JP2006316328A - Method for manufacturing two-layer flexible copper-clad laminate - Google Patents

Method for manufacturing two-layer flexible copper-clad laminate Download PDF

Info

Publication number
JP2006316328A
JP2006316328A JP2005142028A JP2005142028A JP2006316328A JP 2006316328 A JP2006316328 A JP 2006316328A JP 2005142028 A JP2005142028 A JP 2005142028A JP 2005142028 A JP2005142028 A JP 2005142028A JP 2006316328 A JP2006316328 A JP 2006316328A
Authority
JP
Japan
Prior art keywords
copper
plating
current density
film
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005142028A
Other languages
Japanese (ja)
Inventor
Shoichi Nishio
祥一 西尾
Toshihiro Nishio
俊宏 西尾
Takaaki Sakai
貴明 酒井
Shohei Matsui
尚平 松井
Kenji Hamamura
健二 浜村
Junichiro Mitsunami
淳一郎 三並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYOMEN SHORI SYSTEM KK
Osaka Soda Co Ltd
Original Assignee
HYOMEN SHORI SYSTEM KK
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYOMEN SHORI SYSTEM KK, Daiso Co Ltd filed Critical HYOMEN SHORI SYSTEM KK
Priority to JP2005142028A priority Critical patent/JP2006316328A/en
Publication of JP2006316328A publication Critical patent/JP2006316328A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To form a copper-plated layer which does not exerts stress on a two-layer flexible copper-clad laminate even when the layer is plated with high current density, and shows superior appearance. <P>SOLUTION: The method for manufacturing the flexible copper-clad laminate is directed at forming a copper foil on an organic polymer resin film by electrolytically plating copper on the film having an electroconductive seed layer on the surface: and comprises using an anode formed by coating an electrode active material containing a platinum group metal or the oxide thereof as a main component on a conductive substrate; using an electrolytic tank for plating, which is divided into an anode chamber and a cathode chamber by a cation-exchanger membrane; and plating copper on the film in a plating bath at 30°C or higher and with a copper-plating current density of 4 to 12 A/dm<SP>2</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は表面を導電性にした有機高分子フィルム材料上に電解銅めっきを行うことにより2層フレキシブル銅張積層板を製造する技術に関するものである。   The present invention relates to a technique for producing a two-layer flexible copper-clad laminate by performing electrolytic copper plating on an organic polymer film material having a conductive surface.

従来の酸性硫酸銅めっきにおいて、電気銅や無酸素銅を陽極として溶解すると、溶解過程で多量の一価の銅イオンが形成され、これが不均化反応を起こすなどして、めっき液中に多量の銅の微粒子や亜酸化銅の微粒子を形成する。これがめっき液中に浮遊してめっき皮膜中に取りこまれ、皮膜に重大な損傷をあたえるため不都合があった。   In conventional acidic copper sulfate plating, when electrolytic copper or oxygen-free copper is dissolved as an anode, a large amount of monovalent copper ions are formed during the dissolution process, which causes a disproportionation reaction and so on. Copper fine particles and cuprous oxide fine particles are formed. This is inconvenient because it floats in the plating solution and is taken into the plating film, causing serious damage to the film.

これを改良した含リン銅陽極は銅の溶解性の点では優れていたが、やはり一価の銅イオンの形成は避けられず、めっき時にはめっき液を強く空気撹拌して一価の銅イオンを酸化除去しなければならず、この空気撹拌により、含リン銅陽極の溶解効率は100%を超え、長期の連続めっきを行うとめっき液濃度が増加し、最適品質の銅めっき皮膜を得られなかった。また、含リン銅は溶解時に銅陽極表面にリン化銅を主成分とする黒いヘドロ状の付着膜(ブラックフィルム)を形成し、この中に金属スライムも形成される。これら陽極上の付着物は容易に脱落して溶液内に浮遊分散するため、通常、耐酸性の布袋(アノードバッグ)に銅陽極を装入しているが、この布袋がヘドロ状のスライムにより目詰まりを起こし、手間をかけて定期的に洗浄する必要があった。この場合、陽極上の付着物がめっき液内へ脱落した浮遊分散物は、アノードバッグで完全に除去できず頻繁にめっき皮膜にパーティクルの付着、ピットやザラツキなどの損傷を与えるなどの問題がある。また、含リン銅陽極の表面に形成されるブラックフィルムは高電流密度のめっきを行うと容易に脱落するため、めっき皮膜の不良につながり高電流密度でのめっきが困難であった。   Phosphorus-containing copper anodes improved in this way were superior in terms of copper solubility, but formation of monovalent copper ions was unavoidable, and during plating, the plating solution was vigorously stirred in air to remove monovalent copper ions. Oxidation must be removed, and by this air agitation, the dissolution efficiency of the phosphorous copper anode exceeds 100%, and the long-term continuous plating increases the concentration of the plating solution, making it impossible to obtain a copper plating film of optimum quality. It was. Further, the phosphorous copper forms a black sludge-like adhesion film (black film) mainly composed of copper phosphide on the surface of the copper anode when dissolved, and a metal slime is also formed therein. Since the deposits on these anodes easily fall off and float and disperse in the solution, a copper anode is usually placed in an acid-resistant cloth bag (anode bag). This cloth bag is covered with sludge-like slime. It was clogged and needed time and effort to clean it. In this case, the floating dispersion in which deposits on the anode have fallen into the plating solution cannot be completely removed by the anode bag, and there are problems such as frequent adhesion of particles to the plating film and damage such as pits and roughness. . Moreover, since the black film formed on the surface of the phosphorous-containing copper anode easily falls off when plating at a high current density, the plating film becomes defective and plating at a high current density is difficult.

更に、以上の問題点とは別に、一般に可溶性の金属陽極を用いる場合、めっき操業の過程で陽極自体の大きさ、陽極面積、被めっき面に対する配置が変化し、めっき厚さが均一にならないことも大きな問題であった。   Furthermore, apart from the above problems, when a soluble metal anode is generally used, the size of the anode itself, the anode area, and the arrangement with respect to the surface to be plated will change during the plating operation, and the plating thickness will not be uniform. Was also a big problem.

