JP2021181152A - 産業用ロボットアーム - Google Patents

産業用ロボットアーム Download PDF

Info

Publication number
JP2021181152A
JP2021181152A JP2021112530A JP2021112530A JP2021181152A JP 2021181152 A JP2021181152 A JP 2021181152A JP 2021112530 A JP2021112530 A JP 2021112530A JP 2021112530 A JP2021112530 A JP 2021112530A JP 2021181152 A JP2021181152 A JP 2021181152A
Authority
JP
Japan
Prior art keywords
end effector
robot arm
link
actuator
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021112530A
Other languages
English (en)
Other versions
JP7373212B2 (ja
Inventor
ブロガード,トルニー
Brogardh Torgny
アダム ニルソン
Nilsson Adam
ニルソン,クラス
Nilsson Klas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognibotics AB
Original Assignee
Cognibotics AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognibotics AB filed Critical Cognibotics AB
Publication of JP2021181152A publication Critical patent/JP2021181152A/ja
Application granted granted Critical
Publication of JP7373212B2 publication Critical patent/JP7373212B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0072Programme-controlled manipulators having parallel kinematics of the hybrid type, i.e. having different kinematics chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/108Bearings specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)

Abstract

【課題】非常に速いプロセス、物体の非常に速い動き、および/または高安全のロボット設備に適した軽量ロボットアームを提供する。【解決手段】エンドエフェクタ動作用のロボットアームで、第1のアクチュエータからエンドエフェクタプラットフォームまでの第1のキネマティックチェーンとを含み、第1の自由度が与えられる。また、第2のアクチュエータからエンドエフェクタプラットフォームまでの第2のキネマティックチェーンを備え、第2の自由度が与えられる。さらに、第3のアクチュエータからエンドエフェクタプラットフォームまでの第3のキネマティックチェーンを備え、第3の自由度が与えられる。また、第4のキネマティックチェーンを備え、方向付けリンケージと方向付けトランスミッションとを含み、方向付けリンケージがエンドエフェクタ回転リンクとエンドエフェクタ回転リンクの各端部ジョイントに少なくとも2の自由度を提供する継手とを含む。【選択図】図1

