JP7341040B2 - Method for inspecting resin composition and method for producing cured resin body - Google Patents

Method for inspecting resin composition and method for producing cured resin body Download PDF

Info

Publication number
JP7341040B2
JP7341040B2 JP2019217033A JP2019217033A JP7341040B2 JP 7341040 B2 JP7341040 B2 JP 7341040B2 JP 2019217033 A JP2019217033 A JP 2019217033A JP 2019217033 A JP2019217033 A JP 2019217033A JP 7341040 B2 JP7341040 B2 JP 7341040B2
Authority
JP
Japan
Prior art keywords
resin composition
inspection
elastic modulus
measuring
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019217033A
Other languages
Japanese (ja)
Other versions
JP2021085843A (en
Inventor
宏之 河野
英哲 大川
朋弥 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Original Assignee
Chugoku Marine Paints Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76088847&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7341040(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chugoku Marine Paints Ltd filed Critical Chugoku Marine Paints Ltd
Priority to JP2019217033A priority Critical patent/JP7341040B2/en
Publication of JP2021085843A publication Critical patent/JP2021085843A/en
Application granted granted Critical
Publication of JP7341040B2 publication Critical patent/JP7341040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Railway Tracks (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂組成物の検査方法および樹脂硬化体を製造する方法に関する。 The present invention relates to a method for inspecting a resin composition and a method for producing a cured resin body.

樹脂硬化体は、列車から受ける荷重や振動を緩衝するための充填層およびその補修や、エンジンなどの振動体に接して使用される緩衝材として用いられている。該樹脂硬化体を形成する樹脂組成物としては、1成分型の組成物と、2成分以上の多成分型の組成物が知られており、取り扱い性やポットライフ等の点で、1成分型の組成物が採用される場合もあるが、得られる硬化体の物性等を考慮した場合、多成分型の組成物が多く採用されている。また、硬化体を形成したい場所によっては、硬化速度や硬化条件に制限がある場合もあり、このような場合には、多成分型の組成物が多く採用されている。 Cured resin bodies are used for filling layers and repairs thereof to buffer loads and vibrations received from trains, and as buffer materials used in contact with vibrating bodies such as engines. As the resin composition that forms the resin cured product, there are known one-component type compositions and multi-component type compositions containing two or more components. However, in consideration of the physical properties of the resulting cured product, multi-component compositions are often employed. Furthermore, depending on the location where a cured product is desired to be formed, there may be restrictions on the curing speed and curing conditions, and in such cases, multi-component compositions are often employed.

前記多成分型の組成物は、通常、硬化体を形成したい場所(以下「現場」ともいう。)において、第1成分(例:主剤)や第2成分(例:硬化剤成分)等の各成分を混合することで組成物を調製して使用される。この混合の際には、各成分の混合比率が所定の値から外れたり、各成分の混合が均一にならない場合には、所定の物性を示す硬化体が得られないため、各成分の混合比率が所定の値になるように混合する必要があり、また、各成分が均一に混ざるように混合する必要がある。 In the multi-component composition, each of the first component (e.g., base agent), second component (e.g., curing agent component), etc. The composition is prepared and used by mixing the ingredients. During this mixing, if the mixing ratio of each component deviates from the predetermined value or the mixing of each component is not uniform, it will not be possible to obtain a cured product that exhibits the specified physical properties. It is necessary to mix the components so that they have a predetermined value, and it is also necessary to mix the components so that they are mixed uniformly.

従って、多成分型の組成物の各成分を混合する際には、混合比率や均一混合などに十分に注意して混合しているが、熟練の作業員でも、混合環境や各成分の種類等により、所定の組成物(所定の物性を示す硬化体を得ることができる組成物)を調製できない場合がある。また、近年、各成分を混合する際に、自動計量混合装置なる装置を使用する場合もあるが、この装置を用いた場合であっても、低温時などに所定の組成物を調製できない場合がある。 Therefore, when mixing the components of a multi-component composition, careful attention is paid to the mixing ratio and uniformity of the mixture, but even experienced workers are unable to do so due to the mixing environment and the type of each component. Therefore, it may not be possible to prepare a predetermined composition (a composition capable of obtaining a cured product exhibiting predetermined physical properties). Additionally, in recent years, automatic measuring and mixing devices are sometimes used to mix each component, but even when this device is used, it may not be possible to prepare the desired composition at low temperatures. be.

前記のように、所定の組成物を調製できない場合があり、このような組成物を用いて得られる硬化体は所定の物性を示さないため、硬化体を設ける目的が達成できない。従って、多成分型の組成物を用いる場合には、該組成物の一部をサンプリングし(抜き取り)、検査用成形体を形成し、該成形体が所定の物性を示すか否かを測定することで、調製した組成物が所定の組成物となっているか否かを評価していた。 As mentioned above, there are cases where it is not possible to prepare a prescribed composition, and the cured body obtained using such a composition does not exhibit the prescribed physical properties, so that the purpose of providing the cured body cannot be achieved. Therefore, when using a multi-component composition, a part of the composition is sampled (sampled) to form a molded body for inspection, and it is measured whether the molded body exhibits predetermined physical properties. By doing so, it was evaluated whether the prepared composition was a predetermined composition.

前記サンプリング~検査用成形体の形成までの工程は現場で行われ、得られた検査用成形体を各試験場に運んで物性を測定している。
ここで測定する物性は、形成される硬化体に要求される物性であるが、例えば樹脂組成物の場合、代表的な物性として、ばね定数が採用されてきた。
The steps from sampling to forming molded bodies for inspection are performed on-site, and the resulting molded bodies for inspection are transported to each testing site to measure their physical properties.
The physical properties measured here are the physical properties required of the cured product formed, and for example, in the case of resin compositions, spring constant has been adopted as a typical physical property.

例えば、スラブ式軌道の路盤側構造物と軌道スラブとの間の樹脂硬化体を形成する樹脂組成物として多成分型の樹脂組成物が使用され、この樹脂組成物が所定の樹脂組成物であるか否かについては、以下の方法(以下「従来法」ともいう。)で評価していた。
この従来法は、規格制定されており(例えば、非特許文献1参照)、この方法により樹脂組成物の検査を行うことが求められている。
For example, a multi-component resin composition is used as a resin composition to form a cured resin between a roadbed side structure and a track slab of a slab type track, and this resin composition is a predetermined resin composition. The following method (hereinafter also referred to as "conventional method") was used to evaluate whether or not it was true.
This conventional method has been established as a standard (for example, see Non-Patent Document 1), and there is a demand for testing resin compositions using this method.

まず、現場において、調製した樹脂組成物の一部を抜き取り、所定の型枠に流し込んだ後硬化させることで検査用成形体を形成する。
ここで用いる型枠は、図1に示すような、得られる検査用成形体の大きさが100mm×100mm×25mm(厚み)となる型枠であり、内表面が離型処理された型枠である。
First, at the site, a part of the prepared resin composition is extracted, poured into a predetermined mold, and then cured to form a molded body for inspection.
The mold used here is a mold whose inner surface has been subjected to mold release treatment, as shown in Fig. 1, and the size of the resulting molded object for inspection is 100 mm x 100 mm x 25 mm (thickness). be.

次に、得られた検査用成形体を試験場に運び、そこで、該成形体の厚み方向に、荷重0~4.4kNで予圧を2回かけてから30秒後、荷重速度1mm/minで4.4kNまで載荷する際の、荷重0.98kNと3.92kNとにおける成形体のたわみを測定し、下記式からばね定数を算出し、算出されたばね定数が、樹脂組成物の公称ばね定数の±20%以内であるか否かを評価することで、所定の組成物を調製できているか否かを検査している。
ばね定数(MN/m)=(F2(kN)-F1(kN))/(X2(mm)-X1(mm))
[ここで、F2は荷重3.92kNであり、X2は、該荷重3.92kNの時の成形体のたわみ(mm)であり、F1は荷重0.98kNであり、X1は、該荷重0.98kNの時の成形体のたわみ(mm)である。]
Next, the obtained molded body for inspection is carried to a test site, where preload is applied twice in the thickness direction of the molded body with a load of 0 to 4.4 kN, and after 30 seconds, a preload of 4 kN is applied at a loading rate of 1 mm/min. Measure the deflection of the molded body under loads of 0.98 kN and 3.92 kN when loading up to .4 kN, calculate the spring constant from the following formula, and the calculated spring constant will be within ± of the nominal spring constant of the resin composition. By evaluating whether or not it is within 20%, it is inspected whether a predetermined composition has been prepared.
Spring constant (MN/m) = (F2 (kN) - F1 (kN)) / (X2 (mm) - X1 (mm))
[Here, F2 is the load of 3.92 kN, X2 is the deflection (mm) of the molded body when the load is 3.92 kN, F1 is the load of 0.98 kN, and X1 is the deflection (mm) of the molded body when the load is 0.98 kN. This is the deflection (mm) of the molded body at 98 kN. ]

従来法でばね定数を測定する際に、検査用成形体の正確なばね定数を測定するには、例えば、以下の点が重要となる。
(A)検査用成形体の寸法の正確性
(B)検査用成形体の最も大きな面(荷重のかかる面)の表面平滑性
(C)加圧板(検査用成形体に接し、該成形体に荷重をかける部材)の表面平滑性
(D)検査用成形体の最も大きな面(荷重のかかる面)の滑りにくさ
(E)たわみを測定する際の高い精度
When measuring the spring constant using the conventional method, for example, the following points are important in order to accurately measure the spring constant of the molded article for inspection.
(A) Accuracy of the dimensions of the molded body for inspection (B) Surface smoothness of the largest surface (the surface on which the load is applied) of the molded body for inspection (C) Pressure plate (in contact with the molded body for inspection, (D) Slip resistance of the largest surface of the molded object for inspection (the surface on which the load is applied) (E) High accuracy when measuring deflection

従来法では、検査用成形体の寸法が正確であり、検査用成形体および加圧板のそれぞれが接する面の表面が平滑でないと、正確な計測ができず、また、検査用成形体の荷重のかかる面が滑りやすいと、測定値が低下し、正確な計測ができなかった。さらには、例えば、組成物の公称ばね定数が10MN/mである場合、該組成物の変位(X2-X1)は約0.3mmとなるが、この公称ばね定数の±20%を満たすか否かを評価するには、±0.06mmの変位を測定することが要求されるため、たわみを測定する際の精度はきわめて高い必要がある。
つまり、従来法で正確なばね定数を測定するには、検査用成形体の形成から荷重をかける際の方法、たわみを測定する際に至るまで、極めて高い精度が求められていた。
In the conventional method, the dimensions of the molded body for inspection must be accurate and the surfaces of the surfaces in contact with the molded body for inspection and the pressure plate must be smooth to make accurate measurements, and the load on the molded body for inspection cannot be measured. If such a surface was slippery, the measured value would drop and accurate measurements could not be made. Furthermore, for example, if the nominal spring constant of the composition is 10 MN/m, the displacement (X2-X1) of the composition will be about 0.3 mm, but whether it satisfies ±20% of this nominal spring constant or not. In order to evaluate the deflection, it is required to measure a displacement of ±0.06 mm, so the accuracy in measuring the deflection must be extremely high.
In other words, in order to accurately measure the spring constant using the conventional method, extremely high precision was required in everything from forming the molded body for inspection to applying a load to measuring deflection.

