JP2020202484A - フィルタモジュール - Google Patents

フィルタモジュール Download PDF

Info

Publication number
JP2020202484A
JP2020202484A JP2019107984A JP2019107984A JP2020202484A JP 2020202484 A JP2020202484 A JP 2020202484A JP 2019107984 A JP2019107984 A JP 2019107984A JP 2019107984 A JP2019107984 A JP 2019107984A JP 2020202484 A JP2020202484 A JP 2020202484A
Authority
JP
Japan
Prior art keywords
ground
land
plane
filter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019107984A
Other languages
English (en)
Inventor
和寛 高橋
Kazuhiro Takahashi
和寛 高橋
芦田 哲郎
Tetsuo Ashida
哲郎 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2019107984A priority Critical patent/JP2020202484A/ja
Priority to KR1020200051894A priority patent/KR102443977B1/ko
Priority to TW109118299A priority patent/TWI793423B/zh
Priority to CN202010515535.8A priority patent/CN112073020A/zh
Priority to US16/896,542 priority patent/US11689173B2/en
Publication of JP2020202484A publication Critical patent/JP2020202484A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1708Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1716Comprising foot-point elements
    • H03H7/1725Element to ground being common to different shunt paths, i.e. Y-structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1783Combined LC in series path
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09263Meander
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09336Signal conductors in same plane as power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1006Non-printed filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Filters And Equalizers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

【課題】減衰特性の調整を容易に行うことが可能なフィルタモジュールを提供する。【解決手段】モジュール基板にフィルタ素子が実装されている。フィルタ素子は、グランド端子、及び一対の信号端子を有する。モジュール基板は、グランドプレーンと、グランド用ランドと、グランド用ランドをグランドプレーンに接続するインダクタンス調整配線とを有する。フィルタ素子のグランド端子がモジュール基板のグランド用ランドに接続されている。インダクタンス調整配線は、モジュール基板の面内方向に延びる面内延伸部分を含んでいる。【選択図】図5

