JP2021085940A - ビームシェイパ、加工装置、及びビームシェイピング方法 - Google Patents

ビームシェイパ、加工装置、及びビームシェイピング方法 Download PDF

Info

Publication number
JP2021085940A
JP2021085940A JP2019213479A JP2019213479A JP2021085940A JP 2021085940 A JP2021085940 A JP 2021085940A JP 2019213479 A JP2019213479 A JP 2019213479A JP 2019213479 A JP2019213479 A JP 2019213479A JP 2021085940 A JP2021085940 A JP 2021085940A
Authority
JP
Japan
Prior art keywords
lens
distance
axicon lens
axicon
gaussian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019213479A
Other languages
English (en)
Inventor
裕幸 日下
Hiroyuki Kusaka
裕幸 日下
正浩 柏木
Masahiro Kashiwagi
正浩 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2019213479A priority Critical patent/JP2021085940A/ja
Publication of JP2021085940A publication Critical patent/JP2021085940A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

【課題】アキシコンレンズを交換することなしにエネルギー密度を調整可能なビームシェイパを提供すること。【解決手段】アキシコンレンズ(132)と、アキシコンレンズ(132)に入射するガウシアンビームのビーム径を変更することによって、ベッセルビームのエネルギー密度を調整する調整機構(レンズホルダ133及び調整ボルト134)と、を内蔵している加工ヘッド(13)は、ビームシェイパとして機能する。【選択図】図1