このような問題を解決するため、可溶性金属陽極の代替として不溶性陽極を導入し、更に、めっき処理によるめっき液中の銅イオンの消耗を補填するために、めっき槽と金属銅溶解槽を併設する方法が開示されている(特開平04−28895、特開平04−320089)。しかし、これらは銅イオンの補給に金属銅を用いているため、めっき液への金属銅の溶解性が悪く、めっき処理で消耗する銅イオンを十分補給することができなかった。また、不溶性陽極を直接めっき液中に設置しているため、不溶性陽極表面で、めっき液中に含まれる添加剤が分解消耗し、これらの分解物がめっき皮膜にパーティクルの付着、ピットやザラツキなどの損傷を与えるなどめっき不良が発生する事も問題であった。近年の電子機器の小型化、軽量化、高性能化に伴い、電気配線回路の高密度化への要求は高まっており、より高精度、高密度なめっきが要求されている。また、これらの高精度なめっきでは低い電流密度(2〜2.5 A/dm)でのめっきが行われており、生産性の向上が要求されている。しかし、フレキシブルプリント配線板用途の接着剤を用いない2層フレキシブル銅張積層板を電気めっき法により製造する場合にはめっき電流密度を高くすると、電析した銅の応力によりめっき銅張積層板が反るという問題があった。
特開平04-28895号公報 特開平04-320089号公報
In order to solve such problems, an insoluble anode is introduced as an alternative to a soluble metal anode, and a plating bath and a metal copper dissolution bath are provided in order to compensate for the consumption of copper ions in the plating solution due to the plating process. A method is disclosed (Japanese Patent Laid-Open Nos. 04-28895 and 04-320089). However, since these use metal copper for replenishment of copper ions, the solubility of metal copper in the plating solution is poor, and the copper ions consumed in the plating process cannot be sufficiently replenished. In addition, since the insoluble anode is installed directly in the plating solution, the additive contained in the plating solution is decomposed and consumed on the surface of the insoluble anode, and these decomposed products adhere to particles on the plating film, such as pits and roughness. It was also a problem that defective plating occurred, such as causing damage. With the recent reduction in size, weight, and performance of electronic devices, there is an increasing demand for higher density of electrical wiring circuits, and higher precision and higher density plating is required. Moreover, in these high-precision plating, plating is performed at a low current density (2 to 2.5 A / dm 2 ), and improvement in productivity is required. However, when a two-layer flexible copper-clad laminate that does not use an adhesive for flexible printed wiring boards is manufactured by electroplating, if the plating current density is increased, the plated copper-clad laminate is caused by the stress of electrodeposited copper. There was a problem of warping.
JP 04-28895 A Japanese Patent Laid-Open No. 04-320089

本発明の目的は、可溶性金属陽極を用いた場合の上記問題点を解決することである。すなわち本発明は、電気銅めっきを行う際に、めっき液中の陽極側で発生するスラッジ等の発生を抑え、かつ高電流密度での生産性の高い2層フレキシブル銅張積層板を提供することを課題とする。   An object of the present invention is to solve the above-described problems when a soluble metal anode is used. That is, the present invention provides a two-layer flexible copper-clad laminate that suppresses the generation of sludge and the like generated on the anode side in a plating solution and has high productivity at high current density when performing electrolytic copper plating. Is an issue.

本発明者らは、上記課題について鋭意検討した結果、電極の材料を変更し、陽極での添加剤の分解やパーティクルの発生を抑えつつ、表面を導電性にした有機高分子フィルム材料を安定して高電流密度で銅めっきするためにはめっき浴温度を30 ℃以上にすれば良いとの知見を得た。即ち本発明は表面に導電性のシード層を有する有機高分子樹脂フィルムに銅を電解めっきすることにより、該フィルム上に銅箔を形成するフレキシブル銅張積層板を製造する方法において、導電性基体に白金族金属またはその酸化物を主成分とする電極活性物質を被覆した陽極を使用し、めっき用電解槽を陽イオン交換膜を用いて陽極室と陰極室に分離し、めっき浴温度が30 ℃以上および銅めっき電流密度が4〜12 A/dmであることを特徴とするフレキシブル銅張積層板の製造方法である。ここで電流密度は表面に導電性のシード層を有する有機高分子樹脂フィルムの単位面積当たりに流れる電流を示す。 As a result of intensive studies on the above problems, the inventors of the present invention changed the material of the electrode to stabilize the organic polymer film material having a conductive surface while suppressing decomposition of additives and generation of particles at the anode. In order to perform copper plating at a high current density, it was found that the plating bath temperature should be 30 ° C or higher. That is, the present invention relates to a method for producing a flexible copper-clad laminate in which a copper foil is formed on a film of an organic polymer resin film having a conductive seed layer on the surface thereof by electroplating copper. Using an anode coated with an electrode active material mainly composed of a platinum group metal or oxide thereof, and separating the plating electrolytic cell into an anode chamber and a cathode chamber using a cation exchange membrane, and a plating bath temperature of 30 ℃ above and copper plating current density is method of manufacturing a flexible copper-clad laminate which is a 4~12 a / dm 2. Here, the current density indicates a current flowing per unit area of the organic polymer resin film having a conductive seed layer on the surface.

銅めっき槽は、めっきを実際行う陰極室とそれに対して陽イオン交換膜で隔てられた陽極室から構成される。陽極室には不溶性陽極が装填されている。上記の構成によって、陽極として可溶性陽極である電気銅、無酸素銅又は含リン銅を使用しないので、一価の銅イオンの不均化反応やブラックフィルムの形成からなるスラッジ等のパーティクルが大量に発生し、被めっき物を汚染してしまうことは一切なくなるという効果がある。また、陽極室は陽イオン交換膜で陰極室と隔離するので、従来不溶性陽極を使用することによって発生していた、めっき液中の添加剤の分解及びこれによるめっき不良が発生することもない。   The copper plating tank is composed of a cathode chamber in which plating is actually performed and an anode chamber separated from the cathode chamber by a cation exchange membrane. The anode chamber is filled with an insoluble anode. With the above configuration, no electrolytic copper, oxygen-free copper, or phosphorous-containing copper, which is a soluble anode, is used as the anode, so there is a large amount of particles such as sludge resulting from the disproportionation reaction of monovalent copper ions and the formation of a black film. There is an effect that it is never generated and contaminates the object to be plated. Further, since the anode chamber is separated from the cathode chamber by a cation exchange membrane, the decomposition of the additive in the plating solution and the defective plating due to the use of the insoluble anode do not occur.

