated and placed in the electrolytic treatment tank in a state where the soluble copper anode (50 mm × 120 mm phosphorus-containing copper plate) and the insoluble anode (50 mm × 120 mm iridium oxide coated plate) were electrically connected. . In Example 1, the electrolytic treatment was performed in the electrolytic treatment tank while circulating the plating solution using a pump.

実施例1において、溶解性銅陽極と不溶性陽極との電解銅めっき液に浸漬した表面の面積比率は、1:1とした。また、陰極として50mm×130mmの無電解銅めっきを施したプリント基板を電解銅めっき液に浸漬した。そして、電解銅めっき液の通電量が0AH/L(新浴)、10AH/L、50AH/L、100AH/Lの各条件下において、電流密度2A/dmにて45分間電解処理を行った。その後、これら各条件下におけるビア内のめっき充填状況をクロスセクション法にて観察した。図2には、実施例1におけるビア内のめっき充填状況の断面写真を示す。 In Example 1, the area ratio of the soluble copper anode to the insoluble anode immersed in the electrolytic copper plating solution was 1: 1. In addition, a printed board having electroless copper plating of 50 mm × 130 mm as a cathode was immersed in an electrolytic copper plating solution. Then, the electrolytic treatment was performed at a current density of 2 A / dm 2 for 45 minutes under the conditions of a current flowing amount of the electrolytic copper plating solution of 0 AH / L (new bath), 10 AH / L, 50 AH / L, and 100 AH / L. . Thereafter, the state of plating filling in the via under each of these conditions was observed by a cross-section method. FIG. 2 shows a cross-sectional photograph of the state of filling of plating in the via in Example 1.

実施例2では、実施例1と同様に、電解銅めっき用陽極として溶解性銅陽極と不溶性陽極とを電気的に接続した状態で併用した場合における効果を確認するための試験を行った。   In Example 2, as in Example 1, a test was performed to confirm the effect when a soluble copper anode and an insoluble anode were used in an electrically connected state as an anode for electrolytic copper plating.

この実施例2では、実施例1と同じ被めっき部材を用いた。また、実施例2では、ルーセントカパーSVF−A(0.4mL/L)をMPS(1mg/L)に変更した以外、実施例1と同じ電解前処理条件及び電解処理条件を採用した。従って、実施例2で採用したこれら処理条件に関する説明は省略する。   In Example 2, the same member to be plated as in Example 1 was used. Further, in Example 2, the same electrolysis pretreatment conditions and electrolysis treatment conditions as in Example 1 were adopted, except that Lucent Copper SVF-A (0.4 mL / L) was changed to MPS (1 mg / L). Therefore, description of these processing conditions employed in the second embodiment will be omitted.

実施例2では、電解銅めっき用陽極について、溶解性銅陽極と不溶性陽極との電解銅めっき液中の面積比率が、「10:1」、「5:1」、「1:1」、「1:1(不溶性陽極として白金張りチタンを使用)」、「1:5」、「1:10」となるものを用意した。そして、電解銅めっき液の通電量が0AH/L、0.5AH/L、1AH/L、4AH/L、10AH/Lの各条件下において、実施例1と同様に、陰極として50mm×130mmの無電解銅めっきを施したプリント基板を電解銅めっき液に浸漬し、電流密度2A/dmにて45分間電解処理を行った。これら各条件下におけるビア内のめっき充填状況をクロスセクション法にて観察した。図3には、実施例2におけるビア内のめっき充填状況の断面写真を示す。 In Example 2, for the anode for electrolytic copper plating, the area ratio of the soluble copper anode to the insoluble anode in the electrolytic copper plating solution was “10: 1”, “5: 1”, “1: 1”, “ 1: 1 (using platinum-coated titanium as an insoluble anode), "1: 5", and "1:10" were prepared. Then, under the respective conditions of 0 AH / L, 0.5 AH / L, 1 AH / L, 4 AH / L, and 10 AH / L of the electrolytic copper plating solution, as in Example 1, a 50 mm × 130 mm cathode was used. The printed board subjected to the electroless copper plating was immersed in an electrolytic copper plating solution, and subjected to an electrolytic treatment at a current density of 2 A / dm 2 for 45 minutes. Under these conditions, the filling state of the plating in the via was observed by a cross-section method. FIG. 3 shows a cross-sectional photograph of the state of plating filling in the via in Example 2.