Description

本発明は、ビームシェイパ、該ビームシェイパを備えた加工装置、及びビームシェイピング方法に関する。
近年、レーザ光源が生成する高出力なレーザ光を加工対象物に照射しつつ掃引することによって、加工対象物を加工する加工装置の市場が拡大している。加工用途の一例としては、切断や溶接などが挙げられる。
これらの加工装置において、レーザ光が照射される加工部位の温度は、レーザ光を照射される前の温度(例えばほぼ室温)から、レーザ光を照射された後の温度(例えば数百度〜数千度)まで、急激に上昇する。その結果、加工装置においては、このような急激な温度の上昇に伴うスパッタが生じやすい。
このスパッタの発生を抑制するためには、加工部位の予熱が効果的だと考えられており、加工部位を予熱するために適用可能だと考えられる技術として、例えば、特許文献1の図3に記載されたレーザービーム整形装置(本願発明の加工装置に読み替えられる)が挙げられる。このレーザービーム整形装置は、アキシコンレンズを備えており、ピーク強度が高いセンターローブと、センターローブと同心円状に形成された複数のリング状のサイドローブであって、強度が低いサイドローブと、を含む擬似的なベッセルビームを生成することができる。
特開2017−142401号公報
ところで、加工対象物に施す予熱の程度は、加工対象物を構成する材料や、加工の用途などに応じて異なる場合が多い。そのため、擬似的なベッセルビームを生成可能な加工装置において、エネルギー密度を調整したいという要望がある。
ベッセルビームのエネルギー密度を調整するためには、加工ヘッドに含まれるアキシコンレンズを、頂点角が異なる別のアキシコンレンズに変更する方法が考えられる。しかし、加工ヘッドに含まれるアキシコンレンズを別のアキシコンレンズに変更するには手間を要する。また、エネルギー密度を調整するために、複数のアキシコンレンズを用意しておくことは、加工装置の運用コストの増大を招く。
本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、アキシコンレンズを交換することなしにエネルギー密度を調整可能なビームシェイパを提供することである。
上記の課題を解決するために、本発明の態様1に係るビームシェイパは、アキシコンレンズと、前記アキシコンレンズに入射するガウシアンビームのビーム径を変更することによって、前記アキシコンレンズから出射するベッセルビームのエネルギー密度を調整する調整機構と、を備えている。
上記の構成によれば、調整機構を用いてベッセルビームのエネルギー密度を調整することができるので、アキシコンレンズを交換することなしにエネルギー密度を調整可能なビームシェイパを提供することができる。
本発明の態様2に係るビームシェイパにおいては、態様1に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記ガウシアンビームの出射点から出射されたガウシアンビームは、発散光であり、前記調整機構は、前記出射点から前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、構成が採用されている。
ガウシアンビームの出射点から出射されたガウシアンビームが発散光である場合、本発明の態様3,4に係るビームシェイパが備えているコリメートレンズを省略することもできる。したがって、上記の構成によれば、少ない構成要素によりビームシェイパを構成することができる。
本発明の態様5に係るビームシェイパにおいては、態様2〜4の何れかに係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記出射点は、前記ガウシアンビームを出射する光ファイバの出射端である、構成が採用されている。
上記の構成によれば、レーザ光源により生成され、光ファイバにより導波されてきたガウシアンビームを、容易にベッセルビームに変換することができる。
本発明の態様4に係るビームシェイパにおいては、態様1に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記ガウシアンビームの光路上に配置されたコリメートレンズを更に備えており、前記調整機構は、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を、前記アキシコンレンズに入射するガウシアンビームが発散光となる距離に保ったまま、前記コリメートレンズから前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、構成が採用されている。
本発明の態様5に係るビームシェイパにおいては、態様1に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記ガウシアンビームの光路上に配置されたコリメートレンズを更に備えており、前記調整機構は、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を、前記アキシコンレンズに入射するガウシアンビームが収斂光となる距離に保ったまま、前記コリメートレンズから前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、構成が採用されている。
本願発明の一態様において、アキシコンレンズに入射するガウシアンビームは、発散光及び収斂光の何れであってもよい。上記の構成によれば、容易にエネルギー密度を調整することができる。
本発明の態様6に係るビームシェイパにおいては、態様4又は5に係るビームシェイパの構成に加えて、以下の構成が採用されている。すなわち、前記調整機構は、レンズホルダと、スライド部とを備え、前記レンズホルダは、前記コリメートレンズを保持し、前記スライド部は、前記レンズホルダをスライドさせることによって、前記コリメートレンズから前記アキシコンレンズまでの距離を変化させる、構成が採用されている。
上記の構成のように、調整機構の具体的な構成としては、レンズホルダと、スライド部とが挙げられる。
本発明の態様7に係る加工装置は、態様1〜6の何れかに係るビームシェイパを備えた加工装置であって、前記ビームシェイパから出射されるベッセルビームを加工対象物に照射する。
