JP2013028014A - Method for manufacturing lightweight cellular concrete - Google Patents

Method for manufacturing lightweight cellular concrete Download PDF

Info

Publication number
JP2013028014A
JP2013028014A JP2011164327A JP2011164327A JP2013028014A JP 2013028014 A JP2013028014 A JP 2013028014A JP 2011164327 A JP2011164327 A JP 2011164327A JP 2011164327 A JP2011164327 A JP 2011164327A JP 2013028014 A JP2013028014 A JP 2013028014A
Authority
JP
Japan
Prior art keywords
reinforcing
cellular concrete
lightweight cellular
rust
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011164327A
Other languages
Japanese (ja)
Inventor
Takaomi Hioki
隆臣 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2011164327A priority Critical patent/JP2013028014A/en
Publication of JP2013028014A publication Critical patent/JP2013028014A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing lightweight cellular concrete (ALC) capable of improving adhesion of rust-proof coatings to reinforcing bars by defining reduction of an area of the reinforcing bars embedded in the lightweight cellular concrete.SOLUTION: In the method for manufacturing the lightweight cellular concrete for embedding the reinforcing bars 10 for reinforcement which have undergone wire drawing, by using the reinforcing bars 10 for reinforcement in which reduction of the area in the wire drawing is defined as 5-15%, an ALC panel 1 is manufactured, so as to improve the adhesion of the rust-proof coatings to the reinforcing bars 10.

Description

本発明は、軽量気泡コンクリートの製造方法に関し、詳しくは、伸線処理された鉄筋を埋設する軽量気泡コンクリートの製造方法に関する。   The present invention relates to a method for producing lightweight cellular concrete, and more particularly, to a method for producing lightweight cellular concrete in which a drawn steel rebar is embedded.

軽量気泡コンクリート(以下、ALCと称する)は、内部に気泡と細孔を含む絶乾かさ比重が0.5程度と非常に軽量でありながら、強度も比較的高いという優れた性質を持つ。ALCは、所定の大きさのパネルに成形され、このパネル内部には補強用の鉄筋が埋設されている。パネルの厚さは、100mmが標準的であり、75〜125mmが主流である。また、パネルには、37〜50mmの住宅用うす型パネルや150mm以上の厚いパネルもある。   Lightweight cellular concrete (hereinafter referred to as ALC) has an excellent property that its strength is relatively high while it is extremely lightweight with an absolutely dry specific gravity of about 0.5 including bubbles and pores inside. The ALC is formed into a panel having a predetermined size, and reinforcing bars are embedded inside the panel. The standard thickness of the panel is 100 mm, and 75 to 125 mm is the mainstream. Moreover, the panel also includes a 37-50 mm thin panel for residential use and a thick panel of 150 mm or more.

一般にALCは、珪石や珪砂などの珪酸質原料と、セメント、生石灰などの石灰質原料とを主原料とし、これに石膏、炭酸カルシウム、繰り返し原料や界面活性剤などの添加物と、適量の水と発泡剤であるアルミニウム粉末を加えて製造される。   In general, ALC is mainly composed of siliceous raw materials such as silica and silica sand, and calcareous raw materials such as cement and quicklime, and this includes additives such as gypsum, calcium carbonate, repetitive raw materials and surfactants, and an appropriate amount of water. It is manufactured by adding aluminum powder, which is a foaming agent.

