JP2021085843A - Method for inspecting resin composition and method for producing resin cured body - Google Patents

Method for inspecting resin composition and method for producing resin cured body Download PDF

Info

Publication number
JP2021085843A
JP2021085843A JP2019217033A JP2019217033A JP2021085843A JP 2021085843 A JP2021085843 A JP 2021085843A JP 2019217033 A JP2019217033 A JP 2019217033A JP 2019217033 A JP2019217033 A JP 2019217033A JP 2021085843 A JP2021085843 A JP 2021085843A
Authority
JP
Japan
Prior art keywords
resin composition
inspection
molded product
elastic modulus
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019217033A
Other languages
Japanese (ja)
Other versions
JP7341040B2 (en
Inventor
河野 宏之
Hiroyuki Kono
宏之 河野
英哲 大川
Hidenori Okawa
英哲 大川
朋弥 松尾
Tomoya Matsuo
朋弥 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Original Assignee
Chugoku Marine Paints Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76088847&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021085843(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chugoku Marine Paints Ltd filed Critical Chugoku Marine Paints Ltd
Priority to JP2019217033A priority Critical patent/JP7341040B2/en
Publication of JP2021085843A publication Critical patent/JP2021085843A/en
Application granted granted Critical
Publication of JP7341040B2 publication Critical patent/JP7341040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Railway Tracks (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide an inspection method instead of a conventional inspection method which can easily and accurately inspect whether or not a multi-component type resin composition is a predetermined composition, and a method for easily manufacturing a resin cured body having predetermined physical properties.SOLUTION: A method for inspecting a multi-component type resin composition includes mixing each component of a multi-component to prepare a resin composition, extracting a part of the prepared resin composition, curing it to form a molding for inspection, measuring compression elastic modulus using the molding, comparing the measured compression elastic modulus to predetermined compression elastic modulus, and thereby inspecting a multi-component type resin composition. The molding for inspection has an aspect ratio (length in compression direction of molding/length in vertical direction to compression direction of molding) of 0.5 or more.SELECTED DRAWING: None

Description

本発明は、樹脂組成物の検査方法および樹脂硬化体を製造する方法に関する。 The present invention relates to a method for inspecting a resin composition and a method for producing a cured resin product.

樹脂硬化体は、列車から受ける荷重や振動を緩衝するための充填層およびその補修や、エンジンなどの振動体に接して使用される緩衝材として用いられている。該樹脂硬化体を形成する樹脂組成物としては、1成分型の組成物と、2成分以上の多成分型の組成物が知られており、取り扱い性やポットライフ等の点で、1成分型の組成物が採用される場合もあるが、得られる硬化体の物性等を考慮した場合、多成分型の組成物が多く採用されている。また、硬化体を形成したい場所によっては、硬化速度や硬化条件に制限がある場合もあり、このような場合には、多成分型の組成物が多く採用されている。 The cured resin body is used as a packing layer for cushioning the load and vibration received from the train and its repair, and as a cushioning material used in contact with a vibrating body such as an engine. As the resin composition for forming the cured resin, a one-component type composition and a two-component or more-component multi-component type composition are known, and the one-component type is excellent in terms of handleability, pot life, and the like. In some cases, the above-mentioned composition is adopted, but in consideration of the physical properties of the obtained cured product, a multi-component type composition is often adopted. Further, depending on the place where the cured product is desired to be formed, the curing rate and the curing conditions may be limited. In such a case, a multi-component composition is often used.

前記多成分型の組成物は、通常、硬化体を形成したい場所(以下「現場」ともいう。)において、第1成分(例:主剤)や第2成分(例:硬化剤成分)等の各成分を混合することで組成物を調製して使用される。この混合の際には、各成分の混合比率が所定の値から外れたり、各成分の混合が均一にならない場合には、所定の物性を示す硬化体が得られないため、各成分の混合比率が所定の値になるように混合する必要があり、また、各成分が均一に混ざるように混合する必要がある。 The multi-component composition usually has a first component (example: main agent), a second component (example: curing agent component), and the like at a place where a cured product is desired to be formed (hereinafter, also referred to as “field”). The composition is prepared and used by mixing the components. At the time of this mixing, if the mixing ratio of each component deviates from a predetermined value or the mixing of each component is not uniform, a cured product showing a predetermined physical property cannot be obtained, so that the mixing ratio of each component is not obtained. Must be mixed so as to have a predetermined value, and each component needs to be mixed so as to be uniformly mixed.

従って、多成分型の組成物の各成分を混合する際には、混合比率や均一混合などに十分に注意して混合しているが、熟練の作業員でも、混合環境や各成分の種類等により、所定の組成物(所定の物性を示す硬化体を得ることができる組成物)を調製できない場合がある。また、近年、各成分を混合する際に、自動計量混合装置なる装置を使用する場合もあるが、この装置を用いた場合であっても、低温時などに所定の組成物を調製できない場合がある。 Therefore, when mixing each component of the multi-component composition, the mixing ratio and uniform mixing are carefully considered, but even a skilled worker can mix the mixture environment and the type of each component. Therefore, it may not be possible to prepare a predetermined composition (a composition capable of obtaining a cured product exhibiting a predetermined physical property). Further, in recent years, when mixing each component, an apparatus called an automatic weighing and mixing apparatus may be used, but even when this apparatus is used, a predetermined composition may not be prepared at a low temperature or the like. is there.

前記のように、所定の組成物を調製できない場合があり、このような組成物を用いて得られる硬化体は所定の物性を示さないため、硬化体を設ける目的が達成できない。従って、多成分型の組成物を用いる場合には、該組成物の一部をサンプリングし(抜き取り)、検査用成形体を形成し、該成形体が所定の物性を示すか否かを測定することで、調製した組成物が所定の組成物となっているか否かを評価していた。 As described above, there are cases where a predetermined composition cannot be prepared, and the cured product obtained by using such a composition does not exhibit the predetermined physical properties, so that the purpose of providing the cured product cannot be achieved. Therefore, when a multi-component composition is used, a part of the composition is sampled (sampled) to form an inspection molded body, and whether or not the molded body exhibits predetermined physical properties is measured. Therefore, it was evaluated whether or not the prepared composition was a predetermined composition.

前記サンプリング〜検査用成形体の形成までの工程は現場で行われ、得られた検査用成形体を各試験場に運んで物性を測定している。
ここで測定する物性は、形成される硬化体に要求される物性であるが、例えば樹脂組成物の場合、代表的な物性として、ばね定数が採用されてきた。
The steps from sampling to formation of the inspection molded product are performed on-site, and the obtained inspection molded product is transported to each test site to measure the physical properties.
The physical characteristics measured here are the physical characteristics required for the cured product to be formed. For example, in the case of a resin composition, a spring constant has been adopted as a typical physical characteristic.

例えば、スラブ式軌道の路盤側構造物と軌道スラブとの間の樹脂硬化体を形成する樹脂組成物として多成分型の樹脂組成物が使用され、この樹脂組成物が所定の樹脂組成物であるか否かについては、以下の方法(以下「従来法」ともいう。)で評価していた。
この従来法は、規格制定されており(例えば、非特許文献1参照)、この方法により樹脂組成物の検査を行うことが求められている。
For example, a multi-component resin composition is used as a resin composition for forming a cured resin body between a roadbed side structure of a slab type track and a track slab, and this resin composition is a predetermined resin composition. Whether or not it was evaluated was evaluated by the following method (hereinafter, also referred to as "conventional method").
A standard has been established for this conventional method (see, for example, Non-Patent Document 1), and it is required to inspect the resin composition by this method.

まず、現場において、調製した樹脂組成物の一部を抜き取り、所定の型枠に流し込んだ後硬化させることで検査用成形体を形成する。
ここで用いる型枠は、図1に示すような、得られる検査用成形体の大きさが100mm×100mm×25mm(厚み)となる型枠であり、内表面が離型処理された型枠である。
First, at the site, a part of the prepared resin composition is extracted, poured into a predetermined mold, and then cured to form an inspection molded product.
The mold used here is a mold having a size of the obtained inspection molded product of 100 mm × 100 mm × 25 mm (thickness) as shown in FIG. 1, and the inner surface of the mold is released. is there.

次に、得られた検査用成形体を試験場に運び、そこで、該成形体の厚み方向に、荷重0〜4.4kNで予圧を2回かけてから30秒後、荷重速度1mm/minで4.4kNまで載荷する際の、荷重0.98kNと3.92kNとにおける成形体のたわみを測定し、下記式からばね定数を算出し、算出されたばね定数が、樹脂組成物の公称ばね定数の±20%以内であるか否かを評価することで、所定の組成物を調製できているか否かを検査している。
ばね定数(MN/m)=(F2(kN)−F1(kN))/(X2(mm)−X1(mm))
[ここで、F2は荷重3.92kNであり、X2は、該荷重3.92kNの時の成形体のたわみ(mm)であり、F1は荷重0.98kNであり、X1は、該荷重0.98kNの時の成形体のたわみ(mm)である。]
Next, the obtained inspection molded body was carried to a test site, where 30 seconds after preloading twice with a load of 0 to 4.4 kN in the thickness direction of the molded body, 4 at a load speed of 1 mm / min. The deflection of the molded product under loads of 0.98 kN and 3.92 kN when loaded up to .4 kN was measured, the spring constant was calculated from the following formula, and the calculated spring constant was ± of the nominal spring constant of the resin composition. By evaluating whether or not it is within 20%, it is inspected whether or not a predetermined composition can be prepared.
Spring constant (MN / m) = (F2 (kN) -F1 (kN)) / (X2 (mm) -X1 (mm))
[Here, F2 is a load of 3.92 kN, X2 is the deflection (mm) of the molded body when the load is 3.92 kN, F1 is a load of 0.98 kN, and X1 is the load of 0. The deflection (mm) of the molded body at 98 kN. ]