Description

本開示は、産業用ロボットアームの技術分野に属し、特に、非常に高速のプロセス、物体の非常に速い動き、および高安全のロボット設備のための軽量ロボットアームに属するものである。
例えば、人間とロボットが直接連携する場合や、フェンスのないロボット設備を使用することが利点であるときは、安全性の高い設備が必要である。先行技術を見ると、パラレルキネマティックロボット(国際公開第1987/003528号に記載されているDeltaロボットなど)があり、そのようなロボットにおいては、すべてのアクチュエータが固定スタンドに取り付けられ、それにより軽量構造を得ることができる。しかしながら、それらのパラレルキネマティックロボットには、アームシステムが非常に大きなスペースを占有し、ワークスペースがアームシステムに必要なスペースと比べて非常に小さいという欠点がある。このため、それらのロボットは、アームシステムに利用できる大きなスペースがあり、特に垂直方向に、非常に制限されたワークスペースを確保するのに十分な用途のみに使用することができる。このため、Deltaロボットは主に、ロボットアーム構造のための十分なスペースがあるコンベヤベルトなどの平面上のピックアンドプレース操作に使用されている。
国際公開第2014/187486号では、スリムな平行構造が提案されており、例えばDeltaロボットと比較して、アームシステムに必要なスペースと比べてより大きなワークスペースを可能にする。このロボット構造では、第1のアクチュエータが第1の軸を中心に第1のアームを駆動し、第1のキネマティックチェーンが、第1のアームの回転をエンドエフェクタの運動に伝達するように構成され、第1のキネマティックチェーンが、第1のロッドと、第1のアームと第1のロッドの間の第1の継手とを有する。第1の継手は、少なくとも2の自由度(DOF)を持ち、第2の継手は、第1のロッドとエンドエフェクタの間に取り付けられている。エンドエフェクタの6の自由度の制約を失うことなく機能するために、国際公開第2014/187486号による設計は、第1のロッドのねじり剛性に依存している。しかしながら、これは、第1のロッドの第1の継手と第2の継手の両方に2のDOFが必要であることを意味し、それは、ワークスペースの中央のように、エンドエフェクタの傾斜角度を一定に保つことができないことを意味する。したがって、国際公開第2014/187486号によるスリムなロボットのコンセプトでは、水平面上の単純なピックアンドプレース操作でも、2のDOFのリストが必要である。しかしながら、そのようなリストはかなりの重量を追加し、ロボットは、例えばDeltaロボットほど軽量のアームシステムを持つことはないであろう。さらに、電力を伝達して、リストのアクチュエータを制御するために、ケーブルが必要になる。
国際公開第2015/188843号では、パラレルキネマティックロボットが、ベースと、ベースに対して移動可能なエンドエフェクタとを備える。第1のアクチュエータは、ベースに取り付けられるとともに、第1のキネマティックチェーンを介してエンドエフェクタに接続され、第1のキネマティックチェーンが、第1のアームと、第1のロッドと、第1のアームと第1のロッド間の第1の継手と、第1のロッドとエンドエフェクタ間の第2の継手とを含む。第2のアクチュエータは、ベースに取り付けられるとともに、第2のキネマティックチェーンを介してエンドエフェクタに接続され、第2のキネマティックチェーンが、第2のアームと、第2のロッドと、第2のアームと第2のロッド間の第3の継手と、第2のロッドとエンドエフェクタ間の第4の継手とを含む。第3のアクチュエータは、ベースまたは第1のアームに取り付けられるとともに、第3のキネマティックチェーンを介してエンドエフェクタに接続され、第3のキネマティックチェーンが、第1の歯車と第2の歯車を含み、それら第1のおよび第2の歯車が、ベアリングでエンドエフェクタに軸支され、互いに噛み合っている。第3のキネマティックチェーンの少なくとも1の要素は、第1のキネマティックチェーンの少なくとも1の要素とキネマティックペアを構成する。これにより、エンドエフェクタの並進運動に関与するキネマティックチェーンが、エンドエフェクタの回転運動に関与するキネマティックチェーンの支持構造として利用される。
国際公開第2014/187486号のスリムな構造とは対照的に、国際公開第2015/188843号は、アームシステムのために非常に大きなスペースを必要とするロボット構造を記載している。これには、移動されるエンドエフェクタプラットフォームに3つのアクチュエータを直接接続する3つの独立したキネマティックチェーンが含まれるため、3つの異なる方向にスイングする3本のアームに、大きなスペースが必要となる。さらに、国際公開第2015/188843号のロボット構造のワークスペースは、本発明のロボット構造の場合よりも遙かに小さい。
国際公開第2015/188843号は、エンドエフェクタプラットフォームに取り付けられたツールを回転させるための構成を含む。国際公開第2015/188843号の図1の構成は、直列に作動するリンクとギアからなる。それらのリンクは、アクチュエータをエンドエフェクタプラットフォームに接続する3つの独立したキネマティックチェーンのうちの2つに取り付けられており、既に限定されている位置決め機能を制限する。これらの制限は、リンクが2つの別々のキネマティックチェーンに取り付けられているという事実、直列に作動するリンクの接続がどのように行われるかという事実、そしてアームがゼロポジションから離れて回転するとリンクの動作範囲が大幅に減少するという事実によるものである。国際公開第2015/188843号の図1では、第1の軸を中心にツールが回転すると、同時に第2の軸を中心にツールが回転し、これを補うために、第2の軸についての回転範囲が失われる。さらに、エンドエフェクタプラットフォームがワークスペースの中心から離れるほど、回転能力が大幅に低下し、大きなオフセットがもたらされる。しかしながら、国際公開第2015/188843号の図2の構成では、回転範囲が大きくなるが、国際公開第2015/188843号の図1に記載の概念よりも限られたワークスペースが削減される。この理由の1つは、アームとエンドエフェクタプラットフォーム間のリンクにカルダン継手が必要なことである。さらに、ツールの回転に使用されるキネマティックチェーンには、直列に接続された複数のギアステップが必要である。これにより、アームとエンドエフェクタプラットフォームの重量が増加し、バックラッシュと摩擦が増加し、メンテナンスの要件が増加する。
本開示の目的は、従来技術の問題点の少なくとも一部を軽減することである。更なる目的は、非常に速いプロセス、物体の非常に速い動き、および/または高安全のロボット設備に適した軽量ロボットアームを提供することである。これらの目的および他の目的は、独立請求項に係るロボットアームによって、また、従属請求項に係る実施形態によって少なくとも部分的に達成される。
第1の態様によれば、本開示は、エンドエフェクタ動作用のロボットアームに関する。このロボットアームは、第1の回転軸を中心に内側アームアセンブリを回転させるように構成された第1のアクチュエータを備える。内側アームアセンブリは、第2の回転軸を中心に回動可能に構成された外側アームリンケージに接続され、外側アームリンケージは、エンドエフェクタプラットフォームに接続され、それにより、第1のアクチュエータからエンドエフェクタプラットフォームまでの第1のキネマティックチェーンが形成されて、エンドエフェクタプラットフォームを位置決めするための第1の自由度が与えられる。ロボットアームは、第2の回転軸を中心に外側アームリンケージを回転させるように構成された第2のアクチュエータを備え、それにより、第2のアクチュエータからエンドエフェクタプラットフォームまでの第2のキネマティックチェーンが形成されて、エンドエフェクタプラットフォームを位置決めするための第2の自由度が与えられる。さらに、ロボットアームは、外側アームリンケージが継手を介して回転するように、第3の回転軸を中心にシャフトを回転させるように構成された第3のアクチュエータを備え、それにより、第3のアクチュエータからエンドエフェクタプラットフォームまでの第3のキネマティックチェーンが形成されて、エンドエフェクタプラットフォームを位置決めするための第3の自由度が与えられる。また、ロボットアームは、第4のアクチュエータと、第4のアクチュエータの動きをエンドエフェクタの対応する方向付け軸に伝達するように構成された第4のキネマティックチェーンとを備える。第4のキネマティックチェーンは、少なくとも1のベアリングを介して内側アームアセンブリに取り付けられた方向リンケージと、エンドエフェクタプラットフォームに取り付けられた方向付けトランスミッションとを備える。方向付けリンケージは、エンドエフェクタ回転リンクと、エンドエフェクタ回転リンクの各端部ジョイントに少なくとも2の自由度を提供する継手とを備える。
このため、開示のロボットアームは、何れもアーム構造にアクチュエータを含むことなく、エンドエフェクタの傾斜角度を一定に保ち、エンドエフェクタの傾斜角度を制御し、エンドエフェクタの傾斜角度を一定にして回転角度を制御し、かつエンドエフェクタの傾斜角度と回転の両方を制御する能力を有するため、産業上利用可能である。これらの重要な特徴は、非常にスリムなロボット構造と同時に、非常に大きなワークスペースを得ることができる。
いくつかの実施形態によれば、方向付けトランスミッションが、エンドエフェクタへの接続部を含み、この接続部が、エンドエフェクタの動きに少なくとも4の自由度を与える。このため、エンドエフェクタは、アーム構造内にアクチュエータを有することなく、少なくとも4の自由度で移動することができる。
いくつかの実施形態によれば、方向付けトランスミッションが、外側ギアリング機構のギア比によって決定される角度範囲内でエンドエフェクタを回転させるように構成された少なくとも1の外側ギアリング機構を備える。エンドエフェクタは、内側アームアセンブリが鉛直軸を中心に回転するように構成されている場合はプログラムされた回転角度を得るように、また内側アームアセンブリが水平軸を中心に回転するように構成されている場合はプログラムされた傾斜角度を得るように、制御される。
いくつかの実施形態によれば、方向付けリンケージは、外側アームリンケージの回転によって制限されることなく、内側ギアリング機構のギア比によって決定される角度範囲内でエンドエフェクタを回転させるように構成された少なくとも1の内側ギアリング機構を備える。このため、大きなワークスペースのすべてにおいて、エンドエフェクタの大きな再方向付けを与えることができる。
いくつかの実施形態によれば、方向付けリンケージおよび方向付けトランスミッションが、回転角制限なしに、方向付け軸を中心にエンドエフェクタを回転させるように構成されている。これにより、可能な最短の経路(および最小のサイクルタイム)を選択することができるように、いつでもエンドエフェクタを回転させることができる。
いくつかの実施形態によれば、第2のキネマティックチェーンは、接続ベアリングを介して外側アームリンケージに接続されている少なくとも1のリンクを含む内側アームリンケージを含み、第2のアクチュエータが、少なくとも1のリンクに接続された少なくとも1の内側接続継手を介して少なくとも1のリンクを動かすように構成されている。このため、第2のアクチュエータは、アーム構造と一緒に移動するのではなく、ロボットスタンドに配置することができる。
いくつかの実施形態によれば、外側アームリンケージは、エンドエフェクタプラットフォームに接続された外側の一対の平行リンクを含む。内側アームリンケージは、外側アームリンケージの外側の一対の平行リンクに接続された内側の一対の平行リンクを含む。また、第2のキネマティックチェーンは、レバーの回転をエンドエフェクタプラットフォームの対応する動きに伝達するように構成されている。外側の一対の平行リンクは、エンドエフェクタプラットフォームの望ましくない回転を防止するため、例えば、ピックアンドプレース操作のために4自由度の産業上重要なケースにおいて、追加のリストの動き(コストと重量を追加するアクチュエータおよびトランスミッション)が不要となる。
いくつかの実施形態によれば、外側の一対の平行リンクおよび内側の一対の平行リンクが、それぞれのリンクのリンク接続毎に、1つの接続ベアリングによって接続され、接続ベアリングの回転軸が、外側の一対の平行リンクの各リンクの軸方向中心線に対して直角である。これにより、外側アームリンケージは、内側アームリンケージと外側アームリンケージのリンク間の接続点のキネマティックスに関する不確実性なしに、内側アームリンケージによって正確に制御される。外側アームリンケージは、2つの継手を介して内側アームアセンブリに接続され、それにより、それら2つの継手の中心を通る回転線が、位置決め時に鉛直(またはアームの向きに応じて水平)のまま維持される。
いくつかの実施形態によれば、ロボットアームが、接続ベアリングを機械的に互いに接続する剛性ビームを含む。これにより、直列接続された内側および外側アームリンケージを介して、内側アームアセンブリの回転軸の方向をエンドエフェクタの回転軸に伝達する、より正確な機械的解決策が得られる。代替的な実施形態では、ビームがエンドエフェクタビームと平行な状態で、第2のベアリング対のベアリングが互いに接続される。
いくつかの実施形態によれば、内側の一対の平行リンクは、オフセットビーム上の玉継手を介して剛性ビームに取り付けられる。玉継手の形状は高精度に容易に作成できるため、直列接続された内側および外側アームリンケージを介して、内側アームアセンブリの回転軸の方向をエンドエフェクタの回転軸に伝達する精度をさらに向上させることができる。
いくつかの実施形態によれば、第3のキネマティックチェーンが、第3のアクチュエータと外側の一対の平行リンクの作動リンクとの間に接続された内側トランスミッションを含む。このため、第3のキネマティックチェーンの内側部分が十分に保護された状態で、ロボットアームの内側で最も負荷のかかる部分を丈夫であるがスリムに形成することができる。
いくつかの実施形態によれば、ロボットアームが、外側の一対の平行リンクの作動リンクに沿って取り付けられたリンクベアリングを含む。リンクベアリングの回転軸は、外側の一対の平行リンクの作動リンクの中心と一致する。リンクベアリングは、内側トランスミッションの回転によって引き起こされるエンドエフェクタの望ましくない傾斜角度エラーを回避するために使用される。このため、リンクベアリングにより、エンドリンクの傾斜角度を一定にして、いつでも内側リンクペアを2方向にスイングさせることが可能になる。
いくつかの実施形態によれば、ロボットアームは、外側の一対の平行リンクとエンドエフェクタプラットフォームを接続するエンドエフェクタベアリングを含み、エンドエフェクタベアリングの回転軸が、外側の一対の平行リンクの中心に対して垂直である。これにより、軽量のエンドエフェクタプラットフォームを有する、非常にスリムなロボットアーム構造が可能になる。エンドエフェクタのベアリングにより、外側アームリンケージはエンドエフェクタプラットフォームの6DOFをすべて拘束し、ロボット構造の残りの部分とエンドエフェクタプラットフォームとの間にこれ以上のリンクが不要となる。
いくつかの実施形態によれば、エンドエフェクタベアリングの回転軸が、接続ベアリングの回転軸と平行である。これにより、ツール軸を回転させるための正確な制御が得られる。
いくつかの実施形態によれば、ロボットアームは、外側の一対の平行リンクのリンクと内側の一対の平行リンクのリンクとを接続する接続ベアリングを含み、各接続ベアリングの回転軸が、外側の一対の平行リンクのそれぞれのリンクの中心と一致する。それにより、小さいDOFとそれによる低い製造コストが、外側アームリンケージと内側アームリンケージとの間の継手接続について得られる。
いくつかの実施形態によれば、内側の一対の平行リンクのリンクは、複数対の平行リンクを含み、それらの複数対の平行リンクが、外側の一対の平行リンクのリンクの両側に玉継手で取り付けられる。これにより、外側アームリンケージと内側アームリンケージとの間の接続の精度をさらに高めることが可能になる。さらに、より単純なリンクおよび継手の解決策が、ソケットのペアで使用することができる。
いくつかの実施形態によれば、内側アームアセンブリが、中空アームリンクと、中空アームリンクの内側にベアリングで軸方向に取り付けられたシャフトとを備える。シャフトは、第3のアクチュエータによって回転するように構成される。これにより、外側アームリンケージと係合する内部の内側トランスミッションで、非常にコンパクトな内側アームの解決策が得られる。さらに、2つのベアリングを含む内側トランスミッションは、環境から完全に保護される。いくつかの実施形態では、ベアリング対の回転線または軸を、回転線または軸に垂直な軸を中心に回転させるために、ベアリング対をシャフトに取り付けて、そのシャフトを、中空アームリンク内で回転させるとともに、90度のギアを介して回転アクチュエータによって作動させることができる。
いくつかの実施形態によれば、ロボットアームが、それぞれが方向付けトランスミッションを含む複数の方向付けリンケージを含む。複数の方向付けリンケージは、対応する複数の同心出力シャフトが、エンドエフェクタプラットフォーム上に配置された1または複数のエンドエフェクタのためにいくつかのエンドエフェクタ方向付けを働かせることができるように構成される。このため、第4および第6のキネマティックチェーンによって作動されるような複数のエンドエフェクタ方向付けは、非常に大きな方向付けを働かせることができる。
いくつかの実施形態によれば、ロボットアームが複数の方向付けリンケージを含み、各々が、接続された方向付けトランスミッションにより、対応する各エンドエフェクタ方向付けがエンドエフェクタプラットフォーム上に配置される1または複数のエンドエフェクタに対して達成されるように構成されている。これにより、従来の多関節ロボット用の典型的な既存のロボットリスト(通常ロボットエルボーにあるモータからの回転シャフトを有する)は、そのような重い設計が用途に適合する場合に使用することができる。
いくつかの実施形態によれば、ロボットアームが、エンドエフェクタプラットフォームに取り付けられた少なくとも2の方向付けトランスミッションを含み、少なくとも2の方向付けトランスミッションのうちの1つの外側ギアリング機構が、少なくとも2の方向付けトランスミッションのうちの他の少なくとも1つを回転させるように構成されている。このため、第2のリストの動きを、分離したモジュール方式で追加できる。
いくつかの実施形態によれば、ロボットアームが、第5のアクチュエータと、第5のアクチュエータの動きを、少なくとも1の他の方向付けトランスミッションを介してエンドエフェクタプラットフォーム上に配置されたエンドエフェクタの対応する動きに伝達するように構成された第5のキネマティックチェーンとを備える。このようにして、ロボットアームのワークスペース全体でツールの回転と傾斜を同時に行うことができる。第5のキネマティックチェーンは、指定されたエンドエフェクタの回転または傾斜を得るために、接続されたトランスミッションの必要な運動を伝えるのに常に効果的である。
いくつかの実施形態によれば、ロボットアームが、少なくとも1の更なるアクチュエータと、少なくとも1の更なるアクチュエータの動きをエンドエフェクタプラットフォーム上に配置されたエンドエフェクタの対応する動きに伝達するように構成された少なくとも1の更なるキネマティックチェーンとを備え、それにより、エンドエフェクタの動きに少なくとも6の自由度が与えられる。
いくつかの実施形態によれば、外側ギアリング機構が、1自由度でツールを回転させるように構成された第1の歯車を含む。
いくつかの実施形態によれば、第1の歯車は、第1の歯車の回転軸が第1の回転軸と平行になるように、エンドエフェクタプラットフォームに取り付けられる。内側アームアセンブリが鉛直軸を中心に回転するように構成されている場合に、エンドエフェクタは常にワークスペースにおける水平面に対して垂直になり、内側アームアセンブリが水平軸を中心に回転すると、エンドエフェクタは常に水平軸を中心に傾斜する。これらの特徴により、ロボットアームは、ピッキング、プレーシング、パッケージングおよびパレタイジングの用途に非常に有用となる。
いくつかの実施形態によれば、外側ギアリング機構は第2の歯車を含み、第1の歯車が第2の歯車と係合し、第2の歯車が、第2の歯車に接続されたレバーを介して、ギアリンクによって回転するように構成されている。歯車、レバーおよびギアリンクはすべて炭素強化エポキシまたは複合材で製造することができるため、ツールを回転させるための軽量な構成が得られる。この伝動の解決策は、ツールの所定の回転範囲または傾斜範囲を得ることも可能にし、それが第2の歯車と第1の歯車の半径の適切な比率を選択することによって得られ、通常は、その比率が1よりも大きくなるように選択される。エンドエフェクタプラットフォームのエンドエフェクタビームが鉛直の場合にツールの回転を制御するために、また、エンドエフェクタビームが水平の場合にツールの1つの傾斜角度を制御するために、ギアトランスミッションなどの外側ギアリング機構が使用され、それには、回転ギアトランスミッションまたは線形ギアトランスミッションの何れかが含まれる。ギアトランスミッションはエンドエフェクタプラットフォームに取り付けられており、エンドエフェクタプラットフォームは、第1のエンドエフェクタビームと、第1のエンドエフェクタビームと平行な別のエンドエフェクタビームを有する任意選択的な構造とを含む。どちらの場合も、第1の回転歯車は、1または複数のベアリングを介して他のエンドエフェクタビームに取り付けられ、回転軸が別のエンドエフェクタビームの中心と一致する。第1の回転歯車は、シャフトを介してツールに機械的に接続される。例示的な一実施形態では、ギアリンクが、各端部にある少なくとも2のDOFの継手により実現され、キネマティックチェーンを介してギアトランスミッションをアクチュエータに接続する。回転ギアトランスミッションの場合、第2の回転歯車は、その回転軸がエンドエフェクタビームの中心と平行または一致しており、レバーを介してギアリンクに接続され、それによりギアリンクの動きが回転ギアトランスミッションの第2の回転歯車の回転に変換される。第1の回転歯車は、第2の回転歯車によって強制的に回転する。第1の回転歯車の直径は、第2の回転歯車の直径よりも小さくてもよい。
いくつかの実施形態によれば、第1の歯車はラックに係合し、ラックが、ラックに接続されたギアリンクによって動かされるように構成されている。このようにして、2つの歯車を有するトランスミッションを使用することと比較して、より空間効率の良いギアトランスミッションが得られる。これは、第2の歯車に取り付けられるレバーが不要であり、線形ラックを円形の歯車よりも細くすることができるためである。線形ギアトランスミッションの場合、線形ギア(すなわち、ピニオンホイールのサイズによってギア比が決定されるラック)は、少なくとも2のDOFを有する継手を介してギアリンクに接続され、それにより、ギア作動リンクの動きが線形ギアトランスミッションの第1の回転歯車の回転に変換される。第1の回転歯車(ピニオンとして機能する)は、ラックの線形運動によって強制的に回転する。好ましくは、第1の回転歯車の円周は、線形ギアの長さよりも短い。
いくつかの実施形態によれば、ロボットアームは、エンドエフェクタプラットフォームに取り付けられた少なくとも2のギアトランスミッションを含み、第1のギアトランスミッションの第1の歯車が、少なくとも1の第2のギアトランスミッションを回転させるように構成される。エンドエフェクタの傾斜角度と回転角度の両方を制御することが可能になり、それは多くの用途において重要である。
いくつかの実施形態によれば、少なくとも1の第2のギアトランスミッションは、ラックアンドピニオン型のギアトランスミッションであり、ラックは、その回転軸がラックの移動方向と平行になるようにラックベアリングに接続される。このようにして、第1のギアトランスミッションの制御は、第2のギアトランスミッションの制御から独立する。すなわち、エンドエフェクタの傾斜角度が第1のギアトランスミッションによって変更されても、回転角度は変更されることはなく、その逆もまた同様である。2DOFでエンドエフェクタの回転を制御するために、第1のラックアンドピニオン型のトランスミッションが第1の回転歯車に取り付けられる。線形ギア(すなわち、ラック)は、ラックベアリングとレバー構成を介して第2のギアリンクに接続される。
いくつかの実施形態によれば、少なくとも1の第2のギアトランスミッションの少なくとも1のピニオンは、ツールの回転を得るようにエンドエフェクタに接続される。これにより、第1のギアトランスミッションがツールの傾斜を実行することとは独立して、第2のギアトランスミッションを用いてエンドエフェクタを回転させることが可能になり、逆もまた同様である。すなわち、第1のラックアンドピニオン型のトランスミッションのピニオンは、エンドエフェクタが傾斜または回転することができるように接続される。
いくつかの実施形態によれば、少なくとも1のラックベアリングは、第1の歯車の回転軸と一致する回転軸を有する。ここでは、ラックベアリングは、エンドエフェクタの回転制御を傾斜制御から独立させるために不可欠であり、第1の歯車の回転軸と一致するラックベアリングの回転軸を取り付けることにより、第2のギアトランスミッションへのより正確な機械的伝動が得られる。すなわち、ラックベアリングの回転中心は、第1のラックアンドピニオン型のトランスミッションを保持する回転歯車の回転中心と一致する。
いくつかの実施形態によれば、ロボットアームは、直角ギアを介してエンドエフェクタに接続された少なくとも1の第2のギアトランスミッションの1つのピニオンを備える。それにより、エンドエフェクタの2つの傾斜角度および1つの回転角度の制御を得ることが可能になる。これにより、アーム構造にアクチュエータを有することなく、すべてのアクチュエータがロボットスタンドに固定して取り付けられた6軸ロボットアームが実現される。
いくつかの実施形態によれば、ロボットアームが、エンドエフェクタシャフトに接続された少なくとも1の第2のギアトランスミッションの1つのピニオンを備え、エンドエフェクタシャフト上には、ベアリングを介してエンドエフェクタが取り付けられ、ベアリングの回転軸がエンドエフェクタシャフトの回転軸と一致している。直角ギアを介して回転角度と同時に傾斜角度を得るために、エンドエフェクタシャフトは、第2のギアトランスミッションのピニオンに接続されたベアリングに取り付けられる。第2のギアトランスミッションのピニオンを回転させると、エンドエフェクタシャフトが取り付けられたベアリングが傾斜することとなる。
いくつかの実施形態によれば、ロボットアームは、共通のピニオンを介して接続された2つのラックを含む1つのラックアンドピニオン型のギアトランスミッションを含み、2つのラックが互いに対して直角に動くように構成される。これにより、2つの傾斜角度と1つの回転角度を互いに独立して作動させることができる。すなわち、傾斜角度または回転角度の何れかを作動しても、他の角度は変わらない。これは、傾斜角度と回転角度の制限された角度の作業範囲が、ロボットアームのワークスペースのあらゆる場所で、エンドエフェクタの実際の傾斜角度と回転角度とは無関係に、完全に使用することができることを意味する。
いくつかの実施形態によれば、ロボットアームは、ラックシャフトおよびラックベアリングを介して互いに接続される2つのラックを備える。第3のラックは、第1のラックに接続されている間、第2のラックピニオンによって回転することができ、それにより、エンドエフェクタの回転角度が、エンドエフェクタの傾斜角度の1つから独立したものとなる。
いくつかの実施形態によれば、ラックシャフトは、別のラックアンドピニオン型のトランスミッションに属するピニオンの軸方向貫通穴内を自由に動くように構成される。それにより、第3のラックは、第1のラックに接続されている間、第2のラックピニオンによって回転され、それにより、エンドエフェクタの回転角度が、エンドエフェクタの傾斜角度の1つから独立したものとなる。