比較例Comparative example

[比較例1]
比較例1では、電解銅めっき用陽極として溶解性銅陽極のみ用いた場合における効果を確認するための試験を行った。
[Comparative Example 1]
In Comparative Example 1, a test was performed to confirm the effect when only a soluble copper anode was used as the anode for electrolytic copper plating.

比較例1では、電解銅めっき用陽極として溶解性銅陽極のみ用いた以外は実施例1と同じ電解前処理条件及び電解処理条件を採用した。従って、比較例1で採用したこれら処理条件に関する説明は省略する。   In Comparative Example 1, the same electrolytic pretreatment conditions and electrolytic treatment conditions as in Example 1 were employed except that only a soluble copper anode was used as the anode for electrolytic copper plating. Therefore, description of these processing conditions employed in Comparative Example 1 will be omitted.

また、比較例1では、実施例1と同じ試験を行った。図2には、実施例1と対比可能なように、比較例1におけるビア内のめっき充填状況の断面写真を示す。   In Comparative Example 1, the same test as in Example 1 was performed. FIG. 2 shows a cross-sectional photograph of the state of filling of plating in the via in Comparative Example 1 so as to be comparable with Example 1.

[比較例2]
比較例2では、比較例1と同様に、電解銅めっき用陽極として溶解性銅陽極のみ用いた場合における効果を確認するための試験を行った。
[Comparative Example 2]
In Comparative Example 2, as in Comparative Example 1, a test was performed to confirm the effect when only a soluble copper anode was used as the anode for electrolytic copper plating.

比較例2では、電解銅めっき用陽極として溶解性銅陽極のみ用いた点、ルーセントカパーSVF−A(0.4mL/L)をMPS(1mg/L)に変更した点以外は実施例1と同じ電解前処理条件及び電解処理条件を採用した。従って、比較例2で採用したこれら処理条件に関する説明は省略する。   Comparative Example 2 was the same as Example 1 except that only the soluble copper anode was used as the anode for electrolytic copper plating, and that Lucent Copper SVF-A (0.4 mL / L) was changed to MPS (1 mg / L). Electrolysis pretreatment conditions and electrolysis treatment conditions were employed. Therefore, description of these processing conditions employed in Comparative Example 2 is omitted.

また、比較例2では、実施例2と同じ試験を行った。図3には、実施例2と対比可能なように、比較例2におけるビア内のめっき充填状況の断面写真を示す。   In Comparative Example 2, the same test as in Example 2 was performed. FIG. 3 shows a cross-sectional photograph of the state of plating filling in the vias in Comparative Example 2 so as to be comparable with Example 2.

図2に示す結果より、電解銅めっき液が貯留された電解処理槽内に配設する陽極として、溶解性銅陽極と不溶性陽極とを電気的に接続した状態で備えたものを用いた場合には、溶解性銅陽極のみを用いた場合と異なり、通電量が100AH/Lまで大きくなってもビアの充填状況に殆ど差がなく、安定して優れたフィリング性が得られることが分かった。   From the results shown in FIG. 2, when the anode provided in a state where the soluble copper anode and the insoluble anode are electrically connected to each other is used as the anode disposed in the electrolytic treatment tank in which the electrolytic copper plating solution is stored. Is different from the case where only a soluble copper anode is used, and it is found that there is almost no difference in the filling state of the via even when the amount of current is increased up to 100 AH / L, and that excellent filling properties can be obtained stably.