従来法でばね定数を測定する際に、検査用成形体の正確なばね定数を測定するには、例えば、以下の点が重要となる。
(A)検査用成形体の寸法の正確性
(B)検査用成形体の最も大きな面(荷重のかかる面)の表面平滑性
(C)加圧板(検査用成形体に接し、該成形体に荷重をかける部材)の表面平滑性
(D)検査用成形体の最も大きな面(荷重のかかる面)の滑りにくさ
(E)たわみを測定する際の高い精度
When measuring the spring constant by the conventional method, for example, the following points are important in order to measure the accurate spring constant of the molded article for inspection.
(A) Dimensional accuracy of the molded product for inspection (B) Surface smoothness of the largest surface (surface under load) of the molded product for inspection (C) Pressurized plate (contacting the molded product for inspection and contacting the molded product) Surface smoothness of (loading member) (D) Difficulty of slipping on the largest surface (load-bearing surface) of the molded article for inspection (E) High accuracy when measuring deflection

従来法では、検査用成形体の寸法が正確であり、検査用成形体および加圧板のそれぞれが接する面の表面が平滑でないと、正確な計測ができず、また、検査用成形体の荷重のかかる面が滑りやすいと、測定値が低下し、正確な計測ができなかった。さらには、例えば、組成物の公称ばね定数が10MN/mである場合、該組成物の変位(X2−X1)は約0.3mmとなるが、この公称ばね定数の±20%を満たすか否かを評価するには、±0.06mmの変位を測定することが要求されるため、たわみを測定する際の精度はきわめて高い必要がある。
つまり、従来法で正確なばね定数を測定するには、検査用成形体の形成から荷重をかける際の方法、たわみを測定する際に至るまで、極めて高い精度が求められていた。
In the conventional method, if the dimensions of the inspection molded body are accurate and the surfaces of the surfaces in contact with the inspection molded body and the pressure plate are not smooth, accurate measurement cannot be performed, and the load of the inspection molded body cannot be measured. If such a surface is slippery, the measured value will decrease and accurate measurement will not be possible. Further, for example, when the nominal spring constant of the composition is 10 MN / m, the displacement (X2-X1) of the composition is about 0.3 mm, but whether or not ± 20% of the nominal spring constant is satisfied. Since it is required to measure the displacement of ± 0.06 mm in order to evaluate the spring constant, the accuracy in measuring the deflection needs to be extremely high.
That is, in order to measure the accurate spring constant by the conventional method, extremely high accuracy is required from the formation of the inspection molded body to the method of applying a load and the measurement of the deflection.

「スラブ軌道各部補修の手引き」、財団法人鉄道総合研究所、平成10年5月1日、第2版、p.21−35"Guide for Repairing Each Slab Track", Railway Technical Research Institute, May 1, 1998, 2nd Edition, p. 21-35

しかしながら、前述の要求される極めて高い精度を満足することは容易ではなかった。特に、検査用成形体を所定の形状にするには、型枠の清掃、型枠内面の離型処理、型枠の正確な組み立て、型枠への樹脂組成物の正確な注入、検査用成形体の正確な脱離などを行う必要があるが、現場においてこれらの工程を行うことは極めて困難であった。
また、前記従来法では、通常、同一の組成物から3つの検査用成形体を形成し、該3つの成形体それぞれのばね定数を測定してその平均値を測定することで、所定の組成物を調製できているか否かを評価しているが、これら3回の測定値が大きく異なる場合が多いことも問題であった。
However, it has not been easy to satisfy the above-mentioned extremely high accuracy required. In particular, in order to make the inspection molded body into a predetermined shape, cleaning of the mold, mold release treatment of the inner surface of the mold, accurate assembly of the mold, accurate injection of the resin composition into the mold, and molding for inspection. It is necessary to perform accurate desorption of the body, but it was extremely difficult to perform these steps in the field.
Further, in the conventional method, usually, three inspection molded bodies are formed from the same composition, the spring constants of each of the three molded bodies are measured, and the average value thereof is measured to obtain a predetermined composition. However, it was also a problem that the measured values of these three times were often significantly different.

本発明は、以上のことに鑑みてなされたものであり、多成分型の樹脂組成物が所定の組成物であるか否かを容易に、また、正確に検査することができる、前記従来法に代わる検査方法を提供し、さらに、所定の物性を有する樹脂硬化体を容易に製造することができる方法を提供することを目的とする。 The present invention has been made in view of the above, and the above-mentioned conventional method capable of easily and accurately inspecting whether or not a multi-component resin composition is a predetermined composition. It is an object of the present invention to provide an inspection method as an alternative to the above, and further to provide a method capable of easily producing a cured resin product having predetermined physical properties.

本発明者らは、前記課題を解決すべく鋭意研究した。その結果、特定の方法によれば、前記課題を解決できることを見出し、本発明を完成させた。本発明の態様例は、以下のとおりである。 The present inventors have diligently studied to solve the above-mentioned problems. As a result, they have found that the above problems can be solved by a specific method, and have completed the present invention. Examples of aspects of the present invention are as follows.

[1] 多成分型の樹脂組成物の検査方法であって、
多成分型の各成分を混合して樹脂組成物を調製し、調製した樹脂組成物の一部を抜き取り硬化させて検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、多成分型の樹脂組成物を検査する検査方法において、前記検査用成形体は、アスペクト比(該成形体の圧縮方向の長さ/該成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である、
樹脂組成物の検査方法。
[1] A method for inspecting a multi-component resin composition.
A resin composition is prepared by mixing each component of the multi-component type, a part of the prepared resin composition is extracted and cured to form an inspection molded product, and the compressive elastic modulus is measured using the molded product. In an inspection method for inspecting a multi-component resin composition by comparing with a predetermined compressive elastic modulus, the inspection molded article has an aspect ratio (length in the compression direction of the molded article / length of the molded article). The length in the direction perpendicular to the compression direction) is 0.5 or more.
A method for inspecting a resin composition.

[2] 前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、[1]に記載の樹脂組成物の検査方法。 [2] The method of measuring the compressive elastic modulus is a method of measuring the compressive elastic modulus of the inspection molded product using a compressor, or compression of the molded product when the inspection molded product is compressed. The method for inspecting a resin composition according to [1], which is a method including a step of measuring a change in length in a direction with a solid-state imaging device.

[3] 前記樹脂組成物が、圧縮強度0.1N/mm2における圧縮弾性率が2〜200N/mm2の範囲にある樹脂組成物である、[1]または[2]に記載の樹脂組成物の検査方法。 [3] The resin composition according to [1] or [2], wherein the resin composition is a resin composition having a compressive elastic modulus in the range of 2 to 200 N / mm 2 at a compressive strength of 0.1 N / mm 2. How to inspect things.

[4] 前記樹脂組成物が、軌道用樹脂組成物、振動体周囲用樹脂組成物、および、ケーブル防食用樹脂組成物から選択されるいずれか1種である、[1]〜[3]のいずれかに記載の樹脂組成物の検査方法。
[5] 前記樹脂組成物が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物である、または、枕木下部の樹脂硬化体形成用組成物である、[1]〜[4]のいずれかに記載の樹脂組成物の検査方法。
[4] The resin composition of [1] to [3], wherein the resin composition is any one selected from the orbital resin composition, the vibrating body peripheral resin composition, and the cable anticorrosion resin composition. The method for inspecting a resin composition according to any one.
[5] The resin composition is a composition for forming a cured resin body around the protrusions of the roadbed side structure of the slab type track or between the roadbed side structure and the track slab, or the resin curing of the lower part of the sleepers. The method for inspecting a resin composition according to any one of [1] to [4], which is a body-forming composition.

[6] 軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法であって、
多成分型の各成分を混合して樹脂組成物を調製する工程1と、
工程1で調製した樹脂組成物から樹脂硬化体を形成する工程2と、
工程1で調製した樹脂組成物の一部を抜き取り硬化させて、アスペクト比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、調製した樹脂組成物を検査する工程3と、
を含む、軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。
[6] A method for producing a cured resin material that is applied to any one of the orbital, vibrating body surroundings, and cable.
Step 1 to prepare a resin composition by mixing each component of the multi-component type,
Step 2 of forming a cured resin from the resin composition prepared in step 1 and
An inspection in which a part of the resin composition prepared in step 1 is extracted and cured to have an aspect ratio (length in the compression direction of the molded product / length in the direction perpendicular to the compression direction of the molded product) of 0.5 or more. Step 3 of inspecting the prepared resin composition by forming a molded article for use, measuring the compressive elastic modulus using the molded article, and comparing it with a predetermined compressive elastic modulus.
A method for producing a cured resin material, which is applied to any one selected from an orbit, a vibrating body circumference, and a cable.

[7] 前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、[6]に記載の軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。 [7] The method of measuring the compressive elastic modulus is a method of measuring the compressive elastic modulus of the inspection molded product using a compressor, or compression of the molded product when the inspection molded product is compressed. Manufacture of a cured resin product applied to any one of the orbital, vibrating body perimeter and cable selected according to [6], which is a method including a step of measuring a change in length in a direction with a solid-state imaging device. how to.

[8] 前記工程2が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間、または、枕木下部に、工程1で調製した樹脂組成物をてん充し、硬化させて樹脂硬化体を形成する工程である、[6]または[7]に記載の軌道に適用される樹脂硬化体を製造する方法。 [8] In the step 2, the resin composition prepared in the step 1 is filled around the protrusion of the roadbed side structure of the slab type track, between the roadbed side structure and the track slab, or in the lower part of the sleepers. A method for producing a cured resin product applied to the orbit according to [6] or [7], which is a step of curing to form a cured resin product.

本発明によれば、多成分型の樹脂組成物が所定の組成物であるか否かを容易に、また、正確に検査することができる、前記従来法に代わる検査方法を提供することができ、さらに、所定の物性、特に所定の圧縮弾性率を有する樹脂硬化体を容易に製造することができる。
また、本発明によれば、前述のように3回の測定をした場合であっても、これら3回の測定値はほぼ変わらず測定の安定度が高いため、1回の測定で精度が高い結果を得ることができ、サンプル採取量の低減、検査に要する時間の低減などにも貢献する。
According to the present invention, it is possible to provide an inspection method alternative to the conventional method, which can easily and accurately inspect whether or not the multi-component resin composition is a predetermined composition. Furthermore, a cured resin body having a predetermined physical property, particularly a predetermined compressive elastic modulus, can be easily produced.
Further, according to the present invention, even when the measurement is performed three times as described above, the measured values of these three times are almost the same and the measurement stability is high, so that the accuracy is high in one measurement. Results can be obtained, which contributes to the reduction of sampling volume and the time required for inspection.