ALCの製造工程において、全原料を一つの鋳込ミキサーで攪拌混合する混錬により生成されたスラリーは、アルミニウム粉末の反応で水素ガスが気泡安定剤により、球状の気泡として安定化され体積膨張する。また、混錬により生成されたスラリーは、流動性があるが、セメント及び生石灰が原料中の水を取り込み、水和物を生成することによって、流動性が無い半硬化体へと硬化して生ケーキとなる。生ケーキは、180℃、10気圧のオートクレーブにおいて6時間高温高圧水蒸気養生される。この養生過程は、珪石などの珪酸質原料とセメントや生石灰などの石灰質原料から、珪酸カルシウム水和物のトバモライトが生成されることで、ALCに強度物性を付与する。   In the ALC manufacturing process, the slurry produced by kneading and mixing all raw materials with a single cast mixer is stabilized as spherical bubbles by the bubble stabilizer in the reaction of aluminum powder, and the volume expands. . In addition, the slurry produced by kneading has fluidity, but cement and quick lime take in water in the raw material and form a hydrate, which hardens to a semi-cured material having no fluidity. It becomes a cake. The raw cake is subjected to high-temperature high-pressure steam curing for 6 hours in an autoclave at 180 ° C. and 10 atm. In this curing process, calcium silicate hydrate tobermorite is generated from siliceous raw materials such as silica and calcareous raw materials such as cement and quicklime, thereby imparting strength properties to ALC.

ALCには、製造工程において、防錆皮膜と補強用鉄筋の引き抜き強度を得るように防錆処理した補強用鉄筋が埋設される。
補強用鉄筋は、バーインコイルや伸線が用いられ、これらを直線機で直線し切断する。切断された補強用鉄筋は、ALCパネルの曲げ強度得るために必要な本数を縦筋と横筋に別けられ、溶接機で互いに溶接され、補強用鉄筋マットとして作製される。
引き抜き強度とは、防錆皮膜と補強用鉄筋との付着力であり、付着力はALCパネルの曲げ強度や防錆性能にも影響を与える。
In the ALC, reinforcing reinforcing bars that have been rust-proofed so as to obtain the pull-out strength of the rust-preventing film and the reinforcing reinforcing bars are embedded in the manufacturing process.
The reinforcing reinforcing bars are burned-in coils or wire drawn, and these are straightened and cut by a straightening machine. The cut reinforcing reinforcing bars are divided into vertical bars and horizontal bars in order to obtain the bending strength of the ALC panel, and are welded to each other by a welding machine to produce reinforcing bar mats.
The pull-out strength is an adhesion force between the rust-proof coating and the reinforcing steel bars, and the adhesion force also affects the bending strength and rust-proof performance of the ALC panel.

防錆処理としては、特許文献1に以下の提案がされている。
スチレン結合量が65〜75重量%のSBR水性エマルションを固形分として5〜25重量%と、アスファルトの水性エマルションを固形分として5〜15重量%と、アルカリ土類の炭酸塩粉末を固形分として60〜70重量%とに、pH調整用の消石灰と粘度調整用の水を混合して得られるスラリーからなり、炭酸塩粉末が平均粒子径が8〜30μm、空気透過法による比表面積が2000〜50000cm/gの炭酸カルシウム粉末であって、前記水性エマルションの水と粘度調整用の水の合計がスラリー全体の15〜25重量%である軽量気泡コンクリート補強鉄筋用防錆剤に補強鉄筋を浸漬させて防錆皮膜を得る。
この特許文献1の軽量気泡コンクリート補強鉄筋用防錆剤を用いた防錆処理によれば、鉄筋との付着力や防錆性能に優れると共に、優れた耐水性を有する防錆被膜の形成が可能となる。
As a rust prevention treatment, Patent Document 1 proposes the following.
5 to 25% by weight of SBR aqueous emulsion having a styrene bond amount of 65 to 75% by weight as solids, 5 to 15% by weight of aqueous asphalt emulsion as solids, and alkaline earth carbonate powder as solids It consists of a slurry obtained by mixing slaked lime for adjusting pH and water for adjusting viscosity with 60 to 70% by weight, carbonate powder has an average particle size of 8 to 30 μm, and a specific surface area by air permeation method of 2000 to 2000 Calcium carbonate powder of 50000 cm 2 / g, wherein the reinforcing rebar is immersed in a rust inhibitor for lightweight cellular concrete reinforced reinforcing bars, wherein the total amount of water in the aqueous emulsion and water for viscosity adjustment is 15 to 25% by weight of the whole slurry To obtain a rust preventive film.
According to the anticorrosive treatment using the lightweight cellular concrete reinforced anticorrosive agent disclosed in Patent Document 1, it is possible to form an anticorrosive film having excellent water resistance as well as excellent adhesion and anticorrosive performance with the reinforcing bar. It becomes.