上記の構成によれば、調整機構を用いてベッセルビームのエネルギー密度を調整することができるので、アキシコンレンズを交換することなしにエネルギー密度を調整可能な加工装置を提供することができる。
本発明の態様8に係る加工装置においては、態様7に係る加工装置の構成に加えて、以下の構成が採用されている。すなわち、加工対象物の表面のうち、少なくとも前記ベッセルビームが照射されている照射点近傍における光を検出する光検出器と、前記光検出器が検出した前記光に応じたフィードバック制御を前記調整機構に対して行う制御部と、を更に備えている、構成が採用されている。
上記の構成によれば、上記の構成によれば、加工対象物に加工を施しながら、加工対象物の状態に応じてエネルギー密度を調整することができる。したがって、加工を施している全期間中に亘って、アキシコンレンズから出射するベッセルビームのエネルギー密度を好適に保つことができる。
本発明の態様9に係る加工装置においては、態様8に係る加工装置の構成に加えて、以下の構成が採用されている。すなわち、前記光検出器は、前記照射点近傍を撮像するカメラであり、制御部は、前記カメラにより撮像された前記照射点近傍の画像に応じたフィードバック制御を前記調整機構に対して行う、構成が採用されている。
上記の構成によれば、加工対象物に加工を施しながら、照射点近傍の状態に応じてリング間隔を調整することができる。したがって、加工を施している全期間中に亘って、アキシコンレンズから出射するベッセルビームのリング間隔を好適に保つことができる。
上記の課題を解決するために、本発明の態様10に係るビームシェイピング方法は、アキシコンレンズに入射するガウシアンビームのビーム径を変更することによって、前記アキシコンレンズから出射するベッセルビームのエネルギー密度を調整する調整工程を含んでいる。
このような調整工程を含む本ビームシェイピング方法は、アキシコンレンズに入射するガウシアンビームのビーム径を変更することによってベッセルビームのエネルギー密度を調整することができるので、アキシコンレンズを交換することなしにエネルギー密度を調整することができる。
本願の態様11に係るビームシェイピング方法においては、態様10に係るビームシェイピング方法の構成に加えて、以下の構成が採用されている。すなわち、前記調整工程は、前記ガウシアンビームの出射点から前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、構成が採用されている。
上記の構成によれば、容易にエネルギー密度を調整することができる。
本発明の一態様によれば、アキシコンレンズを交換することなしにエネルギー密度を調整可能なビームシェイパを提供することができる。
(a)は、本発明の一実施形態に係る加工装置の構成を示すブロック図であり、(b)は、(a)に示した加工装置が備える加工ヘッドの断面図である。 (a)〜(c)は、図1の(a)に示した加工ヘッドの断面図であって、該加工ヘッドの内部におけるコリメートレンズ及びアキシコンレンズの配置を示す断面図である。 (a)〜(c)は、図1の(a)に示した加工ヘッドの断面図であって、該加工ヘッドの内部におけるコリメートレンズ及びアキシコンレンズの配置を示す断面図である。 本発明の参考例に係る加工ヘッドにおいて、アキシコンレンズに入射するレーザ光のスポット径を2mm,4mm,6mmに変化させた場合に得られるベッセルビームの強度分布を示すグラフである。
(加工装置の構成)
本発明の一実施形態に係る加工装置1の構成について、図1を参照して説明する。図1において、(a)は、加工装置1の構成を示すブロック図であり、(b)は、加工装置1が備える加工ヘッド13の断面図である。
加工装置1は、レーザ光を用いて加工対象物である対象物Wを加工するための装置であり、図1の(a)に示すように、レーザ光源11と、デリバリファイバ12と、加工ヘッド13と、カメラ14と、制御部15と、を備えている。
レーザ光源11は、レーザ光を生成する装置である。デリバリファイバ12は、レーザ光源11にて生成されたレーザ光を導波する光ファイバである。加工ヘッド13は、デリバリファイバ12を導波されたレーザ光を対象物Wに照射する装置である。カメラ14は、対象物Wの表面のうち、少なくとも後述するベッセルビームが照射されている照射点近傍における光を検出する光検出器の一例であり、該照射点近傍を撮像する装置である。この場合、照射点近傍における光とは、主に対象物Wを取り巻く環境光が照射点近傍において反射された反射光である。なお、光検出器の別の例としては、フォトダイオードが挙げられる。この場合、照射点近傍における光とは、ベッセルビームを加工対象物に照射することに伴って照射点近傍に生じるプラズマに起因する光である。この場合、光検出器としてフォトダイオードを採用する場合、照射点とフォトダイオードとの間には、所定の波長範囲に含まれる光を透過するフィルタが設けられていてもよい。
本発明の一態様において、制御部15は、光検出器が検出した照射点近傍の光に応じたフィードバック制御を後述する調整機構に対して行うように加工ヘッド13を制御する装置である。本実施形態において、制御部15は、カメラ14にて撮像された前記照射点近傍の画像(動画像又は静止画像)に基づいて、前記照射点近傍の状態に応じたフィードバック制御を加工中に行うように加工ヘッド13を制御する装置である。
なお、上記フィードバック制御の制御内容は、限定されるものではないが、次のような例が挙げられる。レーザ光を掃引することによって実施する加工中に、カメラ14は、レーザ光が照射されている照射点近傍を撮影し、その画像を生成する。制御部15は、カメラ14から上記画像を取得したうえで、上記画像に基づいて単位時間あたりのスパッタ量を示すスパッタ量情報を生成する。制御部15は、更に、上記スパッタ量情報が示すスパッタ量に応じて、コリメートレンズから前記アキシコンレンズまでの距離である距離D2(図1及び図2参照)を増加させる方向及び減少させる方向の何れかに微小量変化させる。このように距離D2を微小量変化させることによって、スパッタ量が上昇した場合、制御部15は、距離D2を先に微小量変化させた方向とは逆方向(減少または増加)に微小量変化させる。これを繰り返すことによって、制御部15は、加工中に発生し得るスパッタ量を低減することができる。