図3に示す結果より、電解銅めっき液が貯留された電解処理槽内に配設する陽極として、溶解性銅陽極と不溶性陽極とを電気的に接続した状態で備えたものを用いた場合には、溶解性銅陽極のみを用いた場合と比べて、電解銅めっき液にMPSが1mg/L含まれた場合でも比較的短時間でフィリング性の回復が図られることが分かった。また、このときに、実施例2における溶解性銅陽極と不溶性陽極との電解銅めっき液中の面積比率が「10:1」のものとそれ以外の面積比率のものとを対比したときに、溶解性陽極の占める割合が大きくなるほどフィリング性の回復が図り難くなる傾向が見受けられた。一方、溶解性陽極の占める割合が小さくなるほど電解銅めっき液中における溶解性銅陽極からの銅の供給が足りなくなり、電解銅めっき液中の銅濃度を維持するために別途銅源の補給が必要となることが想定出来る。以上の観点から、溶解性銅陽極と不溶性陽極との電解銅めっき液中の面積比率は、5:1〜1:5であることがより好ましいことが理解出来る。   From the results shown in FIG. 3, when the anode provided in a state where the soluble copper anode and the insoluble anode were electrically connected to each other was used as the anode disposed in the electrolytic treatment tank in which the electrolytic copper plating solution was stored. It was found that, as compared with the case where only the soluble copper anode was used, even when MPS was contained in the electrolytic copper plating solution at 1 mg / L, the filling property was recovered in a relatively short time. Further, at this time, when the area ratio of the soluble copper anode and the insoluble anode in the electrolytic copper plating solution in Example 2 was “10: 1” and the area ratio was other than that, It was found that the larger the proportion of the soluble anode, the more difficult it was to recover filling properties. On the other hand, as the proportion of the soluble anode becomes smaller, the supply of copper from the soluble copper anode in the electrolytic copper plating solution becomes insufficient, and a separate copper source needs to be supplied to maintain the copper concentration in the electrolytic copper plating solution. It can be assumed that From the above viewpoint, it can be understood that the area ratio of the soluble copper anode to the insoluble anode in the electrolytic copper plating solution is more preferably 5: 1 to 1: 5.

以上より、本件発明に係る電解銅めっき用陽極、及びそれを用いた電解銅めっき装置を用いることで、装置構造を複雑化させずに、めっき促進性やビアフィリング性等のめっき特性の向上を図ることが出来ることが分かった。このことから、本件発明に係る電解銅めっき用陽極用いて電解処理を行った場合には、電解銅めっき液中のMPSの濃度上昇に伴う悪影響を効果的に排除することが可能であることが理解出来る。 As described above, by using the anode for electrolytic copper plating according to the present invention and the electrolytic copper plating apparatus using the same, it is possible to improve plating characteristics such as plating promotion property and via filling property without complicating the apparatus structure. It turned out that I could do it. Therefore, it matter if the electrolysis treatment was conducted using an electrolytic copper plating anodes according to the invention, it is possible to effectively eliminate the adverse effects associated with elevated concentrations of MPS in the electrolytic copper plating solution Can understand.

本件発明に係る電解銅めっき用陽極、及びそれを用いた電解銅めっき装置によれば、ジスルフィド化合物を含有した酸性電解銅めっき液を用いた場合にMPSの濃度上昇を効果的に抑制し、所望のめっき特性を安定的に得ることが出来る。また、本件発明に係る電解銅めっき用陽極を用いることで、電解めっき装置の構造を簡素化して、設備コストの低減を図ることが出来る。従って、本件発明に係る電解銅めっき用陽極、及びそれを用いた電解銅めっき装置は、特にスルーホール及び/又はビアホールを有するプリント配線基板やウエハーに電解銅めっき処理を施す際に好適に用いることが出来る。 ADVANTAGE OF THE INVENTION According to the electrolytic copper plating anode which concerns on this invention, and the electrolytic copper plating apparatus using the same, when using the acidic electrolytic copper plating solution containing the disulfide compound, the density | concentration rise of MPS is suppressed effectively and it is desired. Can be stably obtained. Further, by using the anode for electrolytic copper plating according to the present invention, the structure of the electrolytic copper plating apparatus can be simplified, and the equipment cost can be reduced. Accordingly, the anode for electrolytic copper plating and the electrolytic copper plating apparatus using the same according to the present invention are preferably used particularly when performing an electrolytic copper plating treatment on a printed wiring board or a wafer having through holes and / or via holes. Can be done.