図1は、従来法で用いる型枠の一例を示す写真である。FIG. 1 is a photograph showing an example of a mold used in the conventional method. 図2は、スラブ式軌道の構造の一例を一部断面にして示した斜視図である。FIG. 2 is a perspective view showing an example of the structure of the slab type orbit with a partial cross section. 図3は、本発明で用いる型枠の一例を示す写真である。FIG. 3 is a photograph showing an example of the mold used in the present invention.

≪樹脂組成物の検査方法≫
本発明に係る樹脂組成物の検査方法(以下「本検査方法」ともいう。)は、多成分型の樹脂組成物の検査方法であって、
多成分型の各成分を混合して樹脂組成物を調製し、調製した樹脂組成物の一部を抜き取り硬化させて検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、多成分型の樹脂組成物を検査する検査方法において、前記検査用成形体として、アスペクト比(該成形体の圧縮方向の長さ/該成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である成形体を用いることを特徴とする。
≪Inspection method for resin composition≫
The method for inspecting a resin composition according to the present invention (hereinafter, also referred to as “the present inspection method”) is a method for inspecting a multi-component resin composition.
A resin composition is prepared by mixing each component of the multi-component type, a part of the prepared resin composition is extracted and cured to form an inspection molded product, and the compressive elastic modulus is measured using the molded product. In an inspection method for inspecting a multi-component resin composition by comparing with a predetermined compressive elastic modulus, the aspect ratio (length of the molded product in the compression direction / length of the molded product) is used as the inspection molded product. It is characterized by using a molded product having a length) of 0.5 or more in the direction perpendicular to the compression direction.

1成分型の樹脂組成物については通常検査をする必要がないため、本検査方法は、調製した2成分以上の多成分型の樹脂組成物が所定の組成物(所定の物性を示す組成物)となっているか否かを検査する。
前記樹脂組成物としては、2成分以上からなる多成分型の樹脂組成物であれば特に制限されず、第1成分(例:主剤成分)と第2成分(例:硬化剤成分)とからなる2成分型の組成物であってもよく、さらに、硬化促進剤成分、顔料成分などの第3〜n成分を含む3成分以上の型の組成物であってもよい。混合する成分が多くなればなるほど所定の組成物を調製することが困難になる傾向にあるため、調製容易性を考慮して、通常、2成分型または3成分型の組成物が使用される。
Since it is not usually necessary to inspect a one-component resin composition, in this inspection method, the prepared multi-component resin composition having two or more components is a predetermined composition (a composition exhibiting a predetermined physical property). Inspect whether it is.
The resin composition is not particularly limited as long as it is a multi-component resin composition composed of two or more components, and is composed of a first component (eg, a main component) and a second component (eg, a curing agent component). It may be a two-component type composition, and may be a composition of three or more components including third to n components such as a curing accelerator component and a pigment component. Since it tends to be difficult to prepare a predetermined composition as the number of components to be mixed increases, a two-component or three-component composition is usually used in consideration of ease of preparation.

多成分型の樹脂組成物は、通常、該組成物を構成する各成分を、それぞれ別個の容器にて保存・貯蔵、運搬等し、該組成物の使用直前に各成分を混合して用いる。
このような多成分型の成分を混合して所定の組成物を調製するためには、各成分の保存・貯蔵を適切に行うこと、各成分の混合を所定の比率で行うこと、各成分を均一に混合すること、混合時に空気等の気体を取り込まないように混合すること等が重要であり、本検査方法は、これらが適切に行われているか否かの検査方法であるともいえる。
In a multi-component resin composition, each component constituting the composition is usually stored, stored, transported, etc. in a separate container, and each component is mixed and used immediately before use of the composition.
In order to prepare a predetermined composition by mixing such multi-component type components, it is necessary to properly store and store each component, to mix each component at a predetermined ratio, and to prepare each component. It is important to mix uniformly, to mix so as not to take in gas such as air at the time of mixing, and it can be said that this inspection method is an inspection method as to whether or not these are properly performed.

本検査方法は、調製した組成物が所定の組成物(所定の物性を示す組成物)となっているか否かを検査する際の物性として、圧縮弾性率を採用する。このため、本検査方法は、最終的に形成したい樹脂硬化体(樹脂層)が所定の圧縮弾性率を有することが求められる用途に好適に使用され、例えば、振動、衝撃、騒音、応力等の緩和、吸収、伝達防止などのために使用される樹脂硬化体を形成する樹脂組成物の検査に好適に使用される。
このような樹脂組成物としては、例えば、軌道用樹脂硬化体、エンジンなどの振動体周囲に使用される、好ましくは振動体に接して使用される樹脂硬化体、橋梁等の構造物に使用されるケーブル防食用樹脂硬化体などを形成するための樹脂組成物が挙げられる。これらの中でも、本発明の効果がより発揮される等の点から、軌道用樹脂組成物が好ましく、軌道てん充用樹脂組成物がより好ましく、スラブ式軌道の路盤側構造物の突起部周囲の樹脂硬化体形成用組成物、路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物、枕木下部の樹脂硬化体形成用組成物であることがさらに好ましく、スラブ式軌道の路盤側構造物の突起部周囲の樹脂硬化体形成用組成物、枕木下部の樹脂硬化体形成用組成物であることが特に好ましい。
In this inspection method, a compressive elastic modulus is adopted as a physical property when inspecting whether or not the prepared composition is a predetermined composition (composition exhibiting a predetermined physical property). Therefore, this inspection method is suitably used for applications in which the cured resin body (resin layer) to be finally formed is required to have a predetermined compressive elastic modulus, for example, vibration, impact, noise, stress, etc. It is suitably used for inspecting a resin composition that forms a cured resin body used for relaxation, absorption, transmission prevention, and the like.
As such a resin composition, for example, it is used for a resin cured body for an orbit, a resin cured body used around a vibrating body such as an engine, preferably used in contact with a vibrating body, and a structure such as a bridge. Examples thereof include a resin composition for forming a cured resin for corrosion protection of a cable. Among these, the orbital resin composition is preferable, the orbital filling resin composition is more preferable, and the resin around the protrusion of the roadbed side structure of the slab type orbital is preferable from the viewpoint that the effect of the present invention is more exhibited. It is more preferable that the composition for forming a cured body, the composition for forming a resin cured body between the roadbed side structure and the track slab, and the composition for forming a resin cured body under the sleepers, and the roadbed side structure of the slab type track. It is particularly preferable that the composition for forming a cured resin around the protrusions of the object and the composition for forming a cured resin under the sleepers.

なお、スラブ式軌道は、コンクリート等で構築した高架構造物や地下構造物、橋梁などを路盤(これらの構造物を「路盤側構造物」ともいう。)とし、この路盤側構造物上に、充填層を介してコンクリート製等の軌道スラブを固定し、この軌道スラブに軌道レールを締結してなる軌道のことをいう。スラブ式軌道の構造を図2に具体的に示す。図2では、路盤側構造物20の上面に、充填層22を介して軌道スラブ24が設けられ、さらに軌道スラブ24の上面には、一対の軌道レール30,30が配設され、軌道スラブ24は両端部に切欠き部26,26を備え、路盤側構造物20上に所定間隔おきに設けられた突起部28と、軌道スラブ24の切欠き部26とが位置合わせされている。 In the slab type track, elevated structures, underground structures, bridges, etc. constructed of concrete or the like are used as roadbeds (these structures are also referred to as "roadbed side structures"), and the slab type tracks are placed on the roadbed side structures. A track formed by fixing a track slab made of concrete or the like via a packing layer and fastening a track rail to the track slab. The structure of the slab type orbit is specifically shown in FIG. In FIG. 2, a track slab 24 is provided on the upper surface of the roadbed side structure 20 via a filling layer 22, and a pair of track rails 30 and 30 are arranged on the upper surface of the track slab 24. Is provided with cutouts 26 and 26 at both ends, and protrusions 28 provided on the roadbed side structure 20 at predetermined intervals and cutouts 26 of the track slab 24 are aligned with each other.

前記スラブ式軌道の路盤側構造物の突起部周囲の樹脂硬化体とは、図2における軌道スラブ24と突起部28との間に形成される樹脂硬化体のことをいい、前記路盤側構造物と軌道スラブとの間の樹脂硬化体とは、前記充填層22(の少なくとも一部)のことをいう。
前記充填層22は、スラブ式軌道を作製した初期の段階では、セメントとアスファルト乳剤と細骨材とを混合することで得られるセメントアスファルトモルタル(CAモルタル)からなることが多いが、このCAモルタルからなる層は劣化するため、この劣化した層の補修のため、通常、劣化した層を削り取った後、樹脂製補修材料により樹脂硬化体が形成される。つまり、前記路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物の好適例としては、この樹脂製補修材料が挙げられる。
The resin cured body around the protrusion of the roadbed side structure of the slab type track means the resin cured body formed between the track slab 24 and the protrusion 28 in FIG. 2, and refers to the roadbed side structure. The cured resin body between the orbital slab refers to (at least a part of) the packed bed 22.
The packed bed 22 is often made of cement asphalt mortar (CA mortar) obtained by mixing cement, asphalt emulsion, and fine aggregate in the initial stage of producing a slab type orbit, and this CA mortar Since the layer made of the material deteriorates, in order to repair the deteriorated layer, usually, after scraping off the deteriorated layer, a cured resin body is formed by the resin repair material. That is, as a preferable example of the composition for forming a cured resin body between the roadbed side structure and the track slab, this resin repair material can be mentioned.

本検査方法は、樹脂組成物の硬化体の圧縮強度0.1N/mm2における圧縮弾性率が、下限は、好ましくは2N/mm2以上、より好ましくは5N/mm2以上、特に好ましくは14N/mm2以上であり、上限は、好ましくは200N/mm2以下、より好ましくは120N/mm2以下、さらに好ましくは50N/mm2以下、より好ましくは40N/mm2以下、特に好ましくは34N/mm2以下の範囲となるような樹脂組成物の検査方法であることが好ましい。このような樹脂組成物に対し本検査方法を使用することで、調製した組成物が所定の組成物であるか否かを容易に、また、正確に検査することができる。 In this inspection method, the compressive modulus of the cured product of the resin composition at a compressive strength of 0.1 N / mm 2 has a lower limit of preferably 2 N / mm 2 or more, more preferably 5 N / mm 2 or more, and particularly preferably 14 N. It is / mm 2 or more, and the upper limit is preferably 200 N / mm 2 or less, more preferably 120 N / mm 2 or less, still more preferably 50 N / mm 2 or less, more preferably 40 N / mm 2 or less, and particularly preferably 34 N / mm. It is preferable that the inspection method is a resin composition having a range of mm 2 or less. By using this inspection method for such a resin composition, it is possible to easily and accurately inspect whether or not the prepared composition is a predetermined composition.