「スラブ軌道各部補修の手引き」、財団法人鉄道総合研究所、平成10年5月1日、第2版、p.21-35“Guidelines for repairing various parts of slab track,” Railway Research Institute, May 1, 1998, 2nd edition, p. 21-35

しかしながら、前述の要求される極めて高い精度を満足することは容易ではなかった。特に、検査用成形体を所定の形状にするには、型枠の清掃、型枠内面の離型処理、型枠の正確な組み立て、型枠への樹脂組成物の正確な注入、検査用成形体の正確な脱離などを行う必要があるが、現場においてこれらの工程を行うことは極めて困難であった。
また、前記従来法では、通常、同一の組成物から3つの検査用成形体を形成し、該3つの成形体それぞれのばね定数を測定してその平均値を測定することで、所定の組成物を調製できているか否かを評価しているが、これら3回の測定値が大きく異なる場合が多いことも問題であった。
However, it has not been easy to satisfy the above-mentioned required extremely high accuracy. In particular, in order to form a molded object for inspection into a predetermined shape, cleaning the mold, releasing treatment on the inner surface of the mold, accurately assembling the mold, accurately injecting the resin composition into the mold, and molding for inspection. Although it is necessary to accurately remove the body, it is extremely difficult to carry out these steps on-site.
In addition, in the conventional method, usually three molded bodies for inspection are formed from the same composition, and the spring constants of each of the three molded bodies are measured and the average value thereof is determined. However, there was also a problem in that the values measured at these three times often differed greatly.

本発明は、以上のことに鑑みてなされたものであり、多成分型の樹脂組成物が所定の組成物であるか否かを容易に、また、正確に検査することができる、前記従来法に代わる検査方法を提供し、さらに、所定の物性を有する樹脂硬化体を容易に製造することができる方法を提供することを目的とする。 The present invention has been made in view of the above, and it is possible to easily and accurately test whether a multi-component resin composition is a predetermined composition using the conventional method. It is an object of the present invention to provide an alternative testing method, and also to provide a method that can easily produce a cured resin body having predetermined physical properties.

本発明者らは、前記課題を解決すべく鋭意研究した。その結果、特定の方法によれば、前記課題を解決できることを見出し、本発明を完成させた。本発明の態様例は、以下のとおりである。 The present inventors have conducted extensive research to solve the above problems. As a result, the inventors discovered that the above problem could be solved by a specific method, and completed the present invention. Examples of embodiments of the present invention are as follows.

[1] 多成分型の樹脂組成物の検査方法であって、
多成分型の各成分を混合して樹脂組成物を調製し、調製した樹脂組成物の一部を抜き取り硬化させて検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、多成分型の樹脂組成物を検査する検査方法において、前記検査用成形体は、アスペクト比(該成形体の圧縮方向の長さ/該成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である、
樹脂組成物の検査方法。
[1] A method for testing a multi-component resin composition, comprising:
A resin composition is prepared by mixing each component of the multi-component type, a part of the prepared resin composition is extracted and cured to form a molded body for inspection, and the compressive elastic modulus is measured using the molded body. In the inspection method of inspecting a multi-component resin composition by comparing it with a predetermined compressive elastic modulus, the molded body for inspection has an aspect ratio (length of the molded body in the compression direction/length of the molded body). the length in the direction perpendicular to the compression direction) is 0.5 or more,
Method for testing resin compositions.

[2] 前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、[1]に記載の樹脂組成物の検査方法。 [2] The method of measuring the compressive elastic modulus is a method of measuring the compressive elastic modulus of the molded body for inspection using a compressometer, or a method of measuring the compressive elastic modulus of the molded body for testing when compressing the molded body for testing. The method for inspecting a resin composition according to [1], which includes a step of measuring a change in length in a direction using a solid-state imaging device.

[3] 前記樹脂組成物が、圧縮強度0.1N/mm2における圧縮弾性率が2~200N/mm2の範囲にある樹脂組成物である、[1]または[2]に記載の樹脂組成物の検査方法。 [3] The resin composition according to [1] or [2], wherein the resin composition has a compressive modulus of elasticity in the range of 2 to 200 N/mm 2 at a compressive strength of 0.1 N/mm 2 How to inspect things.

[4] 前記樹脂組成物が、軌道用樹脂組成物、振動体周囲用樹脂組成物、および、ケーブル防食用樹脂組成物から選択されるいずれか1種である、[1]~[3]のいずれかに記載の樹脂組成物の検査方法。
[5] 前記樹脂組成物が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物である、または、枕木下部の樹脂硬化体形成用組成物である、[1]~[4]のいずれかに記載の樹脂組成物の検査方法。
[4] The resin composition of [1] to [3], wherein the resin composition is any one selected from a resin composition for track, a resin composition for surroundings of a vibrating body, and a resin composition for cable corrosion protection. Any method for testing a resin composition.
[5] The resin composition is a composition for forming a cured resin body around a protrusion of a roadbed side structure of a slab type track or between a roadbed side structure and a track slab, or is a composition for forming a resin cured body at a lower part of a sleeper. A method for testing a resin composition according to any one of [1] to [4], which is a composition for body formation.

[6] 軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法であって、
多成分型の各成分を混合して樹脂組成物を調製する工程1と、
工程1で調製した樹脂組成物から樹脂硬化体を形成する工程2と、
工程1で調製した樹脂組成物の一部を抜き取り硬化させて、アスペクト比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、調製した樹脂組成物を検査する工程3と、
を含む、軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。
[6] A method for manufacturing a cured resin body applicable to any one selected from a track, a vibrating body periphery, and a cable, comprising:
Step 1 of preparing a resin composition by mixing each component of a multi-component type;
Step 2 of forming a cured resin body from the resin composition prepared in Step 1;
A part of the resin composition prepared in step 1 is sampled and cured, and the aspect ratio (length of the molded body in the compression direction/length of the molded body in the direction perpendicular to the compression direction) is 0.5 or more. step 3 of inspecting the prepared resin composition by forming a molded body, measuring the compressive elastic modulus using the molded body, and comparing it with a predetermined compressive elastic modulus;
A method for manufacturing a cured resin body that is applied to any one selected from a track, a vibrating body periphery, and a cable.

[7] 前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、[6]に記載の軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。 [7] The method of measuring the compressive elastic modulus is a method of measuring the compressive elastic modulus of the molded body for inspection using a compressometer, or a method of measuring the compressive elastic modulus of the molded body for testing when compressing the molded body for testing. Manufacturing a cured resin body applicable to any one selected from the track, the vibrating body surroundings, and the cable described in [6], which is a method including the step of measuring the change in length in the direction with a solid-state imaging device. how to.

[8] 前記工程2が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間、または、枕木下部に、工程1で調製した樹脂組成物をてん充し、硬化させて樹脂硬化体を形成する工程である、[6]または[7]に記載の軌道に適用される樹脂硬化体を製造する方法。 [8] In step 2, the resin composition prepared in step 1 is filled around the protrusion of the roadbed side structure of the slab type track, between the roadbed side structure and the track slab, or under the railroad ties. The method for manufacturing a cured resin body applied to a track according to [6] or [7], which is a step of curing to form a cured resin body.

本発明によれば、多成分型の樹脂組成物が所定の組成物であるか否かを容易に、また、正確に検査することができる、前記従来法に代わる検査方法を提供することができ、さらに、所定の物性、特に所定の圧縮弾性率を有する樹脂硬化体を容易に製造することができる。
また、本発明によれば、前述のように3回の測定をした場合であっても、これら3回の測定値はほぼ変わらず測定の安定度が高いため、1回の測定で精度が高い結果を得ることができ、サンプル採取量の低減、検査に要する時間の低減などにも貢献する。
According to the present invention, it is possible to provide a test method that can easily and accurately test whether a multi-component resin composition is a predetermined composition, as an alternative to the conventional method. Furthermore, a cured resin body having predetermined physical properties, particularly a predetermined compression modulus, can be easily produced.
Furthermore, according to the present invention, even when measurements are carried out three times as described above, the measurement stability is high because the measured values of these three times are almost unchanged, and therefore high accuracy can be achieved with a single measurement. Results can be obtained, and it also contributes to reducing the amount of samples collected and the time required for testing.

図1は、従来法で用いる型枠の一例を示す写真である。FIG. 1 is a photograph showing an example of a formwork used in the conventional method. 図2は、スラブ式軌道の構造の一例を一部断面にして示した斜視図である。FIG. 2 is a partially cross-sectional perspective view of an example of the structure of a slab type track. 図3は、本発明で用いる型枠の一例を示す写真である。FIG. 3 is a photograph showing an example of the formwork used in the present invention.