なお、制御部15が上記画像から上記スパッタ量をカウントする方法は限定されないが、例えば、上記画像に含まれる輝度が閾値を上回る点をカウントする方法が挙げられる。また、制御部15のうち上記画像から上記スパッタ量をカウントする機能については、市販されているスパッタカウンタにより代用することもできる。
また、制御部15は、距離D2を増減させる場合の変化量をどのようなアルゴリズムを用いて決定してもよい。そのアルゴリズムとしては、例えば、二分法やセカント法などの数値計算アルゴリズムが挙げられる。
また、前記光検出器としてフォトダイオードを採用する場合であれば、フィードバック制御の制御内容として次のような例が挙げられる。レーザ光を掃引することによって実施する加工中に、フォトダイオードは、照射点近傍の光であって、フィルタによりフィルタリング処理された所定の波長範囲に含まれる光を検出する。この所定の範囲は、例えば、ベッセルビームを加工対象物に照射することに伴って照射点近傍に生じるプラズマの温度の指標になるように定められている。したがって、制御部15は、フォトダイオードが検出した所定の波長範囲に含まれる光の強度から、プラズマの温度を表す温度情報を生成する。制御部15は、更に、上記温度情報が示す温度に応じて、距離D2を増加させる方向及び減少させる方向の何れかに微小量変化させる。このように距離D2を微小量変化させることによって、温度が上昇した場合、制御部15は、距離D2を先に微小量変化させた方向とは逆方向(減少または増加)に微小量変化させる。これを繰り返すことによって、制御部15は、加工中におけるプラズマの温度を所定の温度範囲内に保つ(より好ましくは、一定に保つ)ことができる。
加工ヘッド13は、図1の(b)に示すように、筐体130と、コリメートレンズ131と、アキシコンレンズ132と、レンズホルダ133a,133bと、調整ボルト134と、保護ガラス135と、ガス供給孔136と、を備えている。
筐体130は、一端(図1における上端)が閉塞され、他端(図1における下端)が開放された筒状の構造体である。デリバリファイバ12の一方の端部である出射端は、筐体130に設けられた挿通孔を介して筐体130の内部に引き込まれている。デリバリファイバ12の出射端は、特許請求の範囲に記載のガウシアンビームの出射点の一例である。
デリバリファイバ12から出射したレーザ光(ガウシアンビームであるので、以下、そのように記載する)の光路上には、ガウシアンビームを屈折させることによってコリメート光に近づける(すなわちガウシアンビームの発散角を0度に近づける)ためのコリメートレンズ131が配置されている。加工ヘッド13において、上記発散角は0度以外の値になるようにコリメートレンズ131が配置されている。そのため、コリメートレンズ131を透過したガウシアンビームは、発散光又は収斂光になる。図1の(b)には、コリメートレンズ131を透過したガウシアンビームが発散光となるように構成された加工ヘッド13を図示している。コリメートレンズ131は、平坦面である入射面と、球面である出射面とを有しており、その(コリメートレンズ131の)入射面がデリバリファイバ12の出射面に対向するように配置されている。コリメートレンズ131の光軸は、デリバリファイバ12の光軸に一致する。
コリメートレンズ131を透過したガウシアンビームの光路上には、ガウシアンビームをベッセルビームに変換するためのアキシコンレンズ132が配置されている。アキシコンレンズ132は、平坦面である入射面と、円錐面である出射面とを有しており、その(アキシコンレンズ132の)入射面がコリメートレンズ131の出射面に対向するように配置されている。アキシコンレンズ132の光軸は、デリバリファイバ12及びコリメートレンズ131の光軸に一致する。本実施形態において、デリバリファイバ12、コリメートレンズ131、及びアキシコンレンズ132に共通する光軸は、後述する筐体130の中心軸(単に軸とも称する)とも一致する。以下において、この共通する光軸のことを加工ヘッド13の光軸とも称する。
レンズホルダ133aは、両端が開放された筒状の構造体であり、コリメートレンズ131を保持している。レンズホルダ133aの外側面には、凸部が形成されており、この凸部は、筐体130の内側面に形成された2つの凹部の一方(デリバリファイバ12に近い方)に嵌合する。筐体130の内側面に形成された凹部の幅(筐体130の軸方向の幅)は、レンズホルダ133aの外側面に形成された凸部の幅と等しく設定されている。このため、レンズホルダ133aは、筐体130の軸方向にスライドさせることができない。
レンズホルダ133bは、両端が開放された筒状の構造体であり、アキシコンレンズ132を保持している。レンズホルダ133bの外側面には、凸部が形成されており、この凸部は、筐体130の内側面に形成された2つの凹部の他方(デリバリファイバ12にから遠い方)に嵌合する。筐体130の内側面に形成された凹部の幅(筐体130の軸方向の幅)は、レンズホルダ133bの外側面に形成された凸部の幅よりも広く設定されている。このため、レンズホルダ133bは、筐体130の軸方向にスライドさせることができる。
以上のように、筐体130の内側面に形成された2つの凹部の他方と、レンズホルダ133bの外側面に形成された凸部とは、距離D1を一定に保ったままアキシコンレンズ132を加工ヘッド13の光軸と平行にスライドさせる(すなわち距離D2を変化させる)スライド部の一例である。なお、本実施形態のスライド部では、筐体130の内側面に凹部を形成し、レンズホルダ133bの外側面に凸部を形成している。しかし、スライド部の一態様においては、筐体130の内側面に凸部を形成し、レンズホルダ133bの外側面に凹部を形成することもできる。
レンズホルダ133bは、例えば、調整ボルト134の挿入量を増やすことによって、デリバリファイバ12から遠ざかり、調整ボルト134の挿入量を減らすことによって、デリバリファイバ12に近づく。このため、調整ボルト134の挿入量を増減させることによって、ガウシアンビームの出射点(デリバリファイバ12の出射面の中心点)からコリメートレンズ131までの距離D1を保ったまま、コリメートレンズ131からアキシコンレンズ132までの距離D2を変化させることができる。なお、調整ボルト134の挿入量(すなわち、距離D2)は、不図示の機構により制御部15によって電動制御することもできるし、手動により制御することもできる。