いくつかの実施形態によれば、ロボットアームは、エンドエフェクタプラットフォームに取り付けられた固定ラックアンドピニオン型のトランスミッションを介して第5のアクチュエータに接続された少なくとも1のラックベアリングを含む。これにより、第5のキネマティックチェーンのリンク構造が簡素化される。
いくつかの実施形態によれば、ラックベアリングは、固定ラックアンドピニオン型のトランスミッションのラックに接続される。このように、固定ラックアンドピニオンを使用して第5のキネマティックチェーンを簡略化することにより、傾斜角度と回転角度の独立した制御を実行することができる。
いくつかの実施形態によれば、固定ラックアンドピニオン型のトランスミッションのピニオンは、少なくとも2のDOFの継手を介してギアリンクが取り付けられたレバーを含む。これにより、第5のキネマティックチェーンの効率的な動力伝達が得られ、エンドエフェクタの回転の動作範囲または回転角度を、固定ラックアンドピニオン型のトランスミッションのピニオンの直径によって規定することができる。
いくつかの実施形態によれば、外側アームリンケージの作動リンクは、一対のベアリングを介して第3のアクチュエータに接続され、一対のベアリングの共通の回転軸が、内側アームアセンブリの中心軸と平行な軸を中心に回転可能となっている。このロボットアームは、第1の軸の回転軸の方向にエンドエフェクタを移動させるために高剛性伝動が必要な用途に特に適している。別の実施形態では、ギアリンクが、一端がレバーに接続され、レバーが、その回転軸がエンドエフェクタビームと平行になるようにベアリングに取り付けられる。レバーは、さらに2つのレバーとリンクを介して回転アクチュエータに接続される。ベアリングペアの回転線または軸を、回転線または軸に垂直な軸を中心に回転させるために、ベアリングペアは、回転軸が内側アームリンケージの中空リンクの中心軸と平行になるようにベアリングに取り付けられた設計になっており、ベアリングペアが取り付けられているベアリングの回転軸を中心にベアリングペアを回転させるために、レバーが使用される。レバーは、両端部に継手があるリンクを介してアクチュエータに接続される。
いくつかの実施形態によれば、リンクトランスミッションは、一端にレバーを備えた回転シャフトを含み、レバーが、少なくとも2のDOFの継手を介してギアリンクに接続される。この実施形態は、スリムな内側アームアセンブリが必要とされる用途で特に有用であり、これは、ロボットアームが制限された環境で動作する必要があることを意味する。さらに、この解決策は、エンドエフェクタの回転角度または傾斜角度の何れかを制御するための最高の伝動効率を備えるものとなる。例示的な一実施形態では、ギアトランスミッションがキネマティックチェーンを介してアクチュエータに接続され、ギアリンクは、一端が、第2の回転シャフトに取り付けられたレバーに接続され、その回転軸が内側アームアセンブリの中空リンクと平行である。
第2の態様によれば、本開示は、一定の傾斜角度で、エンドエフェクタを3自由度で位置決めするためのロボットアームに関する。ロボットアームは、エンドエフェクタを受け入れるように構成されたエンドエフェクタプラットフォームを備える。ロボットアームは、第1の回転軸を中心に内側アームアセンブリを回転させるように構成された第1のアクチュエータを備える。内側アームアセンブリは、第2の回転軸を中心に回動可能に構成された外側アームリンケージに接続される。外側アームリンケージは、エンドエフェクタベアリングを介してエンドエフェクタプラットフォームに接続された外側の一対の平行リンクを含み、それにより、第1のアクチュエータからエンドエフェクタプラットフォームまでの第1のキネマティックチェーンを形成する。ロボットアームは、第2の回転軸を中心に外側アームリンケージを回転させるように構成された第2のアクチュエータを備える。外側アームリンケージは、接続ベアリングを含む自在継手を介して、内側の一対の平行リンクを含む内側アームリンケージに接続され、それにより、第2のアクチュエータからエンドエフェクタプラットフォームまでの第2のキネマティックチェーンを形成する。ロボットアームは、エルボー継手を介して外側アームリンケージが第3の回転軸を中心に回転するように、第3の回転軸を中心にシャフトを回転させるように構成された第3のアクチュエータも備え、これにより、第3のアクチュエータからエンドエフェクタプラットフォームまでの第3のキネマティックチェーンを形成する。
図1は、水平面に垂直な軸の周りを回転するようにエンドエフェクタを作動させることを可能にする、いくつかの実施形態に係るロボットアーム構造を示している。 図2Aは、いくつかの他の実施形態に係るロボットアーム構造を示している。図2Bは、図2Aの内側トランスミッションの回転シャフトに取り付けられた自在継手の一タイプの詳細を示している。 図3Aは、水平面に垂直な軸の周りを回転するようにエンドエフェクタを作動させることを可能にする第1の実施形態に係る産業用ロボットアームを示している。図3Bは、エンドエフェクタを回転させるための代替的なギアトランスミッションを含む、第2の実施形態に係る産業用ロボットアームを示している。図3Cは、いくつかの実施形態に係る方向付けリンケージを示している。図3Dは、いくつかの実施形態に係る自在継手を示している。 図4Aは、第3の実施形態に係る産業用ロボットアームを示しており、主要構造が、回転アクチュエータの水平な共通回転軸を備えて構成されている。図4Bは、第3の実施形態の変形例に係る産業用ロボットアームを示している。図4Cは、第3の実施形態の別の変形例に係る産業用ロボットアームを示している。図4Dは、ベルトドライブを備えた代替的な実施形態を示している。 図5Aは、第4の実施形態に係る産業用ロボットアームを示しており、エンドエフェクタが回転および傾斜するように制御され得る。図5Bは、2DOFでエンドエフェクタを傾けるためのラックの代替的な実施形態を示している。 図6Aおよび図6Bは、ロボットスタンドにすべてのアクチュエータが固定された6DOFのロボットアームを得るために、図5Aおよび図5Bのラックアンドピニオンの概念と、直角ギアとカルダン継手を含むトランスミッションとの組合せを含む、第5の実施形態に係る産業用ロボットアームを示している。 図7は、カルダン継手無しで、直角ギア1つのみで6DOFを得るために歯車によって回転される2つのラックアンドピニオン構成を有する一実施形態を示している。 図8は、6DOFのロボットアームにおいて直角ギアおよびカルダン継手を回避するために歯車によって回転される3つのラックアンドピニオン構成を有する一実施形態を示している。 図9Aは、図5のラックアンドピニオン構成に対する代替的なトランスミッションを備えた第6の実施形態に係る産業用ロボットアームを示している。図9Bは、いくつかの実施形態に係る代替的な方向付けリンケージを示している。 図10Aおよび図10Bは、回転アクチュエータの水平な共通回転軸を有する第7および第8の実施形態に係る産業用ロボットアームを示している。 図11は、図1〜図6に示されるような中空シャフトモータを使用することなく、共通の回転軸を得るために回転アクチュエータが配置された一実施形態を示している。 図12Aは、図2Aの産業用ロボットアームの代替的な主要構造を示している。図12Bは、図12Aのようにレバーが存在しないリンケージにおいて、線形アクチュエータがどのように使用されるのかを示している。 図13は、代替的なトランスミッションを示している。 図14Aは、第2のキネマティックチェーンの一部として、継手の種類の変形例、許容される継手のオフセットおよびバックホウ機構を示している。図14Bは、ロボットアームのワークスペースを大幅に増加させる代替的なバックホウ構成を示している。
産業用ロボットの軽量ロボット構造を得るために、本発明は、パラレルロボット構造とトランスミッションの新しい組合せを利用する。ロボットアームのアクチュエータは、固定されたロボットスタンドに取り付けることができ、重量のあるアクチュエータをアーム構造で動かす必要はない。この場合、ロボットのアーム構造は、カーボンチューブ、カーボンギア、カーボンベアリングなどの軽量コンポーネントのみで実現することができる。これにより、高い速度、加速度、加速度導関数のために、慣性を最小限に抑えたロボットの設計が可能になる。さらに、アーム構造自体にアクチュエータが無いか、または少ない場合、石油やガスのプラットフォームなどの爆発の危険がある環境や、爆発物が処理される産業において動作するロボットを構築するのが遙かに容易となる。また、屋外処理装置、トンネル検査、車両洗浄システムなど、過酷な環境で動作するロボットを構築するのが容易となる。
開示の産業用ロボットアームは、産業用ロボットアームのエンドエフェクタの一定の傾斜角を得る方法に関する問題を解決し、同時にロボットアームのスリムな設計を得るものである。これにより、ロボットアームは、エンドエフェクタの傾斜エラーを補うためにリストを追加することなく、水平面上の限られた空間条件でピックアンドプレース操作を実行できる。さらに、本発明に係るロボットアームは、すべてのアクチュエータがスタンドに固定された状態で、最大6自由度(DOF)を含むことができる。エンドエフェクタをツールと称することもある。
以下の説明を明確にするために、エンドエフェクタプラットフォームのロボットスタンド(図示省略)に対してx、y、z方向に位置決めする通常の好ましい構成を参照し、それにより、1または複数のDOFにおいてツールを方向付けるベースを提供する。ツールの方向付けには、5自由度の場合、エンドエフェクタプラットフォームのツール接続シャフトの周りか、またはツール接続シャフトに垂直ないくつかの軸の周りか、あるいはそれら両方の周りの、いくつかのツールトランスミッションにより作動されるツール回転が含まれる。6自由度の場合、傾斜ツールの回転が追加されるか、または、所望のツール傾斜により、第4の軸または第5の軸の一方が形成されるようにしてもよい。いずれにせよ、(この場合は望ましくない)傾斜動作なしに、エンドエフェクタプラットフォームを位置決めし、それによりツールの位置決めをツールの方向付けから分離することが非常に望ましい。原則として、ただし明確にするために省略しているが、いくつかのエンドエフェクタとツールの方向付け機構/トランスミッションを、例えば異なる方向を向きかつ異なるタイプのツールが取り付けられる、エンドエフェクタプラットフォームに取り付けることができ、それにより、様々な目的で様々なツールを搭載することができ、ツール交換器を使用する必要性をなくすことができる。以下の説明から明らかなように、すべてのアクチュエータをロボットスタンドに固定したままにすることができるように、ツールの方向付けのための様々なトランスミッションを組み合わせることができる。このため、6を超えるDOFが可能であるが、簡潔にするためにここでは詳細は説明しない。
本明細書に開示の産業用ロボットアームは、いくつかの実施形態では、常に互いに平行である4軸または5軸のスキームを組み込んでいる。この構造は、以下の1または複数を含む、すべての軸が鉛直または水平(または他の角度)の何れかになるように取り付けることができる。
・軸が鉛直である例示的な一実施形態では、エンドエフェクタがワークスペース全体における水平面に対して常に垂直になるように、エンドエフェクタの動きが得られる。
・軸が鉛直である例示的な一実施形態では、鉛直軸を中心とするエンドエフェクタの回転が、追加のリンクトランスミッションおよびギアを介して制御され、それにより、エンドエフェクタの回転を制御するためのアクチュエータをロボットスタンドに固定することができる。
・軸が第5の軸とともに水平である例示的な一実施形態では、本構造が、ワークスペース全体における水平面に対して垂直にエンドエフェクタを保つギアとともに、追加のリンクトランスミッションを含む。
・軸が第5の軸とともに水平である例示的な一実施形態では、ギアとともに追加されたリンクトランスミッションを使用して、ワークスペース全体においてエンドエフェクタの1つの傾斜角度を制御することができる。エンドエフェクタの傾斜角度を制御するためのアクチュエータは、ロボットスタンドに固定することができる。
・軸が第5の軸とともに水平である例示的な一実施形態では、ラックアンドピニオンギアとともに第2の追加リンクトランスミッションを使用して、エンドエフェクタの傾斜と同時にエンドエフェクタの回転を制御することができる。エンドエフェクタの傾斜角度および回転角度を制御するためのアクチュエータは、ロボットスタンドに固定することができる。また、第3のリンクを使用することにより、3DOFで回転するようにエンドエフェクタを制御することができる。
さらに、本開示の実施形態に係るロボットアームは、国際公開第2014/187486号および国際公開第2015/188843号に係るロボット設計と比較してよりスリムな設計を可能にする。何故なら、エンドエフェクタプラットフォームを内側アームアセンブリと接続するリンク構造において2つの平行リンクのみが必要であるからである。
本開示では、ロボットが、ロボットアームおよびロボットコントローラを備えるように規定される。ロボットアームは、エンドエフェクタの動きを実現するためのアクチュエータを含む。ロボットコントローラ、またはロボットコントローラに接続されたコンピュータは、プログラムに従ってエンドエフェクタを動かすための命令を有するプログラムを含むことができる。ロボットコントローラおよび/またはコンピュータはメモリおよびプロセッサを含み、プログラムはメモリに保存される。すなわち、ロボットアームはプログラム可能なロボットである。しかしながら、ロボットは、様々な種類、例えば産業用ロボットまたはサービスロボットであってよい。
図1は、ツールの回転を得るためのいくつかの実施形態に係る構造を含むが、ツールを傾ける構造を除外した、ロボットアーム500の基本的な実施形態を示している。
ロボットアームは、第1の回転軸29の周りで内側アームアセンブリ1を回転させるように構成された第1のアクチュエータ4を備えている。内側アームアセンブリ1は、ここでは作動リンク18を含む外側アームリンケージに接続されている。外側アームリンケージは、第2の回転軸40を中心に回動可能に構成されている。外側アームリンケージは、エンドエフェクタプラットフォーム41に接続され、それにより、第1のアクチュエータからエンドエフェクタプラットフォームまでの第1のキネマティックチェーンを形成する。これにより、エンドエフェクタプラットフォーム、ひいてはエンドエフェクタの動作を位置決めするための第1の自由度が得られる。
また、図1のロボットアーム500は、第2の回転軸40を中心に外側アームリンケージを回転させるように構成された第2のアクチュエータ5も有し、それにより第2のアクチュエータからエンドエフェクタプラットフォームまで第2のキネマティックチェーンを形成する。これにより、エンドエフェクタプラットフォームを位置決めするための第2の自由度が得られる。第2のキネマティックチェーンは、様々な方法で設計することができる。1つの可能性は、第2のアクチュエータ5と作動リンク18の間にリンクの第2のキネマティックチェーンを持つことである。この可能性は、図1に例示されており、作動リンクが、継手16の一部である(第2の回転軸40を中心に回転する)ベアリングのペアにより内側アームアセンブリ1に連結され、レバー2が、第1の回転軸29を中心に回転するために、第2のアクチュエータ5の出力シャフトに取り付けられている。レバー2は、各端部に継手10、14を備えたリンク12を含む内側アームリンケージによって、作動リンクに接続されている。
継手10、14は、少なくとも2の自由度の玉継手として描かれているが、当然のことながら、エンドエフェクタ回転リンク(および図3C)について後述するように、他の運動学的に等価な実施形態も可能である。
すなわち、第2のキネマティックチェーンは、レバー2と、外側アームリンケージに接続するリンク12とを含む内側アームリンケージと、ここでは(図1では)エンドエフェクタプラットフォーム41およびビーム41Aにしっかりと接続された作動リンク18を含む外側アームリンケージとにより構成されている。すなわち、第2のキネマティックチェーンは、接続ベアリング14を介して外側アームリンケージに接続されている少なくとも1のリンク12を含む内側アームリンケージを含む。第2のアクチュエータは、少なくとも1のリンク12に接続された少なくとも1の内側接続継手10を介して、少なくとも1のリンク12を動かすように構成されている。第2の自由度を作動させるための別の代替例は、第2のアクチュエータを内側アームアセンブリ1の端部で取り付けて、第2のアクチュエータの回転シャフトを第2の回転軸40と平行にするというものである。5bで引用される第2のアクチュエータを備えたこの代替的な構成は、斜線で示されており、これは、アクチュエータがアーム構造とともに移動することから、好ましい実施形態ではないが、内側アームリンケージが不要となり、よりコンパクトな内側アーム設計を提供することができる。この代替例では、第2のキネマティックチェーンが、回転する第2のアクチュエータ5bと作動リンク18との間の任意選択的なトランスミッションとの機械的接続を含む。このため、第2のアクチュエータ5、5bは、エンドエフェクタプラットフォーム41を一方向に動かし、第1のキネマティックチェーンとともに、エンドエフェクタプラットフォーム、ひいてはエンドエフェクタの動作を位置決めするための第2の自由度を提供する。
図1のロボットアーム500は、第3の回転軸33を中心にシャフト3を回転させるように構成された第3のアクチュエータ6も備える。第3のアクチュエータ6は、第3の回転軸を中心にシャフト3を回転させて、外側アームリンケージが継手161を介して回転されるように構成され、それにより第3のアクチュエータからエンドエフェクタプラットフォームまでの第3のキネマティックチェーンが形成される。これにより、エンドエフェクタプラットフォームを位置決めするための第3の自由度が得られる。
第3のキネマティックチェーンは、様々な方法で設計することができる。例示的な一実施形態によれば、第3のアクチュエータ6の出力シャフトと内側アームアセンブリ1内の回転シャフト3との間に90度の角度ホイール(図1には現れないが、以下の第4のDOFを働かせるための符号51で示されるのと同じ概念のもの)がある。この場合、このシャフト3は、作動リンク18を回転軸33の周りで上下に回転させ、それにより、エンドエフェクタプラットフォーム41が上下に移動する。別の代替的な実施形態は、第3のアクチュエータ(この場合は6b、ロボットスタンドに固定され、好ましい代替例ではないため斜線で示される)を使用して、第1の回転軸29に垂直な回転軸99を中心に、他のアクチュエータ(シェルフ6cに取り付けられる他のアクチュエータ、代替的には内側アームアセンブリ1にある第2のアクチュエータ5b)を回転させることである。回転軸99は規定により回転軸29に垂直であるため、2つの異なる構成が可能になり、おそらく、デュアルアクチュエータ6bが(軸29がz方向を指していると仮定すると)x軸およびy軸を中心にそれぞれ回転するように構成され、外側アームリンケージが内外に完全に(好ましい実施形態では許容されないが、近接して、または単一に)延ばされたときにエンドエフェクタの操作性を維持するために使用される。何れの場合も、第3のキネマティックチェーンは、エンドエフェクタビーム41Aに取り付けられた作動リンク18のみからなる外側アームリンケージおよび内側アームアセンブリ1を含む。全体として、図1に示す実施形態は、最大限に無駄のないアーム設計を可能にするが、ワークスペースの殆どの部分で望ましくない傾斜を示すため、産業上利用するには更なる実施形態(図2以降)が必要である。
また、図1のロボットアーム500は、第4のアクチュエータ50および第4のキネマティックチェーンも備える。第4のキネマティックチェーンは、第4のアクチュエータの動きをエンドエフェクタ28の対応する方向付け軸に伝達するように構成される。方向付け軸は、シャフト65によって規定される。第4のキネマティックチェーンは、少なくとも1のベアリング53を介して内側アームアセンブリに取り付けられた方向付けリンケージ52、57、59を備える。第4のキネマティックチェーンは、エンドエフェクタプラットフォームに取り付けられた方向付けトランスミッション64B、64Aも含む。方向付けリンケージは、エンドエフェクタ回転リンク59と、エンドエフェクタ回転リンクの各端部ジョイントに少なくとも2の自由度を提供する継手58、60とを含む。一実施形態では、エンドエフェクタ回転リンク59が、エンドエフェクタ回転リンク59の各端部で継手58、60にそれぞれ接続される。当然のことながら、継手58、60は、例えば図3Cに示されるように、少なくとも2の自由度を有する少なくとも2の自由度と運動学的に同等であるいくつかの方法で達成することができる。
方向付けリンケージは、様々なリンク構造で実現することができる。図1では、第4のアクチュエータ50が、シャフト52を駆動する90度の角度ギア51に接続され、シャフト上にはレバー57が取り付けられている。
方向付けトランスミッションは、例えばラックアンドピニオンギアによって、またはバックホウリンケージによって、様々な方法で実現することもできる。図1では、方向付けトランスミッションが、エンドエフェクタプラットフォーム41に取り付けられた歯車64A、64Bを含む方向付けトランスミッションを用いて実現されている。図1に示される方向付けリンケージおよび方向付けトランスミッションの実施例では、方向付けリンケージがレバーアーム57で継手58に取り付けられ、方向付けトランスミッションが、歯車64Bに取り付けられたレバーアーム61を介して、継手60に取り付けられている。このため、第4のアクチュエータ50は、第2のキネマティックチェーンにより、歯車64Aを回転させることができる。これは、第1、第2および第3のアクチュエータがエンドエフェクタプラットフォームをx、y、zの3つの異なる方向に動かす場合でも可能である。歯車64Aは、ベアリング67内で回転するシャフト65に接続されている。方向付けトランスミッションは、この実施形態ではシャフト65として引用される、エンドエフェクタ28への接続を含み、これにより、エンドエフェクタの動きに少なくとも4の自由度が与えられる。
図2Aは、本開示のいくつかの実施形態に含まれるロボットアーム500の一構成を示し、望ましい一定のツールの傾斜角度を含むが、ツール回転のための第4のキネマティックチェーンを除外している。すなわち、この構成は、一定の傾斜角度を維持しながら、ツール28をx、yおよびz方向に移動させることを可能にする。3つのアクチュエータ4、5、6は、共通の鉛直回転軸を有し、ここでは第1の回転軸29と一致する。3つのアクチュエータは、エンドエフェクタプラットフォーム41のエンドエフェクタビーム41Aがアクチュエータの共通の回転軸と常に平行なまま、ツール28を動かすように構成されている。より詳細には、ロボットアーム500が、第1の回転軸29を中心に内側アームアセンブリ1を回転させるように構成された第1のアクチュエータ4を備える。ここで、第1のキネマティックチェーンは、内側アームアセンブリ1の回転をエンドエフェクタプラットフォーム41の対応する動きに伝達するように構成され、図2Aでは、エンドエフェクタプラットフォームがエンドエフェクタビーム41Aのみを含む。したがって、本発明によれば、エンドエフェクタプラットフォームは、より複雑なエンドエフェクタプラットフォームの代わりにビームのみを含み、引用した従来技術よりも遙かに単純に作ることができる。
第1のキネマティックチェーンは、外側の平行リンク17、18のペアを含む外側アームリンケージを含み、それぞれの一端がエンドエフェクタプラットフォーム41に接続されている。外側の一対の平行リンク17、18のうちの第1のリンク17は、その他端が内側アームアセンブリ1に連結されている。ここで、内側アームアセンブリ1は、水平面内でスイングするように設計されており、鉛直な第1の軸または回転29に位置合わせされた第1のアクチュエータ4によって作動する。内側アームアセンブリ1は、2本の平行リンク17、18を保持する。2本の平行リンク17、18は、それらの外側端部で、エンドエフェクタプラットフォーム41の鉛直エンドエフェクタビーム41Aに接続されており、この鉛直エンドエフェクタビームは、エンドエフェクタプラットフォーム41、ここではエンドエフェクタビーム41Aから突出するシャフト27を介して、図面では真空グリッパとして、ツール28を支持している。外側の一対のリンクのうちの第1のリンク17は、取付部品7A、7Bを介して、玉継手15によって内側アームアセンブリ1に接続されている。取付部品7A、7Bは、例えば、継手15のボールを内側アームアセンブリ1にしっかりと接続する、例えばカーボンロッドのような剛性機械部品である。また、継手15は、3DOFを有する自在継手としても実現することができる。いくつかの実施形態では、継手9、10、13、14、15のうちの1つ、いくつかまたはすべてが、玉継手、カルダン継手または自在継手である。いくつかの実施形態では、継手16が自在継手である。いくつかの実施形態では、継手19、20の一方または両方がヒンジ継手である。
図2Aのロボットアーム500は、第1の回転軸29を中心にレバー2を回転させるように構成された第2のアクチュエータ5も備える。第2のキネマティックチェーンは、レバー2の回転をエンドエフェクタプラットフォーム41の対応する動きに伝達するように構成される。第2のキネマティックチェーンは、内側の一対の平行リンク11、12を含む内側アームリンケージを含み、内側アームリンケージが、外側アームリンケージに接続され、例えば、外側の一対の平行リンク17、18の端部間に接続されている。すなわち、第2のキネマティックチェーンは、内側の一対の平行リンク11、12とレバー2を含む内側アームリンケージを備えている。内側の一対の平行リンクは、レバーと、外側の一対の平行リンク17、18を含む外側アームリンケージに接続されている。第2のアクチュエータ5は、第1の回転軸29を中心にレバーを回転させるように構成されている。また、いくつかの実施形態では、外側アームリンケージが、エンドエフェクタプラットフォーム41に接続された外側の一対の平行リンク17、18を備える。第2のキネマティックチェーンは、レバー2の回転をエンドエフェクタプラットフォームの対応する動きに伝達するように構成される。
ロボットアーム500は、第3のアクチュエータ6をさらに含む。第3のキネマティックチェーンは、第3のアクチュエータ6の動きをエンドエフェクタプラットフォーム41の対応する動きに伝達するように構成される。第3のキネマティックチェーンは、第3のアクチュエータ6と外側アームリンケージの作動リンク18の他端との間に内側トランスミッション3、16、(161、図1)を含む。すなわち、第3のキネマティックチェーンは、第3のアクチュエータと外側の一対の平行リンクの作動リンクとの間に接続された内側トランスミッションを含む。外側アームリンケージの作動リンク18は、ここでは一種の自在継手16によって内側トランスミッションの回転シャフト3に接続されている。回転シャフト3は、内側アームアセンブリ1の中空リンク1Aの内部で回転するように配置され、各端部が1つのベアリングによって支持されている(図示省略)。回転シャフト3は、中空リンク1Aの内側端部で90度の角度ギア(図示省略)を介して第3のアクチュエータ6に接続されている。第3のアクチュエータ6からの出力シャフトは、第2のアクチュエータ5の中空シャフトを通るように組み立てられて、90度のギアに到達する。すなわち、ロボットアーム500は、中空の1つのリンク1Aを含む内側アームアセンブリを含み、第3のキネマティックチェーンの内側トランスミッションが、中空リンク1Aの内部にベアリングで軸方向に取り付けられたシャフト3を含む。シャフト3は、第3のアクチュエータ6によって回転するように構成されている。回転シャフト3を回転させると、平行リンク17、18が上下にスイングして、ツール28の鉛直方向の動きが得られる。水平面内で外側アームリンケージをスイングさせるために、レバー2が内側アームリンケージを介して外側アームリンケージに接続されている。レバー2は、第2のアクチュエータ5によって作動されるように構成され、ビーム8および玉継手9、10を介してリンク11、12に接続されている。継手9、10は、内側接続継手とも呼ばれる。内側アームリンケージは、継手13、14、ビーム23、24および接続ベアリング21、22によって、外側アームリンケージに接続されている。例示的な一実施形態では、内側の一対の平行リンク11、12が、オフセットビーム23、24上の玉継手13、14を介して、剛性ビーム25に取り付けられている。ベアリング21、22の間で、ビーム25がベアリング21、22に接続され、エンドエフェクタプラットフォーム41のエンドエフェクタビーム41Aを常に鉛直に拘束する。同時に、ビーム25を使用して、外側アームリンケージのリンク17、18への接続にプレストレスを与えることができ、これは、ベアリング19、20、21、22と継手15、16のバックラッシュの低減を意味する。すなわち、ベアリングは、外側アームリンケージのリンク17、18の端部で接続する。このため、例示的な一実施形態では、ロボットアーム500が、接続ベアリング21、22を互いに機械的に接続する剛性ビーム25を備える。