≪樹脂組成物の検査方法≫
本発明に係る樹脂組成物の検査方法(以下「本検査方法」ともいう。)は、多成分型の樹脂組成物の検査方法であって、
多成分型の各成分を混合して樹脂組成物を調製し、調製した樹脂組成物の一部を抜き取り硬化させて検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、多成分型の樹脂組成物を検査する検査方法において、前記検査用成形体として、アスペクト比(該成形体の圧縮方向の長さ/該成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である成形体を用いることを特徴とする。
≪Inspection method for resin composition≫
The method for testing a resin composition according to the present invention (hereinafter also referred to as "this testing method") is a method for testing a multi-component resin composition, comprising:
A resin composition is prepared by mixing each component of the multi-component type, a part of the prepared resin composition is extracted and cured to form a molded body for inspection, and the compressive elastic modulus is measured using the molded body. In an inspection method for inspecting a multi-component resin composition by comparing it with a predetermined compressive elastic modulus, the molded body for inspection has an aspect ratio (length of the molded body in the compression direction/length of the molded body). It is characterized by using a molded body having a length (in the direction perpendicular to the compression direction) of 0.5 or more.

1成分型の樹脂組成物については通常検査をする必要がないため、本検査方法は、調製した2成分以上の多成分型の樹脂組成物が所定の組成物(所定の物性を示す組成物)となっているか否かを検査する。
前記樹脂組成物としては、2成分以上からなる多成分型の樹脂組成物であれば特に制限されず、第1成分(例:主剤成分)と第2成分(例:硬化剤成分)とからなる2成分型の組成物であってもよく、さらに、硬化促進剤成分、顔料成分などの第3~n成分を含む3成分以上の型の組成物であってもよい。混合する成分が多くなればなるほど所定の組成物を調製することが困難になる傾向にあるため、調製容易性を考慮して、通常、2成分型または3成分型の組成物が使用される。
Since it is not necessary to normally test one-component resin compositions, this testing method can be used to determine whether the prepared multi-component resin composition of two or more components is a predetermined composition (composition exhibiting predetermined physical properties). Check whether it is.
The resin composition is not particularly limited as long as it is a multi-component resin composition consisting of two or more components, and is composed of a first component (e.g., a main ingredient component) and a second component (e.g., a curing agent component). It may be a two-component composition, or it may be a three-component or more composition containing third to n components such as a curing accelerator component and a pigment component. As the number of components to be mixed increases, it tends to become more difficult to prepare a desired composition. Therefore, in consideration of ease of preparation, two-component or three-component compositions are usually used.

多成分型の樹脂組成物は、通常、該組成物を構成する各成分を、それぞれ別個の容器にて保存・貯蔵、運搬等し、該組成物の使用直前に各成分を混合して用いる。
このような多成分型の成分を混合して所定の組成物を調製するためには、各成分の保存・貯蔵を適切に行うこと、各成分の混合を所定の比率で行うこと、各成分を均一に混合すること、混合時に空気等の気体を取り込まないように混合すること等が重要であり、本検査方法は、これらが適切に行われているか否かの検査方法であるともいえる。
In a multi-component resin composition, each component constituting the composition is usually stored, stored, transported, etc. in separate containers, and the components are mixed immediately before use of the composition.
In order to prepare a prescribed composition by mixing such multi-component type components, it is necessary to store each component appropriately, mix each component at a prescribed ratio, and mix each component. It is important to mix uniformly and to avoid taking in gases such as air during mixing, and this inspection method can be said to be a method for testing whether these are being carried out appropriately.

本検査方法は、調製した組成物が所定の組成物(所定の物性を示す組成物)となっているか否かを検査する際の物性として、圧縮弾性率を採用する。このため、本検査方法は、最終的に形成したい樹脂硬化体(樹脂層)が所定の圧縮弾性率を有することが求められる用途に好適に使用され、例えば、振動、衝撃、騒音、応力等の緩和、吸収、伝達防止などのために使用される樹脂硬化体を形成する樹脂組成物の検査に好適に使用される。
このような樹脂組成物としては、例えば、軌道用樹脂硬化体、エンジンなどの振動体周囲に使用される、好ましくは振動体に接して使用される樹脂硬化体、橋梁等の構造物に使用されるケーブル防食用樹脂硬化体などを形成するための樹脂組成物が挙げられる。これらの中でも、本発明の効果がより発揮される等の点から、軌道用樹脂組成物が好ましく、軌道てん充用樹脂組成物がより好ましく、スラブ式軌道の路盤側構造物の突起部周囲の樹脂硬化体形成用組成物、路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物、枕木下部の樹脂硬化体形成用組成物であることがさらに好ましく、スラブ式軌道の路盤側構造物の突起部周囲の樹脂硬化体形成用組成物、枕木下部の樹脂硬化体形成用組成物であることが特に好ましい。
This testing method employs compressive elastic modulus as a physical property when testing whether a prepared composition is a predetermined composition (a composition exhibiting predetermined physical properties). Therefore, this inspection method is suitable for applications where the final cured resin body (resin layer) is required to have a predetermined compressive elastic modulus, such as vibration, impact, noise, stress, etc. It is suitably used for testing resin compositions forming cured resin bodies used for relaxation, absorption, prevention of transmission, etc.
Such resin compositions include, for example, cured resin bodies for tracks, cured resin bodies used around vibrating bodies such as engines, preferably used in contact with vibrating bodies, and cured resin bodies used for structures such as bridges. Examples include resin compositions for forming cured resin bodies for corrosion protection of cables. Among these, resin compositions for track are preferable, resin compositions for track filling are more preferable, and resins around protrusions of roadbed side structures of slab type track are preferable, from the viewpoint that the effects of the present invention are more effectively exhibited. It is more preferable that the composition is a composition for forming a cured body, a composition for forming a cured resin body between a roadbed side structure and a track slab, and a composition for forming a cured resin body at the lower part of a sleeper. Particularly preferred are compositions for forming cured resin bodies around protrusions of objects, and compositions for forming cured resin bodies under sleepers.

なお、スラブ式軌道は、コンクリート等で構築した高架構造物や地下構造物、橋梁などを路盤(これらの構造物を「路盤側構造物」ともいう。)とし、この路盤側構造物上に、充填層を介してコンクリート製等の軌道スラブを固定し、この軌道スラブに軌道レールを締結してなる軌道のことをいう。スラブ式軌道の構造を図2に具体的に示す。図2では、路盤側構造物20の上面に、充填層22を介して軌道スラブ24が設けられ、さらに軌道スラブ24の上面には、一対の軌道レール30,30が配設され、軌道スラブ24は両端部に切欠き部26,26を備え、路盤側構造物20上に所定間隔おきに設けられた突起部28と、軌道スラブ24の切欠き部26とが位置合わせされている。 In addition, in slab type tracks, elevated structures, underground structures, bridges, etc. constructed of concrete, etc. are used as the roadbed (these structures are also referred to as ``subbase-side structures''), and on this subbase-side structure, A track consisting of a track slab made of concrete or the like fixed through a filling layer, and a track rail connected to this track slab. The structure of the slab track is specifically shown in Figure 2. In FIG. 2, a track slab 24 is provided on the upper surface of a roadbed-side structure 20 via a filling layer 22, and furthermore, a pair of track rails 30, 30 is provided on the upper surface of the track slab 24, and the track slab 24 is provided with notches 26, 26 at both ends, and the projections 28 provided at predetermined intervals on the roadbed side structure 20 are aligned with the notches 26 of the track slab 24.

前記スラブ式軌道の路盤側構造物の突起部周囲の樹脂硬化体とは、図2における軌道スラブ24と突起部28との間に形成される樹脂硬化体のことをいい、前記路盤側構造物と軌道スラブとの間の樹脂硬化体とは、前記充填層22(の少なくとも一部)のことをいう。
前記充填層22は、スラブ式軌道を作製した初期の段階では、セメントとアスファルト乳剤と細骨材とを混合することで得られるセメントアスファルトモルタル(CAモルタル)からなることが多いが、このCAモルタルからなる層は劣化するため、この劣化した層の補修のため、通常、劣化した層を削り取った後、樹脂製補修材料により樹脂硬化体が形成される。つまり、前記路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物の好適例としては、この樹脂製補修材料が挙げられる。
The cured resin around the protrusion of the roadbed side structure of the slab track refers to the cured resin formed between the track slab 24 and the protrusion 28 in FIG. The cured resin between the track slab and the track slab refers to (at least a portion of) the filling layer 22.
At the initial stage of producing a slab-type track, the filling layer 22 is often made of cement-asphalt mortar (CA mortar) obtained by mixing cement, asphalt emulsion, and fine aggregate. In order to repair this deteriorated layer, a cured resin body is usually formed using a resin repair material after scraping off the deteriorated layer. In other words, this resin repair material is a suitable example of the composition for forming a cured resin body between the roadbed side structure and the track slab.

本検査方法は、樹脂組成物の硬化体の圧縮強度0.1N/mm2における圧縮弾性率が、下限は、好ましくは2N/mm2以上、より好ましくは5N/mm2以上、特に好ましくは14N/mm2以上であり、上限は、好ましくは200N/mm2以下、より好ましくは120N/mm2以下、さらに好ましくは50N/mm2以下、より好ましくは40N/mm2以下、特に好ましくは34N/mm2以下の範囲となるような樹脂組成物の検査方法であることが好ましい。このような樹脂組成物に対し本検査方法を使用することで、調製した組成物が所定の組成物であるか否かを容易に、また、正確に検査することができる。 In this testing method, the compressive modulus of the cured product of the resin composition at a compressive strength of 0.1 N/mm 2 is preferably 2 N/mm 2 or more, more preferably 5 N/mm 2 or more, and particularly preferably 14 N. /mm 2 or more, and the upper limit is preferably 200 N/mm 2 or less, more preferably 120 N/mm 2 or less, even more preferably 50 N/mm 2 or less, more preferably 40 N/mm 2 or less, particularly preferably 34 N/mm 2 or less. It is preferable to use a method for testing resin compositions in which the size is within the range of mm 2 or less. By using this testing method for such a resin composition, it is possible to easily and accurately test whether the prepared composition is a predetermined composition.