なお、距離D2の下限値は、コリメートレンズ131の厚さを上回っていれば、その範囲内で適宜定めることができる。一方、距離D2の上限値は特に限定されるものではないが、ビーム径Rがアキシコンレンズ132の半径以下となる範囲内で適宜定められていることが好ましい。ビーム径Rがアキシコンレンズ132の半径を超えた場合、(1)ガウシアンビームのパワーを損失してしまう、(2)アキシコンレンズ132の照射面に照射されなかったガウシアンビームが迷光となる、といったデメリットが生じるためである。
ガス供給孔136には、レーザ加工においてアシストガスとして機能するガスが供給されている。ガス供給孔136に供給されたアシストガスは、開放された筐体130の下端から対象物Wの加工部位に同心円状に吹き付けられる。アシストガスとして用いるガス種は、レーザ加工の用途(例えば、切断や、溶接など)に応じて適宜選択することができる。例えば、切断の場合であれば燃焼作用が求められるため、アシストガスのガス種は、酸素が好ましく、溶接の場合であれば、参加を抑制するため、アシストガスのガス種は、窒素が好ましい。なお、アシストガスのガス種は、酸素及び窒素に限定されるものではない。また、アシストガスは、上述した機能の他に、加工に伴い生じるスパッタが保護ガラス135に付着することを抑制するという機能も有する。
(加工ヘッドの機能)
加工ヘッド13の機能について、図2〜図4を参照して説明する。図2の(a)〜(c)は、加工ヘッド13の光軸を含む断面における断面図であって、加工ヘッド13の内部におけるコリメートレンズ131及びアキシコンレンズ132の配置を示す断面図である。図2の(a)〜(c)に図示した加工ヘッド13は、図1の(b)と同様に、コリメートレンズ131を透過したガウシアンビームが発散光となるように構成されている。図3の(a)〜(c)は、加工ヘッド13の光軸を含む断面における断面図であって、加工ヘッド13の内部におけるコリメートレンズ131及びアキシコンレンズ132の配置を示す断面図である。図3の(a)〜(c)に図示した加工ヘッド13は、コリメートレンズ131を透過したガウシアンビームが収斂光となるように構成されている。なお、図2の(a)〜(c)及び図3の(a)〜(c)においては、コリメートレンズ131及びアキシコンレンズ132のみを図示している。また、図2の(a)〜(c)及び図3の(a)〜(c)の各々に図示したz軸は、加工ヘッド13の光軸(図2の(a)〜(c)及び図3の(a)〜(c)の各々には図示せず)と平行になるように定めている。また、z軸は、デリバリファイバ12の出射面に対応する位置が原点となるように定めている。
<ガウシアンビームが発散光の場合>
図2の(a)において、距離D1は、デリバリファイバ12から出射されたガウシアンビームがコリメートレンズ131を透過することにより発散光になるように定められている。すなわち、距離D1は、コリメートレンズ131の焦点距離よりも短い。また、距離D1は、固定されている。なお、図2の(a)〜(c)に示した加工ヘッド13の何れにおいても、距離D1は、同一である。
加工ヘッド13は、上述したように、調整ボルト134を用いてレンズホルダ133bの位置を調整することができる。そのため、図2の(a)〜(c)に示すように、距離D2は、可変である。
図2の(a)〜(c)に示すように、コリメートレンズ131を透過したガウシアンビームは、発散光である。したがって、図2の(a)に示すように、距離D2を所定の値に設定した場合、コリメートレンズ131を透過したガウシアンビームのアキシコンレンズ132の入射面におけるビーム径Rは、距離D2に対応する所定の値にある。本実施形態では、図2の(a)に示した距離D2を基準とする。なお、加工ヘッド13において基準となる距離D2をどのように定めるかは、限定されるものではないが、本実施形態では、レンズホルダ133bの可動域の中央に対応する距離D2を基準となる距離D2に定めている。
図2の(b)に示すように、距離D2を基準となる距離D2よりも大きい値に設定した場合、ビーム径Rは、図2の(a)に示したビーム径Rよりも大きくなる。
図2の(c)に示すように、距離D2を基準となる距離D2よりも小さい値に設定した場合、ビーム径Rは、図2の(a)に示したビーム径Rよりも小さくなる。
アキシコンレンズ132の出射面は、図2の(a)〜(c)に示すように断面視した場合、二等辺三角形の2つの斜辺により構成されている。以下では、図2の(a)〜(c)の各々において、上記2つの斜辺のうち、上側に位置する斜辺を第1の斜辺と称し、下側に位置する斜辺を第2の斜辺と称する。したがって、図2の(a)に示すように、アキシコンレンズ132にコリメート光が入射した場合、第1の斜辺は、コリメート光を斜め下方向に向かって屈折させ、第2の斜辺は、コリメート光を斜め上方向に向かって屈折させる。
図2の(a)に示すように、第1の斜辺により斜め下方向に屈折された光と、第2の斜辺により斜め上方向に屈折された光とは、アキシコンレンズ132の出射面の近傍領域である干渉領域Bにおいて交差する。そのため、干渉領域Bの半径は、アキシコンレンズ132の出射面から遠ざかるにしたがって大きくなり、干渉領域Bの中央において極大値をとり、更にアキシコンレンズ132の出射面から遠ざかるにしたがって小さくなる。干渉領域Bの半径の極大値は、ビーム径Rとほぼ一致する。
したがって、図2の(a)に示した加工ヘッド13における干渉領域Bの半径の極大値を基準とした場合、図2の(b)に示した加工ヘッド13における干渉領域Bの半径の極大値は、大きくなり、図2の(c)に示した加工ヘッド13における干渉領域Bの半径の極大値は、小さくなる。