本発明に使用できる不溶性陽極は、導電性基体に白金族金属またはその酸化物を主成分とする電極活性物質を被覆した陽極が好ましい。ここで、導電性基体とは、チタン、タンタル、ジルコニウム、ニオブ等のバルブ金属やチタン−タンタル、チタン−ニオブ、チタン−パラジウム、チタン−タンタル−ニオブ等のバルブ金属を主体とする合金または導電性ダイヤモンド(例えば、ホウ素をドープしたダイヤモンド)が好適であり、その形状は板状、網状、棒状、多孔板状などの種々の形状を取りえる。また、上記の金属、合金、導電性ダイヤモンドを鉄、ニッケルなどのバルブ金属以外の金属または導電性セラミックス表面に被覆させたものでもよい。また、皮膜の密着性の点からは電極活性物質は酸化イリジウムに酸化タンタル、酸化チタン、酸化スズなどを混合した混合酸化物の被膜が好適である。特に酸化タンタルと酸化イリジウムを混合した電極活性物質をチタン基体に被覆した陽極が長時間の使用が可能である点で最も望ましい。
ここで、陽極反応は酸素発生反応が主であるため水素イオンが発生し、酸性度が増大して導電性基体の腐食が生じやすい。そのため、導電性基体と電極活性物質被膜の間に酸性電解液に耐食性の強いタンタル金属薄膜の中間層をスパッタリング等の方法で導入し、導電性基体の腐食を防止してもよい。
The insoluble anode that can be used in the present invention is preferably an anode in which a conductive substrate is coated with an electrode active material mainly composed of a platinum group metal or an oxide thereof. Here, the conductive substrate is a valve metal such as titanium, tantalum, zirconium, or niobium, or an alloy or conductive material mainly composed of a valve metal such as titanium-tantalum, titanium-niobium, titanium-palladium, or titanium-tantalum-niobium. Diamond (for example, diamond doped with boron) is suitable, and the shape thereof can take various shapes such as a plate shape, a net shape, a rod shape, and a porous plate shape. Further, the above metal, alloy, or conductive diamond may be coated on the surface of a metal other than valve metal such as iron or nickel, or a conductive ceramic. From the viewpoint of the adhesion of the film, the electrode active material is preferably a mixed oxide film in which iridium oxide is mixed with tantalum oxide, titanium oxide, tin oxide or the like. In particular, an anode in which an electrode active material mixed with tantalum oxide and iridium oxide is coated on a titanium substrate is most desirable because it can be used for a long time.
Here, since the anodic reaction is mainly an oxygen generation reaction, hydrogen ions are generated, the acidity is increased, and the conductive substrate is easily corroded. Therefore, an intermediate layer of a tantalum metal thin film having strong corrosion resistance may be introduced into the acidic electrolyte between the conductive substrate and the electrode active material film by a method such as sputtering to prevent corrosion of the conductive substrate.

本発明で使用できる陽イオン交換膜は、炭化水素系の陽イオン交換膜やパーフルオロカーボンの陽イオン交換膜が好ましい。炭化水素系の陽イオン交換膜としては旭硝子株式会社製のセレミオンや株式会社トクヤマ製のネオセプタなどがあり、パーフルオロカーボンの陽イオン交換膜としてはデュポン社製のナフィオンなどが使用できる。   The cation exchange membrane that can be used in the present invention is preferably a hydrocarbon cation exchange membrane or a perfluorocarbon cation exchange membrane. Examples of the hydrocarbon-based cation exchange membrane include Selemion manufactured by Asahi Glass Co., Ltd. and Neoceptor manufactured by Tokuyama Co., Ltd., and Nafion manufactured by DuPont as a perfluorocarbon cation exchange membrane.

本発明に使用できる陽極室は、陽イオン交換膜により銅めっき液から隔てられ、内部に不溶性陽極が装填されて酸性電解液で満たされた形態をとっている。ここで酸性電解液は陽極上で酸素発生をする電解液であれば硫酸水溶液やリン酸水溶液等、特に限定されないが、めっき液の酸性成分と合致させるのがよく、硫酸水溶液が好ましい。好ましい酸性電解液の濃度範囲は硫酸の場合40〜150g/Lである(L:リットル)。   The anode chamber that can be used in the present invention is separated from the copper plating solution by a cation exchange membrane, and is filled with an insoluble anode and filled with an acidic electrolyte. Here, the acidic electrolytic solution is not particularly limited as long as it is an electrolytic solution that generates oxygen on the anode, but it is preferably matched with the acidic component of the plating solution and is preferably an aqueous sulfuric acid solution. A preferable concentration range of the acidic electrolyte is 40 to 150 g / L in the case of sulfuric acid (L: liter).

