JP6980025B2 - レーザ溶接方法およびレーザ加工装置 - Google Patents

レーザ溶接方法およびレーザ加工装置 Download PDF

Info

Publication number
JP6980025B2
JP6980025B2 JP2019549234A JP2019549234A JP6980025B2 JP 6980025 B2 JP6980025 B2 JP 6980025B2 JP 2019549234 A JP2019549234 A JP 2019549234A JP 2019549234 A JP2019549234 A JP 2019549234A JP 6980025 B2 JP6980025 B2 JP 6980025B2
Authority
JP
Japan
Prior art keywords
laser
lens
optical system
processing apparatus
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019549234A
Other languages
English (en)
Other versions
JPWO2019078092A1 (ja
Inventor
一樹 久場
彰大 上野
俊信 江口
勝 吉田
淳二 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tada Electric Co Ltd
Original Assignee
Mitsubishi Electric Corp
Tada Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Tada Electric Co Ltd filed Critical Mitsubishi Electric Corp
Publication of JPWO2019078092A1 publication Critical patent/JPWO2019078092A1/ja
Application granted granted Critical
Publication of JP6980025B2 publication Critical patent/JP6980025B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Lenses (AREA)

Description

本発明は、レーザビームを用いて、切断、溶接、熱処理などのレーザ加工を行うレーザ加工装置に関する。
従来、レーザビームを用いて金属の切断、溶接、熱処理などのレーザ加工を行うレーザ加工装置では、高集束および高出力のレーザビームを発生させる必要があるため、波長が9〜10μm程度の中赤外レーザであるCOレーザが主に使用されていた。近年、ファイバレーザ、ディスクYAG(Yttrium Aluminum Garnet)レーザ、ダイレクトダイオードレーザなど近赤外の波長域のレーザビームを出力する近赤外レーザの高集束化および高出力化が進んできている。近赤外レーザの高集束化および高出力化が進むにつれて、近赤外レーザを光源として使用するレーザ加工装置が開発されている。
レーザ加工装置から加工対象物にレーザビームを照射すると、レーザビームを照射した部分の加工対象物が瞬間的に溶融および蒸発して、周囲を溶融金属で取り囲まれたキーホールが形成される。キーホール内部では、溶融金属の対流が発生しており、キーホールの開口部に向かう溶融金属流の速度が大きくなると、キーホールの開口部から溶融金属の一部が飛散する場合がある。飛散した溶融金属はスパッタと呼ばれ、スパッタが発生すると、加工部分の周辺に付着して加工対象物の加工品質を低下させる。近赤外レーザを使用したレーザ加工装置では、COレーザを使用したレーザ加工装置よりもスパッタが発生し易く、加工対象物の加工品質が低下しやすいという問題があった。
特許文献1には、加工対象物の加工品質の低下を抑制するために、主ビームと、主ビームよりも大径かつ低エネルギーの副ビームとを形成する光学手段を備えたレーザ加工装置が開示されている。この光学手段は、コリメートレンズと、集光レンズと、穴あき凹レンズとを有する。
特開2003−340582号公報
しかしながら、上記特許文献1には、加工対象物に照射されるレーザビームの集光状態を特定することができる記載がなく、集光状態によってはキーホールの形状を安定させることができず、加工対象物の加工品質が低下してしまう場合があるという問題があった。
本発明は、上記に鑑みてなされたものであって、安定した加工品質を実現することができるレーザ加工装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明のレーザ溶接方法は、加工対象物への照射位置において、ピークにおける光強度が4MW/cm 以上の主ビームと、主ビームよりも低強度であって主ビームから連なる周辺ビームと、から構成されるウィッチハット形状の強度分布を有するレーザビームを、金属製の加工対象物に照射して溶接するレーザ溶接方法であって、加工対象物に、主ビームが形成するキーホールよりも浅く、キーホールを取り囲む0.22mm以上の幅を有する周辺溶融池を形成することを特徴とする。
本発明によれば、レーザ加工において安定した加工品質を実現することができるという効果を奏する。
本発明の実施の形態1にかかるレーザ加工装置の概略構成を示す図 図1に示す集光ビームのビーム形状の拡大図 図1に示すレーザ加工装置を使用してレーザ加工を行う際の加工対象物の状態を示す図 本発明の比較例1にかかるレーザ加工装置を使用してレーザ加工を行う際の加工対象物の状態を示す図 本発明の比較例2にかかるレーザ加工装置を使用してレーザ加工を行う際の加工対象物の状態を示す図 図1に示すレーザ加工装置が出射するレーザビームの光線図 図6に示す光軸位置−12〜光軸位置−6のそれぞれに対応するレーザ光の強度分布を示す図 図6に示す光軸位置−4〜光軸位置+2のそれぞれに対応するレーザ光の強度分布を示す図 図6に示す光軸位置−12〜光軸位置−6のそれぞれにおける溶接加工中および加工後の状態を示す図 図6に示す光軸位置−4〜光軸位置+2のそれぞれにおける溶接加工中および加工後の状態を示す図 本発明の比較例3にかかるレーザ加工装置が出射するレーザビームの光線図 図11に示す光軸位置−8〜光軸位置−2のそれぞれに対応するレーザ光の強度分布を示す図 図11に示す光軸位置0〜光軸位置+6のそれぞれに対応するレーザ光の強度分布を示す図 図11に示す光軸位置−8〜光軸位置−2のそれぞれにおける溶接加工中および加工後の状態を示す図 図11に示す光軸位置0〜光軸位置+6のそれぞれにおける溶接加工中および加工後の状態を示す図 本発明の実験例1におけるレーザ加工装置のレーザ発振器および光学系の条件を示す図 本発明の実験例2にかかる実験条件を示す図 図17に示す条件でレーザ加工を行った結果を示す図 図17および図18に示した光学系全体の横収差の変化に対するスパッタ発生量の推移をグラフ化した図 図17に示した条件で横収差を変化させたときの周辺溶融池幅の推移をグラフ化した図 図18に示した周辺溶融池幅が変化したときのスパッタ発生量の推移をグラフ化した図 図1の集光レンズに求められる特性を特定するための実験例3で検討する単レンズの横収差の入射曲率依存性を示す図 入射面曲率の変化に対する出射面曲率の推移を示す図 本発明の実験例3にかかる集光レンズの形状および光線を示す図 図24の一部拡大図と、拡大図に対応した横収差とを示す図 本発明の実験例4にかかる加工光学系の条件を示す図 図26に示す条件の加工光学系の光線図および概略構成図 実験例1から4で使用する近赤外レーザ光源の製品仕様の一例を示す図 本発明の実験例5におけるレーザ加工装置の条件を示す図 図29に示す各条件のレーザ加工装置が出射するレーザ光の光図および強度分布を示す図 本発明の実験例6におけるレーザ加工装置の条件を示す図 図31に示す各条件のレーザ加工装置が出射するレーザ光の光図および強度分布を示す図 本発明の実験例7における各レンズが有する収差の条件を示す図 本発明の実験例8の実験結果を示す図 本発明の実験例9の実験結果を示す図 本発明の実施の形態2にかかるレーザ加工装置の構成を示す図
以下に、本発明の実施の形態にかかるレーザ加工装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかるレーザ加工装置100の概略構成を示す図である。レーザ加工装置100は、レーザ発振器1と、光ファイバ2と、集光光学系3とを有する。