前記多成分型の樹脂組成物としては、2成分型以上であり、いずれかの成分に樹脂を含む組成物であれば特に制限されないが、樹脂としては、例えば、ビニルエステル系樹脂、ポリエステルアクリレート系樹脂などのラジカル重合型樹脂、ポリウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂が挙げられる。
これらの中でも、本発明の効果がより発揮される等の点から、ポリオールを含む第1成分と、イソシアネート化合物を含む第2成分とを含むポリウレタン系樹脂組成物が好ましい。
The multi-component type resin composition is a two-component type or more, and is not particularly limited as long as it is a composition containing a resin in any of the components. However, the resin is, for example, a vinyl ester resin or a polyester acrylate resin. Examples thereof include radical polymerization type resins such as resins, polyurethane resins, epoxy resins, and silicone resins.
Among these, a polyurethane-based resin composition containing a first component containing a polyol and a second component containing an isocyanate compound is preferable from the viewpoint of more exerting the effects of the present invention.

前記樹脂組成物は、必要に応じ、本発明の目的を損なわない範囲で、樹脂以外に、従来公知の添加剤を含んでもよい。該添加剤としては、例えば、硬化剤、硬化促進剤、顔料(例:シリカ、炭酸カルシウム)、骨材(例:硅砂)、消泡剤、分散剤、触媒、水分吸着剤、表面調整剤、レオロジーコントロール剤、レベリング剤、可塑剤、溶剤が挙げられる。
該添加剤はそれぞれ、1種のみを用いてもよいし、2種以上を用いてもよい。
If necessary, the resin composition may contain a conventionally known additive in addition to the resin, as long as the object of the present invention is not impaired. Examples of the additive include a curing agent, a curing accelerator, a pigment (eg, silica, calcium carbonate), an aggregate (eg, silica sand), a defoaming agent, a dispersant, a catalyst, a water adsorbent, a surface conditioner, and the like. Examples include rheology control agents, leveling agents, plasticizers and solvents.
As each of the additives, only one kind may be used, or two or more kinds may be used.

前記多成分型の樹脂組成物としては、具体的には、特開昭59−56473号公報、特開昭59−56474号公報等に記載のポリウレタン系樹脂組成物、特開平11−256504号公報に記載の、ラジカル硬化性であるポリエステルアクリレートを基材とし、高分子弾性材の小片と無機骨材とを混合すると共に、硬化剤を添加してなる樹脂組成物、特開2002−129503号公報に記載の(メタ)アクリル系樹脂等の二液室温硬化型ラジカル重合性樹脂組成物等が挙げられる。 Specific examples of the multi-component resin composition include polyurethane-based resin compositions described in JP-A-59-56473, JP-A-59-56474, and the like, JP-A-11-256504. A resin composition obtained by mixing a small piece of a polymer elastic material and an inorganic aggregate and adding a curing agent to a polyester acrylate having a radical curable property as a base material, Japanese Patent Application Laid-Open No. 2002-129503. Examples thereof include a two-component room temperature curable radical polymerizable resin composition such as the (meth) acrylic resin described in 1.

このような多成分型の樹脂組成物の市販品としては、例えば、「CUS」シリーズ(中国塗料(株)製)、「アレンロックSQ−20」、「アレンロックSQ−F」((株)アレン製)、「SP−104」(神東塗料(株)製)、「ポリモルタルKCA−20」(興和化成(株)製)が挙げられる。 Commercially available products of such a multi-component resin composition include, for example, "CUS" series (manufactured by China Paint Co., Ltd.), "Allenlock SQ-20", and "Allenlock SQ-F" (Co., Ltd.). Allen), "SP-104" (manufactured by Shinto Paint Co., Ltd.), "Polymortar KCA-20" (manufactured by Kowa Kasei Co., Ltd.).

本検査方法によれば、検査用成形体に従来法のような極めて高い寸法精度が要求されないため、硬化収縮の大きいラジカル重合型樹脂を用いた場合であっても、調製した樹脂組成物を高い精度で検査することができる。 According to this inspection method, the molded article for inspection is not required to have extremely high dimensional accuracy as in the conventional method. Therefore, even when a radical polymerization type resin having a large curing shrinkage is used, the prepared resin composition is high. It can be inspected with accuracy.

なお、前記樹脂組成物として、てん充用樹脂組成物を用いる場合、施工箇所への充填性が求められることがある。この場合のてん充用樹脂組成物としては、JIS Z8803:2011に準拠してウベローデ粘度計を用いて25℃で測定される粘度が、好ましくは500〜3,000mPa・s、より好ましくは1,000〜2,000mPa・sの範囲にある組成物が望ましい。 When a filling resin composition is used as the resin composition, fillability to the construction site may be required. In this case, the filling resin composition has a viscosity measured at 25 ° C. using a Ubbelohde viscometer in accordance with JIS Z8803: 2011, preferably 500 to 3,000 mPa · s, more preferably 1,000. Compositions in the range of ~ 2,000 mPa · s are desirable.

・樹脂組成物の調製
樹脂組成物を調製する際には、該組成物を構成する各成分を所定の混合比率となるよう混合する。この際には、自動計量混合装置を用いてもよい。
前記混合の際には、調製する組成物の混合方法が決まっている場合や制限されている場合には、これらに応じて混合することになる。決まりや制限がない場合には、公知の混合機、攪拌機等を用いて混合すればよく、前記各種成分は、所定の量となるように、一度にまたは分割して混合すればよく、任意の順序で加えればよい。
-Preparation of resin composition When preparing a resin composition, each component constituting the composition is mixed so as to have a predetermined mixing ratio. In this case, an automatic weighing and mixing device may be used.
At the time of the above mixing, if the mixing method of the composition to be prepared is determined or restricted, the mixture is mixed according to these. If there are no rules or restrictions, the mixture may be mixed using a known mixer, stirrer, or the like, and the various components may be mixed at once or in divided amounts so as to have a predetermined amount. You can add them in order.

なお、混合の際に空気等の気体が取り込まれると、得られる検査用成形体内に気泡が残り、圧縮弾性率に影響を及ぼす傾向にあるため、必要により、脱泡工程を行ったり、混合を低回転で撹拌を行うことにより、組成物中への気体の取り込み量を減らすことが好ましい。 If a gas such as air is taken in during mixing, air bubbles will remain in the obtained inspection molding body and tend to affect the compressive elastic modulus. Therefore, if necessary, a defoaming step or mixing may be performed. It is preferable to reduce the amount of gas taken into the composition by stirring at a low rotation speed.

・検査用成形体の形成
前記検査用成形体は、調製した樹脂組成物の一部を抜き取り(サンプリングし)、硬化させることで形成される。
本検査方法では、ここで形成する検査用成形体として、アスペクト比が0.5以上である成形体を用いることを特徴とする。該アスペクト比は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.5以下である。
-Formation of an inspection molded product The inspection molded product is formed by extracting (sampling) a part of the prepared resin composition and curing it.
The present inspection method is characterized in that, as the inspection molded product formed here, a molded product having an aspect ratio of 0.5 or more is used. The aspect ratio is preferably 1.0 or more, more preferably 1.5 or more, preferably 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.5 or less.

前記アスペクト比とは、該成形体を用いて圧縮弾性率を測定する際の、成形体の圧縮方向に対し垂直方向の長さに対する成形体の圧縮方向の長さの比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)のことをいう。
なお、従来法で用いられている成形体は、100mm×100mm×25mm(厚み)の形状の成形体であり、25mmの厚み方向が成形体の圧縮方向の長さに相当し、大きさ100mm×100mmの面の面方向が成形体の圧縮方向に対し垂直方向の長さに相当するため、アスペクト比は0.17である。
The aspect ratio is the ratio of the length in the compression direction of the molded body to the length in the direction perpendicular to the compression direction of the molded body (compression direction of the molded body) when the compressive elastic modulus is measured using the molded body. / Length in the direction perpendicular to the compression direction of the molded product).
The molded body used in the conventional method is a molded body having a shape of 100 mm × 100 mm × 25 mm (thickness), and the thickness direction of 25 mm corresponds to the length in the compression direction of the molded body, and the size is 100 mm ×. The aspect ratio is 0.17 because the surface direction of the 100 mm surface corresponds to the length in the direction perpendicular to the compression direction of the molded product.

本検査方法では、アスペクト比が前記範囲にある成形体を用いて圧縮弾性率を測定するため、調製した樹脂組成物が所定の組成物であるか否かを容易に、また、正確に検査することができ、また、高い精度で圧縮弾性率を測定することができる。
従来法では、アスペクト比が0.17の成形体を用いるため、圧縮方向のたわみ(変位)のわずかな差が結果に大きく影響を及ぼす。このため、該成形体の寸法(特に厚み方向の寸法)は正確であり、たわみを測定する際の精度はきわめて高い必要があり、さらに、かけた荷重(圧力)が正確に成形体に伝わる必要があるため、成形体の荷重のかかる面(最も大きな面)の表面平滑性、滑りにくさや、加圧板(検査用成形体に接し、該成形体に荷重のかける部材)の表面平滑性が重要であった。
一方で、アスペクト比が前記範囲にある成形体を用いることで、圧縮方向のひずみ(変位)のわずかな差が結果に大きく影響を及ぼさないため、成形体の荷重のかかる面の表面平滑性、滑りにくさや、加圧板(検査用成形体に接し、該成形体に荷重のかける部材)の表面平滑性は結果に大きな影響を及ぼさず、高い精度で容易に圧縮弾性率を測定することができる。
さらに、測定装置には通常遊びがあり、圧縮弾性率の測定装置にも遊びがあるが、アスペクト比が前記範囲にある成形体を用いることで、この装置の遊びによる測定精度のバラツキも低減することができる。
In this inspection method, since the compressive elastic modulus is measured using a molded product having an aspect ratio in the above range, it is easily and accurately inspected whether or not the prepared resin composition is a predetermined composition. It is also possible to measure the compressive elastic modulus with high accuracy.
In the conventional method, since a molded product having an aspect ratio of 0.17 is used, a slight difference in deflection (displacement) in the compression direction greatly affects the result. Therefore, the dimensions of the molded product (particularly the dimensions in the thickness direction) need to be accurate, the accuracy when measuring the deflection needs to be extremely high, and the applied load (pressure) needs to be accurately transmitted to the molded product. Therefore, the surface smoothness of the load-bearing surface (largest surface) of the molded body, the slip resistance, and the surface smoothness of the pressure plate (the member that comes into contact with the inspection molded body and applies a load to the molded body) are important. Met.
On the other hand, by using a molded product having an aspect ratio within the above range, a slight difference in strain (displacement) in the compression direction does not significantly affect the result. The slip resistance and the surface smoothness of the pressure plate (a member that comes into contact with the inspection molded body and applies a load to the molded body) do not significantly affect the result, and the compressive elastic modulus can be easily measured with high accuracy. ..
Further, although the measuring device usually has play and the compressive elastic modulus measuring device also has play, by using a molded product having an aspect ratio in the above range, the variation in measurement accuracy due to the play of this device is also reduced. be able to.