陰極室で使用する硫酸銅めっき液としては、通常用いられている公知の硫酸銅めっき液から適宜選択して用いることができる。この様な硫酸銅めっき液の基本組成の一例として、硫酸銅五水和物40〜250g/L、好ましくは80〜250g/L、98%硫酸10〜250g/L、好ましくは10〜180g/L、塩素イオン10〜2000mg/Lを含むめっき液が挙げられる。更に、該めっき液に添加剤として有機高分子界面活性剤成分、光沢剤および平滑化剤を添加することができる。
該硫酸銅めっき液に含まれる有機高分子界面活性剤成分は、硫酸銅めっき液における添加剤として公知の有機高分子化合物から適宜選択して用いればよく、例えば、ポリエチレングリコール、ポリプロピレングリコールあるいはそれらのランダムまたはブロック重合ポリマーあるいは、ポリエチレンオキシド、ポリオキシアルキレングリコール等のポリエーテル化合物等を用いることができる。これらの有機高分子化合物は1種類を添加しても、2種類以上を複合して添加しても良い。有機高分子界面活性剤の添加量は通常の硫酸銅めっき液と同様でよく、例えば高分子化合物として0.01〜30g/Lが挙げられる。
光沢剤についても、硫酸銅めっき液における添加剤として公知の成分から適宜選択して用いればよく、例えば、3−メルカプトプロピルスルホン酸、そのナトリウム塩、ビス(3−スルホプロピル)ジスルフィド、その2ナトリウム塩、N,N−ジメチルジチオカルバミン酸(3−スルホプロピル)エステル、そのナトリウム塩等の硫黄化合物を用いることができる。これらの硫黄化合物は1種類を添加しても、2種類以上を複合して添加しても良い。光沢剤の添加量は通常の硫酸銅めっき液と同様でよく、例えば硫黄化合物として0.1〜30mg/Lが挙げられる。
平滑化剤についても硫酸銅めっき液における平滑化剤として公知の成分を適宜選択して用いることができる。この様な平滑化剤の例としては、フェナチジン系化合物、フタロシアニン系化合物、ポリエチレンイミン、ポリベンジルエチレンイミンなどのポリアルキレンイミンおよびその誘導体、N−染料置換体化合物などのチオ尿素誘導体、フェノサフラニン、サフラニンアゾナフトール、ジエチルサフラニンアゾフェノール、ジメチルサフラニンジメチルアニリンなどのサフラニン化合物、ポリエピクロルヒドリンおよびその誘導体、チオフラビン等のフェニルチアゾニウム化合物、アクリルアミド、プロピルアミド、ポリアクリル酸アミドなどのアミド類等の窒素化合物を挙げることができる。これらの窒素化合物は1種類を添加しても、2種類以上を複合して添加しても良い。硫酸銅めっき液に平滑化剤を配合する場合には、その添加量は、通常の硫酸銅めっき液と同様で良く、通常、0.1〜300mg/Lとすればよい。
The copper sulfate plating solution used in the cathode chamber can be appropriately selected from commonly used known copper sulfate plating solutions. As an example of the basic composition of such a copper sulfate plating solution, copper sulfate pentahydrate 40-250 g / L, preferably 80-250 g / L, 98% sulfuric acid 10-250 g / L, preferably 10-180 g / L And a plating solution containing 10 to 2000 mg / L of chloride ions. Furthermore, an organic polymer surfactant component, a brightener and a smoothing agent can be added as additives to the plating solution.
The organic polymer surfactant component contained in the copper sulfate plating solution may be appropriately selected and used from known organic polymer compounds as additives in the copper sulfate plating solution. For example, polyethylene glycol, polypropylene glycol or those Random or block polymerization polymers or polyether compounds such as polyethylene oxide and polyoxyalkylene glycol can be used. These organic polymer compounds may be added alone or in combination of two or more. The addition amount of the organic polymer surfactant may be the same as that of a normal copper sulfate plating solution. For example, 0.01 to 30 g / L may be mentioned as the polymer compound.
The brightener may be appropriately selected from known components as additives in the copper sulfate plating solution. For example, 3-mercaptopropylsulfonic acid, its sodium salt, bis (3-sulfopropyl) disulfide, its disodium Sulfur compounds such as salts, N, N-dimethyldithiocarbamic acid (3-sulfopropyl) ester, and sodium salts thereof can be used. These sulfur compounds may be added singly or in combination of two or more. The addition amount of the brightening agent may be the same as that of a normal copper sulfate plating solution, and examples thereof include 0.1 to 30 mg / L as a sulfur compound.
As for the smoothing agent, known components can be appropriately selected and used as the smoothing agent in the copper sulfate plating solution. Examples of such leveling agents include phenatidine compounds, phthalocyanine compounds, polyalkylenimines such as polyethyleneimine and polybenzylethyleneimine and derivatives thereof, thiourea derivatives such as N-dye substitution compounds, phenosafranine, Safranin compounds such as safranine azonaphthol, diethyl safranine azophenol, dimethyl safranin dimethylaniline, nitrogen compounds such as polyepichlorohydrin and derivatives thereof, phenylthiazonium compounds such as thioflavine, amides such as acrylamide, propylamide, polyacrylamide, etc. Can be mentioned. These nitrogen compounds may be added alone or in combination of two or more. When a smoothing agent is blended in the copper sulfate plating solution, the addition amount thereof may be the same as that of a normal copper sulfate plating solution, and usually 0.1 to 300 mg / L.

硫酸銅めっきの条件については、通常の硫酸銅めっきと同様で良いが、高電流密度でめっきを行う際にはめっき液の液温が30℃以上が好ましい。さらに好ましくは40℃以上、特に40〜60℃が好ましい。めっき液温が30℃未満では高電流密度のめっきを行った際にめっき皮膜に応力が発生し、フィルム状の陰極を用いた場合には被めっき物に反りが生じ好ましくない。30℃よりは40℃以上の方が反りが少なくなる。60℃を超えると添加剤の分解が促進される。陰極電流密度は4〜12A/dmの条件で電気めっきを行えばよい。更に好ましくは6〜12A/dmで行うことができる。12A/dmより高い電流密度では銅めっき表面が荒れる(凹凸状態となる)ために銅張積層版としては使えない。 The conditions for copper sulfate plating may be the same as those for normal copper sulfate plating. However, when plating at a high current density, the temperature of the plating solution is preferably 30 ° C. or higher. More preferably, it is 40 degreeC or more, Especially 40-60 degreeC is preferable. When the plating solution temperature is less than 30 ° C., stress is generated in the plating film when plating with a high current density is performed, and when a film-like cathode is used, the object to be plated is warped, which is not preferable. Warpage is less at 40 ° C or higher than at 30 ° C. If it exceeds 60 ° C, decomposition of the additive is promoted. Cathode current density may be performed electroplating under the conditions of 4~12A / dm 2. More preferably at a 6~12A / dm 2. At a current density higher than 12 A / dm 2 , the copper plating surface becomes rough (becomes uneven) and cannot be used as a copper clad laminate.

めっき装置はめっき液の温度を30℃以上に保つために加温装置を含む温度調節機能を備えることが好ましい。
また、めっき液の撹拌はエアレーション等による浴の撹拌や噴流撹拌を行うことが出来る。これらの撹拌手法を複数用いても良い。
The plating apparatus preferably has a temperature adjustment function including a heating apparatus in order to keep the temperature of the plating solution at 30 ° C. or higher.
The plating solution can be agitated by aeration or jet agitation. A plurality of these stirring methods may be used.