レーザ発振器1は、ファイバレーザ、ディスクYAGレーザ、ダイレクトダイオードレーザなど近赤外の波長域のレーザ光を出射する近赤外レーザ光源である。光ファイバ2は、レーザ発振器1が出射したレーザ光を伝送する。光ファイバ2から出射されたレーザビームである出射ビーム10は、集光光学系3に入射する。集光光学系3は、コリメートレンズ31と、集光レンズ32とを含む。コリメートレンズ31は、出射ビーム10を平行化してコリメート光11にする。平行化されたコリメート光11は、集光レンズ32に入射する。集光レンズ32は、コリメート光11を集光した集光ビーム12を加工対象物4に照射する。加工対象物4は、鉄製の加工材である。加工対象物4上に集光ビーム12が照射されると、加工対象物4が溶融および蒸発して、周囲を溶融金属41で取り囲まれたキーホール50が形成される。加工対象物4への集光ビーム12の照射位置を変化させることで、レーザ加工が行われる。コリメートレンズ31および集光レンズ32の少なくとも一方は収差を有しており、集光光学系3は、全体として収差を有する。この、集光光学系3の収差によって、ファイバ出射角が全角10°以下の近軸領域の集光ビーム120の集光点に比べ、レーザパワーの86.5%を含有するレーザビーム直径であるD86.5に対応した光線位置の集光ビーム121はビーム進行方向手前に集光し、近軸領域の集光位置では集光せずにぼける。
出射ビーム10のビーム形状10aは、横軸を光軸に垂直な軸上の位置、縦軸を光強度とした場合、光軸を中心とする特定の幅の、レーザパワーが一様なフラットトップ形状である。以下、ビーム形状について述べる場合、横軸を光軸に垂直な軸上の位置、縦軸を光強度とする。コリメートレンズ31の光軸位置におけるコリメート光11のビーム形状11aは、光軸上をピークとするガウス分布形状である。集光レンズ32から出射された集光ビーム12のビーム形状12aは、光軸上にピークを有し、光軸から離れるにつれて光強度はテールを引いて低くなっている。本明細書中では、中央部が山型であって周辺部に広く裾野を引いたビーム形状をウィッチハット(Witch hat:魔女の帽子)形状と称する。
図2は、図1に示す集光ビーム12のビーム形状12aの拡大図である。集光ビーム12のビーム形状12aは、集光光学系3の有する収差に起因して、集光光学系3の集光点付近において、ウィッチハット形状となる。光軸に垂直な面をみると、集光位置において集光ビーム12は、光軸を中心とする略円形の主ビーム125と、主ビーム125を取り囲む環状の周辺ビーム126とから構成されている。主ビーム125の光強度は、例えば1MW/cm以上である。周辺ビーム126は主ビーム125よりも光強度が低く、ここでは光強度が5kW/cm以上200kW/cm以下の部分と定義する。周辺ビーム126はウィッチハット形状の帽子の鍔に相当する部分であり、主ビーム125から連なる裾野を形成している。周辺ビーム126は、光軸に垂直な断面において、主ビーム125を取り囲むドーナツ形をしている。周辺ビーム126の幅は、0.22mm以上であることが望ましい。
図3は、図1に示すレーザ加工装置100を使用してレーザ加工を行う際の加工対象物4の状態を示す図である。図3は、レーザ溶接の例を示しており、レーザ加工装置100は、図の左に向かって集光ビーム12を走査している。
集光ビーム12のビーム形状12aは、ウィッチハット形状であり、中心部の主ビーム125は、加工対象物4の金属を溶融させてキーホール50を形成させる。周辺ビーム126は、溶融金属41の表面を蒸発させて、金属蒸気61を発生させる。金属蒸気61の蒸発反力7は、キーホール50の開口部51において、溶融金属41の表面から加工対象物4の内部に向かう力となる。蒸発反力7は、レーザ光の走査方向の後方において、キーホール内壁502を上昇する溶融金属流411の向きを加工対象物4の表面40に垂直な方向から表面40に平行な方向へと変える。これにより、キーホール50の開口部51がラッパ状に広がり、溶融金属流411は、加工対象物4の内部に向かう流れとなり、スパッタの発生は抑制される。スパッタは、レーザ光の走査方向の後方で発生しやすいため、レーザ光の走査方向の後方で周辺ビーム126を形成することが重要である。
図4は、本発明の比較例1にかかるレーザ加工装置を使用してレーザ加工を行う際の加工対象物4の状態を示す図である。近赤外レーザ光源を使用したレーザ加工装置において、集光光学系の収差が小さい、または収差がない場合、集光点の近傍における集光ビーム91のビーム形状91aは、光ファイバ2の出射端におけるビーム形状を、コリメートレンズ31の焦点距離fと集光レンズ32の焦点距離fの比率で定まる光学倍率α=f/fで断面方向に拡大した、フラットトップ形状に近い形状となる。
図4の例では、集光ビーム91のビーム形状91aは主ビームの周辺に周辺ビームが存在せず、光強度はテールを引くことなく急速に5kW/cm以下の光強度まで低下している。このため、キーホール内壁502は、加工対象物4の表面に対して垂直に近い状態がキーホール50の内部から加工対象物4の表面まで続く形状となる。溶融金属流411は、加工対象物4の内部に向かう流れとなりにくく、溶融金属流411がキーホール50の開口部に向かう溶融金属流411の速度が速くなり、溶融金属41の一部が飛散してスパッタ413が発生する。
図5は、本発明の比較例2にかかるレーザ加工装置を使用してレーザ加工を行う際の加工対象物4の状態を示す図である。比較例2では、近赤外レーザ光源の代わりに、COレーザを使用したレーザ加工装置が用いられる。COレーザは、波長が9μmから10μm近傍の中赤外レーザである。このためCOレーザは、金属蒸気60および金属蒸気61と、レーザ光との相互作用で発生するプラズマに対して吸収率が高く、集光ビーム92を照射すると、キーホール50およびキーホール50の開口部51に高温のプラズマ8が生成される。COレーザを使用したレーザ加工では、高温のプラズマ8によって、開口部51付近の金属が加熱されて蒸発し、その蒸発反力7によって、開口部51は緩やかに広く開口される。このため、COレーザを使用する場合には、集光光学系の収差を調整しなくても、溶融金属流411は加工対象物4の内部に向かう流れになりやすく、スパッタ413の発生が少なく、安定した加工品質を保つことができる。したがって、近赤外レーザ光源を使用したレーザ加工装置において、図2に示すビーム形状12aの集光ビーム12を形成する集光光学系3を用いることで、COレーザ加工におけるプラズマによるキーホール開口部の加熱および拡大と等価な、キーホール開口部の加熱および拡大を実施することができ、近赤外レーザ光源を使用した場合にスパッタ413が生じやすいという問題を抑制することが可能である。
以下、本実施の形態1にかかるレーザ加工装置100が使用する光学素子、動作条件などの条件を変化させて実験例1〜実験例9の実験を行い、レーザ加工装置100がスパッタ413を抑制して実用上問題のない良好な加工品質を維持するための条件を検討した。
(実験例1)
図6は、図1に示すレーザ加工装置100が出射するレーザビームの光線図である。光線図には、光軸位置と、代表的な光軸位置の名称とが示されている。図6の光線図は、光ファイバ2の中心から等間隔の角度で発生された光線を示している。太い実線は、内部にレーザパワーの86.5%が含有されるレーザビームの直径であるビーム径D86.5に相当する光線であって、破線はビーム径D86.5の1.5倍のビーム径であって、内部にレーザパワーの98.9%が含有されるレーザビームの直径であるビーム径D98.9に相当する。以下、レーザパワーの86.5%が含有されるレーザビームの直径をビーム径D86.5と称する。
光軸位置は、近軸焦点位置を原点として、レーザビームの上部で加工する場合を負、レーザビームの下部で加工する場合を正としている。焦点位置が材料表面の上部に存在する場合を正とするレーザ加工業界の慣例に従っている。
図7は、図6に示す光軸位置−12〜光軸位置−6のそれぞれに対応するレーザ光の強度分布を示す図である。図8は、図6に示す光軸位置−4〜光軸位置+2のそれぞれに対応するレーザ光の強度分布を示す図である。
図7および図8には、各光軸位置に対応するレーザ光の強度分布が、3種類のスケールで示されている。これらの強度分布は、出射ビーム10の遠視野をガウス分布としてシミュレーションした結果である。図7および図8には、レーザ光の強度分布を、縦軸最大値が25MW/cm、1MW/cmおよび100kW/cmの3種類のスケールで示している。縦軸最大値が25MW/cmの図からは、中央のピークを含む全体形状を把握することができる。縦軸最大値が1MW/cmおよび100kW/cmの図からは、微弱な周辺ビーム126を把握することができる。