また、第1の斜辺により斜め下方向に屈折された光と、第2の斜辺により斜め上方向に屈折された光とは、干渉領域Bにおいて互いに干渉し合う。干渉領域Bにおいては、第1の斜辺により斜め下方向に屈折された光と、第2の斜辺により斜め上方向に屈折された光とが干渉し合う結果、擬似的なベッセルビームが形成される。本実施形態において、特に断りなくベッセルビームと記載する場合、それは、擬似的なベッセルビームを意味する。
ベッセルビームのビーム形状は、光軸上に位置しビーム強度が最も高いセントラルローブと、セントラルローブの両側に対称な形状に形成される縞状のサイドローブとにより構成されている。
ベッセルビームは、ガウシアンビームと比較して、ビームのスポット径を抑制しつつ、長距離(干渉領域の長さに対応し、典型的には数mm)に亘ってビームを伝搬させることができる。しがたって、加工装置1が加工ヘッド13を備えていることにより、加工装置1は、ベッセルビームを対象物Wに照射することができる。レーザ加工にベッセルビームを用いることによって、ガウシアンビームをレーザビームとして用いる場合と比較して、例えば、アスペクト比が高い細孔を対象物Wに対して形成することができる。
以上のように、加工ヘッド13は、図2の(a)〜(c)に示すように、距離D2を変化させることによって、干渉領域Bの半径の極大値の変化させることができる。また、アキシコンレンズ132に入射するガウシアンビームのパワーは、図2の(a)〜(c)に示すように、距離D2を変化させた場合であっても一定である。したがって、アキシコンレンズ132から出射されたベッセルビームのエネルギー密度であって、所定の位置におけるエネルギー密度は、図2の(a)に示した場合のエネルギー密度を基準として、距離D2を大きくすることによって低くなり、距離D2を小さくすることによって高くなる。なお、所定の位置の一例としては、干渉領域Bの半径が極大値となる位置(すなわち干渉領域Bの中央)が挙げあれる。
以上のように、加工ヘッド13は、対象物Wに照射するベッセルビームを形成するビームシェイパとして機能する。また、上記スライド部、レンズホルダ133b及び調整ボルト134は、距離D2を変化させることによって、アキシコンレンズ132から出射するベッセルビームのエネルギー密度を調整する調整機構として機能する。
なお、本実施形態では、ガウシアンビームの出射点がデリバリファイバ12の出射端であるものとして説明した。しかし、ガウシアンビームの出射点は、レーザダイオードの発光点であってもよい。このようなデリバリファイバ12の出射端あるいはレーザダイオードの発光点からは、発散光であるガウシアンビームが出射される。したがって、本発明の一態様に係る加工ヘッド13においては、図1に示したコリメートレンズ131を省略することもできる。すなわち、レンズホルダ133b及び調整ボルト134は、デリバリファイバ12の出射端からアキシコンレンズ132までの距離を変化させることによって、ビーム径Rを変更するように構成されていてもよい。
<ガウシアンビームが収斂光の場合>
図3の(a)において、距離D1は、デリバリファイバ12から出射されたガウシアンビームがコリメートレンズ131を透過することにより収斂光になるように定められている。すなわち、距離D1は、コリメートレンズ131の焦点距離よりも長い。この点を除くと、図3の(a)に示した加工ヘッド13は、図2の(a)に示した加工ヘッド13と同様に構成されている。したがって、ここでは、図3の(a)に示した加工ヘッド13において距離D2を変化させた場合に得られるエネルギー密度の変化についてのみ説明する。
上述したように、図3の(a)〜(c)に示した加工ヘッド13は、収斂光であるガウシアンビームがアキシコンレンズ132に入射するように構成されている。したがって、図3の(a)に示した距離D2を基準にした場合、距離D2を基準となる距離D2よりも大きくすることによってビーム径Rは小さくなり(図3の(b)参照)、距離D2を基準となる距離D2よりも小さくすることによってビーム径Rは大きくなる(図3の(b)参照)。
したがって、アキシコンレンズ132から出射されたベッセルビームのエネルギー密度であって、所定の位置におけるエネルギー密度は、図3の(a)に示した場合のエネルギー密度を基準として、距離D2を大きくすることによって高くなり、距離D2を小さくすることによって低くなる。なお、所定の位置の一例としては、干渉領域Bの半径が極大値となる位置(すなわち干渉領域Bの中央)が挙げあれる。
以上のように、図3に示した加工ヘッド13は、対象物Wに照射されるベッセルビームを形成するビームシェイパとして機能する。特に、レンズホルダ133b及び調整ボルト134は、距離D2を変化させることによって、アキシコンレンズ132から出射するベッセルビームのエネルギー密度を調整する調整機構として機能する。
〔参考例〕
本発明の参考例として、図1に示した加工ヘッド13が備えているアキシコンレンズ132と同じアキシコンレンズの入射面に入射させるガウシアンビームのビーム径Rを、R=2mm,4mm,6mmとした各場合におけるビームプロファイルを図4に示す。本参考例において、上記ガウシアンビームのパワーは、R=2mm,4mm,6mmのいずれの場合においても同じである。また、本参考例において、上記ガウシアンビームは、平行光である。
図4によれば、ビーム径Rを小さくするほどビーム強度が高くなり、ビーム径Rを大きくするほどビーム強度が低くなることが分かった。すなわち、アキシコンレンズに入射させるガウシアンビームのビーム径Rを変化させることによって、アキシコンレンズから出射されるベッセルビームのエネルギー密度を変化させることができることが分かった。
この結果に鑑みれば、図1に示した加工ヘッド13は、アキシコンレンズ132に入射するガウシアンビームのビーム径を変更することができるので、ベッセルビームのエネルギー密度を調整することができることが分かった。
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1 加工装置
11 レーザ光源
12 デリバリファイバ
13 加工ヘッド
130 筐体
131 コリメートレンズ
132 アキシコンレンズ
133a レンズホルダ
133b レンズホルダ(調整機構の一部)
134 調整ボルト(調整機構の一部)
135 保護ガラス
136 ガス供給孔
14 カメラ
15 制御部
W 対象物(加工対象物)