陰極は被めっき表面に導電層を備えていれば良く、導電層の具体例としては金属層や炭素層が挙げられる。陰極の具体例としては有機高分子化合物からなるフィルム上にシード層と呼ばれる金属層を備えた材料が挙げられる。有機高分子化合物からなるフィルムとしては、ポリエステルフィルム、ポリイミドフィルム、ポリアラミドフィルムなどが挙げられる。フィルムの厚みは柔軟に折れ曲がる厚みであれば良く、具体的には100μm以下であれば良いが、高集積化を行うためにはフィルム厚みは薄いほうが好ましく、25μm以下が好ましい。めっき装置への装着や搬送時の問題を避けるために他に支持体を用いずにフィルムを陰極とする場合には3μm以上の厚みが好ましい。   The cathode only needs to have a conductive layer on the surface to be plated, and specific examples of the conductive layer include a metal layer and a carbon layer. Specific examples of the cathode include a material having a metal layer called a seed layer on a film made of an organic polymer compound. Examples of the film made of an organic polymer compound include a polyester film, a polyimide film, and a polyaramid film. The thickness of the film may be any thickness that can be bent flexibly. Specifically, it may be 100 μm or less. However, in order to achieve high integration, the film thickness is preferably thin, and preferably 25 μm or less. A thickness of 3 μm or more is preferable in the case where the film is used as a cathode without using any other support in order to avoid problems during mounting and transportation to the plating apparatus.

陰極は硫酸銅めっきに先だって、酸水溶液による活性化処理を行ってもよい。活性化処理を行うことによって、酸化皮膜を除去し、硫酸銅めっき皮膜の密着性を高めることができる。酸水溶液の種類については、特に限定的ではないが、例えば、98%硫酸を10〜100g/L含む水溶液を用いることができる。処理条件についても、特に限定的でないが、例えば、10〜30℃の酸水溶液中に被めっき物を10〜60秒浸漬すればよい。   Prior to copper sulfate plating, the cathode may be activated with an aqueous acid solution. By performing the activation treatment, the oxide film can be removed and the adhesion of the copper sulfate plating film can be improved. The type of the acid aqueous solution is not particularly limited. For example, an aqueous solution containing 98 to 100 g / L of 98% sulfuric acid can be used. Although it does not specifically limit also about process conditions, For example, what is necessary is just to immerse a to-be-plated object in 10-30 degreeC acid aqueous solution for 10 to 60 seconds.

本発明の硫酸銅めっき装置を用いてめっきを行う際、めっき液中の銅イオン損失量相当の酸化銅を電解槽外部に設けた溶解槽に投入・溶解することで、めっき液の銅イオン濃度を制御することができる。具体的には電流量から計算した酸化銅の必要量を人為的に溶解槽に投入してもよく、あるいは酸化銅の投入をコンピュータ制御により自動化することもできる。酸化銅の形態は特に限定されないが、溶解性を考慮すると粉体を使用するのが好ましい。 When plating using the copper sulfate plating apparatus of the present invention, the copper ion concentration in the plating solution is obtained by charging and dissolving copper oxide equivalent to the copper ion loss amount in the plating solution in a dissolution tank provided outside the electrolytic cell. Can be controlled. Specifically, the required amount of copper oxide calculated from the amount of current may be artificially charged into the dissolution tank, or the addition of copper oxide may be automated by computer control. The form of copper oxide is not particularly limited, but it is preferable to use powder in consideration of solubility.

酸化銅を溶解するための溶解槽は、めっき処理による銅イオンの消耗量を補填する機能を有するものであればいかなる構造であってよいが、より効率よく酸化銅を溶解し、不純物のない良質の銅イオンをめっき液に補充するためには、溶解槽の内部に隔壁を設けて酸化銅溶解室と濃度調整用の緩衝室に二分するのが好ましい。この場合、両室間には不溶性の粒子その他の不純物を取り除くためにフィルタを設置してよい。   The dissolution tank for dissolving copper oxide may have any structure as long as it has a function to compensate for the consumption of copper ions by plating, but it dissolves copper oxide more efficiently and has no impurities. In order to replenish the plating solution with copper ions, it is preferable to provide a partition inside the dissolution tank and bisect the copper oxide dissolution chamber and the concentration adjusting buffer chamber. In this case, a filter may be installed between both chambers to remove insoluble particles and other impurities.

以上説明したように、本発明は、電気銅めっきを行う際に、めっき液温度を30℃以上にすることで高電流密度で電子部品および電子部品用途材料への高精度なめっきができるというという優れた効果を有する。また、めっき処理により失われるめっき液中の銅イオン相当量の酸化銅粉末を溶解室に投入することで、めっき電流密度を高めてもめっき液中の硫酸銅濃度を一定に保つことができ、良好なめっき被膜を安定に得ることができる。さらに、金属銅陽極使用に伴うヘドロ除去等の作業時の危険性を効果的に回避することができる。   As described above, according to the present invention, when performing electrolytic copper plating, the plating solution temperature is set to 30 ° C. or higher so that high-precision plating can be performed on electronic components and electronic component application materials at a high current density. Has an excellent effect. In addition, by putting copper oxide powder equivalent to the copper ions in the plating solution lost by the plating treatment into the dissolution chamber, the copper sulfate concentration in the plating solution can be kept constant even if the plating current density is increased, A good plating film can be obtained stably. Furthermore, the danger at the time of work, such as sludge removal accompanying metal copper anode use, can be avoided effectively.

次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example.