特開2009−102700号公報JP 2009-102700 A

しかしながら、特許文献1の軽量気泡コンクリート補強鉄筋用防錆剤を用いた防錆処理では、軽量気泡コンクリート補強鉄筋用防錆剤が有する性能を超えた防錆皮膜と補強用鉄筋との付着力を得ることができなかった。この付着力は、0.82N/mm以上あれば良好であるが、特許文献1の防錆処理をしたとしても、これを満たさない場合もある。なお、付着力を0.82N/mm以上あれば良好と判断するのは、0.82N/mm以上だとALCパネルの強度・防錆性能に問題ないが、0.82N/mm未満ではALCパネル強度・防錆性能に問題が出る場合があるからである。
ここで、軽量気泡コンクリートに埋設される補強用鉄筋は、バーインコイルを伸線処理した伸線品が用いられる場合がある。伸線処理とは、母材であるバーインコイルの母材径から、伸線品の所定の線径まで減面する処理である。また、母材径から減面された割合を減面率と呼ぶ。
本発明者らは、ALCパネルに埋設される補強用鉄筋の伸線処理における減面率を規定することで防錆皮膜と補強用鉄筋の付着力が向上することを発見した。
However, in the rust prevention treatment using the rust preventive agent for lightweight cellular concrete reinforced reinforcing bar of Patent Document 1, the adhesion between the rust preventive film and the reinforcing steel rod exceeding the performance of the rust preventive agent for lightweight cellular concrete reinforced reinforcing rod is increased. Couldn't get. The adhesive force is good if it is 0.82 N / mm 2 or more, but even if the rust prevention treatment of Patent Document 1 is performed, this may not be satisfied. It should be noted that if the adhesive force is 0.82 N / mm 2 or more, it is judged that it is good. If it is 0.82 N / mm 2 or more, there is no problem in the strength and rust prevention performance of the ALC panel, but less than 0.82 N / mm 2 This is because there may be a problem in ALC panel strength and rust prevention performance.
Here, as the reinforcing reinforcing bar embedded in the lightweight cellular concrete, a drawn product obtained by drawing a burn-in coil may be used. The wire drawing process is a process of reducing the surface from the base material diameter of the burn-in coil, which is the base material, to a predetermined wire diameter of the drawn product. Moreover, the ratio reduced from the base material diameter is called the area reduction rate.
The inventors of the present invention have found that the adhesion between the rust-preventing film and the reinforcing reinforcing bar is improved by defining the area reduction rate in the wire drawing treatment of the reinforcing reinforcing bar embedded in the ALC panel.

本発明は、軽量気泡コンクリートに埋設される鉄筋の減面率を規定することにより、防錆皮膜と鉄筋の付着力を向上できる軽量気泡コンクリートの製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the lightweight cellular concrete which can improve the adhesive force of a rust preventive membrane | film | coat and a reinforcing bar by prescribing | regulating the area reduction rate of the reinforcing steel embed | buried in lightweight cellular concrete.

本発明の軽量気泡コンクリートの製造方法は、伸線処理された鉄筋を埋設する軽量気泡コンクリートの製造方法であって、前記伸線処理された鉄筋の減面率が5〜15%であることを特徴とする。   The lightweight cellular concrete manufacturing method of the present invention is a lightweight cellular concrete manufacturing method in which a drawn steel bar is embedded, and the area reduction rate of the drawn steel bar is 5 to 15%. Features.

本発明によれば、軽量気泡コンクリートに埋設される鉄筋の減面率を規定することにより、防錆皮膜と鉄筋の付着力を向上できる。   According to the present invention, it is possible to improve the adhesion between the rust preventive coating and the reinforcing bars by defining the area reduction rate of the reinforcing bars embedded in the lightweight cellular concrete.