W・・・被めっき部材
1・・・電解銅めっき用陽極
2・・・溶解性銅陽極
3・・・不溶性陽極
5・・・循環配管
6・・・ノズル
10・・・電解銅めっき装置
20・・・電解処理槽
21・・・電解銅めっき液(酸性電解銅めっき液)
W: Plated member 1: Anode for electrolytic copper plating 2: Soluble copper anode 3 ... Insoluble anode 5: Circulation piping 6: Nozzle 10: Electrolytic copper plating apparatus 20 ... Electrolytic treatment tank 21 ... Electrolytic copper plating solution (acidic electrolytic copper plating solution)

Claims (5)

ジスルフィド化合物を含有した酸性電解銅めっき液が貯留された電解処理槽内に配設する陽極であって、
当該陽極が、溶解性銅陽極と不溶性陽極とを電気的に接続した状態で備えたことを特徴とする電解銅めっき用陽極。
An anode disposed in an electrolytic treatment tank in which an acidic electrolytic copper plating solution containing a disulfide compound is stored,
An anode for electrolytic copper plating, wherein the anode is provided with a soluble copper anode and an insoluble anode electrically connected.
前記溶解性銅陽極と前記不溶性陽極との電解銅めっき液に浸漬した表面の面積比率は、10:1〜1:10である請求項1に記載の電解銅めっき用陽極。   The anode for electrolytic copper plating according to claim 1, wherein an area ratio of a surface of the soluble copper anode and the insoluble anode immersed in the electrolytic copper plating solution is 10: 1 to 1:10. 前記溶解性銅陽極と前記不溶性陽極との電解銅めっき液に浸漬した表面の面積比率は、5:1〜1:5である請求項2に記載の電解銅めっき用陽極。   The anode for electrolytic copper plating according to claim 2, wherein an area ratio of a surface of the soluble copper anode and the insoluble anode immersed in the electrolytic copper plating solution is 5: 1 to 1: 5. 請求項1〜請求項3のいずれかに記載の電解銅めっき用陽極を備えたことを特徴とする電解めっき装置。 Electrolytic copper plating apparatus, comprising the electrolytic copper plating anode according to any one of claims 1 to 3. 被めっき部材が、スルーホール及び/又はビアホールを有するプリント配線基板又はウエハーであって、当該スルーホール及び/又は当該ビアホールの内部に銅を充填する電解処理を行う請求項4に記載の電解めっき装置。 The electrolytic copper plating according to claim 4, wherein the member to be plated is a printed wiring board or a wafer having a through hole and / or a via hole, and an electrolytic treatment for filling copper in the through hole and / or the via hole is performed. apparatus.
JP2017147707A 2017-07-31 2017-07-31 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same Active JP6653799B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017147707A JP6653799B2 (en) 2017-07-31 2017-07-31 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
TW107119157A TWI683931B (en) 2017-07-31 2018-06-04 Anode for electrolytic copper plating and electrolytic copper plating device using the same
KR1020207002324A KR102381835B1 (en) 2017-07-31 2018-07-11 Anode for electrolytic copper plating and electrolytic copper plating apparatus using same
CN201880047492.6A CN110997989A (en) 2017-07-31 2018-07-11 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
PCT/JP2018/026178 WO2019026578A1 (en) 2017-07-31 2018-07-11 Positive electrode for electrolytic copper plating and electrolytic copper plating apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147707A JP6653799B2 (en) 2017-07-31 2017-07-31 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same

Publications (2)

Publication Number Publication Date
JP2019026894A JP2019026894A (en) 2019-02-21
JP6653799B2 true JP6653799B2 (en) 2020-02-26

Family

ID=65232696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147707A Active JP6653799B2 (en) 2017-07-31 2017-07-31 Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same

Country Status (5)