外側アームリンケージは、エンドエフェクタベアリング19、20によってエンドエフェクタビーム41Aに接続されている。さらに、エンドエフェクタベアリング19、20は、外側の一対の平行リンク17、18とエンドエフェクタプラットフォーム41を接続し、エンドエフェクタベアリング19、20の回転軸36、37が、外側の一対の平行リンク17、18の中心に対して垂直となっている。
ツール28、例えば、真空グリッパが、常に水平面に対して垂直な角度でアイテムをピックアンドプレースすることができるように、エンドエフェクタプラットフォーム41のエンドエフェクタビーム41Aが一定の傾斜角度を有することを保証するために、ロボットアーム500の設計には、以下のうちの1または複数が含まれる。
・第1のアクチュエータ4、第2のアクチュエータ5および第3のアクチュエータ6の共通の第1の回転軸29は鉛直である。
・ビーム8および継手9、10の取り付けは、継手9、10の中心を通る軸30が常に第1の回転軸29と平行になるように組み立てられる。
・リンク11、12は同じ長さである。すなわち、継手9、13の間の距離と、継手10、14間の距離は同じである。
・継手13、14間の距離は、継手9、10間の距離と同じである。
・継手15、16の中心間の距離は、ベアリング19の回転中心36とベアリング20の回転中心37との間の距離と同じである。
・ベアリング21、22の回転中心34、35間の距離は、ベアリング19、20の回転中心36、37間の距離と同じである。
・ベアリング21、22の回転中心34、35間の距離は、継手15、16の回転中心間の距離と同じである。
・リンク17の長さはリンク18の長さと同じである。すなわち、継手15の回転中心とベアリング19の回転中心36との間の距離は、回転シャフト3の回転中心33とベアリング20の回転中心37との間の距離と同じでなければならない。
・ベアリング19の回転中心36とベアリング21の回転中心34との間の距離は、ベアリング20の回転中心37とベアリング22の回転中心35との間の距離と同じである。
・ベアリング19、20、21、22は、それらの回転軸36、37、34、35が平行で、かつ軸29、30、40に平行な軸31、32に対して直角になるように取り付けられている。したがって、エンドエフェクタベアリング19、20の回転軸36、37は、接続ベアリング21、22の回転軸34、35と平行である。
・軸40は、継手15、16の中心を通る。また、軸40は、リンク18が水平であるときのベアリング16A、16Bの中心によって規定される。また、軸34、35は、外側アームリンケージのリンク17、18に対しても垂直である。すなわち、外側アームリンケージ(外側の一対の平行リンク17、18)と内側アームリンケージ(内側の一対の平行リンク11、12)は、それぞれのリンク11、12、17、18の各リンク接続について、1つの接続ベアリング21、22によって接続され、接続ベアリング21、22の回転軸34、35が、外側アームリンケージの各リンク17、18の軸方向中心線に対して直角である。
図2Bは、第1のトランスミッションの回転シャフト3に取り付けられた自在継手16の一タイプの詳細を示している。この継手16は、回転シャフト3を外側アームリンケージの作動リンク18に接続し、エンドエフェクタプラットフォーム41のエンドエフェクタビーム41Aを鉛直に移動させる。ベアリング16A、16Bは、ピン16D、16Eによって回転シャフト3に対称的に取り付けられている。回転軸40は、ベアリング16A、16Bの共通の回転軸によって規定されるため、作動リンク18が軸33を中心に回転し、回転軸40も軸33を中心に回転する。さらに詳細には、外側アームリンケージの作動リンク18は、一対のベアリング16A、16Bを介して第3のアクチュエータ6に接続され、その共通の回転軸32が、内側アームアセンブリ1の中空リンクの中心軸と平行な軸を中心に回転可能となっている。ベアリング16A、16Bの回転する外側部分は、アタッチメント16F、16Gによってビーム16Hに接続される。アタッチメント16F、16Gは、ロッドなどの剛性の機械的構造体である。アタッチメント16F、16Gおよびビーム16Hは、炭素強化エポキシで作られた中実フォークとして実現されるものであってもよい。作動リンク18は、ベアリング16Cを介してビーム16Hに接続されており、これにより、作動リンク18がそれ自体の軸の周りを回転することが可能となっている。ここでは、ベアリング16Cをリンクベアリング16Cと呼ぶ。このリンクベアリング16Cは、作動リンク18がそれ自体の軸の周りを回転することを可能にするため、ツール28の全ワークスペースで軸31、32を鉛直に保つことが可能となる。リンクベアリング16Cは、継手16と、外側アームリンケージの作動リンク18へのベアリング22の取付位置との間の任意の位置に配置することができる。すなわち、ロボットアームは、外側の一対の平行リンク17、18のうちの作動リンク18に沿って取り付けられたリンクベアリング16Cを含み、このリンクベアリング16Cの回転軸が、外側の一対の平行リンクの作動リンク18の中心と一致する。このリンクベアリング16Cは、国際公開第2014/187486号と区別する特徴である。このため、ロボットアーム500は、例示的な一実施形態では、接続ベアリング22と内側トランスミッション3への作動リンク18の接続部との間で外側アームリンケージの作動リンク18に取り付けられたリンクベアリング16Cを備え、リンクベアリング16Cの回転軸が、外側アームリンケージの作動リンク18の中心と一致している。別の特徴は、エンドエフェクタプラットフォーム41のエンドエフェクタビーム41Aにベアリング19、20でリンク17、18を取り付けることである。これは、国際公開第2014/187486号に記載されているよりも遙かにスリムなロボットを構築することを可能にする。何故なら、内側アームアセンブリ1とエンドエフェクタープラットフォーム41との間に2つのリンク17、18しか必要ないからである。エンドエフェクタープラットフォーム41は、ここではエンドエフェクタビーム41Aを含む。エンドエフェクタプラットフォームは、5または6自由度のロボットアームに使用することができる。国際公開第2014/187486号に記載のロボットは、その第1のアームとエンドエフェクタの間に3つのリンクが必要である。国際公開第2014/187486号との更なる違いの一つは、リンク17、18にプレストレスを与えるためにビーム25を使用していることである。これにより、外側の一対のリンク17、18と内側の一対のリンク11、12との間に玉継手を使用することも可能になる。さらに、国際公開第2014/187486号の図4の提案は、1つのアームだけでなく、2つのアーム(リンケージ)を必要とし、よって、本開示のような内側アームアセンブリ1を必要とする。すなわち、国際公開第2014/187486号に係るロボットは、アームシステムのためにより多くのスペースを必要とする。本発明のロボット構造は、国際公開第2014/187486号の第1のアームに対応する1つの(そして唯一の)内側アームアセンブリ(中空リンク1A)を、国際公開第2014/187486号の第1のロッドに対応する外側アームリンクに接続する継手で3自由度で動作することができるため、国際公開第2014/187486号のこれらの欠点を有していない。そのような解決策は、国際公開第2014/187486号のスリムな構造では不可能である。何故なら、エンドエフェクタが1つの制約を失い、第1のアームと第1のロッドとの間の追加の自由度で制御することができないためである。国際公開第2014/187486号の図4では、スリムではなく、アームシステムに大きなスペースを必要とする構造があるが、第1のアームと第1のロッドの間に3自由度を持つ継手を有し得る。しかしながら、国際公開第2014/187486号の図4で提案されている解決策では、鉛直移動が、deltaロボットの場合のようにエンドエフェクタプラットフォームに直接接続された別のキネマティックチェーンによってのみ実行され、それによりアーム構造のために多くのスペースを必要とするため、スリムなコンパクトロボット構造を得ることはできない。したがって、国際公開第2014/187486号に係るロボット構造は、スタンドに固定されたアクチュエータで3自由度しか制御することができない。
なお、図2Aのベアリング19、20、21、22は、図2Bのベアリング16A、16Bのアセンブリに従って、一対のベアリングによって置き換えることができることに留意されたい。逆に、一対のベアリング16A、16Bを、単一のベアリングに置き換えることもできる。一対のベアリングを使用すると、剛性が高くなるか、より軽量なベアリングを使用できるようになる。ボールベアリングの他に、例えばカーボンなどのスライドベアリングも使用することができる。
上記の設計により、内側アームアセンブリ1と作動リンク18の間の角度が90度の場合、第1のアクチュエータ4の出力シャフトの微小回転により、ツール28が水平面内で横方向に移動し、第2のアクチュエータ5の出力シャフトの微小回転により、ツール28が水平面内にまたは内外に移動する。第3のアクチュエータ6の出力シャフトの微小回転は、ツール28を上下に移動させる。さらに、ワークスペース全体のすべての移動は、軸32を鉛直にして行われ、ツール28が一定の傾斜角度を有する。このため、ロボットアーム500は、いわゆるスカラロボットの3つの主軸と同じ動きの特徴を有する。しかしながら、スカラロボットとは対照的に、すべてのアクチュエータ4、5、6をロボットスタンド(図示省略)に固定することができるため、非常に軽量なロボットアームを実現することができる。ロボットスタンドは剛性の高い機械構造であり、その上にアクチュエータがしっかりと取り付けられている。この場合、ロボットスタンドは、一部分が第1のアクチュエータ4を保持し、別の部分が第2および第3のアクチュエータ5、6を保持するフォークとして作ることができる。ロボットスタンドは、床、壁または天井に、あるいは別のロボットアームにしっかりと取り付けることができる。
このように、本開示は、一定の傾斜角度で、エンドエフェクタ28を3自由度で位置決めするためのロボットアーム500を含む。本開示のこの第2の態様は、図2A、図2B、図3A、図4B、図10A、図10B、図12A、図12B、図14A、図14B、およびこれらの図面またはこれらの図面の少なくとも態様を説明する記載に少なくとも開示されている。ロボットアームは、エンドエフェクタを受け入れるように構成されたエンドエフェクタプラットフォーム41を含む。ロボットアームは、第1の回転軸29、29Aを中心に内側アームアセンブリ1を回転させるように構成された第1のアクチュエータ4を備える。内側アームアセンブリ1は、第2の回転軸40を中心に回動可能に構成された外側アームリンケージ17、18に接続されている。外側アームリンケージは、エンドエフェクタベアリング19、20を介してエンドエフェクタプラットフォーム41に接続された外側の一対の平行リンク17、18を含み、それにより第1のアクチュエータからエンドエフェクタプラットフォームまでの第1のキネマティックチェーンを形成する。また、ロボットアーム500は、第2の回転軸40を中心に外側アームリンケージ17、18を回転させるように構成された第2のアクチュエータ5を含み、外側アームリンケージ17、18が、接続ベアリング21、22を含む自在継手を介して、内側の一対の平行リンク11、12;811、812(811、812は図12Bを参照)を含む内側アームリンケージに接続され、それにより、第2のアクチュエータからエンドエフェクタプラットフォームまでの第2のキネマティックチェーンを形成する。また、ロボットアーム500は、外側アームリンケージ17、18がエルボー継手161を介して第3の回転軸を中心に回転するように、第3の回転軸33を中心にシャフト3を回転させるように構成された第3のアクチュエータ6も含み、それにより第3のアクチュエータからエンドエフェクタプラットフォームまでの第3のキネマティックチェーンを形成する。
第2の態様のいくつかの実施形態によれば、エンドエフェクタベアリング19、20が、互いに平行な回転軸36、37を有するヒンジ継手である。
第2の態様のいくつかの実施形態によれば、エルボー継手161が、第2の回転軸および第3の回転軸と交差するエルボー回転軸を備えたヒンジ継手を備える。
第2の態様のいくつかの実施形態によれば、エルボー継手161が、エルボー継手161に接続された、外側の一対の平行リンク17、18のうちのリンクの一方である作動リンク18に接続されている。
第2の態様のいくつかの実施形態によれば、作動リンク18が、作動リンク端部の互いに対する回転を受け入れるために作動リンクに沿って取り付けられた少なくとも1のリンクベアリング16Cを備える。
第2の態様のいくつかの実施形態によれば、リンクベアリング16Cの回転軸が、作動リンク18の回転中心線と一致する。
第2の態様のいくつかの実施形態によれば、第2のアクチュエータ5が、内側の一対の平行リンク11、12に接続された内側接続継手9、10を介して内側の一対の平行リンク11、12を動かすように構成されている。
第2の態様のいくつかの実施形態によれば、第2のキネマティックチェーンが、レバー2の回転をエンドエフェクタプラットフォーム41の対応する動きに伝達するように構成されている。
第2の態様のいくつかの実施形態によれば、外側の一対の平行リンク17、18および内側の一対の平行リンク11、12が、それぞれのリンク11、17;12、18の各リンク接続について1つの接続ベアリング21、22によって接続される。接続ベアリング21、22の回転軸34、35;31は、外側の一対の平行リンク17、18のそれぞれのリンクについて、リンクに沿った回転中心線に対して直角である。
第2の態様のいくつかの実施形態によれば、ロボットアーム500が、接続ベアリング21,22を互いに機械的に接続する剛性ビーム25を備える。
第2の態様のいくつかの実施形態によれば、内側の一対の平行リンク11、12が、オフセットビーム23、24上の玉継手13、14を介して、剛性ビーム25に取り付けられる。
第2の態様のいくつかの実施形態によれば、シャフト3が、エルボー継手161を介して、第3のアクチュエータ6と、外側の一対の平行リンク17、18のうちの作動リンク18との間に接続されている。
第2の態様のいくつかの実施形態によれば、ロボットアームが、外側の一対の平行リンク17、18およびエンドエフェクタプラットフォーム41を接続するエンドエフェクタベアリング19、20を備える。エンドエフェクタベアリングの回転軸36、37は、外側の一対の平行リンクの各リンクの回転中心線に対して垂直である。
第2の態様のいくつかの実施形態によれば、エンドエフェクタベアリング19、20の回転軸36、37が、接続ベアリング21、22の回転軸34、35と平行である。
第2の態様のいくつかの実施形態によれば、ロボットアームが、外側の一対の平行リンク17、18のリンクおよび内側の一対の平行リンク11、12のリンクを接続する接続ベアリング21A、22A(図3Dの21A、21Aに対応する接続ベアリング22内の22A)を備える。各接続ベアリング21A、22Aの回転軸は、外側の一対の平行リンク17、18のそれぞれのリンクの回転中心線と一致する。
第2の態様のいくつかの実施形態によれば、内側アームリンケージが、第2の軸40を中心に外側アームリンケージ804、17、18を回転させるバックホウ機構803、10B、802、8、9C/10C、805/806を備え、バックホウ機構が、第2の回転軸40と平行な軸31を中心とする回転を可能にする接続ベアリング21、21を介した平行な一対の外側リンク17、18に接続する(803、10B、802、8、9C/10C、805/806については図14A、図14Bを参照)。当業者が図14Bから分かる適切な寸法により、外側の一対の平行リンクの2つのリンクの回転軸の何れとも交差しないように、回転軸31を配置することができる。バックホウ機構は、第2のキネマティックチェーンの動作範囲を180度を超えて大幅に拡大するように構成することができ(図14Aおよび図14Bを参照)、これにより、特異点のない大きなワークスペースを提供できる。
第2の態様のいくつかの実施形態によれば、内側の一対の平行リンク11、12のリンクが、一対の平行リンク11A、11B;12A、12Bを含む。これらの一対の平行リンク11A、11B;12A、12Bは、外側の一対の平行リンク17、18のリンクの各側の玉継手で取り付けられている。
第2の態様のいくつかの実施形態によれば、内側アームアセンブリ1が、中空のアームリンク1Aと、中空のアームリンク1Aの内側にベアリングで軸方向に取り付けられたシャフト3とを備える。シャフト3は、第3のアクチュエータ6によって回転するように構成されている。
図3Aは、ツール28を作動させて水平面に垂直な軸の周りを回転させることを可能にするロボットアーム500の第1の実施形態を示している。異なる実施形態の中で共通の特徴に対する符号は同じであり、よってそれらの説明のために他の図面、例えば図1、図2Aおよび図2Bも参照する。この第1の実施形態では、目標のツール回転を得るための、1より大きい歯車係数を有する回転ギアトランスミッション64A、64Bが概説されている。また、回転ギアトランスミッションが、第4の回転式アクチュエータ50から回転ギアトランスミッションの最大の歯車64B上のレバー61までの機械的トランスミッションを介してどのように作動するのかも示されている。図3Aのロボットアーム500は、第4のアクチュエータ50を備える。第4のキネマティックチェーンは、第4のアクチュエータ50の動きを、エンドエフェクタプラットフォーム41に取り付けられたツール28の対応する動きに伝達するように構成され、エンドエフェクタプラットフォームは、ここでは部分41A、68、69、70を備える。第4のキネマティックチェーンは、少なくとも1のベアリング53、55を介して内側アームアセンブリ1に取り付けられた方向付けリンケージ52、57を備える。方向付けトランスミッション64A、64Bは、エンドエフェクタプラットフォーム41に取り付けられ、方向付けリンケージは、各端部にある少なくとも2DOFの継手58、60でエンドエフェクタ回転リンク59を介して方向付けトランスミッション64A、64Bに接続されている。図3Aは、すべてのアクチュエータがロボットスタンドに固定された状態でスカラロボットの第4の軸を得るための1つのオプションを示している。4つのアクチュエータ4、5、6、50は、鉛直な第1の回転軸29に沿った一致する回転シャフトを備えている。第4のアクチュエータ50の出力シャフトは、中空シャフトアクチュエータ50を通過し、内側アームアセンブリ1に接続されており、同様に、第3のアクチュエータ6の出力シャフトは、第2のアクチュエータ5を通過し、90度の角度ギア(図示省略)を介してシャフト3の回転を制御している。第2のアクチュエータ5は、レバー2を制御し、鉛直軸71を中心にツール28を回転させるために使用される第4のアクチュエータ50は、90度の角度ギア51(第3のアクチュエータ6とシャフト3との間で使用されるものと同じタイプ)によってシャフト52と係合する。図2Aに関連して、ロボットアームのこの実現には以下の新しい特徴があり、一部は図1の実施形態も参照する。
・外側アームリンケージのリンク17、18は、自在継手を接続ベアリング21、22として使用して、内側アームリンケージのリンク11、12に直接接続されている。これらの継手は同一で、図3Dに詳細に示されている。符号21で示す自在継手に関して、図3Dに示すように、ベアリング21Aは、第1のリンク17の周りに取り付けられ、その回転軸がリンクの中心と一致している。ベアリング21B、21Cは、その一致する回転軸がベアリング21Aの回転軸に対して垂直であり、シャフト21D、21Eによってベアリング21Aの外側リングに取り付けられている。すなわち、外側アームリンケージと内側アームリンケージは、それぞれのリンク11、12、17、18のリンク接続ごとに、1つの接続ベアリング21、22、ここでは自在継手によって接続されている。これらの接続ベアリング21、22の回転軸34、35は、外側アームリンケージのそれぞれのリンク17、18に対して直角である。
・ベアリング21B、21Cの外側リングが、ロッド21F、21Gを使用してビーム21Hに取り付けられる。この場合、ロッド21Hが第1のリンク11に取り付けられる。ビーム21Hと第1のリンク11との間に、回転中心が第1のリンク11の中心軸と一致するベアリングを追加することも可能であるが、これは必須ではない。符号22で示す自在継手に関して、ベアリング21Aは、作動リンク18の周りに取り付けられ、リンクの中心と一致するその軸または回転を有する。すなわち、接続ベアリング21A、22Aが、外側アームリンケージのリンク17、18と内側アームリンケージのリンク11、12を接続し、各接続ベアリング21A、22Aの回転軸が、外側アームリンケージのそれぞれのリンク17、18の中心と一致する。
・この場合、ロッド21Hが第2のリンク12に取り付けられる。ビーム21Hとリンク12との間に、回転中心が第2のリンク12の中心軸と一致するリンクベアリングを追加することも可能であるが、これは必須ではない。継手21、22は、継手15、21の中心間の距離が継手16、22の中心間の距離と同じになるように、リンク17、18に取り付ける必要がある。この解決策は、内側の一対のリンク11、12を外側の一対のリンク17、18に接続する図1の解決策と比較すると、機械システムが冗長ではなく、組み立てを容易にするという利点を有する。しかしながら、同時に、大径のリンクが使用される場合、ベアリング21Aが大径になり、故障時にベアリング21Aを交換することがより困難になる。その場合、当然のことながら、リンク17、18のプレストレスは発生しない。当然のことながら、ビーム25とベアリング21,22との接続は、図3Aの4軸ロボットアームでも使用することができる。
・継手22のベアリング構成により、作動リンク18は継手22の右側へもその中心軸を中心に回転することができ、リンクベアリング16Cは作動リンク18に沿った作動軸の中心線に沿ってどこにでも、例えば、ここでは図3Aに具体的に示されているように、継手20上の作動リンク18の端部に、配置させることができる。より一般的には、この作動軸の中心線は、理論上、中心線またはベアリング22Aと平行である場合(継手22についてであるが、ベアリング21Aと同様に、図3Dを参照)、作動リンク18から逸脱する可能性があるが、実際には、動的力を考慮すると、それは回転軸33とも交差する必要がある。すなわち、図3Aではそうであるが、作動軸の中心線は必ずしも回転軸40と交差するわけではない。
・ツール28の鉛直軸である軸71を中心にツール28を回転させるために、レバーアーム57は、鉛直面内で揺動するようにシャフト52に取り付けられている。エンドエフェクタ回転リンク59は、レバー61によって歯車64Bを回転させる。次いで、歯車64Bは、歯車64A(すなわち、歯車またはギアホイール)を回転させ、例えば3よりも大きい歯車係数で、ツールを360度以上回転させることが可能になる。このため、ギアトランスミッション64A、64Bは、ツール28を1自由度で回転させるように構成された第1の歯車64Aを含むことができる。シャフト52は、ベアリング53、55を介して取り付けられ、それらベアリングは、ロッド54、56によって内側アームアセンブリ1に取り付けられている。レバーアーム57は、シャフト52に直角に取り付けられていることが好ましく、エンドエフェクタ回転リンク59は、玉継手58を用いてアーム57に取り付けられている。エンドエフェクタ回転リンク59は、その他端でも、玉継手60を用いてレバー61に取り付けられている。すなわち、ロボットアーム500は、第2の歯車64Bを含む方向付けトランスミッション64A、64B、100、270、271を含み、第1の歯車64Aが、第2の歯車64Bに接続されたレバー61を介してエンドエフェクタリンク59により回転するように構成された第2の歯車64Bによって係合されている。当然のことながら、図面中のすべての玉継手は、たとえより大きなスペースおよび重量を必要とすることが多くとも、2または3のDOFの自在継手に置き換えることができる。第2の歯車64Bは、ベアリング63の外側リングに取り付けられ、ベアリングは、その内側リングが、エンドエフェクタビーム41Aに取り付けられる鉛直シャフト62に取り付けられている。第2の歯車64Bは、より小さい第1の歯車64Aと係合し、この第1の歯車は、中空であるビーム68を介して軸方向に配置された、鉛直シャフト65に取り付けられている。こうして、シャフト65は、中空ビーム68の内部に回転可能に構成されている。すなわち、第1の歯車64Aの回転軸71が第1の回転軸29と平行になるように、第1の歯車64Aがエンドエフェクタプラットフォーム41に取り付けられている。シャフト65は、ベアリング66、67によって支持され、それらベアリングは、ビーム68に取り付けられている。ビーム68は、ロッド69、70によってエンドエフェクタビーム41Aに取り付けられている。回転シャフト65の端部には、手動で(シャフト65上の)端部フランジ(図示省略)にねじ込まれるか、またはツール交換を自動化する端部フランジ上のツール交換器によって、ツール28が取り付けられている。
図3Aに適用可能である場合、図1〜図2Bと同じキネマティック要件が有効である。例えば、すべての軸29、30、31、32、40は平行かつ鉛直である必要があり、これは、図3Aの場合、シャフト65の回転中心によって規定される軸71についても必要である。外側の一対のリンクのリンク17、18は、平行で同じ長さでり、同じことが、内側の一対のリンクのリンク11、12についてもいえる。なお、図3Aでは、継手9(図2A)および第1のリンク11の一部が内側アームアセンブリ1の後ろに隠れていることに留意されたい。国際公開第2014/18748号では、ツールの回転を得る解決策はない。国際公開第2015/188843号の図1は、3つのアームを有するロボットのエンドエフェクタプラットフォームに取り付けられたツールを回転させるための構成を含む。このロボットアームシステムには大きなスペースが必要であり、ツールを傾けるために第4の軸が実装されている。ツールの回転は、リストに取り付けられた別個の回転アクチュエータで行われる。さらに、ロボットのワークスペースは非常に小さく、リスト軸への伝動によってさらに削減される。本開示の図1および図3Aの解決策では、エンドエフェクタ回転リンク59を介してレバーアーム61に接続されたレバーアーム57を有する回転シャフト3が、ロボットアームの位置決めワークスペース全体において、第4の軸の完全な作動領域を有することを可能にする。これは、国際公開第2015/188843号の第4の軸のためのトランスミッションタイプでは不可能である。何故なら、トランスミッションの作動範囲が、リストがワークスペースの中心から離れるほどオフセットが増加するためである。国際公開第2015/188843号の図1のトランスミッション解決策のもう1つの問題は、リストに必要なギアが第6の軸のモータに近く、よってツールに近いため、エンドエフェクタプラットフォームを扱い難く、アクセシビリティの問題を生じる。図1および図3から分かるように、ビーム68が常に鉛直でギア側をツール側から分離しているロボットアームの設計のおかげで、ベアリングはツールから遠く離れている。