本発明の実施形態により製造されたALCパネルを説明する図である。It is a figure explaining the ALC panel manufactured by embodiment of this invention. 実施例1及び2、比較例1及び2の付着力試験の結果を示す図である。It is a figure which shows the result of the adhesive force test of Examples 1 and 2 and Comparative Examples 1 and 2.

以下に、本発明の実施形態について説明する。
図1は、本発明の実施形態により製造されたALCパネル1を説明する図である。
ALCパネル1には、防錆処理した補強用鉄筋10が埋設されている。
本実施形態の軽量気泡コンクリート製造方法は、ALCパネル1を製造する方法であり、コイルに巻かれたバーインコイルを伸線処理し補強用鉄筋10を製造する伸線工程と、製造した補強用鉄筋10を直線し所定の長さに切断する直線工程と、切断された補強用鉄筋10をALCパネル1の曲げ強度に必要な本数を縦筋と横筋に別け、これらの縦筋と横筋を溶接機で互いに溶接し補強用鉄筋マット11を作製する溶接工程と、補強用鉄筋マット11を防錆剤に浸漬させ、防錆剤に浸漬させた補強用鉄筋マット11を乾燥させ防錆皮膜を形成する防錆処理工程と、防錆皮膜を形成した補強用鉄筋マット11を複数枚モールドにセットするモールドセット工程と、複数枚の補強用鉄筋マット11をセットしたモールドにスラリーを注入するスラリー注入工程と、モールドに注入したスラリーが発泡し半硬化体へと硬化して生ケーキとなった後に脱型する生ケーキ製造工程と、脱型された生ケーキをピアノ線で所定の寸法で切断する切断工程と、切断された生ケーキをオートクレーブにおいて高温高圧水蒸気養生しALCパネル1とする養生工程と、を備える。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a diagram illustrating an ALC panel 1 manufactured according to an embodiment of the present invention.
In the ALC panel 1, a reinforcing steel bar 10 that has been rust-proofed is embedded.
The lightweight cellular concrete manufacturing method of the present embodiment is a method of manufacturing the ALC panel 1, a wire drawing step of manufacturing a reinforcing steel bar 10 by drawing a burn-in coil wound around the coil, and the reinforcing steel bar manufactured. A straight line process in which 10 is straightened and cut to a predetermined length, and the number of the reinforcing reinforcing bars 10 thus cut for the bending strength of the ALC panel 1 are divided into vertical bars and horizontal bars, and these vertical bars and horizontal bars are welded. Welding each other to produce a reinforcing bar mat 11, and the reinforcing bar mat 11 is dipped in a rust inhibitor, and the reinforcing bar mat 11 dipped in a rust inhibitor is dried to form a rust prevention film. A rust preventive treatment step, a mold setting step for setting the reinforcing bar mats 11 on which the anticorrosive coating is formed in a plurality of molds, and a slurry for injecting slurry into the mold on which the plurality of reinforcing bar mats 11 are set. -An injection process, a raw cake manufacturing process in which the slurry injected into the mold is foamed and cured into a semi-cured product to form a raw cake, and then demolded. A cutting step for cutting, and a curing step for curing the cut raw cake by high-temperature high-pressure steam curing in an autoclave to form an ALC panel 1.

伸線工程について、詳細に説明する。
伸線工程は、JISG3101の規定に含まれるバーインコイルを伸線処理することで、JISG3532の規定に含まれる補強用鉄筋10を製造する。本実施形態における伸線処理は、単頭伸線機や連続伸線機のダイスにて、バーインコイルを減面し、減面率を5〜15%に規定した補強用鉄筋10を製造する。補強用鉄筋10の線経は、3.5mm〜8mmであり、製造されるALCパネル1で要求される曲げ強度に応じて適したものが選択される。
The wire drawing process will be described in detail.
In the wire drawing step, the reinforcing bar 10 included in the JIS G3532 specification is manufactured by drawing a burn-in coil included in the JIS G3101 specification. The wire drawing process in the present embodiment produces a reinforcing steel bar 10 in which the burn-in coil is reduced by a die of a single-head wire drawing machine or a continuous wire drawing machine and the area reduction rate is defined as 5 to 15%. The wire length of the reinforcing steel bars 10 is 3.5 mm to 8 mm, and a suitable one is selected according to the bending strength required for the manufactured ALC panel 1.