前記多成分型の樹脂組成物としては、2成分型以上であり、いずれかの成分に樹脂を含む組成物であれば特に制限されないが、樹脂としては、例えば、ビニルエステル系樹脂、ポリエステルアクリレート系樹脂などのラジカル重合型樹脂、ポリウレタン系樹脂、エポキシ系樹脂、シリコーン系樹脂が挙げられる。
これらの中でも、本発明の効果がより発揮される等の点から、ポリオールを含む第1成分と、イソシアネート化合物を含む第2成分とを含むポリウレタン系樹脂組成物が好ましい。
The multi-component resin composition is not particularly limited as long as it is a two-component or more composition containing a resin as one of the components, but examples of the resin include vinyl ester resins, polyester acrylate resins, etc. Examples include radical polymerizable resins such as resins, polyurethane resins, epoxy resins, and silicone resins.
Among these, a polyurethane resin composition containing a first component containing a polyol and a second component containing an isocyanate compound is preferable, since the effects of the present invention are more effectively exhibited.

前記樹脂組成物は、必要に応じ、本発明の目的を損なわない範囲で、樹脂以外に、従来公知の添加剤を含んでもよい。該添加剤としては、例えば、硬化剤、硬化促進剤、顔料(例:シリカ、炭酸カルシウム)、骨材(例:硅砂)、消泡剤、分散剤、触媒、水分吸着剤、表面調整剤、レオロジーコントロール剤、レベリング剤、可塑剤、溶剤が挙げられる。
該添加剤はそれぞれ、1種のみを用いてもよいし、2種以上を用いてもよい。
The resin composition may contain conventionally known additives in addition to the resin, if necessary, within a range that does not impair the object of the present invention. Examples of the additives include curing agents, curing accelerators, pigments (e.g. silica, calcium carbonate), aggregates (e.g. silica sand), antifoaming agents, dispersants, catalysts, moisture adsorbents, surface conditioners, Examples include rheology control agents, leveling agents, plasticizers, and solvents.
Each of these additives may be used alone or in combination of two or more.

前記多成分型の樹脂組成物としては、具体的には、特開昭59-56473号公報、特開昭59-56474号公報等に記載のポリウレタン系樹脂組成物、特開平11-256504号公報に記載の、ラジカル硬化性であるポリエステルアクリレートを基材とし、高分子弾性材の小片と無機骨材とを混合すると共に、硬化剤を添加してなる樹脂組成物、特開2002-129503号公報に記載の(メタ)アクリル系樹脂等の二液室温硬化型ラジカル重合性樹脂組成物等が挙げられる。 Specifically, the multi-component resin compositions include polyurethane resin compositions described in JP-A-59-56473 and JP-A-59-56474, and JP-A-11-256504. JP-A No. 2002-129503 describes a resin composition prepared by using a radical-curable polyester acrylate as a base material, mixing small pieces of a polymeric elastic material with an inorganic aggregate, and adding a curing agent. Examples include two-component room temperature curable radically polymerizable resin compositions such as (meth)acrylic resins described in .

このような多成分型の樹脂組成物の市販品としては、例えば、「CUS」シリーズ(中国塗料(株)製)、「アレンロックSQ-20」、「アレンロックSQ-F」((株)アレン製)、「SP-104」(神東塗料(株)製)、「ポリモルタルKCA-20」(興和化成(株)製)が挙げられる。 Commercial products of such multi-component resin compositions include, for example, the "CUS" series (manufactured by Chugoku Paint Co., Ltd.), "Allen Lock SQ-20", and "Allen Lock SQ-F" (manufactured by Chugoku Paint Co., Ltd.). (manufactured by Allen), "SP-104" (manufactured by Shinto Paint Co., Ltd.), and "Polymortar KCA-20" (manufactured by Kowa Kasei Co., Ltd.).

本検査方法によれば、検査用成形体に従来法のような極めて高い寸法精度が要求されないため、硬化収縮の大きいラジカル重合型樹脂を用いた場合であっても、調製した樹脂組成物を高い精度で検査することができる。 According to this inspection method, extremely high dimensional accuracy is not required for the molded object for inspection as in the conventional method, so even when using a radical polymerization type resin with large curing shrinkage, the prepared resin composition can be Can be inspected for accuracy.

なお、前記樹脂組成物として、てん充用樹脂組成物を用いる場合、施工箇所への充填性が求められることがある。この場合のてん充用樹脂組成物としては、JIS Z8803:2011に準拠してウベローデ粘度計を用いて25℃で測定される粘度が、好ましくは500~3,000mPa・s、より好ましくは1,000~2,000mPa・sの範囲にある組成物が望ましい。 Note that when a filling resin composition is used as the resin composition, it may be required to have good filling properties to the construction site. In this case, the filling resin composition preferably has a viscosity of 500 to 3,000 mPa·s, more preferably 1,000 mPa·s, as measured at 25°C using an Ubbelohde viscometer in accordance with JIS Z8803:2011. Compositions in the range of ~2,000 mPa·s are desirable.

・樹脂組成物の調製
樹脂組成物を調製する際には、該組成物を構成する各成分を所定の混合比率となるよう混合する。この際には、自動計量混合装置を用いてもよい。
前記混合の際には、調製する組成物の混合方法が決まっている場合や制限されている場合には、これらに応じて混合することになる。決まりや制限がない場合には、公知の混合機、攪拌機等を用いて混合すればよく、前記各種成分は、所定の量となるように、一度にまたは分割して混合すればよく、任意の順序で加えればよい。
- Preparation of resin composition When preparing a resin composition, each component constituting the composition is mixed to a predetermined mixing ratio. At this time, an automatic measuring and mixing device may be used.
In the case of the above-mentioned mixing, if the mixing method of the composition to be prepared is fixed or limited, the mixing will be carried out according to these methods. If there are no rules or restrictions, mixing may be performed using a known mixer, stirrer, etc. The various components may be mixed all at once or in portions to a predetermined amount; any desired amount may be used. Just add them in order.

なお、混合の際に空気等の気体が取り込まれると、得られる検査用成形体内に気泡が残り、圧縮弾性率に影響を及ぼす傾向にあるため、必要により、脱泡工程を行ったり、混合を低回転で撹拌を行うことにより、組成物中への気体の取り込み量を減らすことが好ましい。 Note that if gases such as air are taken in during mixing, air bubbles will remain in the resulting molded object for inspection, which tends to affect the compressive modulus of elasticity. It is preferable to reduce the amount of gas incorporated into the composition by stirring at low rotation speed.

・検査用成形体の形成
前記検査用成形体は、調製した樹脂組成物の一部を抜き取り(サンプリングし)、硬化させることで形成される。
本検査方法では、ここで形成する検査用成形体として、アスペクト比が0.5以上である成形体を用いることを特徴とする。該アスペクト比は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.5以下である。
- Formation of molded body for inspection The molded body for inspection is formed by sampling a part of the prepared resin composition and curing it.
This inspection method is characterized in that a molded article having an aspect ratio of 0.5 or more is used as the molded article for inspection formed here. The aspect ratio is preferably 1.0 or more, more preferably 1.5 or more, preferably 3.5 or less, more preferably 3.0 or less, particularly preferably 2.5 or less.

前記アスペクト比とは、該成形体を用いて圧縮弾性率を測定する際の、成形体の圧縮方向に対し垂直方向の長さに対する成形体の圧縮方向の長さの比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)のことをいう。
なお、従来法で用いられている成形体は、100mm×100mm×25mm(厚み)の形状の成形体であり、25mmの厚み方向が成形体の圧縮方向の長さに相当し、大きさ100mm×100mmの面の面方向が成形体の圧縮方向に対し垂直方向の長さに相当するため、アスペクト比は0.17である。
The aspect ratio refers to the ratio of the length in the compression direction of the molded product to the length in the direction perpendicular to the compression direction of the molded product (the ratio of the length in the compression direction of the molded product) when measuring the compressive elastic modulus using the molded product. length in the direction perpendicular to the compression direction of the compact).
The molded body used in the conventional method is a molded body with a shape of 100 mm x 100 mm x 25 mm (thickness), where the thickness direction of 25 mm corresponds to the length of the molded body in the compression direction, and the size is 100 mm x 25 mm (thickness). Since the surface direction of the 100 mm surface corresponds to the length in the direction perpendicular to the compression direction of the molded body, the aspect ratio is 0.17.

本検査方法では、アスペクト比が前記範囲にある成形体を用いて圧縮弾性率を測定するため、調製した樹脂組成物が所定の組成物であるか否かを容易に、また、正確に検査することができ、また、高い精度で圧縮弾性率を測定することができる。
従来法では、アスペクト比が0.17の成形体を用いるため、圧縮方向のたわみ(変位)のわずかな差が結果に大きく影響を及ぼす。このため、該成形体の寸法(特に厚み方向の寸法)は正確であり、たわみを測定する際の精度はきわめて高い必要があり、さらに、かけた荷重(圧力)が正確に成形体に伝わる必要があるため、成形体の荷重のかかる面(最も大きな面)の表面平滑性、滑りにくさや、加圧板(検査用成形体に接し、該成形体に荷重のかける部材)の表面平滑性が重要であった。
一方で、アスペクト比が前記範囲にある成形体を用いることで、圧縮方向のひずみ(変位)のわずかな差が結果に大きく影響を及ぼさないため、成形体の荷重のかかる面の表面平滑性、滑りにくさや、加圧板(検査用成形体に接し、該成形体に荷重のかける部材)の表面平滑性は結果に大きな影響を及ぼさず、高い精度で容易に圧縮弾性率を測定することができる。
さらに、測定装置には通常遊びがあり、圧縮弾性率の測定装置にも遊びがあるが、アスペクト比が前記範囲にある成形体を用いることで、この装置の遊びによる測定精度のバラツキも低減することができる。
In this testing method, the compressive elastic modulus is measured using a molded product having an aspect ratio within the above range, so it is easy and accurate to test whether the prepared resin composition is a predetermined composition. It is also possible to measure the compressive modulus with high accuracy.
In the conventional method, a molded body with an aspect ratio of 0.17 is used, so a slight difference in deflection (displacement) in the compression direction has a large effect on the result. For this reason, the dimensions of the molded body (particularly the dimensions in the thickness direction) must be accurate, the accuracy when measuring deflection must be extremely high, and the applied load (pressure) must be accurately transmitted to the molded body. Therefore, the surface smoothness and slip resistance of the surface on which the load is applied (the largest surface) of the compact, and the surface smoothness of the pressure plate (the member that contacts the test compact and applies the load to the compact) are important. Met.
On the other hand, by using a molded body with an aspect ratio within the above range, a slight difference in strain (displacement) in the compression direction will not greatly affect the results, so the surface smoothness of the loaded surface of the molded body, The resistance to slipping and the surface smoothness of the pressure plate (the member that comes into contact with the molded body for inspection and applies a load to the molded body) do not have a major effect on the results, and the compressive modulus of elasticity can be easily measured with high accuracy. .
Furthermore, measuring devices usually have play, and compressive modulus measuring devices also have play, but by using a molded product with an aspect ratio within the above range, variations in measurement accuracy due to play in this device can be reduced. be able to.