図9は、図6に示す光軸位置−12〜光軸位置−6のそれぞれにおける溶接加工中および加工後の状態を示す図である。図10は、図6に示す光軸位置−4〜光軸位置+2のそれぞれにおける溶接加工中および加工後の状態を示す図である。
図9および図10には、光軸位置−12〜光軸位置+2のそれぞれに対応して、溶接加工中画像、溶接加工後画像、スパッタ抑制の良否、溶接長10cmあたりのスパッタ発生数、溶接ビード概観の良否、および溶接の溶込深さを示している。
溶接加工中画像は、溶接加工を実施している間に撮像した画像であり、キーホール50および周辺溶融池52の状態を示している。溶接加工中画像は、LD照明とラインフィルタとを使用することで、プルーム発光によるハレーションの発生を回避している。スパッタ抑制の良否は、スパッタ発生の抑制効果をその抑制効果が高い順に◎、○、×の記号で示している。溶接ビード概観は、加工品質を示しており、溶接加工後の表面ビードの良否を、表面ビードの状態が良い場合を○、悪い場合を×の記号で示している。
溶接加工中画像に示されるキーホール50と周辺溶融池52とを含む溶融池の形状は、スパッタ抑制の良否と高い相関を示している。光軸位置−8mm〜光軸位置+2mmでは、キーホール50の周辺にキーホールよりも浅い周辺溶融池52が存在しており、この光軸位置の範囲では、スパッタ413が良好に抑制されていることが分かる。また光軸位置−12mm〜光軸位置−10mmでは、キーホール50の周辺に周辺溶融池52が形成されておらず、キーホール50がラッパ状に開口しないため、スパッタ413が発生している。光軸位置−8mmの溶接加工中画像を参照すると、形成された周辺溶融池52はわずかであるが、スパッタ413の抑制に効果的であることが分かる。この光軸位置−8mmにおける周辺溶融池52は、図7を参照すると、わずか0.3mm幅であり、50kW/cmから0kW/cmに漸減する光強度の周辺ビーム126によって形成される。このような条件の周辺ビーム126であっても、スパッタ413抑制の効果を有することが分かる。
続いて、レーザ光の強度分布と溶融池形状の関係について説明する。キーホールが発生し始める光強度は、110kW/cm以上180kW/cm以下であり、光強度がこの範囲に含まれる部分をキーホール50として、キーホール50の境界を周辺ビーム126の内径とする。また、溶融限界の光強度は7kW/cm以上20kW/cm以下であり、この溶融限界位置を周辺ビーム126の外径とする。図7および図8を参照すると、周辺ビーム126の内径と外径との差である周辺ビーム126の幅は、光軸位置−8mmで0.3mm、光軸位置−6mmで0.5mm、光軸位置−4mmで0.6mm、光軸位置−2mmで0.7mm、光軸位置0mmで0.8mm、光軸位置+2mmで1.0mmであることが分かる。
また、図9および図10に示される溶接加工中の画像における周辺溶融池52の形状は、図7および図8に示す周辺ビーム126の形状と対応している。これらの図から、溶接加工中の画像におけるレーザ光の強度分布の相関を詳細に解析した結果、これらの整合性が明らかとなった。レーザ光の強度分布と、金属の溶融現象は極めてよく整合している。
図11は、本発明の比較例3にかかるレーザ加工装置が出射するレーザビームの光線図である。比較例3にかかるレーザ加工装置は、近赤外レーザ光源と、低収差の一般的な集光光学系とを用いている。図12は、図11に示す光軸位置−8〜光軸位置−2のそれぞれに対応するレーザ光の強度分布を示す図である。図13は、図11に示す光軸位置0〜光軸位置+6のそれぞれに対応するレーザ光の強度分布を示す図である。図12および図13には、レーザ光の強度分布が、縦軸最大値が50MW/cm、1MW/cmおよび100kW/cmの3種類のスケールで示されている。図14は、図11に示す光軸位置−8〜光軸位置−2のそれぞれにおける溶接加工中および加工後の状態を示す図である。図15は、図11に示す光軸位置0〜光軸位置+6のそれぞれにおける溶接加工中および加工後の状態を示す図である。図11〜図15に示す各列の項目は、図6〜図10に示す各列と同様である。
図11を参照すると、本発明の比較例3にかかるレーザ加工装置では、光線は、集光点である近軸焦点を中心に前後で対称となる。図12および図13を参照すると、レーリー長よりも外側の強度分布は概ねガウス形状である。集光点から離れるにしたがって、ビーム径は線形に拡大し、光強度はデフォーカス距離の2乗に反比例して低減している。レーリー長内の集光点近傍では、光ファイバ2の出射端における光強度分布の像転写となるため、フラットトップ様となり、集光点である近軸焦点付近ではフラットトップ形状となる。
図11〜図13に示す比較例3に対して、本発明の実施の形態1では、集光光学系3が収差を有するため、図6〜図8に示すように、光軸位置によってレーザ光の強度分布の形状自体が大きく変化する複雑な伝搬特性を示す。レーザ光の強度分布は、集光位置に相当する最小錯乱円の位置の前後で非対称になり、最小錯乱円よりも前側の光軸位置−4〜光軸位置+2では、山形の主ビーム125の周辺に、光強度が200kW/cm以下のラッパ状の周辺ビーム126のテールを引いたウィッチハット形状となる。図9および図10を参照すると、ビーム形状がウィッチハット形状に近づいている光軸位置−4〜光軸位置+2では、スパッタ413の発生が良好に抑制され、表面ビードの状態も良好となっており、良好な加工品質を保っていることが分かる。
また総合的に溶接性能が優れているのは、光軸位置−4mmであって、10kW、5m/minの高出力および高速溶接を実現し、且つ、スパッタ413の発生を良好に抑制することができており、溶接後のビード表面も滑らかで、溶け込み深さも10.4mmと高いレベルを達成している。さらに光軸位置−8mm〜光軸位置+2mmのビームの前側全域に渡って、10cmあたりのスパッタ量は、25±10個以下と実用上問題のないレベルに抑制されている。発生するスパッタ413のサイズも0.5mm以下と小さく、加工対象物4の表面40への付着も抑制することができている。
光軸位置−4mmにおいて、キーホール50の直径は0.8mmであるのに対して、周辺溶融池52の幅は0.6mmである。スパッタ413を抑制するためには、キーホール50の直径と同程度、または0.6mm程度の幅の周辺溶融池52を形成することが効果的である。また、光軸位置−4mmにおいて、周辺ビーム126の強度は、110kW/cmから7kW/cmまで漸減しており、周辺ビーム幅の中央部での光強度は20kW/cmとなっている。スパッタ抑制効果を得るためには、主ビーム125から連続しており、下に凸のラッパ状のレーザ光の強度分布を有することが望ましい。深いキーホール50を形成せずにラッパ状の開口を形成するために必要なレーザ光の強度は20kW/cm以上100kW/cm以下程度である。
レーザ加工装置100は、広い光軸位置範囲において、スパッタ413の発生を抑制し、加工品質の高い領域を確保することができ、加工品質の高い領域の中に中央部のビーム強度がピークとなる領域が存在するため、深い溶け込みを実現することが可能である。レーザ加工装置100は、高い加工品質と高い加工性能を両立している。
図16は、本発明の実験例1におけるレーザ加工装置100のレーザ発振器1および光学系の条件を示す図である。レーザ発振器1は、ディスクYAGレーザであって、波長λ=1.03μmのレーザビームを出力10kWで出力する。光学系の条件としては、光ファイバ2のファイバコア直径φ=200μmであり、ビームパラメータプロダクツBPは、8mm mrad以下であり、全頂発散角θ=160mrad以下である。
続いて光学系の条件を説明する。コリメートレンズ31は焦点距離f=200mmである。コリメートレンズ31は、低収差組レンズである。コリメートレンズ31は、収差のないレンズである。例えば収差のないレンズとは、集光点において、ビーム径D86.5を基準とした横収差が0.05mm以下のレンズと定義することができる。ビーム径D86.5を基準とした横収差は、言い換えると、光軸に垂直な面において、ビーム径D86.5に対応する光線を基準としたずれ、ビーム径D86.5に対応する光線の内部の円形領域を理想的な集光状態とした場合にこの円形領域からのずれなどと言うこともできる。なお、収差が大きいレンズとは、ビーム径D86.5を基準とした収差が0.1mm以上である場合を言う。ここでは、ビーム径D86.5に相当する入射高さh=ftan(−θ/2)=−16mmを基準としたコリメートレンズ31の横収差ΔYc(D86.5)は0.05mm以下である。ビーム径D86.5の領域の外郭線は、入射高さh=−16mmに相当するため、入射高さh=−16mmを基準とした横収差は、ビーム径D86.5を基準とした横収差と同義である。