このため、本開示において、国際公開第2015/188843号の制限は、ツールの回転のために2つの直列に作動するトランスミッション、よって方向付けリンケージと方向付けトランスミッションを1つのキネマティックチェーンのみに取り付けるとともに、例えば各端部に少なくとも2のDOFの継手を有するエンドエフェクタ回転リンク59を介してギアトランスミッションに接続されたレバーアーム57により第2の回転シャフト52を介してエンドエフェクタプラットフォーム41上のギアトランスミッション64A、64Bに接続された第4のアクチュエータ50を使用することによって、回避され、それにより、第4のアクチュエータ50と方向付けトランスミッション64A、64Bとの間で最適なトランスミッション効率が得られる。さらに、2つのバージョンの方向付けトランスミッションが導入され、一方が歯車、もう一方がラックアンドピニオンを有し、ともに+/−180度のツール回転能力を得ることができる。
図3Bは、第2の実施形態に係るロボットアーム500を示し、図1および図3Aのトランスミッションと比較して、ツール28を回転させるための代替的な方向付けトランスミッションを含む。この実施形態では、ピニオンの形状の歯車64Aがツール28を回転させるラックアンドピニオン型のトランスミッション100、64Aが使用されている。トランスミッション100、64Aのラック100は、エンドエフェクタ回転リンク59によって移動され、エンドエフェクタ回転リンクは、機械的トランスミッションを介して第4のアクチュエータ50に接続されている。すなわち、第1の歯車64Aは、ラック100に接続され、ラック100は、当該ラックに接続されたエンドエフェクタ回転リンク59によって移動するように構成されている。ビーム25とベアリング21、22を備えた基本的な3自由度ロボット構造は図1と同じであり、シャフト52、レバーアーム57およびエンドエフェクタ回転リンク59を備えたツール回転用のトランスミッションは、図1および図3Aと同じである。この実施例における新しい部分は、図1および図3Aの回転歯車64Bが、ラックアンドピニオン型のトランスミッションを得るために、線形ギアであるラック100によって置き換えられていることである。線形ギアは、玉継手60を介してエンドエフェクタ回転リンク59により移動する。ラックギアは、符号101、102で示すリニアベアリング内を移動し、このベアリングは、ロッド103を介してロッド69に取り付けられている。図1および図3Aに示すように、ロッド69は、ロッド70とともに、ビーム68をエンドエフェクタプラットフォーム41のエンドエフェクタビーム41Aに取り付けるために使用される。また、ピニオン歯車64Aは、ツール28を回転させるために回転シャフト65に取り付けられている。
図1および図3Aの歯車解決策に関連して図3Bのラックアンドピニオン解決策を使用することの利点は、ワークスペースにおいて、外側の一対のリンクの平行リンク17、18によって規定される鉛直面に対して、エンドエフェクタ回転リンク59をより近くに保つことが可能であることである。これにより、シャフト65およびシャフト52の回転間の伝達効率がさらに向上する。さらに、この解決策は、ややスリムなエンドエフェクタプラットフォーム構成を提供する。
図3Cは、いくつかの実施形態に係る方向付けリンケージを示している。この方向付けリンケージは、継手58、60の自由度をレバー57、リンク59およびレバー61に分配することが可能であることを示している。このため、ベアリング58Aは、回転軸がレバー57の中心軸と一致するようにレバー57に取り付けられ、ベアリング58Bはその回転軸がベアリング58Aの回転軸に対して垂直に取り付けられ、ベアリング58Cはその回転軸がリンク59の中心軸と一致するように取り付けられている。ベアリング60Aはリンク59の中心軸に対して垂直であり、ベアリング60Bはレバー57の中心軸と一致する。
図1〜図3Dは、スカラロボットと同じ動作機能を得るようにロボットアーム500をどのように設計できるかを示しているが、すべてのアクチュエータがロボットスタンドに固定されているため、アーム構造の慣性が遙かに低い。
図4Aは、ロボットアーム500の第3の実施形態を示しており、ロボットアームが、上から物体に到達する関節式ロボットアームとしても実施できることを示している。すなわち、ロボットアームの構造は、水平面ではなく鉛直面でスイングする。これは、図1〜図3において鉛直である必要があったすべての軸が、ここでは水平でなければならないことを意味している。しかしながら、図1〜図3の設計の特徴の殆どを引き続き使用することができる。図4Aを見ると、鉛直軸29、30、31、32、40、71の代わりに水平で作動する以外に例示される新しい唯一の設計原理は、歯車64Bへの伝達に関するものだけである。当然のことながら、この場合も、図1および図3Aと同じ伝達原理を使用することができ、図4Aの伝達原理を図1および図3Aでも使用することができる。
アクチュエータを見ると、図4Aの中空シャフトアクチュエータ、すなわち第2のアクチュエータ5が、レバー2をスイングさせて外側の一対のリンク17、18を内外にスイングさせるように構成され、出力シャフトが第2のアクチュエータ5を通り抜ける第3のアクチュエータ6は、90度のギアを介してシャフト3を回転させて、外側の一対のリンク17、18を横方向にスイングさせるように構成されている。第4のアクチュエータ150を通過する出力シャフトを備えた第1のアクチュエータ4は、内側アームアセンブリ1と、よって外側の一対のリンク17、18を上下にスイングさせるように構成されている。図4Aのロボットアーム500のこの実施形態の新しい特徴は、代替的な第4のアクチュエータ150、すなわち第1のレバー200をスイングさせるように構成された中空シャフトアクチュエータである。この第1のレバー200は、方向付けリンケージに含まれる2つのリンク202、209によって回転歯車64Bに接続されている。一方のリンク202は、一端が、レバー200上のベアリング201に取り付けられ、第2のレバー204上の別のベアリング203に取り付けられている。第2のレバー204は、ベアリング206の外側リングに取り付けられ、このベアリングは、その内側リングが突起205を介して内側アームアセンブリ1上に取り付けられている。ベアリング206の外側リングには、第2のレバー204の先端が水平方向に移動するときに第3のレバー207の先端が鉛直方向に移動するように、第3のレバー207も取り付けられている。ベアリング206の回転軸は軸40と一致し、これは歯車64Bへの伝達のためのより単純なキネマティックを与える。第3のレバー207の先端は、玉継手208を介して他のリンク209に接続され、他のリンク209の他端は、玉継手210を介して第4のレバー211に接続されている。なお、ベアリング201、203は玉継手に置き換えることが可能である。ここで、第1のレバー200をスイングさせると、第4のレバー211が上下に(鉛直方向に)スイングし、第4のレバー211の鉛直方向のスイングとともに、歯車64A、64Bが回転軸を中心に前後に回転する。この図面では、第2の歯車64Bが、シャフト213およびベアリング214を介してエンドエフェクタビーム41Aに取り付けられている。ツール28の傾斜角度を一定に保つため、またはツール28の傾斜角度を目標角度に制御するために、図1および図3Aと同様に、ここでもエンドエフェクタプラットフォーム41上の回転ギアトランスミッション64A、64Bが使用されている。しかしながら、ここでは、トランスミッションの歯車は、図1および図3Aのように水平ではなく鉛直に配置されている。回転ギアトランスミッション64A、64Bは、リンク202、209およびレバー200、204、207の構成を介して第4の回転式アクチュエータ150によって制御されている。図1および図3Aのように、第2の歯車64Bを回転させると、第1の歯車64Aがギア倍率比で回転する。第1の歯車64Aは、シャフト65とベアリング66を介してビーム68に取り付けられている。第1の歯車64Aを回転させると、歯車64Aを保持するシャフト216が回転し、シャフト216に配置されたツール27、28がその傾斜角度を変える(シャフト216は、ここではエンドエフェクタへの接続部である)。これは、例えば、物体を様々な傾斜条件でピックアンドプレースする場合に有用である。また、コンベアから物体を取り上げる場合など、ワークスペース全体で傾斜角度を一定に保つためにも使用される。
図4Bは、第3の実施形態の変形例に係るロボットアームを示している。この変形例では、図4Aに示す実施形態と比較して、レバー200、211間のトランスミッションの作動範囲を増大させることが可能である。図4Bの解決策を使用すると、ギアトランスミッション64B−64Aのギア比を減少させることができ、歯車64Bの回転能力が、ロボットアームのワークスペースの内側および外側部分で増加する。ここでは、レバー204より長い追加のレバー501を含む、バックホウリンケージを含む内側ギアリング機構が導入されている。レバー501、204は、リンク505によってその端部でベアリング503、203に接続されている。アクチュエータ150がレバー200をスイングすると、その端部にベアリング201、506を有するリンク202が、ビーム504に取り付けられたベアリング502を中心にレバー501をスイングさせる。バックホウの原理により、レバー204の角回転はレバー501のそれよりも大きく、歯車64Bは図4Aの直接伝達よりも大きな回転を得ることとなる。すなわち、内側ギアリング機構は、バックホウ原理に従って構成されて、外側アームリンケージの回転によって制限されることなく、内側ギアリング機構のギア比によって決定される角度範囲内でエンドエフェクタ28を回転させる。すなわち、バックホウなしで、第2の自由度の大きな角度範囲を可能にすると、軸40を中心とする大きな向きの第4の自由度の動作範囲の望ましくない制限が簡単にもたらされる。これは、掘削機や様々なタイプのクレーンでよく知られている機構であるバックホウで回避される。このため、標準的なバックホウの原理は、本発明内の殆どすべてのレバーとロッドのリンケージに適用することができ、簡潔化のため、これについては更なる言及または説明はしない。図4Aと比較して、図4Bのベアリング206は軸40からのオフセットを有し、これは当然のことながら必須ではないが、力および/またはワークスペースに関して機械的設計をより効率的にすることができる。
図4Bでは、アクチュエータ150と歯車64Aとの間の回転比の倍率を増加させるために、異なる原理の2つのステップが存在する。当然のことながら、レバー211および歯車64A、64Bを備えた方向付けトランスミッションは、バックホウが図4Bに実装されている場合にも使用でき、その逆も同様である。図5Aのアクチュエータ150と歯車64Aとの間の動力伝達、および図10B(図3Dのような表記)のレバー351とレバー362との間の動力伝達にも、同じ概念を使用することができる。
図4Cは、第3の実施形態の別の変形例に係るロボットアームを示している。この別の変形例によれば、アクチュエータ4、5、6、150がブラケット510に取り付けられ、このブラケットを、シャフト511によってブラケット510に接続されたアクチュエータ512によって回転させることができる。シャフト511の中心線は、アクチュエータ4、5、6、150の中心線に対して直角である。アクチュエータ511を使用すると、ロボットアームのアジリティが向上し、また、ロボットアームの制御用のアクチュエータ4、5、6、150がすべて互いに近接して配置されているため、アクチュエータ512によって回転される質量慣性が小さくなる。このため、アクチュエータ512に必要なトルクと電力は、アクチュエータがロボットアームに分散されている従来のシリアルロボットよりも遙かに低くなる。また、一実施形態によれば、ブラケット510を線形アクチュエータに取り付けてワークスペースを増やすことも可能である。図4Cは、ツール28の回転にアクチュエータ514を使用するオプションも示している。ロボットアームが質量慣性の非常に小さい小物体を取り扱う場合、アクチュエータ514は軽量になり、また機械的に複雑ではないため、この解決策は、ツールの回転に関して、図8の解決策よりも有利である場合がある。
図4Dは、ツール28に運動を伝達するためのベルトドライブを備えた代替的な解決策を示し、図4Cの歯車64Bがベルトホイール64Cによって置き換えられ、歯車6Aが別のより小さなベルトホイール64Eによって置き換えられている。ベルト64Dは、2つのベルトホイールを接続する。このようなベルト伝動は、バックホウ機構を置き換えることもできる。ベルトの代わりに、2つのホイール間にワイヤを使用することもできる。
通常、リンクは力を伝達するために使用され、レバーはトルクを伝達するために使用される。
歯車トランスミッション64A、64Bの代わりに、当然のことながら、図3Bのようなラックアンドピニオンの解決策を使用することができる。その場合、ラックの取り付け方向は、図3Bのようであってもよく、あるいは外側の一対のリンク17、18によって形成される平面に対して直角にするようにしてもよい。
国際公開第2014/18748号では、上から物体に到達する多関節ロボットを得るための解決策はなく、ツールを傾けることができるか、またはツールの傾斜角度を一定に保つことができる第4の軸を得るための解決策は示されていない。
いくつかの用途では、ツール28を傾斜および回転させる必要がある。これに対する1つの可能性は、例えば図4Aのツール28に接続されたシャフト27に、ツール28を回転させる小さなアクチュエータを取り付けることである。これにより、アーム構造に慣性と電気配線が追加されることとなる。これを回避するには、図5Aに示すように、ラックアンドピニオンによるトランスミッション解決策が使用される。その場合、シャフト27は、エンドエフェクタへの接続部である。図5Aは、第4の実施形態に係るロボットアーム500を示し、この実施形態では、ツール28が、回転および傾斜するように制御されるか、または2DOFで傾くように制御される。図5Aでは、2DOFによる効率的なツール回転のために、ラックアンドピニオン構成270、271が回転する第1の歯車64Aに取り付けられ、ラック271が、ベアリング267を介してトランスミッション構成264、266に接続され、ベアリングの回転中心が、ラックアンドピニオン構成270、271を保持する第1の歯車64Aの回転中心と一致する。これらの機能を実装すると、2本の軸を中心にツールを90度、互いに対して+/−180度、回転させることができる。これは、国際公開第2015/188843号の図1に記載の構成では不可能である。より詳細には、ラックアンドピニオンギア270は、ツール28に接続され、回転ギアトランスミッション64A、64Bによって回転するように構成され、ラックアンドピニオンギアのラック271が、ベアリング267およびリンク258、264、266およびレバー256、260、262の構成を介して動かされる。
第1の歯車64Aは、図4Aについて説明したのと同じ方法で作動するが、第1の歯車64Aは、ここでは、線形ベアリングアセンブリ270、271を回転させており、ラック271が歯車64Aの回転軸に平行にスライドする。このため、ロボットアーム500は、エンドエフェクタプラットフォーム41に取り付けられた少なくとも2の方向付けトランスミッション64A、64B;270、271;293、294;315、316;311、312、313(他の図面も参照)を含み、エンドエフェクタプラットフォームが、方向付けの実施形態に応じて、部分41A、68、69、70などを含む。方向付けトランスミッションの第1の歯車64Aは、少なくとも1の他の方向付けトランスミッション270、271;293、294;315、316;311、312、313(他の図面も参照)を回転させるように構成されている。図3Bのように、ラックはピニオンギア(この場合は270で示される)を回転させ、シャフト65A(図3Bの符号65に対応する)を介してツール28を回転させる。すなわち、少なくとも1の他の方向付けトランスミッション270、271;293、294;315、316;311、312、313の少なくとも1のピニオン270、294、316は、ツールの回転を得るためにツール28に接続されている。いくつかの実施形態では、ロボットアームが、エンドエフェクタプラットフォーム41に取り付けられた少なくとも2の方向付けトランスミッション64A、64B;270、271;293、294;315、316;311、312、313を含み、少なくとも2の方向付けトランスミッションのうちの一つの外側ギアリング機構64B、64A;64C、64D、64E;100、64A;271、270が、少なくとも2の方向付けトランスミッション270、271;293、294;315、316;311、312、313の他の少なくとも一つを回転させるように構成されている。
ラック271のスライド動作は、ベアリング267を介して湾曲ロッド266によって達成される。ベアリング267は、歯車64Aの回転軸と一致する回転軸を有することが好ましい。この場合、線形ベアリングアセンブリ270、271は、湾曲ロッド266の回転または並進なしに、歯車64Aによって回転することができる。すなわち、少なくとも1のラックベアリング267は、第1の歯車64Aの回転軸71と一致する回転軸71を有する。
湾曲ロッド266は、玉継手265を介してリンク264によって動かされる。リンク264は、ベアリング263を介してレバー262に取り付けられている。ベアリング261は、その内側リングがビーム269に取り付けられ、このビームは、歯車64Bのベアリング63の内側リングから出るシャフト62に取り付けられている。シャフト62は、エンドエフェクタビーム41に取り付けられている。レバー260は、レバー262と同様に、ベアリング261の外側リングに取り付けられている。レバー260の先端が鉛直方向に移動したときに、前述したレバー204、207を有する構成と比較すると、レバー263の先端が水平方向に移動する。レバー260の先端の鉛直方向の移動は、ギアリンク258を介してレバー256の先端の鉛直方向の動きから得られる。ギアリンク258は、玉継手257、259によりレバー256、260の先端に取り付けられている。レバー256は、図1および図3Bのレバー57の構成と比べると、回転シャフト261に約90度の角度で取り付けられている。したがって、シャフト251を回転させると、レバー256が上下に、ギアリンク258、2つのレバー260、262、リンク264、ロッド266およびベアリング267を介してスイングするとともに、ラックギア271が前後に移動し、それにより、歯車64Aの回転角度によって決定される傾き方向でのツール28の回転を与える。すなわち、ロボットアーム500は、一端にレバー256を備えた回転シャフト251を含む方向付けリンケージ251、258、264を含み、レバー256が、少なくとも2のDOFの継手257を介してギアリンク258に接続されている。シャフト251は、ベアリング253A、253Bに取り付けられている。ベアリング253Aは、ビーム255を介して内側アームアセンブリ1に取り付けられ、ベアリング253Bは、ベアリング206のシャフト269を介して内側アームアセンブリに取り付けられている。ベアリング253B用のシャフト269は、突起205を介して内側アームアセンブリ1に取り付けられている。図面においては、シャフト251が、第5のアクチュエータ250によって回転するように構成されている。このため、ロボットアーム500は、第5のアクチュエータ250の動きを、ここでは第1の歯車64Aを含む外側ギアリング機構を介して、エンドエフェクタプラットフォーム41に取り付けられたツール28の対応する動きに伝達するように構成された第5のキネマティックチェーンを備える。第5のキネマティックチェーンは、方向付けリンケージ251、258、264を介して第5のアクチュエータ250に接続された少なくとも1のラックベアリング267、297を含む。しかしながら、第1の回転軸29と一致する回転軸を有する第5のアクチュエータを使用して、図1および図3Bに示すように90度の角度ギアを介してシャフト251を第5のアクチュエータに接続することも可能である。当然のことながら、第4のアクチュエータ150による歯車64Bの回転に使用されるトランスミッションチェーン構成を、レバー260を上下に動かすために使用することも可能である。ツール28を回転するためのリンクチェーン構成は、当然のことながら、内側アームアセンブリ1の反対側に配置することも可能であり、その場合、線形ベアリング構成270、271が、代わりに、ベアリング66の左側のシャフト65に取り付けられ、それにより、よりコンパクトな解決策を設計することが可能になる。さらに、ラックアンドピニオン構成全体を歯車64Aの左側に配置することができるが、図面を明瞭にするために、よりコンパクトなこの解決策を示していない。図3Bのように、歯車トランスミッション64A、64Bをラックアンドピニオン構成で置き換えることも可能である。
アクチュエータ150から、歯車64Bに取り付けられたレバーへの動力伝達は、アクチュエータ250からレバー260への動力伝達とは異なる。しかしながら、両方の場合において同じ動力伝達の概念を使用することが可能である。アクチュエータ150と歯車64Bに取り付けられたレバーとの間で使用される動力伝達の概念を使用する場合、バックホウリンケージを含むことができる。図5Aのアクチュエータ250とレバー260との間で使用されるのと同じ動力伝達の概念が、後述するように、図6A、図9、図10Aでも使用される。当然のことながら、これらの動力伝達は、図5Aのアクチュエータ150から歯車64Bに取り付けられたレバーへと使用される種類の動力伝達に置き換えることができ、図4Bに記載のバックホウリンケージを含むことができる。
図5Bはラック271の代替的な実施形態を示しているが、この実施形態では、ラック271が90度回転されており、歯が下向きとなっている。接続されたピニオン270は水平回転軸を有し、シャフト65は水平である。ツール28は、シャフト65Aに対して直角に取り付けられている。図5Aのように、ラック270のための線形ベアリングアセンブリ273は、歯車64Aに取り付けられ、ラック271と動力伝達部266との間のベアリング267が、歯車64Aの回転中心と一致する回転中心を有する。このラックアンドピニオンの取付により、ツール28の両方の傾斜角度を制御することが可能になる。
これまでのところ、すべてのアクチュエータをロボットスタンドに固定した5軸ロボット制御の解決策が示されている。6DOFを得るための1つの解決策は、図6Aおよび図6Bに示すように、回転シャフト、カルダン継手および90度ギアを備えたトランスミッションを使用することである
図6Aおよび図6Bは、図5Aおよび図5Bに係るラックアンドピニオンの概念と、1つの更なるキネマティックチェーンを達成するために使用される直角ギアおよびカルダン継手282、280を含むトランスミッションとの組合せを含む第5の実施形態に係るロボットアーム500を例示している。すなわち、このもう1つのキネマティックチェーンは、アクチュエータ285からの動作エンドエフェクタプラットフォームに配置されたエンドエフェクタのそれぞれの動作に伝達するように構成され、エンドエフェクタプラットフォームが、エンドエフェクタの動きに少なくとも6自由度を与え、この場合も、すべてのアクチュエータがロボットスタンドに固定されている。
ロボットアーム500は、より詳細に例示することができるように、ここでは2つの図面に分割されている。図6Aは、直角ギアトランスミッション299を備えた回転アクチュエータ285からエンドエフェクタプラットフォーム41上の水平回転シャフト275への動力伝達を示している。これを可能にするために、直角ギアトランスミッション299からの出力が、内側アームアセンブリ1に取り付けられたシャフト284(取付は図示省略)を回転させる。シャフト284は直角ギア283と係合し、その出力がリンク286を介して第1のカルダン継手282に接続され、第1のカルダン継手はその中心がライン40上にあるように取り付けられている。カルダン継手282の出力はシャフト281を回転させ、シャフトは、リンク279を介して、その他端が第2のカルダン継手280に接続され、第2のカルダン継手が、その中心を軸32上に有する。第2のカルダンジョイント280の出力は、直角ギア278を駆動し、これによりシャフト275が回転する。シャフト275は、ビーム68の内側にベアリングで取り付けられており、中空シャフト65を介して第1の歯車64Aを支持するベアリング66の内部で自由に回転することができる。シャフト275は、シャフト65および第1の歯車64Aの内部で自由に回転するように構成されている。このため、284、286を含む方向付けリンケージ、および281、279、275を含む方向付けトランスミッションは、方向付け軸71を中心にエンドエフェクタを回転させるように構成され、これは、シャフト65内部の自由回転により回転角制限がなく、他では停止することがない。
図6Bは、シャフト275が直角ギア277に接続され、その出力でシャフト65Bを回転させ、このシャフトが、ピニオン290のベアリング内部で自由に回転することができることを示している。シャフト65Bは、最後の直角ギア288に接続され、この直角ギアは、その出力がツール28を回転させるシャフト65Cに接続されている。このため、エンドエフェクタへの接続部が、ここではシャフト65Cを含む。また、少なくとも1の第2のギアトランスミッション270/271の1つのピニオン270は、直角ギア288を介してツール28に接続されている。シャフト65Cは、ベアリング291およびビーム290を介してピニオン270に接続されている。図5Aおよび図5Bと同様に、ラックアンドピニオン270、271は、第1の歯車64Aによって回転するように構成されている。直角ギア278の出力歯車、シャフト275および直角ギア277の入力歯車の回転中心は、共通の軸71上にある。ラック271は、ビーム266、ラックベアリング267およびラックアタッチメント287を介してラック271に連結されたリンク264によって動かされる。図5Aと同様に、リンク264は、レバー262を介してリンク構成に接続されている。
図6Aから分かるように、ロボットスタンドに固定されたアクチュエータ285からツール28の回転を得るには、5つの直角ギアと2つのカルダン継手が必要である。この解決策の利点は、無限のツール回転角度を取得できることであり、欠点は、カルダン継手280、282の作動範囲の制限により、位置決めのワークスペースが失われることである。
図6Aにおいてシャフト275が両端の開いた(何れかのタイプのベアリング66を有する)直線シャフトであることを観察することにより、当業者は、多くの既存の製品によるロボットの外側ロボットアームセグメントとの類似性に気付くであろう。これは、シャフト275を他のベアリング66および別のシャフト275を内部に有する中空とすることを直接指し、複数の同心シャフトの場合も同様である。当技術においては、そのような同心軸を3つ有することが一般的である。図6Bに示す例示的なリスト機構に入るそのような複数の同心シャフト275は、その機構を(ここでは検討しないが、様々な方法で)拡張/修正するか、または既存の標準ロボットリストを本開示に係る新しいエンドエフェクタプラットフォームの配置に取り付けるために使用することができる。内側シャフトがさらに外側(図6Bの中心線71に沿って左)に突き出ており、各シャフトに別の直角ギア278を追加する、同心シャフト275の他端を考慮すると、第6のキネマティックチェーンの残りの部分(直角ギア278からアクチュエータ285まで)は、重複が可能であり、よって複数のキネマティックチェーンを追加することが可能である。その場合、ロボットアームは、複数の方向付けリンケージ284、286を備え、各々が方向付けトランスミッション281、279、275を備える。