前記検査用成形体の形状は、アスペクト比が前記範囲にあれば特に制限されないが、好適例としては、円柱状や角柱状の成形体が挙げられ、円柱状の成形体がより好ましい。
円柱状の成形体の場合、前記成形体の圧縮方向の長さは、円柱状の成形体の長さであり、前記成形体の圧縮方向に対し垂直方向の長さは、底面(上面)の円の直径である。角柱状の成形体の場合、前記成形体の圧縮方向の長さは、角柱状の成形体の長さであり、前記成形体の圧縮方向に対し垂直方向の長さは、底面(上面)の多角形の外接円の直径である。
The shape of the molded body for inspection is not particularly limited as long as the aspect ratio is within the above range, but preferred examples include cylindrical and prismatic molded bodies, with cylindrical molded bodies being more preferred.
In the case of a cylindrical molded body, the length of the molded body in the compression direction is the length of the cylindrical molded body, and the length of the molded body in the direction perpendicular to the compression direction is the length of the bottom (top) surface. It is the diameter of a circle. In the case of a prismatic molded body, the length of the molded body in the compression direction is the length of the prismatic molded body, and the length of the molded body in the direction perpendicular to the compression direction is the length of the bottom (top) surface. It is the diameter of the circumcircle of a polygon.

前記検査用成形体を形成する方法としては、好ましくは、サンプリングした樹脂組成物を、得られる硬化体が前記アスペクト比を有するような形状の型枠に流し込んで硬化させる方法が挙げられる。円柱状の成形体を形成する際に用いることができる型枠の例としては、図3に示すような型枠が挙げられる。
なお、前記型枠を用いる際には、型枠の内面に、従来公知の離型処理をしておくことが好ましい。
Preferably, the method for forming the molded body for inspection includes a method of pouring the sampled resin composition into a mold having a shape such that the resulting cured body has the aspect ratio and curing it. An example of a mold that can be used when forming a cylindrical molded body is a mold as shown in FIG. 3.
In addition, when using the mold, it is preferable to perform a conventionally known mold release treatment on the inner surface of the mold.

サンプリングした樹脂組成物から検査用成形体を形成する際には、現場での樹脂組成物の配置および硬化と同様の条件で行うことが好ましい。
例えば、樹脂組成物として、軌道てん充用樹脂組成物を用い、現場において、常温で放置することで硬化させる場合には、軌道にてん充する方法と同様の方法で、所定形状の型枠等に流し込み(てん充し)、型枠等に流し込んだ組成物を常温で放置して硬化させることが好ましい。
なお、サンプリングした樹脂組成物を硬化させる際には、硬化時間を短くする等の点から、加熱してもよい。
When forming a molded article for inspection from a sampled resin composition, it is preferable to perform the molding under the same conditions as those used for arranging and curing the resin composition at the site.
For example, when using a resin composition for filling tracks and curing it by leaving it at room temperature on site, fill it into a formwork of a predetermined shape using the same method as filling the tracks. It is preferable to pour the composition into a mold or the like and leave it at room temperature to harden.
Note that when curing the sampled resin composition, heating may be used to shorten the curing time.

・圧縮弾性率の測定
前記圧縮弾性率を測定する方法としては、前記アスペクト比の検査用成形体を用いれば特に制限されず、従来公知の方法を採用することができる。
この圧縮弾性率を測定する際の検査用成形体の変位(ひずみ)を測定する際には、圧縮試験機内部に備わっている内部変位計を用いて測定してもよいが、このような内部変位計で測定した場合、装置の遊びを計測してしまい、実際の成形体の変位より大きくなり、真の値との誤差が生じる場合がある。従って、検査用成形体の変位(ひずみ)を測定する際には、圧縮試験機内部に備わっている内部変位計ではなく、外部変位計(非接触型変位計を含む)を用いることが好ましい。
-Measurement of compressive elastic modulus The method for measuring the compressive elastic modulus is not particularly limited as long as a molded article for inspection having the aspect ratio described above is used, and conventionally known methods can be employed.
When measuring the displacement (strain) of the molded object for inspection when measuring the compressive elastic modulus, an internal displacement meter installed inside the compression testing machine may be used. When measuring with a displacement meter, the play in the device is measured, which may be larger than the actual displacement of the molded body, resulting in an error from the true value. Therefore, when measuring the displacement (strain) of the molded body for inspection, it is preferable to use an external displacement meter (including a non-contact type displacement meter) rather than an internal displacement meter provided inside the compression testing machine.

前記外部変位計を用いて検査用成形体の変位を測定し、圧縮弾性率を測定する方法としては、例えば、レーザー変位計を用いて検査用成形体の変位を測定する方法も挙げられるが、この方法では、成形体の変位の真の値を正確に測定できない場合があるため、コンプレッソメーターを用いてひずみを測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法等が好ましい。
これらの方法で検査用成形体の変位を測定すると、該成形体の変位の真の値を正確に測定できるため好ましい。
Examples of the method of measuring the displacement of the molded body for inspection using the external displacement meter and measuring the compressive elastic modulus include a method of measuring the displacement of the molded body for inspection using a laser displacement meter, for example. With this method, it may not be possible to accurately measure the true value of the displacement of the compact, so we recommend using a compressometer to measure the strain, or A method including a step of measuring the change in length in the compression direction using a solid-state imaging device is preferred.
Measuring the displacement of the molded body for inspection using these methods is preferable because the true value of the displacement of the molded body can be accurately measured.

コンプレッソメーターを用いて検査用成形体の圧縮弾性率を測定する方法としては、例えば、検査用成形体をコンプレッソメーターの取付枠の中に挿入し、ねじを締め付けて検査用成形体にコンプレッソメーターをセットした後、検査用成形体に荷重をかけ、その時に生じたひずみ量を高感度変位計で測定する方法が挙げられる。この際には、必要により、コンプレッソメーターを、増幅器を介して試験機の制御用コントローラー等に接続し、ひずみおよび応力から圧縮弾性率を測定してもよい。
前記コンプレッソメーターとしては、例えば、CM型コンプレッソメーター((株)東京測器研究所製)を用いることができる。
To measure the compressive elastic modulus of a molded body for inspection using a compressometer, for example, insert the molded body for inspection into the mounting frame of the compressometer, tighten the screws, and compress the molded body for inspection. One method is to set a pressometer, apply a load to the molded body for inspection, and measure the amount of strain generated at that time with a highly sensitive displacement meter. At this time, if necessary, a compressometer may be connected to a controller of a testing machine via an amplifier, and the compressive elastic modulus may be measured from strain and stress.
As the compressometer, for example, a CM type compressometer (manufactured by Tokyo Sokki Kenkyusho Co., Ltd.) can be used.

なお、検査用成形体の形状変化(例:くぼみが生じること)を抑制し、圧縮弾性率を正確にまたは繰り返し測定できる等の点から、検査用成形体にコンプレッソメーターをセットする際には、ねじの先端に、ねじから該成形体にかかる圧力を低減できるような部材(クッション材)を配置してセットすることや、ねじの先端の形状が点ではなく面である部材を用いて検査用成形体にコンプレッソメーターをセットすることが好ましい。 In addition, when setting the compressometer on the molded product for inspection, from the viewpoint of suppressing changes in the shape of the molded product for inspection (e.g. the formation of dents) and being able to measure the compressive elastic modulus accurately or repeatedly. , by placing and setting a member (cushioning material) on the tip of the screw that can reduce the pressure applied from the screw to the molded object, or by using a member whose tip has a plane shape instead of a point. It is preferable to set a compressometer on the molded product.

検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法としては、例えば、検査用成形体の所定の箇所に、該成形体の圧縮方向と略垂直な方向に標線を2本形成した後、検査用成形体に荷重をかけ、その時に生じたひずみによる標線間の長さの減少をCCDカメラなどの固体撮像装置で測定する方法が挙げられる。 As a method including the step of measuring the change in the length of the molded body in the compression direction when compressing the molded body for inspection using a solid-state imaging device, for example, the molded body is After forming two marked lines in a direction approximately perpendicular to the compression direction, a load is applied to the molded body for inspection, and the decrease in length between the marked lines due to the strain that occurs at that time is measured using a solid-state imaging device such as a CCD camera. One method is to do so.

圧縮弾性率を測定する際には、数個、好ましくは3個の検査用成形体を用いた平均値を採用することが好ましいが、本発明によれば、このように3個の検査用成形体を用いて測定をした場合であっても、これらの測定値はほぼ変わらず測定の安定度が高いため、サンプル採取量の低減、検査に要する時間の低減などの点から、1個の検査用成形体を用いて圧縮弾性率を測定してもよい。 When measuring the compressive modulus of elasticity, it is preferable to adopt an average value using several, preferably three, test moldings. Even when measurements are taken using a human body, these measured values remain almost unchanged and have a high degree of stability. Therefore, from the viewpoint of reducing the amount of sample collected and the time required for testing, it is possible to The compressive elastic modulus may be measured using a molded article.

・調製した樹脂組成物が所定の組成物になっているか否かの評価
調製した樹脂組成物が所定の組成物になっているか否かを評価する方法としては、前記検査用成形体を用いて測定した圧縮弾性率を、公称値(所定の組成物から得られた硬化体の圧縮弾性率として決まった値)と比較し、検査用成形体を用いて測定した圧縮弾性率が、公称値の±20%以内となっているか否かを評価する方法が挙げられる。
検査用成形体を用いて測定した圧縮弾性率が、公称値の±20%以内になっている場合、調製した樹脂組成物が所定の組成物になっているといえる。
・Evaluation of whether the prepared resin composition has a predetermined composition A method for evaluating whether the prepared resin composition has a predetermined composition is to use the molded article for inspection as described above. The measured compressive elastic modulus is compared with the nominal value (a value determined as the compressive elastic modulus of a cured product obtained from a predetermined composition), and the compressive elastic modulus measured using the molded product for inspection is compared with the nominal value. One example is a method of evaluating whether it is within ±20%.
When the compressive elastic modulus measured using the molded article for inspection is within ±20% of the nominal value, it can be said that the prepared resin composition is a predetermined composition.