集光レンズ32は焦点距離f=204mmである。集光レンズ32は、大きな収差を有する組レンズであって、光ファイバ2からの発散角±80mradに相当する入射高さh=−16mmを基準とした横収差ΔY(D86.5)=0.53である。なお、ここではコリメートレンズ31の収差は集光レンズ32の収差と比較して無視できる程度に小さいため、光学系全体の横収差ΔYは、集光レンズ32の横収差ΔYと等価と考えることができ、ΔY=0.53mmとなる。レーザ加工装置100は、一般的な加工光学系と比較して10倍以上の収差を有する。図11に示した本発明の比較例3にかかるレーザ加工装置では、コリメートレンズ31および集光レンズ32共に焦点距離f=200mmの低収差組レンズであって、入射高さh=−16mmを基準とした横収差ΔYは、共に0.05mm以下である。
溶接加工の加工条件としては、加工対象物4の材料は、軟鋼板であって、加工速度は5m/minである。溶接部には、シールドガスとしてアルゴンガスを20L/min吹き付けている。
以上説明したように、実験例1では、ファイバレーザ、ディスクYAGレーザなどの近赤外レーザ光源を使用したレーザ加工装置において、10kWレベルの高出力、高速且つ溶け込み深さの深い溶接加工を、スパッタ413を抑制しつつ実現するための具体的な条件を明らかにした。レーザ加工装置100は、ファイバ伝送型レーザ溶接の品質を改善するものであり、安定した加工品質を実現することが可能である。
なお、上記実験例1では、加工対象物4を軟鋼つまり鉄製としたが、加工対象物4の材料は鉄に限定されない。加工対象物4は、アルミニウム、銅、ニッケル、ステンレスなどの金属材料製であってもよい。
また上記実験例1では、光ファイバ2から出射されたレーザビームを用いてレーザ加工を行っているが、本実施の形態において説明した収差の条件、主ビーム125と周辺ビーム126との条件を満たすことで、光ファイバ2を通過しないレーザビームを使用するレーザ加工装置にも本発明の技術を適用することができる。
また上記実験例1では、コリメートレンズ31、集光レンズ32といった光学系のレンズが収差を有していたが、レーザ光を発生するレーザ発振器1または光ファイバ2によって収差を発生させてもよい。つまり、レーザ光が発生してから加工対象物4に照射されるまでの光路上に配置された素子の少なくともいずれかによって収差が発生すればよい。
(実験例2)
図17は、本発明の実験例2にかかる実験条件を示す図である。本実験例2では、スパッタ413の抑制に効果的な収差の条件を特定するために、図1に示すレーザ加工装置100の集光レンズ32の収差量を変化させた6つの条件(a)〜条件(f)でレーザ加工を行い、各条件における加工品質を観察した。
条件(a)〜条件(f)において、コリメートレンズ31の焦点距離f=200mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.05mm以下で共通である。また、レーザ条件は、ファイバコア直径φ=200μm、ビームパラメータプロダクツBPP=8mmmrad以下、全頂発散角θ=160mrad以下であって、各条件に共通である。さらに加工速度は5m/minであって、加工対象物4の材料は軟鋼である。
条件(a)の集光レンズ32は、焦点距離f=409mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.13mmである。条件(b)の集光レンズ32は、焦点距離f=307mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.23mmである。条件(c)の集光レンズ32は、焦点距離f=256mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.34mmである。
条件(d)の集光レンズ32は、焦点距離f=204mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.53mmである。条件(e)の集光レンズ32は、焦点距離f=174mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.75mmである。条件(f)の集光レンズ32は、焦点距離f=153mm、ビーム径D86.5を基準とした横収差ΔY(D86.5)=0.98mmである。本実験例2では、コリメートレンズ31の収差が無視できる程度に小さいため、条件(a)〜条件(f)のそれぞれにおいて、ビーム径D86.5を基準とした光学系全体の横収差ΔY(D86.5)は、集光レンズ32の横収差ΔY(D86.5)と等しいと考えることができる。
なお、光ファイバ2から出射されるレーザビームは、ビーム径D86.5に相当する半頂発散角が80mradでコリメートレンズ31の焦点距離fが200mmである。このため、ビーム径D86.5に相当するコリメートビーム半径Wc(D86.5)=ftanθ=16mmとなる。したがって、集光レンズ32の横収差ΔY(D86.5)は、ビーム径D86.5に相当する位置を入射高さh=−16mmを基準とした横収差としている。また、集光レンズ32の収差を0.13mmから0.98mmと大きく変化させるため、焦点距離の異なるレンズを使用している。
図18は、図17に示す条件でレーザ加工を行った結果を示す図である。図18には、各条件でレーザ加工を行うときの光線図と、レーザ加工中の溶融池を撮影した画像と、溶接加工の状況を示す情報とが示されている。溶接加工を行うために適した位置は、ビーム径D86.5に対する最小錯乱円位置ZD86.5とした。レーザ加工中の溶融池を撮影した画像は、最小錯乱円位置ZD86.5における画像である。
溶接状況に示された、溶融池外径OD、溶融池内径IDおよび周辺溶融池幅Wmは、溶融池画像から読み取った値である。スパッタ発生量NSは、溶接長さ10cmあたりのスパッタ発生個数を示している。
図17および図18を参照すると、光学系全体の収差が増大するにつれて、集光位置近傍の光線群が拡大して、レーザ加工位置である最小錯乱円位置ZD86.5における周辺溶融池幅Wmが拡大していることが分かる。
図19は、図17および図18に示した光学系全体の横収差の変化に対するスパッタ発生量の推移をグラフ化した図である。図19から、スパッタ発生量が40±10個/10cm以下となる収差をスパッタ抑制に効果的な収差とすると、集光点における横収差ΔYが0.2mm以上の範囲ということができる。集光点における横収差ΔY(D86.5)が0.53mm以上であることがさらに望ましい。
図20は、図17に示した条件で横収差ΔY(D86.5)を変化させたときの周辺溶融池幅Wmの推移をグラフ化した図である。周辺溶融池52は、横収差によって発生する周辺ビーム126によって形成されるため、横収差ΔY(D86.5)の大きさと強い相関を有していることが分かる。周辺溶融池幅Wmは、横収差ΔY(D86.5)に比例しており、横収差ΔY(D86.5)の1.2倍となっている。
図21は、図18に示した周辺溶融池幅Wmが変化したときのスパッタ発生量の推移をグラフ化した図である。スパッタ発生量が40±10個/10cm以下となる収差をスパッタ413が抑制された状態と定義すると、スパッタ抑制のために必要な周辺溶融池幅Wmは、0.22mm以上ということがいえる。周辺溶融池幅Wmが0.69mm以上であることがさらに望ましい。
(実験例3)
上記の実験例2では集光レンズ32に組レンズを使用していたが、本実験例3では、集光レンズ32に単レンズを使用する。
図22は、図1の集光レンズ32に求められる特性を特定するための実験例3で検討する単レンズの横収差の入射曲率依存性を示す図である。図22は、焦点距離f=204mmの単レンズの、入射面曲率の変化に対する横収差ΔYの推移を示している。レンズの硝材は合成石英であって、屈折率n=1.45であり、レンズ中心部の厚みt=6.5mmである。光線追跡によって算出した横収差は、入射面曲率K1=1/rに対して下に凸の2次関数になる。
単レンズの焦点距離fと入射曲率半径rおよび出射曲率半径rとの関係は、以下の数式(1)で表される。数式(1)を用いることで、焦点距離fおよび入射曲率半径rを定めれば、出射曲率半径rは定まり、レンズ形状が定まる。なお、レンズ中心部の厚みtが15mm以下であれば、焦点距離f、入射曲率半径rおよび出射曲率半径rの各々の相互関係におけるレンズ中心部の厚みtに対する依存性は小さい。
Figure 0006980025