前記検査用成形体の形状は、アスペクト比が前記範囲にあれば特に制限されないが、好適例としては、円柱状や角柱状の成形体が挙げられ、円柱状の成形体がより好ましい。
円柱状の成形体の場合、前記成形体の圧縮方向の長さは、円柱状の成形体の長さであり、前記成形体の圧縮方向に対し垂直方向の長さは、底面(上面)の円の直径である。角柱状の成形体の場合、前記成形体の圧縮方向の長さは、角柱状の成形体の長さであり、前記成形体の圧縮方向に対し垂直方向の長さは、底面(上面)の多角形の外接円の直径である。
The shape of the inspection molded body is not particularly limited as long as the aspect ratio is within the above range, but preferred examples thereof include a columnar or prismatic molded body, and a columnar molded body is more preferable.
In the case of a cylindrical molded body, the length of the molded body in the compression direction is the length of the columnar molded body, and the length in the direction perpendicular to the compression direction of the molded body is the bottom surface (upper surface). The diameter of the circle. In the case of a prismatic molded product, the length of the molded product in the compression direction is the length of the prismatic molded product, and the length in the direction perpendicular to the compression direction of the molded product is the length of the bottom surface (upper surface). The diameter of the polygonal circumscribed circle.

前記検査用成形体を形成する方法としては、好ましくは、サンプリングした樹脂組成物を、得られる硬化体が前記アスペクト比を有するような形状の型枠に流し込んで硬化させる方法が挙げられる。円柱状の成形体を形成する際に用いることができる型枠の例としては、図3に示すような型枠が挙げられる。
なお、前記型枠を用いる際には、型枠の内面に、従来公知の離型処理をしておくことが好ましい。
As a method for forming the inspection molded product, preferably, a method of pouring the sampled resin composition into a mold having a shape such that the obtained cured product has the aspect ratio and curing the product can be mentioned. An example of a mold that can be used when forming a columnar molded body is a mold as shown in FIG.
When using the mold, it is preferable to perform a conventionally known mold release treatment on the inner surface of the mold.

サンプリングした樹脂組成物から検査用成形体を形成する際には、現場での樹脂組成物の配置および硬化と同様の条件で行うことが好ましい。
例えば、樹脂組成物として、軌道てん充用樹脂組成物を用い、現場において、常温で放置することで硬化させる場合には、軌道にてん充する方法と同様の方法で、所定形状の型枠等に流し込み(てん充し)、型枠等に流し込んだ組成物を常温で放置して硬化させることが好ましい。
なお、サンプリングした樹脂組成物を硬化させる際には、硬化時間を短くする等の点から、加熱してもよい。
When forming an inspection molded product from the sampled resin composition, it is preferable to carry out under the same conditions as the arrangement and curing of the resin composition in the field.
For example, when an orbital filling resin composition is used as the resin composition and cured by leaving it at room temperature in the field, it is formed into a mold having a predetermined shape or the like by the same method as the orbital filling method. It is preferable that the composition poured into a pouring (filling), a mold or the like is left at room temperature to be cured.
When the sampled resin composition is cured, it may be heated from the viewpoint of shortening the curing time.

・圧縮弾性率の測定
前記圧縮弾性率を測定する方法としては、前記アスペクト比の検査用成形体を用いれば特に制限されず、従来公知の方法を採用することができる。
この圧縮弾性率を測定する際の検査用成形体の変位(ひずみ)を測定する際には、圧縮試験機内部に備わっている内部変位計を用いて測定してもよいが、このような内部変位計で測定した場合、装置の遊びを計測してしまい、実際の成形体の変位より大きくなり、真の値との誤差が生じる場合がある。従って、検査用成形体の変位(ひずみ)を測定する際には、圧縮試験機内部に備わっている内部変位計ではなく、外部変位計(非接触型変位計を含む)を用いることが好ましい。
-Measurement of compressive elastic modulus The method for measuring the compressive elastic modulus is not particularly limited as long as the inspection molded body having the aspect ratio is used, and a conventionally known method can be adopted.
When measuring the displacement (strain) of the inspection molded body when measuring the compressive elastic modulus, it may be measured using an internal displacement meter provided inside the compression tester, but such an internal When measured with a displacement meter, the play of the device is measured, which may be larger than the actual displacement of the molded body, resulting in an error from the true value. Therefore, when measuring the displacement (strain) of the molded article for inspection, it is preferable to use an external displacement meter (including a non-contact type displacement meter) instead of the internal displacement meter provided inside the compression tester.

前記外部変位計を用いて検査用成形体の変位を測定し、圧縮弾性率を測定する方法としては、例えば、レーザー変位計を用いて検査用成形体の変位を測定する方法も挙げられるが、この方法では、成形体の変位の真の値を正確に測定できない場合があるため、コンプレッソメーターを用いてひずみを測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法等が好ましい。
これらの方法で検査用成形体の変位を測定すると、該成形体の変位の真の値を正確に測定できるため好ましい。
As a method of measuring the displacement of the inspection molded body using the external displacement meter and measuring the compressive elastic modulus, for example, a method of measuring the displacement of the inspection molded body using a laser displacement meter can be mentioned. Since this method may not be able to accurately measure the true value of the displacement of the molded body, a method of measuring the strain using a compressor, or a method of compressing the molded body for inspection of the molded body. A method including a step of measuring the change in length in the compression direction with a solid-state imaging device or the like is preferable.
Measuring the displacement of the molded article for inspection by these methods is preferable because the true value of the displacement of the molded article can be accurately measured.

コンプレッソメーターを用いて検査用成形体の圧縮弾性率を測定する方法としては、例えば、検査用成形体をコンプレッソメーターの取付枠の中に挿入し、ねじを締め付けて検査用成形体にコンプレッソメーターをセットした後、検査用成形体に荷重をかけ、その時に生じたひずみ量を高感度変位計で測定する方法が挙げられる。この際には、必要により、コンプレッソメーターを、増幅器を介して試験機の制御用コントローラー等に接続し、ひずみおよび応力から圧縮弾性率を測定してもよい。
前記コンプレッソメーターとしては、例えば、CM型コンプレッソメーター((株)東京測器研究所製)を用いることができる。
As a method of measuring the compressive elastic modulus of the inspection molded product using a compressor, for example, the inspection molded product is inserted into the mounting frame of the compressor and the screw is tightened to compress the inspection molded product. After setting the pressometer, a load is applied to the molded article for inspection, and the amount of strain generated at that time is measured with a high-sensitivity displacement meter. At this time, if necessary, the compressor may be connected to the control controller of the testing machine or the like via an amplifier, and the compressive elastic modulus may be measured from the strain and stress.
As the compressor, for example, a CM type compressor (manufactured by Tokyo Sokki Kenkyusho Co., Ltd.) can be used.

なお、検査用成形体の形状変化(例:くぼみが生じること)を抑制し、圧縮弾性率を正確にまたは繰り返し測定できる等の点から、検査用成形体にコンプレッソメーターをセットする際には、ねじの先端に、ねじから該成形体にかかる圧力を低減できるような部材(クッション材)を配置してセットすることや、ねじの先端の形状が点ではなく面である部材を用いて検査用成形体にコンプレッソメーターをセットすることが好ましい。 When setting the compressor on the inspection molded product, it should be noted that the shape change of the inspection molded product (eg, the occurrence of dents) can be suppressed, and the compressive elastic modulus can be measured accurately or repeatedly. , A member (cushion material) that can reduce the pressure applied to the molded body from the screw is placed and set at the tip of the screw, and inspection is performed using a member whose tip shape is a surface instead of a point. It is preferable to set a compressor on the molded product.

検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法としては、例えば、検査用成形体の所定の箇所に、該成形体の圧縮方向と略垂直な方向に標線を2本形成した後、検査用成形体に荷重をかけ、その時に生じたひずみによる標線間の長さの減少をCCDカメラなどの固体撮像装置で測定する方法が挙げられる。 As a method including a step of measuring a change in the length of the molded product in the compression direction when the inspection molded product is compressed with a solid-state imaging device, for example, the molded product is placed at a predetermined position on the inspection molded product. After forming two marked lines in a direction substantially perpendicular to the compression direction, a load is applied to the inspection molded body, and the decrease in length between the marked lines due to the strain generated at that time is measured with a solid-state imaging device such as a CCD camera. There is a way to do it.

圧縮弾性率を測定する際には、数個、好ましくは3個の検査用成形体を用いた平均値を採用することが好ましいが、本発明によれば、このように3個の検査用成形体を用いて測定をした場合であっても、これらの測定値はほぼ変わらず測定の安定度が高いため、サンプル採取量の低減、検査に要する時間の低減などの点から、1個の検査用成形体を用いて圧縮弾性率を測定してもよい。 When measuring the compressive elastic modulus, it is preferable to adopt an average value using several, preferably three inspection moldings, but according to the present invention, three inspection moldings are thus formed. Even when the measurement is performed using the body, these measured values are almost the same and the measurement stability is high. Therefore, one test is performed from the viewpoint of reducing the amount of sample taken and the time required for the test. The compressive elastic modulus may be measured using a molded product.