さらに、当業者が見出すであろう別の変形例として、対応する複数の同心出力シャフト275が、例えば異なる方向に又は互いに隣接してエンドエフェクタプラットフォーム上に配置された、1つのエンドエフェクタだけでなく、いくつかのエンドエフェクタについても、複数のエンドエフェクタ方向付けを働かせることができるように、複数の方向付けリンケージを構成することができる。上述したように、多くの標準的な多関節ロボットは、外側アームリンクの後方に配置されたリストモータを有し、シャフトが平行であるか、2または3DOFで同心状にリストまで外側アームリンクを通過するため、図2Aに係る3DOFのスカラのような動きを、(既存のコンポーネント/インターフェースを使用する、図6Bに示す機構の代わりに)すべてがロボットスタンドに固定された複数のモータ285によって駆動される複数のシャフト275によって作動される標準の3DOFロボットのリストと組み合わせるオプションが本発明には存在する。標準的なスカラロボットにシャフト275を配置するには、リストの鉛直配置に対処するために高価で重い伸縮シャフトが必要であり(かつ有用な6DOFのスカラは存在しないことから)、これは、第3のキネマティックチェーンの特性がよりスリムな解決策を可能にする本発明とは対照的である。
図7は、カルダン継手を使用せずに6DOFを得る可能性を与える、図6Bに示すラックアンドピニオン構成の代替的な実施形態を示している。ここでは、第2のまたは追加のラックアンドピニオン構成293、294が導入され、ピニオン294が直角ギア288を介してツール28を回転させるために使用されている。また、少なくとも1の第2の方向付けトランスミッション293/294の1つのピニオン294が、直角ギア288を介してツール28に接続されている。ラックアンドピニオン構成270、271と同じ原理を使用してラック293をスライドさせることができるが、ロボットスタンド(図示省略)上のアクチュエータへのトランスミッションへの接続は、代わりに第1の歯車64Aを介して行われる。リンクは、ベアリング296を介してシャフト275を前後に平行移動することによって動くビーム297に接続されている。シャフト275は、ベアリング66、シャフト65および第1の歯車64Aの内部で自由に移動し、ビーム295を介してラック293に繋がっている。ラックアンドピニオン構成はともに、第1の歯車64Aに取り付けられ、図6Bのように、シャフト65Cはベアリング291とビーム290を介してピニオン270に取り付けられている。明瞭にするために、ラック271、293の線形ベアリングは示していないが、それらは、第1の歯車64Aによって回転されるようにプラットフォーム(図示省略)に取り付けられている。ピニオン270、294は、同じプラットフォーム上にベアリングで取り付けられ、シャフト65は、ピニオン270を支持するベアリング内で自由に回転することができる。直角ギアアセンブリ288は、ピニオン270に取り付けられている(図示省略)。このため、歯車64Aが回転すると、軸71を中心にツール(およびラックアンドピニオン型のトランスミッション全体)が回転し、ビーム266が動くと、軸71に直角なシャフト65の中心の周りをツール28が回転し、ビーム297が動くと、シャフト65Cの回転中心の周りをツール28が回転することとなる。
図7の構成の1つの欠点は、直角ギア288の機能のために、シャフト65の中心の周りのツール28の回転が同時にシャフト65Cの中心の周りにツール28を回転させることである。これを回避するために、図8に従って第3のラックアンドピニオン構成を導入することができる。
図8は、6DOFロボットにおける直角ギアおよびカルダン継手を完全に回避するために、歯車64Aによって回転される3つのラックアンドピニオン構成を有する一実施形態を示している。ラックアンドピニオン構成のうちの1つは、共通のピニオンを有する2つのラックを備え、それらラックが互いに直角に取り付けられている。ここでは、図7の直角ギア288が、ラックアンドピニオン構成315、316によって置き換えられている。ピニオン316は、シャフト65Cを介してツールを回転させ、ラック315は、シャフト65およびベアリング314を介してラック313に接続される。ラック313は、ピニオン312をラック311と共有し、このラックは、ビーム310を介してシャフト275に接続されている。このため、ビーム297が移動すると、ベアリング296を介してシャフト275が移動し、次にラック311が移動する。ラック311が移動すると、ピニオン312を介してラック313が、ラック311の移動に対して直角に移動する。すなわち、1つのラックアンドピニオン型のギアトランスミッション311、312、313は、共通ピニオン312を介して接続された2つのラック311、313を備え、2つのラック311、313が、互いに対して直角に動くように構成されている。この場合、ラック315は、ラックベアリング314を介して自由に移動するシャフト65によって移動される。すなわち、ラックシャフト65は、別のラックアンドピニオン型のトランスミッション270、271に属するピニオン270の軸方向貫通穴内を自由に移動するように構成されている。ラック271は、図6Bと同様に、ラックアタッチメント287およびラックベアリング267を介して移動される。2つのラック313、315は、ラックシャフト65およびラックベアリング314を介して互いに接続されるものであってもよい。この解決策により、ロボットスタンド上のすべてのアクチュエータによって、ツールの回転軸間のカップリングなしで、ロボットアーム500の6自由度の動きを得ることができる。すなわち、ロボットアームは、少なくとも1の更なるアクチュエータと、少なくとも1の更なるアクチュエータの動きをエンドエフェクタプラットフォーム上に配置されたエンドエフェクタの対応する動きに伝達するように構成された少なくとも1の更なるキネマティックチェーンを備え、それによりエンドエフェクタの動きに少なくとも6の自由度が与えられる。図示のように、ツール28を回転させるシャフト65Cは、ピニオン歯車316の下側に取り付けられている。しかしながら、それをピニオン316の上側に取り付けることもでき、また、1つのツールをピニオン316の上側にあるシャフトで取り付け、同時に別のツールをピニオン316の下側に取り付けることも可能である。軸1〜3のための主要構造に取り付けられ、方向付けトランスミッション64A、64Bを有し、軸4〜6のための3つの平行リンクトランスミッションおよびアクチュエータを有する図8の構成は、軸1〜6のアクチュエータとともにベースを回転させるアクチュエータによって、7自由度のロボットにさらに発展させることができる。衛生条件または汚れた環境を含む用途では、回転シールのみを使用する場合、リスト軸4、5、6のアセンブリを保護するのがより容易となる。例えば図5の構成をシールするには、ロッド266に直線運動用のシールが必要である。図9Aは、第6の実施形態に係るロボットアーム500を示しており、ここでは回転シールのみが必要とされるため、この問題を回避する方法を示している。この機能を実現する方法は、第2のラックアンドピニオン構成を実装することであり、ここでは、ラックが接続され、ピニオンの直径が異なるため、ギア係数が1より大きくなる。第5のアクチュエータ250からリンク258の鉛直運動までの図5と同じ動力伝達設計により、ピニオンギア302は、先端が玉継手259を介してリンク258に取り付けられたレバー300によって、シャフト301を介して回転される。このため、固定されたラックアンドピニオン型のトランスミッション302、307のピニオン302は、レバー300を含み、このレバー上に、少なくとも2の自由度の継手259を介してギアリンク258が取り付けられている。
ピニオン歯車302は、シャフト301に取り付けられ、シャフトは、ベアリング303の内側リングに取り付けられている。ベアリング303の外側リングは、ビーム304によって線形ベアリングアセンブリ部分305上に取り付けられており、線形ベアリングアセンブリ部分は、シャフト63に取り付けられ、よってエンドエフェクタビーム41にしっかりと固定されている。このため、少なくとも1のラックベアリング267、297は、エンドエフェクタプラットフォーム41に取り付けられた固定ラックアンドピニオン型のトランスミッション302、307を介して第5のアクチュエータ250に接続されている。ピニオン歯車302が回転すると、ラックギアが水平に移動し、ビーム308によって得られる堅固な結合のために、ラックギア271も水平に移動する。ビーム308は、シャフト309およびベアリング267を介してラックギア271に接続されている。また、ラックベアリング267、297は、固定ラックアンドピニオン型のトランスミッション302、307のラック307に接続されている。シャフト309は、ベアリング267の内側リングに取り付けられ、ベアリング267の外側リングは、ラックギア271に取り付けられている。一実施形態では、ピニオン歯車302の直径は、ピニオン歯車270の直径の約3倍であり、それによりツール28の少なくとも360度の回転を得ることができる。図9Aは、図5のリンクおよびレバー構成260、262、264への代替的なトランスミッションを示している。ここでは、第2のラックアンドピニオンギアが、図5に示すラックアンドピニオンギアと直列に接続されている。このようにして、リンクとレバーのより簡素な構成を、1つのリンク258と2つのレバー256、300で使用することができる。このため、ロボットアーム500は、第5のアクチュエータ250と、第5のアクチュエータ250の動きを、第1の歯車64Aを介してエンドエフェクタプラットフォーム41に取り付けられたツールの対応する動きに伝達するように構成された第5のキネマティックチェーンとを備える。ここで、第5のキネマティックチェーンは、リンクトランスミッション251、258、264を介して第5のアクチュエータ250に接続された少なくとも1のラックベアリング267、297を含む。
図9Bは、いくつかの実施形態に係る代替的な方向付けリンケージを示している。方向付けリンケージは、90度ギア256Aを使用して、内側アームアセンブリ1の中心軸に垂直な軸を中心に軸256Bおよびレバー256を回転させるオプションを提供する。これにより、レバー256とギアトランスミッションとの間の動力伝達の作動範囲が拡大する。
本開示から理解されるように、いくつかの実施形態では、ロボットアームが、複数の方向付けリンケージ52、57、59;202、204、207、209;251、256、258を含む。各方向付けリンケージは、接続された方向付けトランスミッション64B、64A、216;64C、64D、64E;100、64A;260、262、264、266、271、270をそれぞれ有する。複数の方向付けリンケージは、それぞれの対応するエンドエフェクタの方向付けが、エンドエフェクタプラットフォーム上に配置される1または複数のエンドエフェクタに対して達成されるように構成されている。
図10Aおよび図10Bは、第7の実施形態に係るロボットアーム500を示し、このロボットアームは、回転アクチュエータの水平の共通の第1の回転軸29を有する。ロボットアーム500は、キネマティック構造の理解を容易にするために、図10Aおよび図10Bに分けられている。図10Aは、ツール28の傾斜角度を制御するためのキネマティックチェーンを備えたロボット構造全体を示している。この場合、ツール28は、歯車61Bに接続された水平シャフト65に取り付けられた軽量回転アクチュエータ390によって回転される。歯車61Bは、シャフト213に取り付けられた歯車64Bと係合し、シャフトは、ベアリング214を介してエンドエフェクタビーム41Aに接続されている。エンドエフェクタビーム41Aは、この場合、中空のビーム68とともに要素366を含むエンドエフェクタプラットフォーム41の一部であり、シャフト65が、中空ビーム68の各端部に1つのベアリングで取り付けられている。要素366を含むエンドエフェクタプラットフォーム41は、一緒に取り付けられたロッドとともに剛性フレームワークを形成し、継手367、368、369、ベアリング214およびシャフト65を支持する。シャフト213は、レバー61によって回転され、レバーは、玉継手60によってエンドエフェクタ回転リンク59に接続されている。エンドエフェクタ回転リンク59は、レバー257によって上下に移動するように構成され、レバーは、玉継手58を介してエンドエフェクタ回転リンク59に接続されている。レバー257は、シャフト52によって回転して上下にスイングするように構成され、シャフトは、ベアリング53、55に取り付けられ、それらベアリングは、ビーム53、56によって内側アームアセンブリ1に取り付けられている。シャフト52は、90度の角度ギア51を介して回転アクチュエータ50によって回転されるように構成されている。
図10Aおよび図10Bに示す設計では、エンドエフェクタビーム41Aの軸中心の周りの傾斜の自由度に関する制約が、玉継手367Aによりエンドエフェクタプラットフォーム41に接続されるとともに、玉継手367Bにより内側アームアセンブリ1に接続された第3のリンク365によって得られる。第1のリンク17は、継手368によりエンドエフェクタプラットフォーム41に接続されるとともに、継手15により内側アームアセンブリ1に接続され、リンク18は、継手369によりエンドエフェクタプラットフォーム41に接続されている。明確にするために傾斜角度を制御するためのトランスミッションが取り除かれた図7Bに示すように、外側の一対のリンクの作動リンク18の上端が、ベアリング16Cを介してベアリング対16A、16Bに接続されている。ベアリング16Cの回転中心は、作動リンク18の軸中心と一致する。ベアリング16A、16Bは、ベアリング16A、16Bの回転軸が一致しかつベアリング363の回転角度に対して直角になるように、ベアリング364に取り付けられている。ベアリング363は、シャフト363に取り付けられ、シャフトは、ビーム364を介して内側アームアセンブリ1に取り付けられている。ここでは、ベアリング16Aの中心にあるレバー362が、ベアリング363の外側リングに接続され、ベアリング対16A、16Bをベアリング363の周りでスイングさせるために使用され、その結果、作動リンク18が、内側アームアセンブリ1の中空リンクの中心と平行なレバー362の周りでスイングする。シャフト363は、各端部に玉継手359、361を有するリンク360によって上下にスイングするように作動される。継手359は、ベアリング356の外側リングに取り付けられたレバー358に接続されている。ベアリング356の内側リングは、ビーム357に取り付けられ、ビームは、内側アームアセンブリ1に取り付けられている。別のレバー355が、レバー358に対して約90度の方向で、ベアリング356の外側リング上に取り付けられている。レバー355は、ベアリング354を介してリンク353に接続され、ベアリングは、実際には玉継手でもある。リンク353の他端は、ベアリング352を介してレバー351に接続されている。ベアリング352は、玉継手によって置き換えることもできる。レバー351は、回転アクチュエータ350によって強制的にスイングさせられる。いくつかの用途では、リンク18をスイングするこの動力伝達が、前図のように第1の回転シャフト3を使用するよりも優れている。例えば、内側アームアセンブリ1が非常に長く、回転トルクを有するシャフト3の代わりに、軸力のみを有するリンク353に剛性を得ることがより容易である場合である。
これらの図面において導入した別の新しい特徴は、前図のような単一のリンク11、12の代わりに、リンク11A、11Bのペアおよびリンク12A、12Bのペアを使用することである。これにより、リンクペアのリンク間でバネと一緒に保持される玉継手の単純なペアを使用することが可能になる。リンクシステムは、ここでは第3のリンク365を含み、内側アームリンケージが、平行リンク11A、11Bおよび平行リンク12A、12Bの一対の平行ペアを含み、ツール28の傾斜角度の作動が、軸力のみをとるリンク353を介して行われる。すなわち、内側アームリンケージのリンク(内側の一対の平行リンク11、12)は、平行リンク11A、11B;12A、12Bのペアを含み、これらの平行リンク11A、11B;12A、12Bのペアが、玉継手により外側アームリンケージのリンクの両側に取り付けられている。
前図では、図面を理解し易くするために、中空シャフトアクチュエータの概要が示されている。図11は、中空シャフトのない標準的なモータを使用して、代わりに作動を行う方法を示している。図11は、中空リンク1Aおよび回転シャフト3を駆動する2つのアクチュエータの断面図である。中空リンク1Aおよびシャフト3はともに、例えば炭素強化エポキシで製造された管である。中空リンク1Aは、リング424の外側に取り付けられ、リングは、ハウジング417とともに組み立てられている。このハウジングは、シャフト416に取り付けられ、このシャフトは、シャフト413および歯車414、415を介してモータ412によって回転される。歯車415は、シャフト416の外面に直接取り付けられ、歯車414は、シャフト413の端部に取り付けられている。シャフト413は、歯車ハウジング430とシャフト413との間にベアリング対428を備える。同様に、シャフト416は、歯車ハウジング430とシャフト416との間にベアリング対426を備える。
シャフト3は、内側の短いシャフト422と外側リング423との間に取り付けられている。外側リングは、ベアリング425を介してハウジング417に取り付けられ、シャフト3の回転を支持する。他端では、シャフト3が、内側アームアセンブリ1の中空リンク1Aの内部に、対応するベアリングによって取り付けられている。90度の歯車421が、短いシャフト422に取り付けられている。歯車421は、シャフト419に取り付けられた90度の歯車420によって駆動され、シャフトは、モータ418によって駆動される。シャフト419は、シャフト416、419間のベアリング対427によって支持されている。第1の回転軸29(前図と比較)は、ベアリング425の回転中心と、シャフト3の他端にあるベアリングの対応する回転中心とによって規定されている。第1の回転軸29(前図にも示される)は、シャフト419の回転中心によって規定されている。図11は、図1〜図6に示す中空シャフトモータを使用せずに、共通の回転軸を得るように回転アクチュエータが配置された一実施形態を示している。モータ412、418は互いに並んで取り付けられ、中空シャフト416、ギア414、415が使用されている。
図12Aは、図1の代替バージョンを示しており、アクチュエータの第1の回転軸29が、2つの異なる平行な回転軸29A、29Bに分割されている。このようにして、中空シャフトアクチュエータが必要なくなる。ここで、第2のアクチュエータ5は、それ自体の回転軸29Bを有するように移動され、以前と同様に、レバー2を揺動して平行リンク11、12を移動させるように構成されている。第1のアクチュエータ4および第3のアクチュエータ6は、共通の回転軸29Aを有する。第1のアクチュエータ4は、内側アームアセンブリ1に直接取り付けられ、第3のアクチュエータ6は、シャフト3を回転させるために、図面には現れない直角ギアに接続されている。アクチュエータの構成が簡素化されるという利点と同時に、ワークスペースが幾分か減少し、リンク11、12における力の伝達が内側アームアセンブリ1の回転角度に依存するという欠点がある。3を超えるアクチュエータを含む図面では、異なるアクチュエータ間で回転軸を平行にすることも可能である。図12Aの更なる説明のために、図1の説明を参照する。
図12Bは、回転モータで構成されるアクチュエータ(ここではアクチュエータ5)と、出力モータシャフト上のギアボックスと、図12Aのような各キネマティックチェーンを作動させるための所望の運動を伝えるレバー(ここではレバー2)の代わりに、リンク端部の所望の運動が線形アクチュエータによって直接達成できることを示している。図12Aの2つのリンク11、12の(継手13、14を動かす)機能は、それぞれ継手13、14で終わる2つのボールねじ811、812によって達成され、それによりリンク11、12の機能を提供する。ボールねじ811、812は、他端が自在継手809、810によりビーム8に接続され、それら自在継手は、継手9、10と同じ機能を有しているが、ボールねじの最良の機能のために、それぞれのリンク811、812の周りの回転を許容していない。各ボールねじは、その基端部809、810に回転可能に固定されたボールナット部分811A、812Aを備え、必要に応じて、ねじ部分811B、812Bに対して回転可能にも固定され、それによりボールねじ部分811A、812Aから伸びるねじ811B、812Bからの直線運動を達成して、リンク811、812を短くまたは長くする。ここで、アクチュエータ5は、二重化されるとともに、ねじ811B、812Bが回転するように811A、812Aの両方に組み込まれるか、または取り付けられる。ここでは、アクチュエータ5(図12A)が811A、812Aに統合されているため、図面には現れない。図12Aでは、単一のアクチュエータ5とレバー2がビーム8を移動させるが、図12Bでは、2つのボールねじにそれぞれ1つのアクチュエータがあるため、それらは、軸30、31を平行に保つために(前述した制御システムによって)同期して動く必要がある。代替的な実施形態では、軸29Bを中心にレバー2を回転させるが、アクチュエータ5を使用せずに、代わりに、中心線29Aの近くの位置からビーム8まで作動するボールねじを備えることになる。このように、一つのボールねじのみが必要とされる。ボールねじは、中空リンク1A上のある位置(図示省略)からも作動することができ、その場合、ロボットスタンドに力を伝達しない。
一般に、線形アクチュエータを使用する別の方法は、それらをレバーと一緒に使用して、範囲が限定された回転を生み出す。具体的には、既存のロボットのプラクティスによれば、通常は無制限の回転能力を有する回転アクチュエータによって運動がもたらされる、図6A、図6B、図12Bを除くすべて図面のすべてのアクチュエータによって示されるすべての回転に適用される。しかしながら、開示のロボットアームでは、図6Aおよび図6Bにおける複数のリストの動きを除いて、広い範囲のアクチュエータを有する必要はない。代わりに、本発明によれば、各アクチュエータは線形であり、適切なレバーとともに配置される。このため、非常に低いロボットコストまたは非常に高いエンドエフェクタ力のために、ボールネジとは別に、アクチュエータも空気圧式または液圧式にすることができる。
本明細書で使用されるトランスミッションは、実際のギアを備えた従来のピニオン・ピニオンまたはラック・ピニオンなどのギアトランスミッションであるが、ピニオン・ピニオンまたはラック・ピニオンのギアトランスミッションのいずれかと同等の機能のワイヤまたはベルトに基づく他のトランスミッションによって置き換えることもできる。本明細書で使用される「トランスミッション」という用語は、上述したギアトランスミッションのタイプと同様の機能のあらゆるトランスミッション/伝動装置を意味する。
図13は、図1および図3Aのエンドエフェクタ回転のためのトランスミッションの部分を示しているが、ここでは、歯車64A、64Bが、ベルト64Eに接続されたベルトホイール64C、64Dに置き換えられている。図13の構成要素の更なる説明については、図1、図3〜図3Dの説明を参照する。ベルトトランスミッションは、ギアトランスミッションよりも簡素な機構で作ることができる。さらに、トランスミッションがプラスチック製の場合、安価なベルトトランスミッションが、プラスチック製の歯車よりも寿命が長くなることがある。
図14Aおよび図14Bは、いくつかの実施形態に係る、第2のキネマティックチェーンのためのバックホウ機構(図4Bを参照)の使用を説明する。図14Aは、バックホウ自体を示し、接続ベアリングが、外側の一対の平行リンク17、18の2つのリンクの回転中心線の周りに配置されている。バックホウのベースベアリング803は、内側アームアセンブリ1の部分1Aに配置され、これは、バックホウが、図3Aのように2本のリンク805、806および自在継手21、22を介して作動できることを意味している。接続ベアリングに対する力のより好ましい方向のためにシャフト3にベアリング803を配置するには、例えば8と802の間の追加の継手および8と7Cの間の追加のリンク(図示省略)を導入することによって、回転軸31、32を軸33に平行に保つ別の方法が必要になる。バックホウの動機付けは、第2のキネマティックチェーンの動作範囲を増やし、それによってロボットアーム500のワークスペースを増やすことである。特に、殆どのスカラロボットは、第2のDOFに対して180度を超える動作範囲を有している。一方、国際公開第2014/187486号に係るロボット設計は、内側および外側アームリンケージに基づく平行四辺形によって制限されており、望ましい180度の範囲内で動作することはできない。バックホウ(図4Bで紹介)はこの問題を解決し、国際公開第2014/187486号と区別する特徴を形成する。
図14Aのように適用されたバックホウは、ビーム8がエルボーの近くに配置されて、ベアリング803の周りにレバー802とともに回転し、それにより、エルボー継手161と交差する第2の回転軸40の周りの角度の増加とともにアームが伸ばされるに連れて、継手9C、10Cに対する作動力がより適切に向けられる、基本的な原理を示している。これにより、軸33の方向のエンドエフェクタ力の特性を少なくとも考慮すると、ワークスペースがいくらか増加するが、伸長されたアームが特異点に達して、ベアリング15C、16Cによって許容されるように、外側の一対の平行リンクが回転軸を中心に反転するため、競合し得る作動範囲にまで達することはない。ベアリング15A、15B、15Cはともに、先の図面における継手15と同等であることに留意されたい。すなわち、リンク部分804は、反転に関する問題ではなく、図14Bに示すように、解決策の例示的な備えとして、継手15が複数の1DOF継手に分離される。
図14Bでは、バックホウは、外側アームリンケージのオフセット部分に配置されている接続ベアリング21,22を介して、外側の一対の平行リンクに作用するように構成されている。すなわち、共通の回転軸31を持つ接続ベアリングは、外側の一対の平行リンク17、18の回転軸と交差しなくなる。代わりに、接続ベアリングは、それぞれの内側ベアリングが(図3Dのベアリング21Aの内側のように)第2の回転軸40と交差する軸の周りを回転するように配置される。この設計では、当業者によって容易に決定されるように、リンク長と比較して上述したオフセットの適切な寸法がある(作動リンク18の回転軸と交差するまでの軸33に沿った軸40間の距離であるオフセットは、少なくとも作動リンクの長さと、軸40に平行な法線方向を持つ平面に対する外側アームリンケージの最大角度の正弦の積でなければならないことを見い出すであろう)。適切なオフセットにより(例えば、軸40に平行な法線方向を有する平面に対する外側アームリンケージの最大許容回転をxとした場合に、作動リンク18の長さ×sin(x)により)、特異点はワークスペースの外側になり(z方向の許容範囲が、制御システムで構成されている最大許容xと一致し)、第2のキネマティックチェーンが、外側アームリンケージの最も外側に伸長された位置を超えて動作することができる。
本開示は、上述した実施形態に限定されるものではない。様々な代替例、変形例および均等物を使用することができる。当然のことながら、当業者にとって適用可能かつ明らかな場合はいつでも、具体的に示したキネマティックチェーンまたは実施形態だけでなく、アーム構造の他の部分にあっても、様々な図面に示す原理を組み合わせることが可能である。したがって、上述した実施形態は、添付の特許請求の範囲によって規定される本発明の範囲を限定するものとして解釈されるべきではない。