図23は、入射面曲率K1の変化に対する出射面曲率K2の推移を示す図である。出射面曲率K2は、上記の数式(1)を使用して算出した値である。出射面曲率K2は、入射面曲率K1の一次関数となり、レンズ中心部の厚みtの影響は小さいことが分かる。
実験例2において特定したように、スパッタ抑制効果のある収差の条件を0.2mm以上とすると、入射面曲率K1は、5m−1以下または13m−1以上となる。図23を参照すると、入射面曲率K1が5m−1以下または13m−1以上となる出射面曲率K2は、−6m−1以下または2m−1以上となる。
ここでビーム径D86.5に相当する入射高さh=−16mmを基準とした横収差ΔYh−16=0.53mmとする。この場合、レンズの入射側の入射曲率半径r=56.3mmとなり、集光側の出射曲率半径r=139.9mmとなる。レンズ中心部の厚みtは、3mm以上となるように、t=6.5mmとしている。
図24は、本発明の実験例3にかかる集光レンズ32の形状および光線を示す図である。本実験例3で使用される集光レンズ32は、図24に示すようにメニスカス形状である。一般的な光学系において、高い集光性能を得るために、レンズ形状は、最小収差位置近傍の凸平レンズ、両凸レンズなどが使用されることが多い。さらに大きな集光性能を必要とする場合には、無収差に近い組レンズが使用されることもある。本実験例3では、0.5mm以上の収差を発生させるために、メニスカス形状のレンズが使用される。
図25は、図24の一部拡大図と、拡大図に対応した横収差とを示す図である。集光レンズ32への入射ビーム半径W86.5=D86.5/2=16mmである。入射ビーム半径W86.5に対応する入射高さh=−W86.5=−16mmであり、この入射高さhを基準とした横収差ΔYh−16=0.53mmとなる。収差の量を正の値とするために、入射高さhは負の値で定義している。単レンズの横収差の入射高さ依存性は、入射高さhがレンズ表面の入射曲率半径r、出射曲率半径rよりも小さい領域では3次関数となる。
なお本実験例3では、光ファイバ2からの出射角が80mradであって、コリメートレンズ31の焦点距離f=200mmであり、入射高さh=−16mmを基準とした収差は、ビーム径D86.5を基準とした収差に相当する。
上記のように、集光レンズ32をメニスカス形状とすることで、シンプルな構造の単レンズでありながら、スパッタ抑制効果が高い周辺ビーム126を発生させることができる横収差ΔYh−16=0.53mmを実現している。
(実験例4)
本実験例4では、光ファイバ2、コリメートレンズ31および集光レンズ32を含む加工光学系の条件を2種類比較して検討する。図26は、本発明の実験例4にかかる加工光学系の条件を示す図である。図27は、図26に示す条件の加工光学系の光線図および概略構成図である。
図26に示す条件(g)および条件(h)は共に、光ファイバ2のファイバコア直径φ=200μmであり、ビームパラメータプロダクツBPP=8mmmrad以下であり、全頂発散角θ=160mrad以下である。また条件(g)および条件(h)は共に、コリメートレンズ31の横収差ΔY(D86.5)が無視できる程度に小さく、ビーム径D86.5を基準とした集光レンズ32の横収差ΔY(D86.5)=0.53mmである。さらにビーム径D86.5を基準とした光学系全体の横収差ΔY(D86.5)=0.53mmである。
条件(g)は、コリメートレンズ31の焦点距離f=200mmであり、集光レンズ32の焦点距離f=204mmである。条件(h)は、コリメートレンズ31の焦点距離f=400mmであり、集光レンズ32の焦点距離f=408mmである。条件(g)と条件(h)とでは、光学系が相似形であり、集光角と対応した横収差量が同等である。この場合、焦点位置近傍における光線図は一致し、集光状態は同等となる。
図28は、実験例1から4で使用する近赤外レーザ光源の製品仕様の一例を示す図である。近赤外レーザ光源として使用されるファイバレーザおよびYAGレーザの製品仕様は、デファクトスタンダードでほぼ共通の規格が使用されており、光ファイバ2からの出射半角θは、レーザ出力および光ファイバ2のファイバ径によらず、80mrad以下となっており、実測値は75mradから80mradである。
統一された光ファイバ2からの出射半角θ=80mrad以下は、近軸条件である5°=87.2mrad以下を満たしており、汎用光学系でも十分な集光性能を保つことができる。
(実験例5)
本発明の実験例5では、ファイバコア直径φに対する集光強度分布の依存性を検討する。図29は、本発明の実験例5におけるレーザ加工装置100の条件を示す図である。条件(i)、条件(j)および条件(k)は、ファイバコア直径φ以外の条件が共通である。
具体的には、条件(i)のファイバコア直径φ=100μm、ビームパラメータプロダクツBPP=4mmmrad以下であり、条件(j)のファイバコア直径φ=200μm、ビームパラメータプロダクツBPP=8mmmrad以下であり、条件(k)のファイバコア直径φ=300μm、ビームパラメータプロダクツBPP=12mmmrad以下である。また条件(i)、条件(j)および条件(k)に共通して、全頂発散角θ=160mrad以下であり、コリメートレンズ31の焦点距離f=200mmであり、コリメートレンズ31の横収差ΔY(D86.5)は無視できる程度に小さい。さらに条件(i)、条件(j)および条件(k)に共通して、集光レンズ32の焦点距離f=200mmであり、集光レンズ32の横収差ΔY(D86.5)=0.56である。光学系全体の横収差ΔY(D86.5)=0.56である。
図30は、図29に示す各条件のレーザ加工装置100が出射するレーザ光の光図および強度分布を示す図である。横収差が0.05mm以下の一般的な低収差光学系では、加工を行う最小錯乱位置ではファイバ端の倍率転写となるため、集光径は、ファイバコア直径φに比例して変化する。
しかしながら、本実験例5のレーザ加工装置100では、レーザビームの径を基準とした横収差が0.2mm以上であって直径では0.4mm以上であり、より望ましくは0.5mm以上であって直径では1.0mm以上である。これらの値は、ファイバコア直径φ=0.1mmから0.3mmに対して1倍から20倍以上と、収差としては大きい。このため、集光点近傍の光強度分布は、光学系の収差による影響が支配的であって、ファイバコア直径φの影響は小さくなる。
図30を参照すると、ファイバコア直径φを変化させたときに、中心部の光強度の変化が大きい。ファイバコア直径φを300μmから100μmへ1/3に縮小すると、中心部の光強度は11.8MW/cmから39.8MW/cmへと高くなる。収差のない一般的な光学系では、ファイバコア直径φが1/3に縮小すると、集光点のスポットも1/3になるため、中心部の光強度は9倍となる。これに対して本実験例5では、収差の影響により中心部の光強度は3.4倍程度の増大に止まっている。
スパッタ413を抑制するためには、光強度200kW/cm以下、幅0.3mm以上の周辺ビーム126の強度が重要となるが、図30を参照すると、ファイバコア直径φを変化させても、周辺ビーム126の強度分布への影響は小さい。ファイバコア直径φを0.1mmから0.3mmまで変化させても、周辺ビーム126の強度はほとんど変化せず、光軸位置依存性も変化しない。
(実験例6)
本実験例6では、集光レンズ32の焦点距離fの変化に対する光強度分布の依存性を検討する。図31は、本発明の実験例6におけるレーザ加工装置100の条件を示す図である。
図31に示す条件(l)、条件(m)および条件(n)は、集光レンズ32の焦点距離f以外は図29に示す条件(j)と同じである。条件(l)における集光レンズ32の焦点距離f=100mmであり、条件(m)における集光レンズ32の焦点距離f=200mmであり、条件(n)における集光レンズ32の焦点距離f=300mmである。
図32は、図31に示す各条件のレーザ加工装置100が出射するレーザ光の光図および強度分布を示す図である。図32を参照すると、焦点距離fを変化させて集光角を変化させても、近軸焦点位置、D86.5最小錯乱円位置およびD98.9最小錯乱円位置における集光状態および光強度分布の変化は小さい。
焦点距離fを変化させて集光角を変化させると、光学倍率α=(f/f)で定まる基本スポット径φは、下記の数式(2)に従って変化するが、周辺ビーム126の光強度分布の変化は小さい。
φ=(f/f)・φ=BPP/θ ・・・(2)
ここでφはファイバコア直径である。
なお、図32の光線図を比較すると、焦点距離の変化つまり集光角の変化に伴って、焦点とそれぞれの最小錯乱円との間隔など光軸方向のスケールは焦点距離に比例して変化していることが分かる。しかしながら図32の光強度分布の図を参照すると、それぞれの位置での周辺ビーム126の強度分布は同程度であり、同様のスパッタ抑制効果を得ることができることが分かる。光軸方向の焦点深度に相当する加工位置尤度などは、焦点距離の変化に伴って変化する。