Country Link
JP (1) JP6653799B2 (en)
KR (1) KR102381835B1 (en)
CN (1) CN110997989A (en)
TW (1) TWI683931B (en)
WO (1) WO2019026578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038822A (en) * 2019-09-30 2021-04-08 한국재료연구원 Measuring cell for concentration of additive breakdown product in plating solution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018133532A1 (en) * 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Electrolyte and process for the production of chrome layers
CN111575746A (en) * 2020-06-10 2020-08-25 诸暨企周企业管理有限公司 Copper foil electrolysis production facility of anti-oxidant effect

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455705B2 (en) * 1999-11-08 2003-10-14 大阪府 Electro-copper plating apparatus and copper plating method using said apparatus
JP4033616B2 (en) 2000-09-04 2008-01-16 鶴見曹達株式会社 Manufacturing method of copper plating material
TWI268966B (en) * 2001-06-07 2006-12-21 Shipley Co Llc Electrolytic copper plating method
JP3803968B2 (en) 2002-10-22 2006-08-02 荏原ユージライト株式会社 Acid copper plating method and acid copper plating apparatus
JP2005187869A (en) 2003-12-25 2005-07-14 Hitachi Aic Inc Plating method and plating apparatus
JP5110269B2 (en) * 2007-08-09 2012-12-26 上村工業株式会社 Electro copper plating method
JP5650899B2 (en) * 2009-09-08 2015-01-07 上村工業株式会社 Electroplating equipment
EP2518187A1 (en) * 2011-04-26 2012-10-31 Atotech Deutschland GmbH Aqueous acidic bath for electrolytic deposition of copper
JP6423320B2 (en) * 2015-06-25 2018-11-14 田中貴金属工業株式会社 Plating apparatus and plating method
JP2017210644A (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038822A (en) * 2019-09-30 2021-04-08 한국재료연구원 Measuring cell for concentration of additive breakdown product in plating solution
KR102445229B1 (en) 2019-09-30 2022-09-21 한국재료연구원 Measuring cell for concentration of additive breakdown product in plating solution

Also Published As

Publication number Publication date
KR102381835B1 (en) 2022-04-01
TWI683931B (en) 2020-02-01
WO2019026578A1 (en) 2019-02-07
JP2019026894A (en) 2019-02-21
CN110997989A (en) 2020-04-10
KR20200032101A (en) 2020-03-25
TW201910565A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
KR100877923B1 (en) Electrolytic copper plating method
JP5293276B2 (en) Continuous electrolytic copper plating method
Dow et al. Filling mechanism in microvia metallization by copper electroplating
JP4221064B2 (en) Electrodeposition method of copper layer
EP1300488B1 (en) Plating path and method for depositing a metal layer on a substrate
JP5110269B2 (en) Electro copper plating method
JP4932370B2 (en) Electrolytic plating method, printed wiring board and semiconductor wafer
US20050155866A1 (en) Plating bath and method for depositing a metal layer on a substrate
WO2017204246A1 (en) Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid
JP6653799B2 (en) Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
CN106435664A (en) Electro-coppering solution of soluble anode for hole filling
TW569390B (en) Via filling method
JP2006111976A (en) Acid copper plating method and acid copper plating device
JP2002226993A (en) Copper plating method and apparatus for printed circuit board
JP2010265519A (en) Tin ion feeder
JP2510422B2 (en) Copper plating method for printed circuit boards
JP2004143478A (en) Acid copper plating method, and acid copper plating device
JP3903120B2 (en) Copper sulfate plating method
JPH0673393B2 (en) Copper plating method for printed circuit boards
KR20140034529A (en) Electro-copper plating apparatus
KR100586842B1 (en) Composition for acidic copper plating additive producing no slime
JP2005179736A (en) Electrolytic copper plating method and electrolytic copper plating device
Ganesan et al. Innovative advances in copper electroplating for IC Substrate manufacturing
JP3071586B2 (en) Copper sulfate plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R150 Certificate of patent or registration of utility model

Ref document number: 6653799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250