・調製した樹脂組成物が所定の組成物になっているか否かの評価
調製した樹脂組成物が所定の組成物になっているか否かを評価する方法としては、前記検査用成形体を用いて測定した圧縮弾性率を、公称値(所定の組成物から得られた硬化体の圧縮弾性率として決まった値)と比較し、検査用成形体を用いて測定した圧縮弾性率が、公称値の±20%以内となっているか否かを評価する方法が挙げられる。
検査用成形体を用いて測定した圧縮弾性率が、公称値の±20%以内になっている場合、調製した樹脂組成物が所定の組成物になっているといえる。
-Evaluation of whether or not the prepared resin composition has a predetermined composition As a method of evaluating whether or not the prepared resin composition has a predetermined composition, the inspection molded product is used. The measured compressive modulus is compared with the nominal value (a value determined as the compressive modulus of the cured product obtained from a predetermined composition), and the compressive modulus measured using the molded article for inspection is the nominal value. There is a method of evaluating whether or not it is within ± 20%.
When the compressive elastic modulus measured using the inspection molded product is within ± 20% of the nominal value, it can be said that the prepared resin composition is a predetermined composition.

≪樹脂硬化体を製造する方法≫
本発明に係る樹脂硬化体を製造する方法(以下「本製造方法」ともいう。)は、軌道、振動体周囲およびケーブルから選択されるいずれか1種、好ましくは軌道に適用される樹脂硬化体を製造する方法であり、
多成分型の各成分を混合して樹脂組成物を調製する工程1と、
工程1で調製した樹脂組成物から樹脂硬化体を形成する工程2と、
工程1で調製した樹脂組成物の一部を抜き取り硬化させて、アスペクト比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、調製した樹脂組成物を検査する工程3と、
を含む。
≪Method of manufacturing cured resin body≫
The method for producing a cured resin body according to the present invention (hereinafter, also referred to as "the present manufacturing method") is any one selected from a track, a vibrating body circumference, and a cable, preferably a cured resin body applied to a track. Is a method of manufacturing
Step 1 to prepare a resin composition by mixing each component of the multi-component type,
Step 2 of forming a cured resin from the resin composition prepared in step 1 and
An inspection in which a part of the resin composition prepared in step 1 is extracted and cured to have an aspect ratio (length in the compression direction of the molded product / length in the direction perpendicular to the compression direction of the molded product) of 0.5 or more. Step 3 of inspecting the prepared resin composition by forming a molded article for use, measuring the compressive elastic modulus using the molded article, and comparing it with a predetermined compressive elastic modulus.
including.

前記工程1は、本検査方法における樹脂組成物の調製と同様の工程であり、前記工程3は、本検査方法における検査用成形体の形成〜調製した樹脂組成物が所定の組成物になっているか否かの評価までの工程と同様の工程である。 The step 1 is the same step as the preparation of the resin composition in the present inspection method, and the step 3 is the formation of the inspection molded product in the present inspection method-the prepared resin composition becomes a predetermined composition. It is the same process as the process up to the evaluation of whether or not it is present.

・工程2
前記工程2は、工程1で調製した樹脂組成物を用いて、樹脂硬化体を形成したい場所に樹脂硬化体を形成する工程であり、具体的には、工程1で調製した樹脂組成物を、樹脂硬化体を形成したい場所に配置し、次いで、該組成物を硬化させる工程である。
・ Process 2
The step 2 is a step of forming the cured resin at a place where the cured resin is desired to be formed by using the resin composition prepared in step 1. Specifically, the resin composition prepared in step 1 is used. This is a step of arranging the cured resin body at a place where it is desired to be formed, and then curing the composition.

樹脂硬化体を形成したい場所に樹脂組成物を配置する方法としては、特に制限されないが、例えば、必要により樹脂組成物が所定の場所から流れ出ないよう、型枠または不織布等の袋体を設置した後、樹脂組成物を流し込む(てん充)する方法が挙げられる。
例えば、軌道に適用される樹脂硬化体を製造する際には、具体的には、必要により樹脂組成物が所定の場所から流れ出ないよう型枠や不織布等の袋体等を設置した後、図2における軌道スラブ24と突起部28との間に樹脂組成物をてん充する方法、路盤側構造物20と軌道スラブ24との間に樹脂組成物をてん充する方法、枕木下部に樹脂組成物をてん充する方法等が挙げられる。軌道スラブ24と突起部28との間に樹脂組成物をてん充する際や、枕木下部に樹脂組成物をてん充する際には、必要により、軌道スラブ24や枕木を所定位置に持ち上げておいてから、樹脂組成物をてん充してもよい。
The method of arranging the resin composition at a place where the cured resin body is desired is not particularly limited, but for example, a bag such as a mold or a non-woven fabric is installed so that the resin composition does not flow out from a predetermined place if necessary. After that, a method of pouring (filling) the resin composition can be mentioned.
For example, when manufacturing a cured resin body to be applied to an orbit, specifically, after installing a mold, a bag body such as a non-woven fabric, or the like so that the resin composition does not flow out from a predetermined place, the figure is shown. A method of filling the resin composition between the track slab 24 and the protrusion 28 in 2, a method of filling the resin composition between the roadbed side structure 20 and the track slab 24, and a resin composition under the sleepers. There is a method of filling up the plastic. When filling the resin composition between the track slab 24 and the protrusion 28, or when filling the lower part of the sleepers with the resin composition, lift the track slab 24 or the sleepers to a predetermined position, if necessary. After that, the resin composition may be filled.

また、前記工程2は、軌道におけるCAモルタルからなる充填層などの層の劣化部分(劣化層)を削り取った後、削り取った箇所に工程1で調製した樹脂組成物を充填し、樹脂硬化体を形成する工程、つまり、劣化層の補修工程であってもよい。この場合、本製造方法は、劣化層の補修方法であるともいえる。
劣化層部分に樹脂組成物を充填する方法としては特に制限されず、従来公知の方法を用いることができ、例えば、予め劣化層を削り取った後、削り取った箇所を取り囲むように型枠等を配設し、型枠等の内側に樹脂組成物を流し込んで充填する額縁補修方法が挙げられる。
また、前記型枠を用いる方法の他に、補修箇所に予め不織布等の袋体を設置し、該袋体内に樹脂組成物を充填し硬化させる方法、補修箇所に発泡成形体等の埋め込み型枠を設置し、その内側補修部に樹脂組成物を充填し硬化させる方法、補修箇所の側面開口部に外側から粘着シートを貼着し、その内側補修部に樹脂組成物を充填し硬化させる方法等も用いることができる。
Further, in the step 2, the deteriorated portion (deteriorated layer) of the layer such as the packed layer made of CA mortar in the orbit is scraped off, and then the scraped portion is filled with the resin composition prepared in the step 1 to prepare the cured resin. It may be a step of forming, that is, a step of repairing a deteriorated layer. In this case, it can be said that this manufacturing method is a method for repairing the deteriorated layer.
The method of filling the deteriorated layer portion with the resin composition is not particularly limited, and a conventionally known method can be used. For example, after scraping the deteriorated layer in advance, a mold or the like is arranged so as to surround the scraped portion. An example is a frame repair method in which a resin composition is poured and filled inside a mold or the like.
Further, in addition to the method using the mold, a method in which a bag such as a non-woven fabric is installed in advance in the repaired portion, the resin composition is filled in the bag and cured, and an embedded mold such as a foam molded body is placed in the repaired portion. A method of filling the inner repair part with the resin composition and curing it, a method of attaching an adhesive sheet from the outside to the side opening of the repaired part, and filling the inner repair part with the resin composition and curing it, etc. Can also be used.

本製造方法は、通常、工程1で調製した樹脂組成物の一部を抜き取り、検査用成形体を形成するために型枠等に流し込む工程を行った後、前記工程2を行い、次いで、検査用成形体を形成するために型枠等に流し込んだ樹脂組成物が硬化した後、得られた検査用成形体を圧縮弾性率を測定する試験場に移動させ、そこで圧縮弾性率を測定した後、工程1で調製した樹脂組成物が所定の組成物になっているか否かの検査結果を現場に報告するという流れで行われる。
そして、検査の結果、所定の組成物になっているという評価になった場合には、工程2で形成した樹脂硬化体はそのまま使用し、所定の組成物になっていないという評価になった場合には、工程2で形成した樹脂硬化体を除去し、再度前記工程1〜3を含む本製造方法を行うことになる。
In this manufacturing method, a part of the resin composition prepared in step 1 is usually extracted and poured into a mold or the like in order to form an inspection molded product, and then the step 2 is performed, and then the inspection is performed. After the resin composition poured into the mold or the like for forming the molded product is cured, the obtained inspection molded product is moved to a test site where the compressive elastic modulus is measured, and the compressive elastic modulus is measured there. The procedure is to report the inspection result of whether or not the resin composition prepared in step 1 is a predetermined composition to the site.
Then, when it is evaluated that the composition is a predetermined composition as a result of the inspection, the cured resin product formed in the step 2 is used as it is, and it is evaluated that the composition is not a predetermined composition. In this method, the cured resin formed in step 2 is removed, and the present production method including steps 1 to 3 is performed again.

次に、本発明について実施例に基づきさらに詳細に説明するが、本発明は、これらの実施例に限定されない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

[実施例1]
CUS−UB10(中国塗料(株)製、2成分型ポリウレタン樹脂系組成物)の主剤と硬化剤とを、該製品の規定値となっている混合比率(主剤:硬化剤=100:9)で容器に入れ、十分に攪拌混合することで樹脂組成物を調製した。調製した樹脂組成物を、予め内面を、信越化学工業(株)製のKF−96−SPで離型処理したφ50mm×長さ100mmの図3に示すような型枠に流し込み、室温で3日程度放置した後、該型枠から取り出すことで、検査用成形体(アスペクト比=2.0)を作製した。
[Example 1]
The main agent and curing agent of CUS-UB10 (manufactured by China Paint Co., Ltd., a two-component polyurethane resin-based composition) are mixed at a mixing ratio (main agent: curing agent = 100: 9) which is a specified value of the product. The resin composition was prepared by putting it in a container and stirring and mixing it sufficiently. The prepared resin composition was poured into a mold having a diameter of 50 mm and a length of 100 mm as shown in FIG. 3 whose inner surface was previously demolded with KF-96-SP manufactured by Shin-Etsu Chemical Co., Ltd. for 3 days at room temperature. After leaving it for a while, it was taken out from the mold to prepare an inspection molded product (aspect ratio = 2.0).