ここで、本実施形態において「減面率」は、単位が%で表される値であり、母材であるバーインコイルの断面積をS0とし、伸線処理により製造される補強用鉄筋10の断面積をSとすると、以下の式で表せる。
減面率=(1−S/S0)×100
Here, in this embodiment, the “area reduction rate” is a value expressed in%, and the cross-sectional area of the burn-in coil as a base material is S0, and the reinforcing steel bars 10 manufactured by wire drawing are used. If the cross-sectional area is S, it can be expressed by the following equation.
Area reduction ratio = (1-S / S0) × 100

以下、実施例によって、本発明を具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
本実施例は、防錆皮膜と補強用鉄筋の付着力を調査することを目的とした比較試験である。
本実施例では、珪石45重量部、石灰質原料として生石灰5重量部、セメント30重量部、繰り返し原料20重量部を混合し、これらの固体原料合計100重量部に水60重量部とALC用アルミニウム粉末及び界面活性剤を加えて、混練してスラリーを作成した。該スラリーに補強用鉄筋マットを埋設し、該スラリーが石灰質原料の水和により硬化した後、180℃、10気圧のオートクレーブにおいて6時間高温高圧水蒸気養生を施し、厚さ100mmのALCパネルを製造し、付着力を試験した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example at all.
This example is a comparative test for the purpose of investigating the adhesion between the rust preventive coating and the reinforcing steel bars.
In this example, 45 parts by weight of quartzite, 5 parts by weight of quicklime as a calcareous raw material, 30 parts by weight of cement, and 20 parts by weight of repetitive raw materials are mixed, and 60 parts by weight of water and aluminum powder for ALC are added to a total of 100 parts by weight of these solid raw materials. And a surfactant were added and kneaded to prepare a slurry. A reinforcing bar mat for reinforcement is embedded in the slurry, and after the slurry is hardened by hydration of the calcareous raw material, it is subjected to high temperature and high pressure steam curing for 6 hours in an autoclave at 180 ° C. and 10 atm to produce an ALC panel having a thickness of 100 mm. The adhesion was tested.

比較例1は、減面率が27%の補強用鉄筋を用いた補強用鉄筋マットが埋設されたALCパネルである。
比較例2は、減面率が0%、即ち、バーインコイル黒皮除去品である補強用鉄筋を用いた補強用鉄筋マットが埋設されたALCパネルである。
即ち、比較例1及び2の減面率は、本実施形態における減面率の規定(5〜15%)の範囲外である。
実施例1は、上記実施形態における伸線処理よる減面率が13%の補強用鉄筋を用いた補強用鉄筋マットが埋設されたALCパネルである。
実施例2は、上記実施形態における伸線処理よる減面率が8%の補強用鉄筋を用いた補強用鉄筋マットが埋設されたALCパネルである。
Comparative Example 1 is an ALC panel in which a reinforcing bar mat using a reinforcing bar having a surface reduction rate of 27% is embedded.
Comparative Example 2 is an ALC panel in which a reinforcing bar mat using a reinforcing bar that has a surface reduction rate of 0%, that is, a bar-in coil black skin removal product, is embedded.
That is, the area reduction ratio of Comparative Examples 1 and 2 is outside the range of the area reduction ratio (5 to 15%) in the present embodiment.
Example 1 is an ALC panel in which a reinforcing bar mat using a reinforcing bar having a surface reduction rate of 13% by the wire drawing process in the above embodiment is embedded.
Example 2 is an ALC panel in which a reinforcing bar mat using a reinforcing bar having a surface reduction rate of 8% by the wire drawing process in the above embodiment is embedded.