上記の実験例5および実験例6から、収差の大きい光学系では、光ファイバ2のファイバ径を変えても、焦点距離を変えても、ビーム径D86.5に相当する光線位置を基準とした収差が同一であるならば、光強度分布は同様となることが分かった。このため、ビーム径D86.5を基準とした収差、つまり、ビーム径D86.5に相当する光線位置を基準とした収差を規定することで、同様の光強度分布を得ることができ、同様のスパッタ抑制効果を得ることが可能であることが分かる。光強度分布の光軸位置依存性は焦点距離に応じて拡大縮小する。
(実験例7)
本実験例7では、集光光学系3内において収差を生じさせる素子を変化させた場合の影響について検討する。図33は、本発明の実験例7における各レンズが有する収差の条件を示す図である。
図33の条件(A)では、コリメートレンズ31が横収差ΔY(D86.5)=0mmの低収差組レンズであり、集光レンズ32が横収差ΔY(D86.5)=0.53mmの収差を有するレンズである。条件(B)では、コリメートレンズ31が横収差ΔY(D86.5)=0.53mmの収差を有するレンズであり、集光レンズ32が横収差ΔY(D86.5)=0mmの低収差レンズである。さらに条件(C)では、コリメートレンズ31が横収差ΔY(D86.5)=0.265mmの収差を有するレンズであり、集光レンズ32が横収差ΔY(D86.5)=0.265mmの収差を有するレンズである。
図33に示す3つの条件(A)、条件(B)および条件(C)でシミュレーションを行うと、集光光学系3の全体の収差は、各レンズの収差の合計となるため、各条件で同一である。集光点における光強度分布は、集光光学系3の全体の収差に応じて決まるため、3つの条件(A)、条件(B)および条件(C)で集光点における光強度分布は差がなく、スパッタ抑制効果も同等であることが分かった。
なお、集光光学系3の収差は一般的にレーザビームの進行方向の集光点に対して定義されるものであるが、光ファイバ2からの発散光を平行化するコリメートレンズ31に対しては、進行方向とは逆向きのコリメート部から平行ビームを逆入射させて、光ファイバ2の出射端に向けて集光させる仮想集光によって収差を定義する。
(実験例8)
本発明の実験例8では、光学条件は同一で、加工速度を1m/minから10m/minまで1m/min毎に変化させた場合の、溶融池の状態とスパッタ413の抑制状態とを検討した。図34は、本発明の実験例8の実験結果を示す図である。
図34を参照すると、周辺溶融池52の溶融池外径ODは、加工速度の増大に伴って徐々に減少しており、1m/minで2.5mm、5m/minで2.2mm、10m/minで1.9mmとなっている。これに対して、周辺溶融池52の溶融池内径ID、つまりキーホール50の直径φKH=0.75±0.15mmの範囲でほぼ一定となっている。
周辺溶融池幅Wmは、加工速度の増大に伴って0.75mmから0.45mmへと減少しているが、スパッタ抑制に有効な0.22mm以上の幅を保っており、スパッタ発生量NSは、全速度範囲に渡って0〜25個/10cmのレベルに抑制されている。したがって、レーザ加工装置100は、加工速度によらずスパッタ413を抑制する効果を奏することが分かる。
(実験例9)
本発明の実験例9では、レーザの出力を1kWから10kWまで1kW毎に変化させた場合の、溶融池の状態とスパッタ413の抑制状態とを検討した。図35は、本発明の実験例9の実験結果を示す図である。
図35を参照すると、出力の低下に伴って、周辺溶融池52およびキーホール50は縮小するが、スパッタ発生量NSは、全出力範囲1kWから10kWに渡って0〜10個/10cmのレベルに抑制されている。したがって、レーザ加工装置100は、レーザの出力によらずスパッタ413を抑制する効果を奏することが分かる。
以上の実験例1〜9の実験結果から、近赤外レーザを使用したレーザ加工において、スパッタ413を抑制して高い加工品質を実現するための条件が明らかとなった。レーザ光が発生してから加工位置に至るまでの間に収差を有する光学系を有し、集光点における横収差を、ビーム径D86.5に対して0.2mm以上とすることで高い加工品質を実現することができる。ビーム径D86.5に対して0.2mm以上とは、レーザパワーの86.5%が含有される、集光前のビーム径に相当する光線を基準とした場合の横収差が0.2mm以上であることを示す。スパッタ413は、レーザ光の走査方向の後方で発生しやすいため、上記横収差のうち、少なくともレーザ光の走査方向の後方に対する横収差が上記の条件を満たすことが望ましい。このような収差を発生させることで、集光点におけるビーム形状がウィッチハット形状となり、光強度が5kW/cm以上200kW/cm以下の周辺ビーム126の幅が0.22mm以上となる。このような周辺ビーム126を形成すると、蒸発反力を発生して溶融金属流411の流れを加工対象物4の表面に垂直な向きから水平な向きに代えることができ、スパッタ413の発生を抑制することができる。
ビーム径D86.5は、光ファイバ2が出射した光を集光光学系3で集光する場合、光ファイバ2からの発散角±80mradに相当する。このため、上記の条件は、集光点の横収差が光ファイバ2からの発散角±80mradに対して0.2mm以上ということもできる。
さらに、集光光学系3の収差は、コリメートレンズ31が収差を有していてもよいし、集光レンズ32が収差を有してもよい。或いはコリメートレンズ31および集光レンズ32の両方が収差を有してもよい。コリメートレンズ31および集光レンズ32の両方が収差を有する場合、コリメートレンズ31の収差と集光レンズ32の収差の合計が上記の条件を満たせばよい。
さらに上記の条件に加えて、ビーム径D86.5に対応する半頂集光角を50mrad以上110mrad以下とすることで、一般的な光ファイバ2の出射半頂角80mradから出射したレーザビームに対して、収差がない場合の仮想的なコアスポット径は出射ファイバ径の0.625倍から1.375倍とすることができ、深い溶け込み性能を示すことができる。
実施の形態2.
図36は、本発明の実施の形態2にかかるレーザ加工装置200の構成を示す図である。本実施の形態2のレーザ加工装置200は、レーザ加工中の加工対象物4をモニタするための撮像装置500を有する。
レーザ加工装置200は、収差を有するコリメートレンズ31と、低収差レンズである集光レンズ32とを有する。コリメートレンズ31と集光レンズ32との間の光路上には、ベンドミラー9が配置されている。ベンドミラー9は、コリメートレンズ31からの光を集光レンズ32に反射する。撮像部である撮像装置500は、同軸カメラであり、集光レンズ32およびベンドミラー9を介して直進する光を検出することができる。
集光レンズ32が収差を有しないため、撮像装置500のモニタ画像の歪みを抑制することができる。したがって、スパッタ413を抑制して加工品質の低下を抑制しつつ、加工対象物4のレーザ加工を行っている部分を同軸で、ぼけや歪みのない鮮明な画像でモニタすることが可能になる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
例えば上記では、近赤外レーザを使用したレーザ加工装置100について説明したが、本発明はかかる例に限定されない。本実施の形態で説明した技術は、例えば可視光レーザ、中赤外レーザを使用したレーザ加工装置に適用しても有効である。
また上記の実施の形態では、光ファイバ2と、光ファイバ2から出射されたレーザビームを集光する集光光学系3とを有するレーザ加工装置100およびレーザ加工装置200について説明したが、本発明はかかる例に限定されない。光ファイバ2を備えないレーザ加工装置に対して本発明の技術を適用することも可能である。レーザ発振器1から出射された光は、そのまま集光光学系3に入射してもよいし、レーザ発振器1から出射された光が集光光学系3に入射するまでの光路上には、本発明の要旨を逸脱しない範囲で、どのような光学素子が配置されていてもよい。
1 レーザ発振器、2 光ファイバ、3 集光光学系、4 加工対象物、7 蒸発反力、9 ベンドミラー、10 出射ビーム、10a,11a,12a,91a ビーム形状、11 コリメート光、12,91,92 集光ビーム、31 コリメートレンズ、32 集光レンズ、40 表面、41 溶融金属、50 キーホール、51 開口部、60,61 金属蒸気、100,200 レーザ加工装置、125 主ビーム、126 周辺ビーム、411 溶融金属流、500 撮像装置、502 キーホール内壁。