Claims (11)

  1. アキシコンレンズと、
    前記アキシコンレンズに入射するガウシアンビームのビーム径を変更することによって、前記アキシコンレンズから出射するベッセルビームのエネルギー密度を調整する調整機構と、を備えている、
    ことを特徴とするビームシェイパ。
  2. 前記ガウシアンビームの出射点から出射されたガウシアンビームは、発散光であり、
    前記調整機構は、前記出射点から前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、
    ことを特徴とする請求項1に記載のビームシェイパ。
  3. 前記出射点は、前記ガウシアンビームを出射する光ファイバの出射端である、
    ことを特徴とする請求項2に記載のビームシェイパ。
  4. 前記ガウシアンビームの光路上に配置されたコリメートレンズを更に備えており、
    前記調整機構は、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を、前記アキシコンレンズに入射するガウシアンビームが発散光となる距離に保ったまま、前記コリメートレンズから前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、
    ことを特徴とする請求項1に記載のビームシェイパ。
  5. 前記ガウシアンビームの光路上に配置されたコリメートレンズを更に備えており、
    前記調整機構は、前記ガウシアンビームの出射点から前記コリメートレンズまでの距離を、前記アキシコンレンズに入射するガウシアンビームが収斂光となる距離に保ったまま、前記コリメートレンズから前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、
    ことを特徴とする請求項1に記載のビームシェイパ。
  6. 前記調整機構は、レンズホルダと、スライド部とを備え、
    前記レンズホルダは、前記コリメートレンズを保持し、
    前記スライド部は、前記レンズホルダをスライドさせることによって、前記コリメートレンズから前記アキシコンレンズまでの距離を変化させる、
    ことを特徴とする請求項4又は5に記載のビームシェイパ。
  7. 請求項1〜6の何れか1項に記載のビームシェイパを備えた加工装置であって、前記ビームシェイパは、前記ベッセルビームを出射する、
    ことを特徴とする加工装置。
  8. 加工対象物の表面のうち、少なくとも前記ベッセルビームが照射されている照射点近傍における光を検出する光検出器と、
    前記光検出器が検出した前記光に応じたフィードバック制御を前記調整機構に対して行う制御部と、を更に備えている、
    ことを特徴とする請求項7に記載の加工装置。
  9. 前記光検出器は、前記照射点近傍を撮像するカメラであり、
    制御部は、前記カメラにより撮像された前記照射点近傍の画像に応じたフィードバック制御を前記調整機構に対して行う、
    ことを特徴とする請求項8に記載の加工装置。
  10. アキシコンレンズに入射するガウシアンビームのビーム径を変更することによって、前記アキシコンレンズから出射するベッセルビームのエネルギー密度を調整する調整工程を含んでいる、
    ことを特徴とするビームシェイピング方法。
  11. 前記調整工程は、前記ガウシアンビームの出射点から前記アキシコンレンズまでの距離を変化させることによって、前記ビーム径を変更する、
    ことを特徴とする請求項10に記載のビームシェイピング方法。
JP2019213479A 2019-11-26 2019-11-26 ビームシェイパ、加工装置、及びビームシェイピング方法 Pending JP2021085940A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019213479A JP2021085940A (ja) 2019-11-26 2019-11-26 ビームシェイパ、加工装置、及びビームシェイピング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213479A JP2021085940A (ja) 2019-11-26 2019-11-26 ビームシェイパ、加工装置、及びビームシェイピング方法