(電極活性物質と不溶性陽極)
基板用材料としてのチタン板を超音波洗浄により脱脂した後、#30のアランダムを用いて全面に圧力0.4 MPaで約10分間ブラスト処理を施した後、この処理材料板を流水中で一昼夜洗い、乾燥した。こうして得られた前処理チタン板の表面に、下記に示す液組成の電極活性物質被覆液を塗布し、これを100℃で10分間乾燥し、さらに電気炉中で500℃で20分間焼成した(電極活性物質被覆層の重量組成比はIr/Ta=7/3)。この塗布・焼成操作を5回繰り返して作製した酸化イリジウムを電極活性物質とする電極を不溶性陽極として用いた。
電極活性物質用原料液組成
TaCl 0.32g
HIrCl・6HO 1.00g
35% HCl 1.0ml
n-CH(CH)OH 10.0ml
陰極には導電性を有する厚さ0.2μmの銅シード層付き25μm厚みのPET(ポリエチレンテレフタレート)フィルムを用いた。
めっき槽は隔膜により陽極室と陰極室に分離した。隔膜は陽イオン交換膜(旭硝子株式会社製セレミオン)を使用した。陰極液として、硫酸銅五水和物(150g/L)、硫酸(120g/L)、塩素イオン(60mg/L)、有機高分子界面活性剤としてポリエチレングリコール(分子量3500)(1g/L)、光沢剤としてビス(3−スルホプロピル)ジスルフィド(3mg/L)、平滑化剤としてヤヌスグリーンB(3mg/L)を純水(導電率1mS/cm)に溶解させて調製した。陽極液として硫酸(100g/L)水溶液を使用した。( )内は濃度を示す。めっき浴温は40℃とした。
(Electrode active substance and insoluble anode)
After degreasing the titanium plate as a substrate material by ultrasonic cleaning, the entire surface was subjected to a blast treatment at a pressure of 0.4 MPa for about 10 minutes using # 30 alundum, and then this treatment material plate was washed in running water all day and night. , Dried. On the surface of the pretreated titanium plate thus obtained, an electrode active substance coating solution having the following liquid composition was applied, dried at 100 ° C. for 10 minutes, and further baked in an electric furnace at 500 ° C. for 20 minutes ( The weight composition ratio of the electrode active material coating layer is Ir / Ta = 7/3). An electrode using iridium oxide prepared by repeating this coating / firing operation 5 times as an electrode active material was used as an insoluble anode.
Raw material composition for electrode active materials
TaCl 5 0.32g
H 2 IrCl 6 · 6H 2 O 1.00g
35% HCl 1.0ml
n-CH 3 (CH 2 ) 3 OH 10.0 ml
A 25 μm-thick PET (polyethylene terephthalate) film with a 0.2 μm-thick copper seed layer having conductivity was used for the cathode.
The plating tank was separated into an anode chamber and a cathode chamber by a diaphragm. The membrane used was a cation exchange membrane (Ceremon, manufactured by Asahi Glass Co., Ltd.). As a catholyte, copper sulfate pentahydrate (150 g / L), sulfuric acid (120 g / L), chloride ion (60 mg / L), polyethylene glycol (molecular weight 3500) (1 g / L) as an organic polymer surfactant, It was prepared by dissolving bis (3-sulfopropyl) disulfide (3 mg / L) as a brightener and Janus Green B (3 mg / L) as a smoothing agent in pure water (conductivity 1 mS / cm). A sulfuric acid (100 g / L) aqueous solution was used as the anolyte. Figures in parentheses indicate concentration. The plating bath temperature was 40 ° C.

陰極電流密度を1A/dmから10A/dmの間で1A/dm間隔で変化させ、各電流密度で10μm厚みの銅めっきを行った。銅イオン濃度はめっき液中の銅消費量に合わせて逐次酸化銅を添加して調整した。また、平滑光沢めっき皮膜を連続して得るために、光沢剤と平滑化剤を適正濃度範囲内で添加し調整した。撹拌はエアー撹拌を使用した。めっき電流密度を変更した際のめっき皮膜の外観(光沢、ザラツキ状態)観察とそり率測定を行った。そり率はJPCA(社団法人日本プリント回路工業会)規格のJPCA−BM01に従って測定した。陰極電流密度が1〜10A/dmのめっきにおいて平滑光沢めっき物が得られ、そり率は1.0%以下であった。 The cathode current density was varied from 1 A / dm 2 to 10 A / dm 2 at 1 A / dm 2 intervals, and copper plating with a thickness of 10 μm was performed at each current density. The copper ion concentration was adjusted by sequentially adding copper oxide according to the copper consumption in the plating solution. Moreover, in order to obtain a smooth gloss plating film continuously, a brightener and a smoothing agent were added and adjusted within an appropriate concentration range. Stirring used air stirring. The appearance (glossy, rough state) of the plating film when changing the plating current density was observed and the warpage rate was measured. The warpage rate was measured according to JPCA-BM01 of JPCA (Japan Printed Circuit Industry Association) standard. A smooth and bright plated product was obtained in plating with a cathode current density of 1 to 10 A / dm 2 , and the warpage rate was 1.0% or less.

陰極液において硫酸銅五水和物濃度を220g/L、硫酸濃度を90g/Lとした以外は実施例1と同様のめっきを行い(めっき浴温:40℃)、陰極電流密度を1A/dmから10A/dmの間で1A/dm間隔で変化させ、各電流密度で10μm厚みの銅めっきを行った。めっき皮膜の外観(光沢、ザラツキ状態)観察とそり率測定を行った。そり率はJPCA規格のJPCA−BM01に従って測定した。陰極電流密度が1〜10A/dmのめっきにおいて平滑光沢めっき物が得られ、そり率は1.0%以下であった。 The same plating as in Example 1 was performed except that the copper sulfate pentahydrate concentration was 220 g / L and the sulfuric acid concentration was 90 g / L in the catholyte (plating bath temperature: 40 ° C.), and the cathode current density was 1 A / dm. The thickness was changed from 2 to 10 A / dm 2 at 1 A / dm 2 intervals, and copper plating with a thickness of 10 μm was performed at each current density. The appearance (glossiness, roughness) of the plating film was observed and the warpage rate was measured. The warpage rate was measured in accordance with JPCA standard JPCA-BM01. A smooth and bright plated product was obtained in plating with a cathode current density of 1 to 10 A / dm 2 , and the warpage rate was 1.0% or less.

有機高分子界面活性剤としてポリプロピレングリコール(分子量6000)1g/L、光沢剤としてビス(3−スルホプロピル)ジスルファイド2ナトリウム3mg/L、平滑化剤としてサフラニンO 3mg/Lを用いた以外は実施例1と同様のめっきを行い(めっき浴温:40℃)、陰極電流密度を1A/dmから10A/dmの間で1A/dm間隔で変化させ、各電流密度で10μm厚みの銅めっきを行った。めっき皮膜の外観(光沢、ザラツキ状態)観察とそり率測定を行った。そり率はJPCA規格のJPCA−BM01に従って測定した。陰極電流密度が1〜10A/dmのめっきにおいて平滑光沢めっき物が得られ、そり率は1.0%以下であった。 Example except that polypropylene glycol (molecular weight: 6000) 1 g / L as an organic polymer surfactant, bis (3-sulfopropyl) disulfide disodium 3 mg / L as a brightener, and safranin O 3 mg / L as a smoothing agent 1 plating (plating bath temperature: 40 ° C.), and the cathode current density is changed from 1 A / dm 2 to 10 A / dm 2 at 1 A / dm 2 intervals, and the copper plating is 10 μm thick at each current density. Went. The appearance (glossiness, roughness) of the plating film was observed and the warpage rate was measured. The warpage rate was measured in accordance with JPCA standard JPCA-BM01. A smooth and bright plated product was obtained in plating with a cathode current density of 1 to 10 A / dm 2 , and the warpage rate was 1.0% or less.