≪樹脂硬化体を製造する方法≫
本発明に係る樹脂硬化体を製造する方法(以下「本製造方法」ともいう。)は、軌道、振動体周囲およびケーブルから選択されるいずれか1種、好ましくは軌道に適用される樹脂硬化体を製造する方法であり、
多成分型の各成分を混合して樹脂組成物を調製する工程1と、
工程1で調製した樹脂組成物から樹脂硬化体を形成する工程2と、
工程1で調製した樹脂組成物の一部を抜き取り硬化させて、アスペクト比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、調製した樹脂組成物を検査する工程3と、
を含む。
≪Method for producing cured resin body≫
The method for producing a cured resin body according to the present invention (hereinafter also referred to as "the present production method") is a method for producing a cured resin body applied to any one selected from a track, a vibrating body periphery, and a cable, preferably a track. It is a method of manufacturing
Step 1 of preparing a resin composition by mixing each component of a multi-component type;
Step 2 of forming a cured resin body from the resin composition prepared in Step 1;
A part of the resin composition prepared in step 1 is sampled and cured, and the aspect ratio (length of the molded body in the compression direction/length of the molded body in the direction perpendicular to the compression direction) is 0.5 or more. step 3 of inspecting the prepared resin composition by forming a molded body, measuring the compressive elastic modulus using the molded body, and comparing it with a predetermined compressive elastic modulus;
including.

前記工程1は、本検査方法における樹脂組成物の調製と同様の工程であり、前記工程3は、本検査方法における検査用成形体の形成~調製した樹脂組成物が所定の組成物になっているか否かの評価までの工程と同様の工程である。 The step 1 is the same step as the preparation of the resin composition in this test method, and the step 3 is a step from forming a molded article for inspection in the present test method until the prepared resin composition has a predetermined composition. This process is similar to the process up to the evaluation of whether or not there is a child.

・工程2
前記工程2は、工程1で調製した樹脂組成物を用いて、樹脂硬化体を形成したい場所に樹脂硬化体を形成する工程であり、具体的には、工程1で調製した樹脂組成物を、樹脂硬化体を形成したい場所に配置し、次いで、該組成物を硬化させる工程である。
・Process 2
The step 2 is a step of forming a cured resin body at the desired location using the resin composition prepared in the step 1. Specifically, the resin composition prepared in the step 1 is This is a step of placing the cured resin body at a desired location and then curing the composition.

樹脂硬化体を形成したい場所に樹脂組成物を配置する方法としては、特に制限されないが、例えば、必要により樹脂組成物が所定の場所から流れ出ないよう、型枠または不織布等の袋体を設置した後、樹脂組成物を流し込む(てん充)する方法が挙げられる。
例えば、軌道に適用される樹脂硬化体を製造する際には、具体的には、必要により樹脂組成物が所定の場所から流れ出ないよう型枠や不織布等の袋体等を設置した後、図2における軌道スラブ24と突起部28との間に樹脂組成物をてん充する方法、路盤側構造物20と軌道スラブ24との間に樹脂組成物をてん充する方法、枕木下部に樹脂組成物をてん充する方法等が挙げられる。軌道スラブ24と突起部28との間に樹脂組成物をてん充する際や、枕木下部に樹脂組成物をてん充する際には、必要により、軌道スラブ24や枕木を所定位置に持ち上げておいてから、樹脂組成物をてん充してもよい。
There are no particular restrictions on the method of placing the resin composition at the location where the cured resin product is to be formed, but for example, if necessary, a mold or a bag made of non-woven fabric may be installed to prevent the resin composition from flowing out of the designated location. After that, a method of pouring (filling) the resin composition can be mentioned.
For example, when manufacturing a cured resin body to be applied to tracks, concretely, if necessary, after installing a formwork or a bag made of nonwoven fabric to prevent the resin composition from flowing out from a predetermined location, 2, a method of filling a resin composition between the track slab 24 and the protrusion 28, a method of filling a resin composition between the roadbed side structure 20 and the track slab 24, and a method of filling a resin composition in the lower part of the sleeper. Examples include a method of replenishing the When filling the space between the track slab 24 and the protrusion 28 with the resin composition, or when filling the lower part of the sleeper with the resin composition, the track slab 24 and the sleeper may be lifted to a predetermined position if necessary. After that, the resin composition may be filled.

また、前記工程2は、軌道におけるCAモルタルからなる充填層などの層の劣化部分(劣化層)を削り取った後、削り取った箇所に工程1で調製した樹脂組成物を充填し、樹脂硬化体を形成する工程、つまり、劣化層の補修工程であってもよい。この場合、本製造方法は、劣化層の補修方法であるともいえる。
劣化層部分に樹脂組成物を充填する方法としては特に制限されず、従来公知の方法を用いることができ、例えば、予め劣化層を削り取った後、削り取った箇所を取り囲むように型枠等を配設し、型枠等の内側に樹脂組成物を流し込んで充填する額縁補修方法が挙げられる。
また、前記型枠を用いる方法の他に、補修箇所に予め不織布等の袋体を設置し、該袋体内に樹脂組成物を充填し硬化させる方法、補修箇所に発泡成形体等の埋め込み型枠を設置し、その内側補修部に樹脂組成物を充填し硬化させる方法、補修箇所の側面開口部に外側から粘着シートを貼着し、その内側補修部に樹脂組成物を充填し硬化させる方法等も用いることができる。
In addition, in step 2, after scraping off the deteriorated portion (deteriorated layer) of the layer such as the filled layer made of CA mortar in the track, the scraped portion is filled with the resin composition prepared in step 1, and the resin cured body is formed. It may be a step of forming, that is, a step of repairing a deteriorated layer. In this case, the present manufacturing method can be said to be a method for repairing a deteriorated layer.
The method of filling the resin composition into the deteriorated layer portion is not particularly limited, and any conventionally known method may be used. For example, after scraping off the deteriorated layer in advance, a mold or the like is placed to surround the scraped portion. An example of a picture frame repair method is to set up a frame and pour a resin composition into the inside of the frame or the like to fill it.
In addition to the method using the above-mentioned formwork, there is also a method in which a bag made of non-woven fabric or the like is placed in advance at the repaired area, and a resin composition is filled and cured in the bag, or a molded frame such as a foam molded body is embedded in the repaired area. , and then fill the inner repaired area with a resin composition and cure it, or attach an adhesive sheet from the outside to the side opening of the repaired area, and fill the inner repaired area with a resin composition and cure it, etc. can also be used.

本製造方法は、通常、工程1で調製した樹脂組成物の一部を抜き取り、検査用成形体を形成するために型枠等に流し込む工程を行った後、前記工程2を行い、次いで、検査用成形体を形成するために型枠等に流し込んだ樹脂組成物が硬化した後、得られた検査用成形体を圧縮弾性率を測定する試験場に移動させ、そこで圧縮弾性率を測定した後、工程1で調製した樹脂組成物が所定の組成物になっているか否かの検査結果を現場に報告するという流れで行われる。
そして、検査の結果、所定の組成物になっているという評価になった場合には、工程2で形成した樹脂硬化体はそのまま使用し、所定の組成物になっていないという評価になった場合には、工程2で形成した樹脂硬化体を除去し、再度前記工程1~3を含む本製造方法を行うことになる。
In this manufacturing method, a part of the resin composition prepared in Step 1 is usually sampled and poured into a mold to form a molded object for inspection, and then Step 2 is carried out, and then After the resin composition poured into a mold or the like to form a molded body is cured, the obtained molded body for inspection is moved to a test site where the compressive modulus of elasticity is measured, and the compressive modulus of elasticity is measured there. This process is carried out by reporting the test results to the site to determine whether the resin composition prepared in step 1 is a predetermined composition.
If the inspection results indicate that the composition is as specified, the cured resin product formed in step 2 can be used as is, and if it is determined that the composition is not as specified. In this case, the cured resin body formed in step 2 is removed, and the present manufacturing method including steps 1 to 3 described above is performed again.

次に、本発明について実施例に基づきさらに詳細に説明するが、本発明は、これらの実施例に限定されない。 Next, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

[実施例1]
CUS-UB10(中国塗料(株)製、2成分型ポリウレタン樹脂系組成物)の主剤と硬化剤とを、該製品の規定値となっている混合比率(主剤:硬化剤=100:9)で容器に入れ、十分に攪拌混合することで樹脂組成物を調製した。調製した樹脂組成物を、予め内面を、信越化学工業(株)製のKF-96-SPで離型処理したφ50mm×長さ100mmの図3に示すような型枠に流し込み、室温で3日程度放置した後、該型枠から取り出すことで、検査用成形体(アスペクト比=2.0)を作製した。
[Example 1]
The main agent and curing agent of CUS-UB10 (manufactured by Chugoku Paint Co., Ltd., two-component polyurethane resin composition) were mixed at the mixing ratio (main agent: curing agent = 100:9) that is the specified value for the product. A resin composition was prepared by placing the mixture in a container and sufficiently stirring and mixing. The prepared resin composition was poured into a mold as shown in Fig. 3 with a diameter of 50 mm and a length of 100 mm, the inner surface of which had been previously released using KF-96-SP manufactured by Shin-Etsu Chemical Co., Ltd., and left at room temperature for 3 days. After being allowed to stand for a while, a molded article for inspection (aspect ratio = 2.0) was produced by taking it out from the mold.