作製した検査用成形体を、コンプレッソメーター(CM型コンプレッソメーター、(株)東京測器研究所製、標線間距離:50mm)の取付枠の中に挿入し、ねじを締め付けて検査用成形体にコンプレッソメーターをセットした。コンプレッソメーターをセットした検査用成形体を、圧縮試験機(サーボパルサーEHF−EG10−2−L、(株)島津製作所製)に、検査用成形体の長さ方向が圧縮方向となるように配置し、変位速度:1mm/minの条件で検査用成形体に荷重をかけ、その時に生じたひずみ量を測定し、0.1N/mm2における圧縮弾性率を算出した。この際には、コンプレッソメーターを、増幅器(DC Strain Amp DAS−406B、ミネベアミツミ(株)製)を介して圧縮試験機の制御用コントローラーに接続し、ひずみおよび応力から圧縮弾性率を算出した。 Insert the manufactured inspection molded product into the mounting frame of a compressor (CM type compressor, manufactured by Tokyo Sokki Kenkyusho Co., Ltd., distance between marked lines: 50 mm) and tighten the screws for inspection. A compressor was set on the molded product. A compression tester (servo pulsar EHF-EG10-2-L, manufactured by Shimazu Seisakusho Co., Ltd.) was used to place the inspection molded product with the compressor set so that the length direction of the inspection molded product was the compression direction. A load was applied to the molded article for inspection under the condition of displacement speed: 1 mm / min, the amount of strain generated at that time was measured, and the compressive elastic modulus at 0.1 N / mm 2 was calculated. At this time, the compressor was connected to the control controller of the compression tester via an amplifier (DC Strine Amp DAS-406B, manufactured by MinebeaMitsumi Co., Ltd.), and the compressive elastic modulus was calculated from the strain and stress. ..

同様にして、検査用成形体をもう2個作製し、それぞれの成形体(成形体1〜3)について、圧縮弾性率を算出し、その平均値および標準偏差を算出した。結果を表1に示す。 In the same manner, two more molded articles for inspection were produced, the compressive elastic modulus was calculated for each molded article (molded articles 1 to 3), and the average value and standard deviation thereof were calculated. The results are shown in Table 1.

CUS−UB10の0.1N/mm2における圧縮弾性率は15.0N/mm2であり、調製した樹脂組成物から得られた成形体の0.1N/mm2における圧縮弾性率の平均値は15.2N/mm2であったため、調製した樹脂組成物は、所定の組成物となっていると評価できる。 CUS-UB10 compression modulus at 0.1 N / mm 2 of a 15.0 N / mm 2, the average value of the compression modulus at 0.1 N / mm 2 of the resulting molded article from the resin composition prepared in Since it was 15.2 N / mm 2 , it can be evaluated that the prepared resin composition is a predetermined composition.

[比較例1]
前述の規格制定されている従来法に基づいて、調製した樹脂組成物の検査を行った。具体的には、以下のようにして行った。
[Comparative Example 1]
The prepared resin composition was inspected based on the conventional method established in the above-mentioned standard. Specifically, it was carried out as follows.

まず、図1に示す型枠の各部品(図1の白い部品)をパーツクリーナーを用いて清掃し、組み立てた後に内面となる部分を、信越化学工業(株)製のKF−96−SPで離型処理した。離型処理した各部品を、図1に示す形状(100mm×100mm×25mm(厚み))になるように、ボルトを用い、固定金具で締め上げ固定した。この際に、ボルトが緩んでいないよう、隙間ができないよう、固定金具を締め込み過ぎないようにして、型枠を形成した。 First, each part of the mold shown in FIG. 1 (white part in FIG. 1) is cleaned with a parts cleaner, and the inner surface after assembly is cleaned with KF-96-SP manufactured by Shin-Etsu Chemical Co., Ltd. The mold was released. Each part that had been released from the mold was tightened and fixed with a fixing bracket using bolts so as to have the shape shown in FIG. 1 (100 mm × 100 mm × 25 mm (thickness)). At this time, the formwork was formed by not overtightening the fixing metal fittings so that the bolts would not be loosened and there would be no gap.

次に、CUS−UB10(中国塗料(株)製、2成分型ポリウレタン樹脂系組成物)の主剤と硬化剤とを、該製品の規定値となっている混合比率(主剤:硬化剤=100:9)で容器に入れ、十分に攪拌混合することで樹脂組成物を調製した。調製した樹脂組成物を、形成した型枠に流し込んだ。この際に、樹脂組成物の流し込み量が型枠の大きさとぴったりになるよう、樹脂組成物を流し込んだ。
樹脂組成物を型枠に流し込んでから、室温で3日間程度放置し、樹脂組成物の表面を指触により硬化を確認した後、型枠を外すことで、検査用成形体(アスペクト比=0.17)を3個作製した。型枠を外す際には、得られる成形体に、割れや欠けが生じないように注意深く型枠を外した。作製した検査用成形体の大きさをノギスを用いて測定し、100mmであるはずの長さ部分が100±1mmであり、かつ、厚みが25±0.5mmであった場合、該検査用成形体を用いてばね定数測定の試験を行った。
Next, the main agent and the curing agent of CUS-UB10 (a two-component polyurethane resin-based composition manufactured by China Paint Co., Ltd.) are mixed with each other in a mixing ratio (main agent: curing agent = 100:) which is a specified value of the product. The resin composition was prepared by putting it in a container in 9) and thoroughly stirring and mixing. The prepared resin composition was poured into the formed mold. At this time, the resin composition was poured so that the amount of the resin composition poured was exactly the same as the size of the mold.
After pouring the resin composition into the mold, leave it at room temperature for about 3 days, confirm the curing of the surface of the resin composition by touch, and then remove the mold to inspect the molded product (aspect ratio = 0). .17) was prepared in three pieces. When removing the mold, the mold was carefully removed so that the obtained molded product would not be cracked or chipped. The size of the produced inspection molded body is measured using a caliper, and when the length portion that should be 100 mm is 100 ± 1 mm and the thickness is 25 ± 0.5 mm, the inspection molding is performed. A test for measuring the spring constant was performed using the body.

作製した検査用成形体それぞれを、圧縮試験機(サーボパルサーEHF−EG10−2−L、(株)島津製作所製)に、検査用成形体の長さ方向が圧縮方向となるように配置し、荷重4.4kNで予圧を2回かけてから30秒後、変位速度:1mm/minの条件で検査用成形体に荷重4.4kNまで載荷する際の、荷重0.98kNと3.92kNとにおける成形体のたわみを、レーザー変位計(HL−G103−AC、パナソニック(株)製、標線間距離:100mm)を用いて測定し、下記式からばね定数を算出した。3個の検査用成形体のばね定数それぞれと、その平均値および標準偏差を算出した。結果を表1に示す。
ばね定数(MN/m)=(F2(kN)−F1(kN))/(X2(mm)−X1(mm))
[F2は荷重3.92kNであり、X2は、該荷重3.92kNの時の成形体のたわみ(mm)であり、F1は荷重0.98kNであり、X1は、該荷重0.98kNの時の成形体のたわみ(mm)である。]
Each of the produced inspection molded bodies was placed in a compression tester (servo pulsar EHF-EG10-2-L, manufactured by Shimadzu Corporation) so that the length direction of the inspection molded body was the compression direction. Thirty seconds after applying the preload twice with a load of 4.4 kN, the load is 0.98 kN and 3.92 kN when the inspection compact is loaded with a load of 4.4 kN under the condition of displacement speed: 1 mm / min. The deflection of the molded body was measured using a laser displacement meter (HL-G103-AC, manufactured by Panasonic Corporation, distance between marked lines: 100 mm), and the spring constant was calculated from the following formula. The spring constants of each of the three inspection moldings, their average values and standard deviations were calculated. The results are shown in Table 1.
Spring constant (MN / m) = (F2 (kN) -F1 (kN)) / (X2 (mm) -X1 (mm))
[F2 is a load of 3.92 kN, X2 is the deflection (mm) of the molded body when the load is 3.92 kN, F1 is a load of 0.98 kN, and X1 is a load of 0.98 kN. It is the deflection (mm) of the molded body of. ]

CUS−UB10の公称ばね定数は9.8MN/mであり、調製した樹脂組成物から得られた成形体のばね定数の平均値は11.1MN/mであったため、調製した樹脂組成物は、所定の組成物となっていると評価できる。 The nominal spring constant of CUS-UB10 was 9.8 MN / m, and the average value of the spring constant of the molded product obtained from the prepared resin composition was 11.1 MN / m. It can be evaluated that the composition is a predetermined one.

比較例1において、検査用成形体を作製する際に、型枠の離形処理や清掃が不十分なことにより、最も大きな面の表面がわずかに破壊され平滑ではなかった成形体を用いた場合、ばね定数の平均値は6.6MN/mであった。また、比較例1において、検査用成形体を作製する際に、離形剤の拭き取りが不十分なことにより、最も大きな面が滑りやすかった成形体を用いた場合、ばね定数の平均値は5.0MN/mであった。
つまり、前述の規格制定されている従来法では、少なくとも、検査用成形体の表面平滑性、表面滑りにくさを満たさない限り、正確なばね定数の測定はできなかった。
一方、実施例1において、成形体の厚み方向の長さが95mmであっても、成形体の上面が平滑ではなくても、成形体の上面が滑りやすくても、平均圧縮弾性率はそれぞれ、14.9N/mm2、15.1N/mm2、15.0N/mm2であり、検査用成形体に要求される形状や性質は、変位計で測定する範囲(標線間距離)の変位に影響がないことにより、圧縮弾性率の値に大きな影響を及ぼさなかった。
In Comparative Example 1, when a molded product for inspection was produced, the surface of the largest surface was slightly destroyed due to insufficient mold release treatment and cleaning, and the molded product was not smooth. The average value of the spring constant was 6.6 MN / m. Further, in Comparative Example 1, when a molded product whose largest surface was slippery due to insufficient wiping of the release agent was used when producing the molded product for inspection, the average value of the spring constant was 5. It was 0.0 MN / m.
That is, in the conventional method for which the above-mentioned standard has been established, accurate measurement of the spring constant cannot be performed unless at least the surface smoothness and surface slip resistance of the inspection molded product are satisfied.
On the other hand, in Example 1, even if the length of the molded product in the thickness direction is 95 mm, the upper surface of the molded product is not smooth, or the upper surface of the molded product is slippery, the average compressive elastic modulus is different. It is 14.9 N / mm 2 , 15.1 N / mm 2 , 15.0 N / mm 2 , and the shape and properties required for the molded article for inspection are the displacement within the range (distance between marked lines) measured by the displacement meter. The value of the compressive elastic modulus was not significantly affected because there was no effect on.