陰極として厚さ0.2μmの銅シード層付き12μm厚みのポリアラミドフィルムを用いた以外は実施例1と同様のめっきを行い(めっき浴温:40℃)、陰極電流密度を1A/dmから10A/dmの間で1A/dm間隔で変化させ、各電流密度で10μm厚みの銅めっきを行った。めっき皮膜の外観(光沢、ザラツキ状態)観察とそり率測定を行った。そり率はJPCA規格のJPCA−BM01に従って測定した。陰極電流密度が10A/dmのめっきにおいても平滑光沢めっき物がえられ、そり率は1.8%であった。
(比較例1)
The same plating as in Example 1 was performed except that a 12 μm-thick polyaramid film with a copper seed layer having a thickness of 0.2 μm was used as the cathode (plating bath temperature: 40 ° C.), and the cathode current density was from 1 A / dm 2. The thickness was changed at 10 A / dm 2 at 1 A / dm 2 intervals, and copper plating with a thickness of 10 μm was performed at each current density. The appearance (glossiness, roughness) of the plating film was observed and the warpage rate was measured. The warpage rate was measured in accordance with JPCA standard JPCA-BM01. A smooth and bright plated product was obtained even when the cathode current density was 10 A / dm 2 , and the warpage rate was 1.8%.
(Comparative Example 1)

めっき浴温を25℃とした以外は実施例1と同様にPETフィルムに銅めっきを行った。陰極電流密度を1A/dmから10A/dmの間で1A/dm間隔で変化させ、各電流密度で10μm厚みの銅めっきを行った。めっき電流密度を変更した際のめっき皮膜の外観(光沢、ザラツキ状態)観察とそり率測定を行った。そり率はJPCA規格のJPCA−BM01に従って測定した。陰極電流密度が6A/dmのめっきにおいて外観不良が発生した。また、その時の反り率は11.3%であった。
(比較例2)
The PET film was copper plated in the same manner as in Example 1 except that the plating bath temperature was 25 ° C. The cathode current density was varied from 1 A / dm 2 to 10 A / dm 2 at 1 A / dm 2 intervals, and copper plating with a thickness of 10 μm was performed at each current density. The appearance (glossy, rough state) of the plating film when changing the plating current density was observed and the warpage rate was measured. The warpage rate was measured in accordance with JPCA standard JPCA-BM01. An appearance defect occurred in plating with a cathode current density of 6 A / dm 2 . The warpage rate at that time was 11.3%.
(Comparative Example 2)

陰極として厚さ0.2μmの銅シード層付き12μm厚みのポリアラミドフィルムを用い、めっき浴温を25℃とした以外は実施例1と同様のめっきを行った。陰極電流密度を1A/dmから10A/dmの間で1A/dm間隔で変化させ、各電流密度で10μm厚みの銅めっきを行った。めっき電流密度を変更した際のめっき皮膜の外観(光沢、ザラツキ状態)観察とそり率測定を行った。そり率はJPCA規格のJPCA−BM01に従って測定した。
陰極電流密度が1〜3A/dmのめっきにおいて平滑光沢めっき物が得られ、反り率は1.0%以下であった。
陰極電流効率が4A/dmのめっきにおいて平滑光沢めっき物が得られたが、反り率が8.0%であった。
陰極電流効率が5A/dmのめっきにおいて平滑光沢めっき物が得られたが、反り率が14.6%であった。
陰極電流密度が6A/dmのめっきにおいて外観不良が発生した。また、その時の反り率は25.4%であった。
The same plating as in Example 1 was performed except that a 12 μm-thick polyaramid film with a copper seed layer having a thickness of 0.2 μm was used as the cathode and the plating bath temperature was 25 ° C. The cathode current density was varied from 1 A / dm 2 to 10 A / dm 2 at 1 A / dm 2 intervals, and copper plating with a thickness of 10 μm was performed at each current density. The appearance (glossy, rough state) of the plating film when changing the plating current density was observed and the warpage rate was measured. The warpage rate was measured in accordance with JPCA standard JPCA-BM01.
In plating with a cathode current density of 1 to 3 A / dm 2 , a smooth and bright plated product was obtained, and the warpage rate was 1.0% or less.
A smooth and bright plated product was obtained by plating with a cathode current efficiency of 4 A / dm 2 , but the warpage rate was 8.0%.
A smooth and bright plated product was obtained by plating with a cathode current efficiency of 5 A / dm 2 , but the warpage rate was 14.6%.
An appearance defect occurred in plating with a cathode current density of 6 A / dm 2 . The warpage rate at that time was 25.4%.

30℃以上でめっきを行うことにより、高電流密度でフレキシブル高分子樹脂フィルムに銅めっきを行っても外観の優れた反りの無い2層フレキシブル銅張積層板を作製することができる。   By performing plating at 30 ° C. or higher, a two-layer flexible copper-clad laminate having excellent appearance and no warp can be produced even when copper plating is performed on a flexible polymer resin film at a high current density.

Claims (4)

表面に導電性のシード層を有する有機高分子樹脂フィルムに銅を電解めっきすることにより、該フィルム上に銅箔を形成するフレキシブル銅張積層板を製造する方法において、導電性基体に白金族金属またはその酸化物を主成分とする電極活性物質を被覆した陽極を使用し、めっき用電解槽を陽イオン交換膜を用いて陽極室と陰極室に分離し、めっき浴温度が30 ℃以上および銅めっき電流密度が4〜12 A/dmであることを特徴とするフレキシブル銅張積層板の製造方法。 In a method for producing a flexible copper-clad laminate in which a copper foil is formed on an organic polymer resin film having a conductive seed layer on the surface thereof by electroplating copper, a platinum group metal is used as the conductive substrate. Alternatively, an anode coated with an electrode active material mainly composed of the oxide is used, and the plating electrolytic cell is separated into an anode chamber and a cathode chamber using a cation exchange membrane, and the plating bath temperature is 30 ° C. or higher and copper A method for producing a flexible copper clad laminate, wherein the plating current density is 4 to 12 A / dm 2 . 銅めっき電流密度が6〜12 A/dmであることを特徴とする請求項1に記載のフレキシブル銅張積層板の製造方法。 Method of manufacturing a flexible copper-clad laminate according to claim 1, wherein the copper plating current density of 6~12 A / dm 2. めっき浴温度が40 ℃以上および銅めっき電流密度が6〜12 A/dmであることを特徴とする請求項1に記載のフレキシブル銅張積層板の製造方法。 2. The method for producing a flexible copper-clad laminate according to claim 1, wherein the plating bath temperature is 40 ° C. or higher and the copper plating current density is 6 to 12 A / dm 2 . 有機高分子樹脂フィルムがポリアラミド樹脂フィルムである請求項1〜3のいずれかに記載のフレキシブル銅張積層板の製造方法。 The method for producing a flexible copper-clad laminate according to any one of claims 1 to 3, wherein the organic polymer resin film is a polyaramid resin film.
JP2005142028A 2005-05-16 2005-05-16 Method for manufacturing two-layer flexible copper-clad laminate Pending JP2006316328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142028A JP2006316328A (en) 2005-05-16 2005-05-16 Method for manufacturing two-layer flexible copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142028A JP2006316328A (en) 2005-05-16 2005-05-16 Method for manufacturing two-layer flexible copper-clad laminate