Publications (1)

Publication Number Publication Date
JP2021085940A true JP2021085940A (ja) 2021-06-03

Family

ID=76087456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213479A Pending JP2021085940A (ja) 2019-11-26 2019-11-26 ビームシェイパ、加工装置、及びビームシェイピング方法

Country Status (1)

Country Link
JP (1) JP2021085940A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419321A (en) * 1966-02-24 1968-12-31 Lear Siegler Inc Laser optical apparatus for cutting holes
JP2001150165A (ja) * 1999-11-30 2001-06-05 Toshiba Corp レーザーアーク溶接装置及びその方法並びにレーザーアークコーティング方法
JP2005288503A (ja) * 2004-03-31 2005-10-20 Laser System:Kk レーザ加工方法
JP2008134468A (ja) * 2006-11-28 2008-06-12 Ricoh Opt Ind Co Ltd 集光光学系および光加工装置
JP2011031283A (ja) * 2009-08-03 2011-02-17 Amada Co Ltd 小型熱レンズ補償加工ヘッド
JP2014104472A (ja) * 2012-11-26 2014-06-09 Fujitsu Ltd はんだ接合装置及びはんだ接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419321A (en) * 1966-02-24 1968-12-31 Lear Siegler Inc Laser optical apparatus for cutting holes
JP2001150165A (ja) * 1999-11-30 2001-06-05 Toshiba Corp レーザーアーク溶接装置及びその方法並びにレーザーアークコーティング方法
JP2005288503A (ja) * 2004-03-31 2005-10-20 Laser System:Kk レーザ加工方法
JP2008134468A (ja) * 2006-11-28 2008-06-12 Ricoh Opt Ind Co Ltd 集光光学系および光加工装置
JP2011031283A (ja) * 2009-08-03 2011-02-17 Amada Co Ltd 小型熱レンズ補償加工ヘッド
JP2014104472A (ja) * 2012-11-26 2014-06-09 Fujitsu Ltd はんだ接合装置及びはんだ接合方法

Similar Documents

Publication Publication Date Title
JP5520819B2 (ja) レーザー照射を用いた材料の加工方法およびそれを行なう装置
JP2020500810A5 (ja)
US9346126B2 (en) Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method
KR20140102206A (ko) 레이저 빔의 빔 파라미터 곱을 변화시키는 장치
JP5832412B2 (ja) 光学系及びレーザ加工装置
JP2017221979A (ja) 光合焦用レンズが単一のレーザビームマシニング装置及びレーザマシニング方法
KR20020085893A (ko) 기판 처리 장치 및 상기 장치를 이용한 기판 처리 방법
JP6373421B2 (ja) ほぼコリメートされたビームを焦束するための光学素子の配置構造
TW201919805A (zh) 使用遠焦光束調整組件以雷射處理透明工件的設備與方法
JP4869219B2 (ja) 陰影測定による制御の方法と装置
US20090071947A1 (en) Laser beam machine
MX2009004286A (es) Dispositivo para cirugia de ojo con laser optico.
RU2012112398A (ru) ЛАЗЕРНАЯ ФОКУСИРУЮЩАЯ ГОЛОВКА С ЛИНЗАМИ ИЗ ZnS, ИМЕЮЩИМИ ТОЛЩИНУ ПО КРАЯМ, ПО МЕНЬШЕЙ МЕРЕ, 5 мм, И УСТАНОВКА И СПОСОБ ЛАЗЕРНОЙ РЕЗКИ С ИСПОЛЬЗОВАНИЕМ ОДНОЙ ТАКОЙ ФОКУСИРУЮЩЕЙ ГОЛОВКИ
JP2012510156A5 (ja)
CN112496529A (zh) 激光切割***
JP6779313B2 (ja) レーザ光学装置およびヘッド
JP2009178725A (ja) レーザ加工装置及びレーザ加工方法
KR102675028B1 (ko) 접근하기 어려운 공작물의 레이저 가공장치
WO2016151712A1 (ja) 光加工ヘッド、光加工装置、その制御方法及び制御プログラム
JP5007654B2 (ja) 光源装置
JP6980025B2 (ja) レーザ溶接方法およびレーザ加工装置
JP2021085940A (ja) ビームシェイパ、加工装置、及びビームシェイピング方法
JP7236371B2 (ja) ビームシェイパ、加工装置、及びビームシェイピング方法
CN109332878B (zh) 一种水导激光加工头
JP2021085984A (ja) ビームシェイパ及び加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801