作製した検査用成形体を、コンプレッソメーター(CM型コンプレッソメーター、(株)東京測器研究所製、標線間距離:50mm)の取付枠の中に挿入し、ねじを締め付けて検査用成形体にコンプレッソメーターをセットした。コンプレッソメーターをセットした検査用成形体を、圧縮試験機(サーボパルサーEHF-EG10-2-L、(株)島津製作所製)に、検査用成形体の長さ方向が圧縮方向となるように配置し、変位速度:1mm/minの条件で検査用成形体に荷重をかけ、その時に生じたひずみ量を測定し、0.1N/mm2における圧縮弾性率を算出した。この際には、コンプレッソメーターを、増幅器(DC Strain Amp DAS-406B、ミネベアミツミ(株)製)を介して圧縮試験機の制御用コントローラーに接続し、ひずみおよび応力から圧縮弾性率を算出した。 Insert the prepared molded object for inspection into the mounting frame of a compressometer (CM type compressometer, manufactured by Tokyo Sokki Institute Co., Ltd., distance between gauge lines: 50 mm), tighten the screw, and use it for inspection. A compressometer was set on the molded body. Place the molded body for inspection with the compressometer set into a compression testing machine (Servo Pulsar EHF-EG10-2-L, manufactured by Shimadzu Corporation) so that the length direction of the molded body for inspection is the direction of compression. A load was applied to the test molded body at a displacement rate of 1 mm/min, the amount of strain generated at that time was measured, and the compressive elastic modulus at 0.1 N/mm 2 was calculated. At this time, the compressometer was connected to the controller of the compression testing machine via an amplifier (DC Strain Amp DAS-406B, manufactured by MinebeaMitsumi Co., Ltd.), and the compressive elastic modulus was calculated from the strain and stress. .

同様にして、検査用成形体をもう2個作製し、それぞれの成形体(成形体1~3)について、圧縮弾性率を算出し、その平均値および標準偏差を算出した。結果を表1に示す。 In the same manner, two more molded bodies for inspection were produced, and the compressive elastic modulus was calculated for each molded body (molded bodies 1 to 3), and the average value and standard deviation thereof were calculated. The results are shown in Table 1.

CUS-UB10の0.1N/mm2における圧縮弾性率は15.0N/mm2であり、調製した樹脂組成物から得られた成形体の0.1N/mm2における圧縮弾性率の平均値は15.2N/mm2であったため、調製した樹脂組成物は、所定の組成物となっていると評価できる。 The compressive elastic modulus of CUS-UB10 at 0.1 N/mm 2 is 15.0 N/mm 2 , and the average value of the compressive elastic modulus at 0.1 N/mm 2 of the molded product obtained from the prepared resin composition is Since it was 15.2 N/mm 2 , it can be evaluated that the prepared resin composition has a predetermined composition.

[比較例1]
前述の規格制定されている従来法に基づいて、調製した樹脂組成物の検査を行った。具体的には、以下のようにして行った。
[Comparative example 1]
The prepared resin composition was tested based on the conventional method for which the above-mentioned standards had been established. Specifically, it was performed as follows.

まず、図1に示す型枠の各部品(図1の白い部品)をパーツクリーナーを用いて清掃し、組み立てた後に内面となる部分を、信越化学工業(株)製のKF-96-SPで離型処理した。離型処理した各部品を、図1に示す形状(100mm×100mm×25mm(厚み))になるように、ボルトを用い、固定金具で締め上げ固定した。この際に、ボルトが緩んでいないよう、隙間ができないよう、固定金具を締め込み過ぎないようにして、型枠を形成した。 First, each part of the formwork shown in Figure 1 (white parts in Figure 1) was cleaned using a parts cleaner, and the parts that would become the inner surfaces after assembly were cleaned with KF-96-SP manufactured by Shin-Etsu Chemical Co., Ltd. Released from mold. Each part subjected to mold release treatment was tightened and fixed with a fixing metal fitting using a bolt so that it had the shape shown in FIG. 1 (100 mm x 100 mm x 25 mm (thickness)). At this time, the formwork was formed by taking care not to overtighten the fixing metal fittings to prevent bolts from loosening and gaps from forming.

次に、CUS-UB10(中国塗料(株)製、2成分型ポリウレタン樹脂系組成物)の主剤と硬化剤とを、該製品の規定値となっている混合比率(主剤:硬化剤=100:9)で容器に入れ、十分に攪拌混合することで樹脂組成物を調製した。調製した樹脂組成物を、形成した型枠に流し込んだ。この際に、樹脂組成物の流し込み量が型枠の大きさとぴったりになるよう、樹脂組成物を流し込んだ。
樹脂組成物を型枠に流し込んでから、室温で3日間程度放置し、樹脂組成物の表面を指触により硬化を確認した後、型枠を外すことで、検査用成形体(アスペクト比=0.17)を3個作製した。型枠を外す際には、得られる成形体に、割れや欠けが生じないように注意深く型枠を外した。作製した検査用成形体の大きさをノギスを用いて測定し、100mmであるはずの長さ部分が100±1mmであり、かつ、厚みが25±0.5mmであった場合、該検査用成形体を用いてばね定数測定の試験を行った。
Next, the main agent and curing agent of CUS-UB10 (manufactured by Chugoku Toyo Co., Ltd., two-component polyurethane resin composition) were mixed at the specified mixing ratio of the product (main agent: curing agent = 100: Step 9) was placed in a container and sufficiently stirred and mixed to prepare a resin composition. The prepared resin composition was poured into the formed mold. At this time, the resin composition was poured so that the amount of resin composition poured was exactly the size of the mold.
After pouring the resin composition into a mold, leave it at room temperature for about 3 days, and after checking the surface of the resin composition for hardening by touching with your fingers, remove the mold to obtain a molded article for inspection (aspect ratio = 0). .17) were produced. When removing the mold, the mold was carefully removed to avoid cracking or chipping the resulting molded product. When the size of the produced inspection molded body was measured using calipers, and the length part that was supposed to be 100 mm was 100 ± 1 mm, and the thickness was 25 ± 0.5 mm, the inspection molded body was A spring constant measurement test was conducted using a body.

作製した検査用成形体それぞれを、圧縮試験機(サーボパルサーEHF-EG10-2-L、(株)島津製作所製)に、検査用成形体の長さ方向が圧縮方向となるように配置し、荷重4.4kNで予圧を2回かけてから30秒後、変位速度:1mm/minの条件で検査用成形体に荷重4.4kNまで載荷する際の、荷重0.98kNと3.92kNとにおける成形体のたわみを、レーザー変位計(HL-G103-AC、パナソニック(株)製、標線間距離:100mm)を用いて測定し、下記式からばね定数を算出した。3個の検査用成形体のばね定数それぞれと、その平均値および標準偏差を算出した。結果を表1に示す。
ばね定数(MN/m)=(F2(kN)-F1(kN))/(X2(mm)-X1(mm))
[F2は荷重3.92kNであり、X2は、該荷重3.92kNの時の成形体のたわみ(mm)であり、F1は荷重0.98kNであり、X1は、該荷重0.98kNの時の成形体のたわみ(mm)である。]
Each of the produced molded bodies for inspection was placed in a compression testing machine (Servo Pulsar EHF-EG10-2-L, manufactured by Shimadzu Corporation) so that the length direction of the molded body for inspection was the compression direction, 30 seconds after applying preload twice with a load of 4.4 kN, a load of 0.98 kN and 3.92 kN was applied to the molded body for inspection at a displacement rate of 1 mm/min. The deflection of the molded body was measured using a laser displacement meter (HL-G103-AC, manufactured by Panasonic Corporation, distance between gauge lines: 100 mm), and the spring constant was calculated from the following formula. The spring constants of the three molded bodies for inspection, their average values, and standard deviations were calculated. The results are shown in Table 1.
Spring constant (MN/m) = (F2 (kN) - F1 (kN)) / (X2 (mm) - X1 (mm))
[F2 is the load of 3.92 kN, X2 is the deflection (mm) of the compact when the load is 3.92 kN, F1 is the load of 0.98 kN, and X1 is the deflection (mm) of the molded body when the load is 0.98 kN. is the deflection (mm) of the molded body. ]

CUS-UB10の公称ばね定数は9.8MN/mであり、調製した樹脂組成物から得られた成形体のばね定数の平均値は11.1MN/mであったため、調製した樹脂組成物は、所定の組成物となっていると評価できる。 The nominal spring constant of CUS-UB10 was 9.8 MN/m, and the average value of the spring constant of the molded body obtained from the prepared resin composition was 11.1 MN/m, so the prepared resin composition was It can be evaluated that the composition is a predetermined composition.

比較例1において、検査用成形体を作製する際に、型枠の離形処理や清掃が不十分なことにより、最も大きな面の表面がわずかに破壊され平滑ではなかった成形体を用いた場合、ばね定数の平均値は6.6MN/mであった。また、比較例1において、検査用成形体を作製する際に、離形剤の拭き取りが不十分なことにより、最も大きな面が滑りやすかった成形体を用いた場合、ばね定数の平均値は5.0MN/mであった。
つまり、前述の規格制定されている従来法では、少なくとも、検査用成形体の表面平滑性、表面滑りにくさを満たさない限り、正確なばね定数の測定はできなかった。
一方、実施例1において、成形体の厚み方向の長さが95mmであっても、成形体の上面が平滑ではなくても、成形体の上面が滑りやすくても、平均圧縮弾性率はそれぞれ、14.9N/mm2、15.1N/mm2、15.0N/mm2であり、検査用成形体に要求される形状や性質は、変位計で測定する範囲(標線間距離)の変位に影響がないことにより、圧縮弾性率の値に大きな影響を及ぼさなかった。
In Comparative Example 1, when producing a molded body for inspection, a molded body whose largest surface was slightly destroyed and was not smooth due to insufficient release treatment and cleaning of the mold was used. , the average value of the spring constant was 6.6 MN/m. In addition, in Comparative Example 1, when a molded product for inspection was used whose largest surface was slippery due to insufficient wiping off of the mold release agent, the average value of the spring constant was 5. It was .0MN/m.
In other words, with the conventional method for which the above-mentioned standards have been established, it was not possible to accurately measure the spring constant unless at least the surface smoothness and surface slip resistance of the molded article for inspection were satisfied.
On the other hand, in Example 1, even if the length in the thickness direction of the molded object is 95 mm, even if the upper surface of the molded object is not smooth, and even if the upper surface of the molded object is slippery, the average compressive elastic modulus is as follows. 14.9N/mm 2 , 15.1N/mm 2 , 15.0N/mm 2 , and the shape and properties required for the molded product for inspection are the displacement within the range measured by the displacement meter (distance between gauge lines). Since there was no effect on the value of compressive elastic modulus, the value of compressive elastic modulus was not significantly affected.