Figure 2021085843
Figure 2021085843

10:スラブ式軌道
20:路盤側構造物
22:充填層
24:軌道スラブ
26:切欠き部
28:突起部
30:軌道レール
10: Slab type track 20: Roadbed side structure 22: Filling layer 24: Track slab 26: Notch 28: Protrusion 30: Track rail

Claims (8)

多成分型の樹脂組成物の検査方法であって、
多成分型の各成分を混合して樹脂組成物を調製し、調製した樹脂組成物の一部を抜き取り硬化させて検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、多成分型の樹脂組成物を検査する検査方法において、前記検査用成形体は、アスペクト比(該成形体の圧縮方向の長さ/該成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である、
樹脂組成物の検査方法。
This is an inspection method for multi-component resin compositions.
Each component of the multi-component type is mixed to prepare a resin composition, a part of the prepared resin composition is extracted and cured to form an inspection molded product, and the compressive elastic modulus is measured using the molded product. In an inspection method for inspecting a multi-component resin composition by comparing with a predetermined compressive elastic modulus, the inspection molded article has an aspect ratio (length in the compression direction of the molded article / length of the molded article). The length in the direction perpendicular to the compression direction) is 0.5 or more.
A method for inspecting a resin composition.
前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、請求項1に記載の樹脂組成物の検査方法。 The method of measuring the compressive elastic modulus is a method of measuring the compressive elastic modulus of the inspection molded product using a compressor, or a length in the compression direction of the molded product when the inspection molded product is compressed. The method for inspecting a resin composition according to claim 1, which is a method including a step of measuring the change in dimensions with a solid-state imaging device. 前記樹脂組成物が、圧縮強度0.1N/mm2における圧縮弾性率が2〜200N/mm2の範囲にある樹脂組成物である、請求項1または2に記載の樹脂組成物の検査方法。 The method for inspecting a resin composition according to claim 1 or 2, wherein the resin composition is a resin composition having a compressive elastic modulus in the range of 2 to 200 N / mm 2 at a compressive strength of 0.1 N / mm 2. 前記樹脂組成物が、軌道用樹脂組成物、振動体周囲用樹脂組成物、および、ケーブル防食用樹脂組成物から選択されるいずれか1種である、請求項1〜3のいずれか1項に記載の樹脂組成物の検査方法。 The one according to any one of claims 1 to 3, wherein the resin composition is any one selected from the orbital resin composition, the vibrating body peripheral resin composition, and the cable anticorrosion resin composition. The method for inspecting the resin composition described. 前記樹脂組成物が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物である、または、枕木下部の樹脂硬化体形成用組成物である、請求項1〜4のいずれか1項に記載の樹脂組成物の検査方法。 The resin composition is a composition for forming a cured resin body around a protrusion of a roadbed side structure of a slab type track or between a roadbed side structure and a track slab, or for forming a cured resin body under a sleeper. The method for inspecting a resin composition according to any one of claims 1 to 4, which is a composition. 軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法であって、
多成分型の各成分を混合して樹脂組成物を調製する工程1と、
工程1で調製した樹脂組成物から樹脂硬化体を形成する工程2と、
工程1で調製した樹脂組成物の一部を抜き取り硬化させて、アスペクト比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、調製した樹脂組成物を検査する工程3と、
を含む、軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。
A method for producing a cured resin material that is applied to any one of the track, the vibrating body circumference, and the cable.
Step 1 to prepare a resin composition by mixing each component of the multi-component type,
Step 2 of forming a cured resin from the resin composition prepared in step 1 and
An inspection in which a part of the resin composition prepared in step 1 is extracted and cured to have an aspect ratio (length in the compression direction of the molded product / length in the direction perpendicular to the compression direction of the molded product) of 0.5 or more. Step 3 of inspecting the prepared resin composition by forming a molded article for use, measuring the compressive elastic modulus using the molded article, and comparing it with a predetermined compressive elastic modulus.
A method for producing a cured resin material, which is applied to any one selected from an orbit, a vibrating body circumference, and a cable.
前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、請求項6に記載の軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。 The method of measuring the compressive elastic modulus is a method of measuring the compressive elastic modulus of the inspection molded product using a compressor, or the length of the molded product in the compression direction when the inspection molded product is compressed. A method for producing a cured resin product, which is a method including a step of measuring a change in elastic modulus with a solid-state imaging device, which is applied to any one of the orbital, vibrating body circumference, and cable selected from claim 6. 前記工程2が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間、または、枕木下部に、工程1で調製した樹脂組成物をてん充し、硬化させて樹脂硬化体を形成する工程である、請求項6または7に記載の軌道に適用される樹脂硬化体を製造する方法。 In step 2, the resin composition prepared in step 1 is filled and cured around the protrusions of the roadbed side structure of the slab type track, between the roadbed side structure and the track slab, or under the sleepers. A method for producing a cured resin product applied to the orbit according to claim 6 or 7, which is a step of forming the cured resin product.
JP2019217033A 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body Active JP7341040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019217033A JP7341040B2 (en) 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217033A JP7341040B2 (en) 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body

Publications (2)

Publication Number Publication Date
JP2021085843A true JP2021085843A (en) 2021-06-03
JP7341040B2 JP7341040B2 (en) 2023-09-08

Family

ID=76088847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019217033A Active JP7341040B2 (en) 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body

Country Status (1)

Country Link
JP (1) JP7341040B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054469A (en) * 2003-08-05 2005-03-03 Sekisui Chem Co Ltd Sleeper, formed article and laying method of the sleeper
JP2010185242A (en) * 2009-02-13 2010-08-26 Sekisui Chem Co Ltd Ballasted track and construction method of ballasted track
JP2011094452A (en) * 2009-11-02 2011-05-12 Allen:Kk Repairing method in slab type track
WO2017006900A1 (en) * 2015-07-09 2017-01-12 国立研究開発法人産業技術総合研究所 Method for measuring damage progression, and system for measuring damage progression
JP2018103425A (en) * 2016-12-26 2018-07-05 大日本印刷株式会社 Article and method for manufacturing the same, and touch feeling evaluation method of article
CN210982030U (en) * 2019-09-23 2020-07-10 巨力索具股份有限公司 Cold casting material extrusion elasticity modulus test tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020176900A1 (en) 2019-02-28 2020-09-03 University Of Florida Research Foundation, Incorporated Galectin-1/ galectin-3 chimeras and multivalent proteins

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054469A (en) * 2003-08-05 2005-03-03 Sekisui Chem Co Ltd Sleeper, formed article and laying method of the sleeper
JP2010185242A (en) * 2009-02-13 2010-08-26 Sekisui Chem Co Ltd Ballasted track and construction method of ballasted track
JP2011094452A (en) * 2009-11-02 2011-05-12 Allen:Kk Repairing method in slab type track
WO2017006900A1 (en) * 2015-07-09 2017-01-12 国立研究開発法人産業技術総合研究所 Method for measuring damage progression, and system for measuring damage progression
US20180172567A1 (en) * 2015-07-09 2018-06-21 National Institute Of Advanced Industrial Science And Technology A method for measuring damage progression and a system for measuring damage progression
JP2018103425A (en) * 2016-12-26 2018-07-05 大日本印刷株式会社 Article and method for manufacturing the same, and touch feeling evaluation method of article
CN210982030U (en) * 2019-09-23 2020-07-10 巨力索具股份有限公司 Cold casting material extrusion elasticity modulus test tool

Also Published As

Publication number Publication date
JP7341040B2 (en) 2023-09-08

Similar Documents

Publication Publication Date Title
Lu et al. Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements
Haidar et al. Optimization of the formulation of micro-polymer concretes
US8479468B1 (en) Structure rehabilitation and enhancement
KR101956233B1 (en) Moltar composition of polyurea resin composition and method of working the same
JP7341040B2 (en) Method for inspecting resin composition and method for producing cured resin body
Wang et al. Mechanical properties evaluation of crumb rubber asphalt mixture for elastic trackbed
Dolcek Mechanical behavior of polyurethane stabilized fouled ballast (PSFB)
Hermann et al. Effect of specimen geometry on selected physical and mechanical properties of epoxy-based building materials
Campos Effect of fiber content on tensile strength of non-proprietary ultra-high performance concrete
Busterud Slipforming-Materials effect on friction
TWI616422B (en) Concrete repairing material used for filling chink and cementing material thereof
JP4491680B2 (en) Method for evaluating fresh properties and estimating water content of hardened concrete
RU2398797C2 (en) Composite joint filler
O’Flaherty et al. Influence of constituents on the properties of self-compacting repair materials
JP4907409B2 (en) Formwork for shotcrete specimens, formwork unit and method for producing shotcrete specimens
Grairia et al. Interfacial indentation test for the study of reinforcement bar/concrete matrix adhesion in high performance self compacting concretes
RU2807757C1 (en) Epoxy composition
KR20090073530A (en) Cement mortar composition for precast slab track and precast slab track system using the same
JP2013028014A (en) Method for manufacturing lightweight cellular concrete
CN113387651B (en) Polyurethane concrete with long setting time and good construction workability for paving steel bridge deck in seasonal frozen region and preparation method thereof
Rao et al. Strength of bonded anchors in concrete in direct tension
AMADI et al. BOOK OF
KR20240102536A (en) Epoxy grout
Fonseca et al. Unbonded Capping of Masonry Prisms
Syapawi et al. The Study of Compressive Strength of Wall Panels with a Mixture of Used Tire Rubber Waste and GRC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230829

R150 Certificate of patent or registration of utility model

Ref document number: 7341040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150