本実施例では、比較例1及び2と実施例1及び2のALCパネルのそれぞれについて、S.Aroni,G.J.de Groot,M.J.Robinson,G.Svanholm and F.H.Wittman,“Autoclaved Aerated Concrete RILEM,” E&FN SPON An Imprint of Chapman&Hall:UP,1993,p.290−292.に記載される測定方法に準じて防錆皮膜と補強用鉄筋との付着力試験を実施した。   In the present example, the S.E. Aroni, G.A. J. et al. de Groot, M.M. J. et al. Robinson, G.M. Svanholm and F.M. H. Wittman, “Autoclaved Aerated Concrete RIREM,” E & FN SPON An Imprint of Chapman & Hall: UP, 1993, p. 290-292. In accordance with the measurement method described in the above, an adhesion test between the rust-proof coating and the reinforcing steel bars was performed.

図2は、実施例1及び2、比較例1及び2の付着力試験の結果を示す図である。
図2の縦軸は、付着力を示し、その単位はN/mmである。
付着力試験の結果は、以下のとおりであった。
比較例1の付着力は、0.72N/mmであった。
実施例1の付着力は、1.69N/mmであった。
実施例2の付着力は、1.72N/mmであった。
比較例2の付着力は、1.57N/mmであった。
このように、伸線処理における減面率を5〜15%に規定した補強用鉄筋を用いてALCパネルを製造することで、比較例1のように減面率が15%を超える補強用鉄筋を用いたALCパネルと比べて、付着力が2.3倍以上となる。
また、伸線処理における減面率を5〜15%に規定した補強用鉄筋を用いてALCパネルを製造することで、比較例2のように減面率が5%を未満の補強用鉄筋を用いたALCパネルと比べて、付着力が大きくなる。
FIG. 2 is a diagram showing the results of adhesion tests of Examples 1 and 2 and Comparative Examples 1 and 2.
The vertical axis | shaft of FIG. 2 shows adhesive force, The unit is N / mm < 2 >.
The results of the adhesion test were as follows.
The adhesion force of Comparative Example 1 was 0.72 N / mm 2 .
The adhesion force of Example 1 was 1.69 N / mm 2 .
The adhesion force of Example 2 was 1.72 N / mm 2 .
The adhesion force of Comparative Example 2 was 1.57 N / mm 2 .
Thus, by manufacturing an ALC panel using a reinforcing bar in which the area reduction rate in the wire drawing process is defined as 5 to 15%, the reinforcing bar having an area reduction exceeding 15% as in Comparative Example 1 Compared to an ALC panel using, the adhesion is 2.3 times or more.
In addition, by manufacturing an ALC panel using a reinforcing bar having a surface reduction rate of 5 to 15% in the wire drawing process, a reinforcing bar having a surface reduction rate of less than 5% as in Comparative Example 2 can be obtained. Compared with the ALC panel used, the adhesion is increased.

以上の試験結果より、伸線処理における減面率を5〜15%に規定した補強用鉄筋を用いてALCパネルを製造することで、防錆皮膜と補強用鉄筋との付着力が向上することが判明した。   From the above test results, it is possible to improve the adhesion between the rust-proof coating and the reinforcing reinforcing bar by manufacturing the ALC panel using the reinforcing reinforcing bar that defines the area reduction rate in the wire drawing treatment to 5 to 15%. There was found.

本発明は、例えば建築物の壁材、屋根、床材などとして使用される軽量気泡コンクリートに関するものであり、防錆皮膜と補強用鉄筋の付着力を向上させた軽量気泡コンクリートを提供するものである。   The present invention relates to a lightweight cellular concrete used as, for example, a building wall material, roof, floor material, etc., and provides a lightweight cellular concrete having improved adhesion between a rust-preventive coating and reinforcing reinforcing bars. is there.