Claims (12)

  1. 加工対象物への照射位置において、ピークにおける光強度が4MW/cm 以上の主ビームと、前記主ビームよりも低強度であって前記主ビームから連なる周辺ビームと、から構成されるウィッチハット形状の強度分布を有するレーザビームを、金属製の前記加工対象物に照射して溶接するレーザ溶接方法であって
    記加工対象物に、前記主ビームが形成するキーホールよりも浅く、前記キーホールを取り囲む0.22mm以上の幅を有する周辺溶融池を形成する
    ことを特徴とするレーザ溶接方法
  2. レーザビームを加工対象物に集光して前記加工対象物を加工するレーザ加工装置であって、
    記レーザビームは、前記加工対象物への照射位置において、ピークにおける光強度が4MW/cm以上の主ビームと、前記主ビームよりも低強度であって前記主ビームから連なる周辺ビームとから構成されるウィッチハット形状の強度分布を有し、
    前記主ビームの光強度が1MW/cm 以上の部分の直径は0.5mm以下であり、
    前記周辺ビームは光強度が5kW/cm以上200kW/cm以下であ光軸と垂直な面において0.22mm以上の幅を有する
    ことを特徴とするレーザ加工装置。
  3. 集光前の前記レーザビームにおけるレーザパワーの86.5%を含有するレーザビーム直径であるD 86.5 を基準とする横収差が0.2mm以上の集光光学系を備え、
    前記レーザビームは、前記集光光学系によって集光される
    ことを特徴とする請求項2に記載のレーザ加工装置。
  4. レーザビームを出射するレーザ発振器と、
    前記レーザビームを集光する集光光学系と、を備え、
    前記レーザ発振器から出射された前記レーザビームは、前記集光光学系に入射する際のビームパラメータプロダクツが12mmmrad以下であって、前記集光光学系の集光点でのビーム中心の光強度が4MW/cm 以上であり、
    前記集光光学系は、集光前の前記レーザビームにおけるレーザパワーの86.5%を含有するレーザビーム直径であるD86.5 を基準とする横収差0.2mm以上であること、
    特徴とするレーザ加工装置。
  5. 前記集光光学系から加工対象物へと照射される前記レーザビームは、半頂集光角が80mrad以下であることを特徴とする、
    請求項4に記載のレーザ加工装置。
  6. レーザ出力が1kW以上10kW以下であることを特徴とする請求項2から5のいずれか1項に記載のレーザ加工装置。
  7. レーザ出力が4kW以上10kW以下であることを特徴とする請求項2から5のいずれか1項に記載のレーザ加工装置。
  8. 前記集光光学系は、加工対象物への照射位置が、近軸焦点+2mmから、集光レンズ側へ近軸焦点からの距離が近軸焦点からD86.5に対応する最小錯乱円位置までの距離の2倍となる位置までの範囲内となるように集光することを特徴とする請求項4または5に記載のレーザ加工装置。
  9. 前記レーザビームを伝送する光ファイバ、
    を備え、
    前記集光光学系は、前記光ファイバから出射された前記レーザビームを集光することを特徴とする請求項4、5または8に記載のレーザ加工装置。
  10. 前記集光光学系は、
    横収差が0.05mm以下のレンズであって前記光ファイバから出射された前記レーザビームを平行化するコリメートレンズと、
    前記コリメートレンズで平行化された前記レーザビームを集光する集光レンズと、
    を含むことを特徴とする請求項に記載のレーザ加工装置。
  11. 前記集光光学系は、
    前記光ファイバから出射された前記レーザビームを平行化するコリメートレンズと、
    横収差が0.05mm以下のレンズであって前記コリメートレンズで平行化された前記レーザビームを集光する集光レンズと、
    を備え、
    前記コリメートレンズは収差を有することを特徴とする請求項に記載のレーザ加工装置。
  12. 前記集光光学系は、
    前記コリメートレンズと前記集光レンズとの間の光路上に配置され、前記レーザビームを反射するベンドミラー、
    を備え、
    前記レーザ加工装置は、
    前記ベンドミラーと前記集光レンズとを介して、加工対象物を撮像する撮像部
    を備えることを特徴とする請求項11に記載のレーザ加工装置。
JP2019549234A 2017-10-17 2018-10-11 レーザ溶接方法およびレーザ加工装置 Active JP6980025B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017201056 2017-10-17
JP2017201056 2017-10-17
PCT/JP2018/037981 WO2019078092A1 (ja) 2017-10-17 2018-10-11 レーザ加工装置