Claims (22)

  1. エンドエフェクタ動作用のロボットアーム(500)であって、
    −第1の回転軸(29、29A)を中心に内側アームアセンブリ(1)を回転させるように構成された第1のアクチュエータ(4)であって、前記内側アームアセンブリが、第2の回転軸(40)を中心に回動可能に構成された外側アームリンケージ(17、18;18)に接続され、前記外側アームリンケージがエンドエフェクタプラットフォーム(41)に接続され、それにより前記第1のアクチュエータから前記エンドエフェクタプラットフォームまでの第1のキネマティックチェーンが形成され、それにより前記エンドエフェクタプラットフォームを位置決めするための第1の自由度が与えられる、第1のアクチュエータと、
    −第2のアクチュエータ(5;5b)であって、前記第2の回転軸(40)を中心に前記外側アームリンケージ(17、18;18)を回転させるように構成され、それにより前記第2のアクチュエータから前記エンドエフェクタプラットフォームまでの第2のキネマティックチェーンが形成され、それにより前記エンドエフェクタプラットフォームを位置決めするための第2の自由度が与えられる、第2のアクチュエータと、
    −第3のアクチュエータ(6;6b、512)であって、第3の回転軸(33;99)を中心にシャフト(3)を回転させるように構成され、その回転により、前記外側アームリンケージ(17、18;18)が継手(16;161)を介して回転し、それにより前記第3のアクチュエータ(6;6b)から前記エンドエフェクタプラットフォームまでの第3のキネマティックチェーンが形成され、それにより前記エンドエフェクタプラットフォームを位置決めするための第3の自由度が与えられる、第3のアクチュエータと、
    −第4のアクチュエータ(50;150)と、前記第4のアクチュエータの動作を前記エンドエフェクタ(28)の対応する方向付け軸(65)に伝達するように構成された第4のキネマティックチェーンとを備え、
    前記第4のキネマティックチェーンが、
    少なくとも1のベアリング(53、55;206)を介して前記内側アームアセンブリに取り付けられた方向付けリンケージ(52、57、59;202、204、207、209;284、286;251、256、258)と、
    前記エンドエフェクタプラットフォームに取り付けられた方向付けトランスミッション(64B、64A、216;64C、64D、64E;100、64A;281、279、275:260、262、264、266、271、270)とを含み、
    前記方向付けリンケージが、エンドエフェクタ回転リンク(59;209;258;281)と、前記エンドエフェクタ回転リンクの各端部ジョイントに少なくとも2の自由度を提供する継手(58、60;208、210;257、259;257、259;282、280)とを含むことを特徴とするロボットアーム。
  2. 請求項1に記載のロボットアームにおいて、
    前記方向付けトランスミッションが、エンドエフェクタへの接続部(65;65、216、27;216、514、27;65A;65C;65B;65C;65、390)を含み、それにより、前記エンドエフェクタの動作に対して少なくとも4の自由度を与えることを特徴とするロボットアーム。
  3. 請求項1または2に記載のロボットアームにおいて、
    前記方向付けトランスミッション(64B、64A、216;64C、64D、64E;100、64A;260、262、264、266、271、270)が、少なくとも1の外側ギアリング機構(64B、64A;64C、64D、64E;100、64A;271、270)を含み、前記外側ギアリング機構が、前記外側ギアリング機構のギア比によって決定される角度範囲内で前記エンドエフェクタ(28)を回転させるように構成されていることを特徴とするロボットアーム。
  4. 請求項1乃至3の何れか一項に記載のロボットアームにおいて、
    前記方向付けリンケージ(52、57、59;202、204、207、209;251、256、258)が、少なくとも1の内側ギアリング機構(501、502、503、504、505)を含み、前記内側ギアリング機構が、前記外側アームリンケージ(17、18;18)の回転に制限されることなく、前記内側ギアリング機構のギア比によって決定される角度範囲内で前記エンドエフェクタ(28)を回転させるように構成されていることを特徴とするロボットアーム。
  5. 請求項1に記載のロボットアームにおいて、
    前記方向付けリンケージ(284、286)および前記方向付けトランスミッション(281、279、275)が、回転角度制限なしに、方向付け軸(71)を中心に前記エンドエフェクタを回転させるように構成されていることを特徴とするロボットアーム。
  6. 請求項1乃至5の何れか一項に記載のロボットアームにおいて、
    前記第2のキネマティックチェーンが、接続ベアリング(14;21、22)を介して前記外側アームリンケージ(17、18;18)に接続されている少なくとも1のリンク(11、12;12)を含む前記内側アームリンケージを含み、前記第2のアクチュエータ(5)が、前記少なくとも1のリンク(11、12;12)に接続された少なくとも1の内側接続継手(10;9、10)を介して前記少なくとも1のリンク(11、12;12)を移動させるように構成されていることを特徴とするロボットアーム。
  7. 請求項6に記載のロボットアームにおいて、
    前記外側アームリンケージが、前記エンドエフェクタプラットフォーム(41)に接続された外側の一対の平行リンク(17、18)を含み、前記内側アームリンケージが、前記外側アームリンケージの外側の一対の平行リンク(17、18)に接続された内側の一対の平行リンク(11、12)を含み、前記第2のキネマティックチェーンが、レバー(2)の回転を前記エンドエフェクタプラットフォームの対応する動作に伝達するように構成されていることを特徴とするロボットアーム。
  8. 請求項7に記載のロボットアームにおいて、
    前記外側の一対の平行リンク(17、18)および前記内側の一対の平行リンク(11、12)が、それぞれのリンク(11、17;12、18)のリンク接続毎に、1つの接続ベアリング(21、22)によって接続され、前記接続ベアリング(21、22)の回転軸(34、35;31)が、前記外側の一対の平行リンク(17、18)のそれぞれのリンクの各々の軸方向中心線に対して直角であることを特徴とするロボットアーム。
  9. 請求項8に記載のロボットアームにおいて、
    前記接続ベアリング(21、22)を互いに機械的に接続する剛性ビーム(25)を備えることを特徴とするロボットアーム。
  10. 請求項9に記載のロボットアームにおいて、
    前記内側の一対の平行リンク(11、12)が、玉継手(13、14)を介して、前記剛性ビーム(25)に対するオフセットビーム(23、24)に取り付けられていることを特徴とするロボットアーム。
  11. 請求項7乃至10の何れか一項に記載のロボットアームにおいて、
    前記第3のキネマティックチェーンが、前記第3のアクチュエータ(6)と前記外側の一対の平行リンク(17、18)の作動リンク(18)との間に接続された内側トランスミッション(3;362、360、353)を備えることを特徴とするロボットアーム。
  12. 請求項7乃至11の何れか一項に記載のロボットアームにおいて、
    前記外側の一対の平行リンク(17、18)の作動リンク(18)に沿って取り付けられたリンクベアリング(16C)を備え、前記リンクベアリング(16C)の回転軸が、前記外側の一対の平行リンクの作動リンク(18)の中心と一致していることを特徴とするロボットアーム。
  13. 請求項7乃至12の何れか一項に記載のロボットアームにおいて、
    前記外側の一対の平行リンク(17、18)と前記エンドエフェクタプラットフォーム(41)とを接続するエンドエフェクタベアリング(19、20)を含み、前記エンドエフェクタベアリングの回転軸(36、37)が、前記外側の一対の平行リンクの中心に対して垂直であることを特徴とするロボットアーム。
  14. 請求項13に記載のロボットアームにおいて、
    前記エンドエフェクタベアリング(19、20)の回転軸(36、37)が、前記接続ベアリング(21、22)の回転軸(34、35)と平行であることを特徴とするロボットアーム。
  15. 請求項7乃至14の何れか一項に記載のロボットアームにおいて、
    前記外側の一対の平行リンク(17、18)のリンクと前記内側の一対の平行リンク(11、12)のリンクとを接続する接続ベアリング(21A、22A)を備え、各接続ベアリング(21A、22A)の回転軸が、前記外側の一対の平行リンク(17、18)のそれぞれのリンクの中心と一致することを特徴とするロボットアーム。
  16. 請求項7乃至15の何れか一項に記載のロボットアームにおいて、
    前記内側の一対の平行リンク(11、12)のリンクが、平行リンクペア(11A、11B;12A、12B)を含み、それら平行リンクペア(11A、11B;12A、12B)が、前記外側の一対の平行リンク(17、18)のリンクの両側に玉継手で取り付けられていることを特徴とするロボットアーム。
  17. 請求項1乃至16の何れか一項に記載のロボットアームにおいて、
    前記内側アームアセンブリ(1)が、中空のアームリンク(1a)を含み、前記シャフト(3)が中空のアームリンク(1a)の内側にベアリングで軸方向に取り付けられ、前記シャフト(3)が、前記第3のアクチュエータ(6)によって回転するように構成されていることを特徴とするロボットアーム。
  18. 請求項5乃至16の何れか一項に記載のロボットアームにおいて、
    複数の方向付けリンケージ(284、286)を含み、前記方向付けリンケージの各々が、方向付けトランスミッション(281、279、275)を含み、前記複数の方向付けリンケージは、対応する複数の同心の出力シャフト(275)が前記エンドエフェクタプラットフォーム上に配置された1または複数のエンドエフェクタのためにいくつかのエンドエフェクタの方向付けを働かせることができるように、構成されていることを特徴とするロボットアーム。
  19. 請求項3、4、6乃至17の何れか一項に記載のロボットアームにおいて、
    複数の方向付けリンケージ(52、57、59;202、204、207、209;251、256、258)を含み、各々が、接続された方向付けトランスミッション(64B、64A、216;64C、64D、64E;100、64A;260、262、264、266、271、270)によって、対応する各エンドエフェクタの方向付けを、前記エンドエフェクタプラットフォーム上に配置された1または複数のエンドエフェクタのために達成するように構成されていることを特徴とするロボットアーム。
  20. 請求項1乃至19の何れか一項に記載のロボットアームにおいて、
    前記エンドエフェクタプラットフォーム(41)に取り付けられた少なくとも2の方向付けトランスミッション(64A、64B;270、271;293、294;315、316;311、312、313)を含み、少なくとも2の方向付けトランスミッションのうちの一つの外側ギアリング機構(64B、64A;64C、64D、64E;100、64A;271、270)が、少なくとも2の方向付けトランスミッション(270、271;293、294;315、316;311、312、313)のうちの少なくとも他の一つを回転するように構成されていることを特徴とするロボットアーム。
  21. 請求項2乃至20の何れか一項に記載のロボットアームにおいて、
    第5のアクチュエータ(250)と、前記第5のアクチュエータ(250)の動作を、少なくとも1の他の方向付けトランスミッションを介して、前記エンドエフェクタプラットフォーム上に配置された前記エンドエフェクタ(18)の対応する動作に伝達するように構成された第5のキネマティックチェーンとを備えることを特徴とするロボットアーム。
  22. 請求項2乃至21の何れか一項に記載のロボットアームにおいて、
    少なくとも1の更なるアクチュエータ(50;150;250;285)と、前記少なくとも1の更なるアクチュエータの動作を、前記エンドエフェクタプラットフォーム上に配置された前記エンドエフェクタのそれぞれの動作に伝達するように構成された少なくとも1の更なるキネマティックチェーンとを備え、それにより、前記エンドエフェクタの動作に少なくとも6の自由度が与えられることを特徴とするロボットアーム。
JP2021112530A 2018-01-15 2021-07-07 産業用ロボットアーム Active JP7373212B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18151630 2018-01-15
EP18151630.3 2018-01-15
JP2020536540A JP6914568B2 (ja) 2018-01-15 2019-01-11 産業用ロボットアーム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020536540A Division JP6914568B2 (ja) 2018-01-15 2019-01-11 産業用ロボットアーム