Figure 0007341040000001
Figure 0007341040000001

10:スラブ式軌道
20:路盤側構造物
22:充填層
24:軌道スラブ
26:切欠き部
28:突起部
30:軌道レール
10: Slab type track 20: Roadbed side structure 22: Filled layer 24: Track slab 26: Notch 28: Projection 30: Track rail

Claims (8)

多成分型の樹脂組成物の検査方法であって、
多成分型の各成分を混合して樹脂組成物を調製し、調製した樹脂組成物の一部を抜き取り硬化させて検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、多成分型の樹脂組成物を検査する検査方法において、前記検査用成形体は、アスペクト比(該成形体の圧縮方向の長さ/該成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である、
樹脂組成物の検査方法。
A method for testing a multi-component resin composition, the method comprising:
A resin composition is prepared by mixing each component of the multi-component type, a part of the prepared resin composition is extracted and cured to form a molded body for inspection, and the compressive elastic modulus is measured using the molded body. In the inspection method of inspecting a multi-component resin composition by comparing it with a predetermined compressive elastic modulus, the molded body for inspection has an aspect ratio (length of the molded body in the compression direction/length of the molded body). the length in the direction perpendicular to the compression direction) is 0.5 or more,
Method for testing resin compositions.
前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、請求項1に記載の樹脂組成物の検査方法。 The method of measuring the compression elastic modulus may be a method of measuring the compression elastic modulus of the molded article for inspection using a compressometer, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor. 2. The method for inspecting a resin composition according to claim 1, which comprises a step of measuring a change in thickness using a solid-state imaging device. 前記樹脂組成物が、圧縮強度0.1N/mm2における圧縮弾性率が2~200N/mm2の範囲にある樹脂組成物である、請求項1または2に記載の樹脂組成物の検査方法。 3. The method for testing a resin composition according to claim 1, wherein the resin composition has a compressive modulus of elasticity in the range of 2 to 200 N/mm 2 at a compressive strength of 0.1 N/mm 2 . 前記樹脂組成物が、軌道用樹脂組成物、振動体周囲用樹脂組成物、および、ケーブル防食用樹脂組成物から選択されるいずれか1種である、請求項1~3のいずれか1項に記載の樹脂組成物の検査方法。 According to any one of claims 1 to 3, the resin composition is any one selected from a resin composition for track, a resin composition for surroundings of a vibrating body, and a resin composition for cable corrosion protection. Method for testing the described resin composition. 前記樹脂組成物が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間の樹脂硬化体形成用組成物である、または、枕木下部の樹脂硬化体形成用組成物である、請求項1~4のいずれか1項に記載の樹脂組成物の検査方法。 The resin composition is a composition for forming a cured resin body around a protrusion of a roadbed side structure of a slab type track or between a roadbed side structure and a track slab, or a composition for forming a cured resin body at a lower part of a sleeper. The method for testing a resin composition according to any one of claims 1 to 4, which is a composition. 軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法であって、
多成分型の各成分を混合して樹脂組成物を調製する工程1と、
工程1で調製した樹脂組成物から樹脂硬化体を形成する工程2と、
工程1で調製した樹脂組成物の一部を抜き取り硬化させて、アスペクト比(成形体の圧縮方向の長さ/成形体の圧縮方向に対し垂直方向の長さ)が0.5以上である検査用成形体を形成し、該成形体を用いて圧縮弾性率を測定し、所定の圧縮弾性率と比較することで、調製した樹脂組成物を検査する工程3と、
を含む、軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。
A method for manufacturing a cured resin body applicable to any one selected from a track, a vibrating body periphery, and a cable, the method comprising:
Step 1 of preparing a resin composition by mixing each component of a multi-component type;
Step 2 of forming a cured resin body from the resin composition prepared in Step 1;
A part of the resin composition prepared in step 1 is sampled and cured, and the aspect ratio (length of the molded body in the compression direction/length of the molded body in the direction perpendicular to the compression direction) is 0.5 or more. step 3 of inspecting the prepared resin composition by forming a molded body, measuring the compressive elastic modulus using the molded body, and comparing it with a predetermined compressive elastic modulus;
A method for manufacturing a cured resin body that is applied to any one selected from a track, a vibrating body periphery, and a cable.
前記圧縮弾性率を測定する方法が、コンプレッソメーターを用いて前記検査用成形体の圧縮弾性率を測定する方法、または、前記検査用成形体を圧縮する際の該成形体の圧縮方向の長さの変化を固体撮像装置で測定する工程を含む方法である、請求項6に記載の軌道、振動体周囲およびケーブルから選択されるいずれか1種に適用される樹脂硬化体を製造する方法。 The method of measuring the compression elastic modulus may be a method of measuring the compression elastic modulus of the molded article for inspection using a compressometer, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor, or a method of measuring the compression elastic modulus of the molded article for inspection using a compressor. 7. A method for manufacturing a cured resin body applied to any one selected from a track, a vibrating body periphery, and a cable according to claim 6, the method comprising a step of measuring a change in height with a solid-state imaging device. 前記工程2が、スラブ式軌道の路盤側構造物の突起部周囲もしくは路盤側構造物と軌道スラブとの間、または、枕木下部に、工程1で調製した樹脂組成物をてん充し、硬化させて樹脂硬化体を形成する工程である、請求項6または7に記載の軌道に適用される樹脂硬化体を製造する方法。 In step 2, the resin composition prepared in step 1 is filled around the protrusion of the roadbed side structure of the slab track, between the roadbed side structure and the track slab, or at the bottom of the railroad ties, and then cured. 8. The method for manufacturing a cured resin body applied to a track according to claim 6 or 7, which is a step of forming a cured resin body.
JP2019217033A 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body Active JP7341040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019217033A JP7341040B2 (en) 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217033A JP7341040B2 (en) 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body

Publications (2)

Publication Number Publication Date
JP2021085843A JP2021085843A (en) 2021-06-03
JP7341040B2 true JP7341040B2 (en) 2023-09-08

Family

ID=76088847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019217033A Active JP7341040B2 (en) 2019-11-29 2019-11-29 Method for inspecting resin composition and method for producing cured resin body

Country Status (1)

Country Link
JP (1) JP7341040B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185242A (en) 2009-02-13 2010-08-26 Sekisui Chem Co Ltd Ballasted track and construction method of ballasted track
JP2018103425A (en) 2016-12-26 2018-07-05 大日本印刷株式会社 Article and method for manufacturing the same, and touch feeling evaluation method of article
CN210982030U (en) 2019-09-23 2020-07-10 巨力索具股份有限公司 Cold casting material extrusion elasticity modulus test tool
WO2020176900A1 (en) 2019-02-28 2020-09-03 University Of Florida Research Foundation, Incorporated Galectin-1/ galectin-3 chimeras and multivalent proteins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054469A (en) * 2003-08-05 2005-03-03 Sekisui Chem Co Ltd Sleeper, formed article and laying method of the sleeper
JP5430356B2 (en) * 2009-11-02 2014-02-26 株式会社アレン Repair method for slab type track
WO2017006900A1 (en) * 2015-07-09 2017-01-12 国立研究開発法人産業技術総合研究所 Method for measuring damage progression, and system for measuring damage progression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185242A (en) 2009-02-13 2010-08-26 Sekisui Chem Co Ltd Ballasted track and construction method of ballasted track
JP2018103425A (en) 2016-12-26 2018-07-05 大日本印刷株式会社 Article and method for manufacturing the same, and touch feeling evaluation method of article
WO2020176900A1 (en) 2019-02-28 2020-09-03 University Of Florida Research Foundation, Incorporated Galectin-1/ galectin-3 chimeras and multivalent proteins
CN210982030U (en) 2019-09-23 2020-07-10 巨力索具股份有限公司 Cold casting material extrusion elasticity modulus test tool

Also Published As

Publication number Publication date
JP2021085843A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
Lu et al. Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements
Stähli et al. Manufacturing, fibre anisotropy and fracture of hybrid fibre concrete
Delsaute et al. Testing concrete E‐modulus at very early ages through several techniques: an inter‐laboratory comparison
Ali-Ahmad et al. Experimental investigation and fracture analysis of debonding between concrete and FRP sheets
He et al. In-situ measurement of nominal compressive elastic modulus of interfacial transition zone in concrete by SEM-DIC coupled method
Walsh et al. Fiber orientation in ultra-high-performance concrete shear keys of adjacent-box-beam bridges
Granja et al. Monitoring the early stiffness development in epoxy adhesives for structural strengthening
JP7341040B2 (en) Method for inspecting resin composition and method for producing cured resin body
An COMPDYN 2017
JP5769074B2 (en) Quality control test method for crack-suppressing concrete.
Campos Effect of fiber content on tensile strength of non-proprietary ultra-high performance concrete
Lindelöf et al. Poisson’s ratio of asphalt concrete mixes using indirect tensile test
Tae et al. Time dependent behavior of polymer concrete using unsaturated polyester resin
Nieuwoudt Quantifying the cracking behaviour of strain hardening cement-based composites
Seo A comprehensive study of crack growth in asphalt concrete using fracture mechanics
JP4491680B2 (en) Method for evaluating fresh properties and estimating water content of hardened concrete
Liu Novel Adhesive Anchoring System through Engineered Interface
HIRANO et al. Creep on a composite resin in water
Hamdy A damage-based life prediction model of concrete under variable amplitude fatigue loading
O’Flaherty et al. Influence of constituents on the properties of self-compacting repair materials
Busterud Slipforming-Materials effect on friction
Grairia et al. Interfacial indentation test for the study of reinforcement bar/concrete matrix adhesion in high performance self compacting concretes
Ahmed Asphalt fatigue failure analysis and modelling: experimental studies and theoretical formulation
JP4907409B2 (en) Formwork for shotcrete specimens, formwork unit and method for producing shotcrete specimens
Sherzer et al. Development, Calibration, and Validation of Lateral Displacement for a Concrete Uniaxial Compression Test

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230829

R150 Certificate of patent or registration of utility model

Ref document number: 7341040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150