Publications (1)

Publication Number Publication Date
JP2006316328A true JP2006316328A (en) 2006-11-24

Family

ID=37537254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142028A Pending JP2006316328A (en) 2005-05-16 2005-05-16 Method for manufacturing two-layer flexible copper-clad laminate

Country Status (1)

Country Link
JP (1) JP2006316328A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008126522A1 (en) * 2007-03-15 2010-07-22 日鉱金属株式会社 Copper electrolyte and two-layer flexible substrate obtained using the same
WO2010110259A1 (en) * 2009-03-23 2010-09-30 日鉱金属株式会社 Two-layered flexible substrate, and copper electrolyte for producing same
JP2012057191A (en) * 2010-09-06 2012-03-22 Sumitomo Metal Mining Co Ltd Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
TWI394494B (en) * 2008-02-28 2013-04-21 Ls Mtron Ltd Dimensionally stable flexible metal clad laminate and method for manufacturing the same
WO2015008564A1 (en) * 2013-07-18 2015-01-22 ペルメレック電極株式会社 Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP2016113645A (en) * 2014-12-11 2016-06-23 住友金属鉱山株式会社 Copper electroplating solution for flexible wiring board and method for producing laminate using the copper electroplating solution
JP2017014564A (en) * 2015-06-30 2017-01-19 住友金属鉱山株式会社 Copper electroplating solution for flexible wiring board and method for manufacturing laminate using the copper electroplating solution
JP2017031472A (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Method of manufacturing laminate for flexible wiring board
JP2017031459A (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Electric copper plating solution for flexible wiring board and method of producing laminate produced by the electric copper plating solution
JP2017210644A (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid
JP2018059166A (en) * 2016-10-07 2018-04-12 松田産業株式会社 Palladium-nickel alloy film and method of producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008126522A1 (en) * 2007-03-15 2010-07-22 日鉱金属株式会社 Copper electrolyte and two-layer flexible substrate obtained using the same
TWI394494B (en) * 2008-02-28 2013-04-21 Ls Mtron Ltd Dimensionally stable flexible metal clad laminate and method for manufacturing the same
WO2010110259A1 (en) * 2009-03-23 2010-09-30 日鉱金属株式会社 Two-layered flexible substrate, and copper electrolyte for producing same
CN102348835A (en) * 2009-03-23 2012-02-08 吉坤日矿日石金属株式会社 Two-layered flexible substrate, and copper electrolyte for producing same
JPWO2010110259A1 (en) * 2009-03-23 2012-09-27 Jx日鉱日石金属株式会社 Two-layer flexible substrate and copper electrolyte used for manufacturing the same
JP2012057191A (en) * 2010-09-06 2012-03-22 Sumitomo Metal Mining Co Ltd Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
WO2015008564A1 (en) * 2013-07-18 2015-01-22 ペルメレック電極株式会社 Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP2015021154A (en) * 2013-07-18 2015-02-02 ペルメレック電極株式会社 Method and apparatus for continuous product of electrolytic metal foil
JP2016113645A (en) * 2014-12-11 2016-06-23 住友金属鉱山株式会社 Copper electroplating solution for flexible wiring board and method for producing laminate using the copper electroplating solution
JP2017014564A (en) * 2015-06-30 2017-01-19 住友金属鉱山株式会社 Copper electroplating solution for flexible wiring board and method for manufacturing laminate using the copper electroplating solution
JP2017031472A (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Method of manufacturing laminate for flexible wiring board
JP2017031459A (en) * 2015-07-31 2017-02-09 住友金属鉱山株式会社 Electric copper plating solution for flexible wiring board and method of producing laminate produced by the electric copper plating solution
JP2017210644A (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid
WO2017204246A1 (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid
CN109154100A (en) * 2016-05-24 2019-01-04 美录德有限公司 Soluble copper anode, cathode copper electroplanting device, plating method of electrocytic copper and acidic electrolysis copper electroplating liquid store method
JP2018059166A (en) * 2016-10-07 2018-04-12 松田産業株式会社 Palladium-nickel alloy film and method of producing the same

Similar Documents

Publication Publication Date Title
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
EP1300488B1 (en) Plating path and method for depositing a metal layer on a substrate
JP5417112B2 (en) Method for electrolytic deposition of metal layers
JP5293276B2 (en) Continuous electrolytic copper plating method
US6773573B2 (en) Plating bath and method for depositing a metal layer on a substrate
JP4221064B2 (en) Electrodeposition method of copper layer
EP1300486B1 (en) Plating bath and method for depositing a metal layer on a substrate
JP2005320631A (en) Improved plating method
JP2003183875A (en) Plating bath and method for depositing metal layer on substrate
JP2003113491A (en) Plating bath and method for depositing metal layer on substrate
CN106435664A (en) Electro-coppering solution of soluble anode for hole filling
US3769179A (en) Copper plating process for printed circuits
TW201816199A (en) Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
JP2007262430A (en) Electroplating method
JP3352081B2 (en) Printed circuit board copper plating equipment
WO2015008564A1 (en) Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP2510422B2 (en) Copper plating method for printed circuit boards
JP3903120B2 (en) Copper sulfate plating method
KR100545664B1 (en) Method for electro copperplating substrates
JP5425440B2 (en) Whisker suppression method in copper plating
KR100586842B1 (en) Composition for acidic copper plating additive producing no slime
JPH06173097A (en) Copper sulfate plating method