Publications (2)

Publication Number Publication Date
JPWO2019078092A1 JPWO2019078092A1 (ja) 2020-11-26
JP6980025B2 true JP6980025B2 (ja) 2021-12-15

Family

ID=66173641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549234A Active JP6980025B2 (ja) 2017-10-17 2018-10-11 レーザ溶接方法およびレーザ加工装置

Country Status (5)

Country Link
US (2) US20200238438A1 (ja)
JP (1) JP6980025B2 (ja)
CN (1) CN111201464B (ja)
DE (1) DE112018004574T5 (ja)
WO (1) WO2019078092A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230364A1 (ja) * 2019-05-13 2020-11-19 株式会社村田製作所 光学装置
JP7435543B2 (ja) 2021-05-28 2024-02-21 トヨタ自動車株式会社 レーザ溶接システム及びレーザ溶接制御方法
WO2023243086A1 (ja) * 2022-06-17 2023-12-21 三菱電機株式会社 レーザ加工ヘッド、レーザ加工装置および金属製製造物の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985481A (ja) * 1995-09-19 1997-03-31 Amada Co Ltd レーザー加工ヘッド
JPH09220690A (ja) * 1996-02-13 1997-08-26 Amada Co Ltd ハンディ型レーザ装置およびその装置に用いるレーザトーチ
JP3498075B2 (ja) * 2001-09-14 2004-02-16 川崎重工業株式会社 薄板のレーザ溶接用出力ヘッド
JP2003340582A (ja) 2002-05-23 2003-12-02 Mitsubishi Heavy Ind Ltd レーザ溶接装置およびレーザ溶接方法
JP2004096088A (ja) * 2002-07-10 2004-03-25 Fuji Photo Film Co Ltd 合波レーザー光源および露光装置
JP4357944B2 (ja) * 2003-12-05 2009-11-04 トヨタ自動車株式会社 固体レーザ加工装置およびレーザ溶接方法
FR2897007B1 (fr) * 2006-02-03 2008-04-11 Air Liquide Procede de coupage avec un laser a fibre avec controle des parametres du faisceau
JP5176535B2 (ja) * 2007-02-02 2013-04-03 富士電機株式会社 レーザ式ガス分析計
FR2949618B1 (fr) * 2009-09-01 2011-10-28 Air Liquide Tete de focalisation laser pour installation laser solide
US9346126B2 (en) * 2011-05-30 2016-05-24 Mitsubishi Heavy Industries, Ltd. Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method
JP6063670B2 (ja) * 2011-09-16 2017-01-18 株式会社アマダホールディングス レーザ切断加工方法及び装置
JP2015199114A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 レーザ加工装置及びレーザ加工方法
JP6190855B2 (ja) * 2015-09-08 2017-08-30 株式会社アマダホールディングス レーザ加工方法およびレーザ加工装置
JPWO2019012642A1 (ja) * 2017-07-13 2020-05-07 ギガフォトン株式会社 レーザシステム

Also Published As

Publication number Publication date
CN111201464A (zh) 2020-05-26
DE112018004574T5 (de) 2020-06-25
US20240042546A1 (en) 2024-02-08
CN111201464B (zh) 2023-01-24
JPWO2019078092A1 (ja) 2020-11-26
WO2019078092A1 (ja) 2019-04-25
US20200238438A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6980025B2 (ja) レーザ溶接方法およびレーザ加工装置
JP5520819B2 (ja) レーザー照射を用いた材料の加工方法およびそれを行なう装置
CN108427203A (zh) 一种基于轴锥透镜连续可调聚焦光束发散角光学***
EP2716397B1 (en) Optical system for laser working device, laser working head with such optical system, laser working device with such head, laser focusing method, and laser working method using such method
JP2009072789A (ja) レーザ加工装置
US20060186098A1 (en) Method and apparatus for laser processing
JP6373421B2 (ja) ほぼコリメートされたビームを焦束するための光学素子の配置構造
WO2014061438A1 (ja) レーザ加工方法およびレーザ光照射装置
JP2006263771A (ja) レーザ加工装置及びレーザ加工方法
CN112496529A (zh) 激光切割***
JP2006192504A (ja) 二重焦点レンズを用いる、厚い金属部品のレーザー切断
JP2006192503A (ja) 二重焦点レンズを用いる、薄い金属被加工物のレーザー切断
JP2004358521A (ja) レーザ熱加工装置、レーザ熱加工方法
CN109530913B (zh) 一种贝塞尔光束的激光加工优化方法及***
JP2020522387A (ja) ビーム整形器及びその使用、ワークピースのレーザビーム処置装置及びその使用、ワークピースのレーザビーム処置方法
JP6145522B2 (ja) ほぼコリメートされた光線を焦束するための光学素子
KR20170019855A (ko) 베셀 빔 레이저 가공효율 증대를 위한 다중각도 액시콘 렌즈
JP5758237B2 (ja) レーザ加工装置及びレーザ加工方法
JP2017173371A (ja) 光ファイバを用いたレーザ加工機用レーザ光伝送装置
Scholz et al. Investigation of the formation of nanoparticles during laser remote welding
Salminen et al. The effect of welding parameters on keyhole and melt pool behavior during laser welding with high power fiber laser
JP7246922B2 (ja) 溶接装置
JP7186937B1 (ja) レーザ加工ヘッド、レーザ加工装置および金属製製造物の製造方法
Laskin et al. Refractive multi-focus optics for material processing
JP6722795B1 (ja) レーザビーム整形装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R150 Certificate of patent or registration of utility model

Ref document number: 6980025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150