1 ALCパネル
10 補強用鉄筋
11 補強用鉄筋マット
1 ALC panel 10 Reinforcing bar 11 Reinforcing bar mat

Claims (1)

伸線処理された鉄筋を埋設する軽量気泡コンクリートの製造方法であって、
前記伸線処理された鉄筋の減面率が5〜15%であることを特徴とする軽量気泡コンクリートの製造方法。
A method for producing lightweight cellular concrete in which a drawn steel bar is embedded,
A method for producing a lightweight aerated concrete, wherein the area reduction ratio of the drawn reinforcing steel bar is 5 to 15%.
JP2011164327A 2011-07-27 2011-07-27 Method for manufacturing lightweight cellular concrete Withdrawn JP2013028014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164327A JP2013028014A (en) 2011-07-27 2011-07-27 Method for manufacturing lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164327A JP2013028014A (en) 2011-07-27 2011-07-27 Method for manufacturing lightweight cellular concrete

Publications (1)

Publication Number Publication Date
JP2013028014A true JP2013028014A (en) 2013-02-07

Family

ID=47785567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164327A Withdrawn JP2013028014A (en) 2011-07-27 2011-07-27 Method for manufacturing lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP2013028014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002277A1 (en) * 2013-07-05 2015-01-08 旭化成建材株式会社 Inorganic foam panel
CN112297219A (en) * 2020-11-09 2021-02-02 浙江元筑住宅产业化有限公司 Novel preparation method of ALC (autoclaved lightweight concrete) board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002277A1 (en) * 2013-07-05 2015-01-08 旭化成建材株式会社 Inorganic foam panel
CN112297219A (en) * 2020-11-09 2021-02-02 浙江元筑住宅产业化有限公司 Novel preparation method of ALC (autoclaved lightweight concrete) board

Similar Documents

Publication Publication Date Title
Kruger et al. A compendious review on lack-of-fusion in digital concrete fabrication
EP2839940B1 (en) Process for producing concrete formed body
Topič et al. Effect of PVA modification on properties of cement composites
JP6404021B2 (en) Fast-hardening polymer cement mortar composition for repair and reinforcement, and repair and reinforcement method using the same
JP2013014447A (en) Cement hardened body, method for manufacturing the same, and cement composition
JP2012214354A (en) Method for repairing concrete structure
JP5957944B2 (en) Repair method for concrete structures
JP2011016681A (en) Rapid hardening polymer cement mortar composition for repair and method for applying the same
JP2012214369A (en) Method for patching concrete structure
JP2015199634A (en) Manufacturing method of silicate polymer molded body and silicate polymer molded body
JP2013028014A (en) Method for manufacturing lightweight cellular concrete
JP2013203559A (en) Repairing method for concrete structure
Song et al. Study on corrosion resistance of hydrophobic early strength mortar containing calcium formate
CN101905964A (en) Method for preparing high-strength autoclaved aerated concrete
US20200276729A1 (en) Method of manufacturing a concrete element
JP6216843B2 (en) Method for producing hardened cement
JP2012166398A (en) Method of manufacturing lightweight cellular concrete
JP2012021189A (en) Rust preventive method of reinforcing bar for lightweight foamed concrete, and device therefor
JP2011079686A (en) Lightweight foamed concrete and method for producing the same
JP5646375B2 (en) Method for producing buried metal fitting and lightweight cellular concrete panel
JP2012229577A (en) Method of manufacturing reinforcement mat for reinforcement for lightweight cellular concrete
JP2012218159A (en) Rust-preventiion method for autoclaved lightweight concrete reinforcing steel bar
JP2014065623A (en) Curable cement-based composite material for repair and repair method using the same
JP4944730B2 (en) Manufacturing method of fiber reinforced concrete member
JP5743258B2 (en) Method for manufacturing reinforced concrete structure and method for manufacturing fiber reinforced concrete structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007