Publications (2)

Publication Number Publication Date
JP2021181152A true JP2021181152A (ja) 2021-11-25
JP7373212B2 JP7373212B2 (ja) 2023-11-02

Family

ID=60990698

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020536540A Active JP6914568B2 (ja) 2018-01-15 2019-01-11 産業用ロボットアーム
JP2021112530A Active JP7373212B2 (ja) 2018-01-15 2021-07-07 産業用ロボットアーム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020536540A Active JP6914568B2 (ja) 2018-01-15 2019-01-11 産業用ロボットアーム

Country Status (7)

Country Link
US (2) US11453118B2 (ja)
EP (2) EP3740350B1 (ja)
JP (2) JP6914568B2 (ja)
KR (2) KR20240045373A (ja)
CN (2) CN113650000B (ja)
TW (1) TWI765135B (ja)
WO (1) WO2019138025A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347892B2 (ja) * 2019-09-18 2023-09-20 株式会社ダイヘン 搬送ロボットおよびこれを備えたワーク搬送システム
EP3838499A1 (en) 2019-12-19 2021-06-23 Cognibotics AB An agile robot arm for positioning a tool with controlled orientation
CN114603568A (zh) * 2020-12-08 2022-06-10 广东博智林机器人有限公司 机械臂装置及涂敷机器人
CN112549000A (zh) * 2020-12-22 2021-03-26 辰星(天津)自动化设备有限公司 六轴机器人动平台及其六轴机器人
CN114337162B (zh) * 2021-12-31 2023-05-12 佳木斯电机股份有限公司 一种三自由度电机
CN114378793B (zh) * 2022-01-21 2024-03-01 天津工业大学 一种具有解析正解的被动杆铰接空间三自由度并联机器人
CN114474016A (zh) * 2022-01-29 2022-05-13 复旦大学 一种并联式机器人
CN115816434A (zh) * 2022-11-23 2023-03-21 南开大学 一种串并混联机器人及手术设备
CN116749158B (zh) * 2023-08-16 2023-10-13 国机重型装备集团股份有限公司 具有一定轴线两变轴线球面三自由度定向装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146774A (ja) * 1983-02-04 1984-08-22 神鋼電機株式会社 物品のパレタイズ用多関節ロボツト
JPS63229289A (ja) * 1987-03-18 1988-09-26 三菱電機株式会社 ロボツト機構
JPH07148680A (ja) * 1993-11-25 1995-06-13 Yaskawa Electric Corp 産業用ロボット

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551058A (en) * 1983-07-20 1985-11-05 Robotics, Inc. Low cost articulating/articulating and rotating wrist mechanism for automatic machine tool and automatic machine tool employing the same
CH672089A5 (ja) 1985-12-16 1989-10-31 Sogeva Sa
JPS6440294A (en) * 1987-08-05 1989-02-10 Mitsubishi Electric Corp Power transmission mechanism
FR2670424B1 (fr) * 1990-12-18 1993-04-09 Onera (Off Nat Aerospatiale) Dispositif manipulateur pour deplacer un objet, dans l'espace, parallelement a lui-meme.
JPH06262556A (ja) * 1993-03-15 1994-09-20 Mitsubishi Heavy Ind Ltd 水平多関節型ロボットのアーム
FR2739801B1 (fr) * 1995-10-13 1998-01-02 Leseure Michel Perfectionnements aux manipulateurs plans a trajectoire figee ou programmable a tres haute cadence
SE9700091L (sv) * 1996-03-14 1997-09-15 Asea Brown Boveri Anordning fjör relativ förflyttning av två element
SE508890C2 (sv) * 1996-03-14 1998-11-16 Asea Brown Boveri Manipulator
SE521584C2 (sv) * 1996-03-14 2003-11-18 Abb Ab Anordning för relativ förflyttning av två element
US6336374B1 (en) * 1997-01-14 2002-01-08 Asea Brown Boveri A.B. Device for relative displacement of two elements
EP1007292B1 (en) * 1997-01-14 2006-03-15 Abb Ab A device for relative displacement of two elements
JP3043940U (ja) * 1997-05-30 1997-12-12 孝偉 藍 回転工具を保持する操作ア−ム
SE513334C2 (sv) * 1997-09-12 2000-08-28 Abb Ab Anordning för relativ förflyttning av två element
DE69918569T2 (de) * 1998-11-23 2005-03-24 Microdexterity Systems Inc., Memphis Chirurgischer manipulator
US6339969B1 (en) * 1999-06-04 2002-01-22 Septimiu E. Salcudean Three-degree-of-freedom parallel planar manipulator
US20040013509A1 (en) 1999-08-05 2004-01-22 Roy Shambhu Nath Parallel kinematics mechanism with a concentric spherical joint
SE517356C2 (sv) * 2000-09-11 2002-05-28 Abb Ab Manipulator innefattande minst tre armar för förflyttning av en kropp i rymden
SE0003912D0 (sv) * 2000-10-24 2000-10-24 Abb Ab Industrirobot
SE0100134D0 (sv) * 2001-01-15 2001-01-15 Abb Ab Industrirobot
SE524747C2 (sv) * 2002-02-06 2004-09-28 Abb Ab Industrirobot innehållande en parallellkinematisk manipulator för förflyttning av ett föremål i rymden
SE521539C2 (sv) * 2002-03-18 2003-11-11 Abb Ab Manipulator och förfarande involverande manipulator för förflyttning av ett objekt,innefattande minst två drivande parallellkinematiska förbindningskedjor
SE0201848D0 (sv) * 2002-06-14 2002-06-14 Abb Ab Anordning vid industrirobot
ES2339766T3 (es) * 2002-12-20 2010-05-25 Abb Ab Manipulador cinematico paralelo y metodo de funcionamiento del mismo, que incluye accionadores emparejados.
US7331750B2 (en) * 2005-03-21 2008-02-19 Michael Merz Parallel robot
FR2937269B1 (fr) * 2008-10-17 2010-10-29 Staubli Sa Ets Structure articulee de robot multi-axes et robot comprenant une telle structure.
WO2012031635A1 (en) * 2010-09-10 2012-03-15 Abb Research Ltd. Industrial robot
WO2014018748A1 (en) 2012-07-25 2014-01-30 Sarcode Bioscience Inc. Lfa-1 inhibitor and polymorph thereof
JP6110620B2 (ja) * 2012-09-26 2017-04-05 キヤノン電子株式会社 パラレルリンクロボット
EP2999572B1 (en) * 2013-05-23 2018-04-18 ABB Schweiz AG Compact parallel kinematics robot
US10272562B2 (en) * 2014-06-09 2019-04-30 Abb Schweiz Ag Parallel kinematics robot with rotational degrees of freedom
CN106541390B (zh) * 2016-10-31 2018-11-20 南京航空航天大学 一种混联六自由度力反馈设备及使用方法
CN106378771B (zh) * 2016-11-21 2018-10-02 南京理工大学 一种多坐标高速并联机器人机构
CN107127743A (zh) * 2017-07-04 2017-09-05 广西大学 一种四自由度可控机构式码垛机器人
CN206839459U (zh) * 2017-07-04 2018-01-05 广西大学 一种轻量化六自由度空间可控机构式高速焊接机器人
EP4017686B1 (en) * 2019-08-19 2023-06-14 Cognibotics AB A parallel-kinematic machine with versatile tool orientation
EP3838499A1 (en) * 2019-12-19 2021-06-23 Cognibotics AB An agile robot arm for positioning a tool with controlled orientation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146774A (ja) * 1983-02-04 1984-08-22 神鋼電機株式会社 物品のパレタイズ用多関節ロボツト
JPS63229289A (ja) * 1987-03-18 1988-09-26 三菱電機株式会社 ロボツト機構
JPH07148680A (ja) * 1993-11-25 1995-06-13 Yaskawa Electric Corp 産業用ロボット

Also Published As

Publication number Publication date
TWI765135B (zh) 2022-05-21
JP2021506612A (ja) 2021-02-22
KR20240045373A (ko) 2024-04-05
US11865711B2 (en) 2024-01-09
CN111601685A (zh) 2020-08-28
US11453118B2 (en) 2022-09-27
EP3974122B1 (en) 2024-03-27
JP7373212B2 (ja) 2023-11-02
TW201932256A (zh) 2019-08-16
CN111601685B (zh) 2021-08-06
CN113650000B (zh) 2024-04-23
EP3974122A1 (en) 2022-03-30
EP3740350A1 (en) 2020-11-25
US20220388155A1 (en) 2022-12-08
EP3974122C0 (en) 2024-03-27
WO2019138025A1 (en) 2019-07-18
CN113650000A (zh) 2021-11-16
EP3740350B1 (en) 2021-12-01
KR20200105657A (ko) 2020-09-08
US20200391374A1 (en) 2020-12-17
JP6914568B2 (ja) 2021-08-04
TW202239544A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
JP6914568B2 (ja) 産業用ロボットアーム
EP1684950B1 (en) Parallel kinematics mechanism with a concentric spherical joint
JP5403303B2 (ja) パラレル機構
US8893578B2 (en) Parallel robot provided with wrist section having three degrees of freedom
EP1365893B1 (en) Industrial robot
EP1694472A1 (en) Parallel kinematic manipulator for large workspace
CN111989191B (zh) 并联运动机器人
US20040013509A1 (en) Parallel kinematics mechanism with a concentric spherical joint
US20230010862A1 (en) An agile robot arm for positioning a tool with controlled orientation
JP2020078839A (ja) パラレルリンクロボット
US11731265B2 (en) Parallel-kinematic machine with versatile tool orientation
TWI844041B (zh) 工業機器人手臂
WO2015188843A1 (en) A parallel kinematics robot with rotational degrees of freedom
US11420324B2 (en) Parallel link robot

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7373212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150