Description

本発明は、フィルタモジュールに関する。
従来、各種の高周波フィルタが携帯電話等の無線機器に利用されている。高周波フィルタは、所望の周波数帯のみの信号を通過させることで、通過帯域外の信号による高周波回路への影響、例えばS/N比の劣化等を抑制する機能を持つ。下記の特許文献1に、積層型高周波フィルタが開示されている。積層型高周波フィルタは、導体パターンが形成された複数の誘電体層が積み重ねられた積層構造を有する。
特許文献1に開示された積層型高周波フィルタは、フィルタ機能を実現する回路機能部とグランド電極とを接続する導体(配線)の寄生インダクタンスを低減させるために、グランドインピーダンス調整回路を備えている。グランドインピーダンス調整回路を備えることにより、高周波数帯での減衰特性の劣化を防止している。積層型高周波フィルタを実装するモジュール基板のグランドと、積層型高周波フィルタのグランド電極とは、両者の間に追加の寄生インダクタンスが発生しないように、強固に接続される。
国際公開第2011/114851号
高周波フィルタには、実使用時の周波数環境や他部品の周波数特性等に合わせて、通過帯域外の減衰特性を微調整することが必要とされる。特許文献1に開示された積層型高周波フィルタにおいては、各導体層の導体パターンの形状や大きさを微調整することによって減衰特性を微調整することができる。言い換えると、必要とされる減衰特性ごとに、導体パターンの形状や大きさを異ならせた部品が必要となるため、開発のコストや量産化時のコストが増大する。
本発明の目的は、減衰特性の調整を容易に行うことが可能なフィルタモジュールを提供することである。
本発明の一観点によると、
モジュール基板と、
前記モジュール基板に実装されたフィルタ素子と
を有し、
前記フィルタ素子は、グランド端子、及び一対の信号端子を有し、
前記モジュール基板は、グランドプレーンと、グランド用ランドと、前記グランド用ランドを前記グランドプレーンに接続するインダクタンス調整配線とを有し、
前記フィルタ素子の前記グランド端子が前記モジュール基板の前記グランド用ランドに接続されており、
前記インダクタンス調整配線は、前記モジュール基板の面内方向に延びる面内延伸部分を含んでいるフィルタモジュールを提供することである。
インダクタンス調整配線の持つインダクタンスを調整することにより、フィルタ素子自体の減衰特性を変化させることなく、フィルタモジュールの減衰特性を調整することができる。
図1Aは、シミュレーション対象のフィルタモジュールのブロック図であり、図1B、図1C、及び図1Dは、シミュレーション対象の試料の第1信号用ランド、グランド用ランド、第2信号用ランド、及びビア導体の平面視における配置を示す図である。 図2は、通過係数S21のシミュレーション結果を示すグラフである。 図3は、第1実施例によるフィルタモジュールに含まれるフィルタ素子及びモジュール基板の等価回路図である。 図4は、第1実施例によるフィルタモジュールのブロック図である。 図5Aは、モジュール基板の第1信号用ランド、第2信号用ランド、及びグランド用ランドが配置されている表面導体層の平面図であり、図5Bは、モジュール基板のグランドプレーンが配置されている導体層の平面図であり、図5Cは、図5A及び図5Bの一点鎖線5C−5Cにおける断面図である。 図6A及び図6Bは、フィルタ素子、面内延伸部分、開口等の大きさの関係を示す図であり、図6C及び図6Dは、面内延伸部分の他の構成例を示す図である。 図7Aは、第2実施例によるフィルタモジュールのモジュール基板の第1信号用ランド、第2信号用ランド、及びグランド用ランドが配置されている表層導体層の平面図であり、図7Bは、モジュール基板のグランドプレーンが配置されている導体層の平面図である。 図8A及び図8Bは、それぞれビア導体が1本の場合、及び2本の場合のフィルタ素子の入力ポートからローノイズアンプの出力ポートまでの通過係数S21のシミュレーション結果を示すグラフである。 図9は、第2実施例の変形例によるフィルタモジュールのグランドプレーンが配置された導体層の平面図である。 図10は、第3実施例によるフィルタモジュールの断面図である。 図11A及び図11Bは、それぞれ第4実施例及びその変形例によるフィルタモジュールのモジュール基板に形成された表層導体層の平面図である。 図12は、第5実施例によるフィルタモジュールの等価回路図である。
本発明の実施例について説明する前に、本願の発明者らが行ったフィルタ特性のシミュレーション結果について説明する。
図1Aは、シミュレーション対象のフィルタモジュールのブロック図である。モジュール基板22にフィルタ素子20及びローノイズアンプ21が実装されている。フィルタ素子20の入力端子、グランド端子、及び出力端子が、それぞれモジュール基板22の第1信号用ランド23、グランド用ランド24、及び第2信号用ランド25に接続されている。ローノイズアンプ21の入力端子及び出力端子が、それぞれモジュール基板22の第3信号用ランド26及び第4信号用ランド27に接続されている。グランド用ランド24が、ビア導体28を介して、モジュール基板22内のグランドプレーン29に接続されている。第2信号用ランド25と第3信号用ランド26とが、モジュール基板22内の伝送線路によって相互に接続されている。第1信号用ランド23から第4信号用ランド27までの通過係数S21を、電磁界シミュレータを用いて算出した。
図1B、図1C、及び図1Dは、シミュレーション対象の試料の第1信号用ランド23、グランド用ランド24、第2信号用ランド25、及びビア導体28の平面視における配置を示す図である。いずれの試料においても、第1信号用ランド23、グランド用ランド24、及び第2信号用ランド25がこの順番に1列に並んでいる。図1B、図1C、及び図1Dに示した試料においては、それぞれビア導体28が15個、2個、及び1個配置されている。
図2は、通過係数S21のシミュレーション結果を示すグラフである。横軸は周波数を単位「GHz」で表し、縦軸は通過係数S21を単位「dB」で表す。図2のグラフ中の破線、細い実線、及び太い実線は、それぞれ図1B、図1C、及び図1Dに示した試料のシミュレーション結果を示す。いずれの試料においても、第5世代移動通信システム(5G)のバンドn77相当の3.3GHz以上4.2GHz以下の周波数帯を通過帯域としている。
図1Dの試料において、通過帯域より高周波側に2つの減衰極AD1、AD2が現れており、図1Cの試料においても、通過帯域より高周波側に2つの減衰極AC1、AC2が現れておいる。図1Bの試料においては、通過帯域より高周波側に減衰極AB1が現れている。図1Bの試料の2つ目の減衰極は周波数10GHz以上の領域に現れる。
2つの減衰極のうち低周波側の減衰極AD1、AC1、AB1は、ビア導体28の個数が少ないほど高周波側に位置している。逆に、高周波側の減衰極AD2、AC2は、ビア導体28の個数が少ないほど低周波側に位置している。
ビア導体28の個数は、グランド用ランド24(図1A)とグランドプレーン29(図1A)との間の寄生インダクタンスに影響を及ぼす。ビア導体28の個数が少ないほど、この寄生インダクタンスが大きくなる。図2に示した減衰特性の試料間の相違は、寄生インダクタンスの相違に起因する。これは、グランド用ランド24とグランドプレーン29との間の寄生インダクタンスを調整することによって、フィルタ素子20をモジュール基板22に実装した状態における減衰特性の調整が可能であることを示唆している。
[第1実施例]
次に、図3から図6Bまでの図面を参照して第1実施例によるフィルタモジュールについて説明する。
図3は、第1実施例によるフィルタモジュールに含まれるフィルタ素子30及びモジュール基板40の等価回路図である。フィルタ素子30は、第1信号端子31、第2信号端子32、グランド端子33、及び2つの並列共振回路PR1、PR2を含む。一方の並列共振回路PR1は、相互に並列に接続されたインダクタL1とキャパシタC1とで構成され、他方の並列共振回路PR2は、相互に並列に接続されたインダクタL2とキャパシタC2とで構成される。
第1信号端子31と並列共振回路PR1の一端とがキャパシタC4を介して結合しており、並列共振回路PR1の他端はグランド端子33に接続されている。第2信号端子32と並列共振回路PR2の一端とがキャパシタC5を介して結合しており、並列共振回路PR2の他端はグランド端子33に接続されている。並列共振回路PR1とPR2とは、キャパシタC3を介して結合している。さらに、インダクタL1とL2とが、相互インダクタンスM12で結合している。第1信号端子31と第2信号端子32とが、キャパシタC6を介して結合している。
モジュール基板40の表面に、第1信号用ランド41、第2信号用ランド42、及びグランド用ランド43が設けられている。モジュール基板40は、内部にグランドプレーン44を含んでいる。グランド用ランド43とグランドプレーン44とが、インダクタンス調整配線60を介して相互に接続されている。
フィルタ素子30の第1信号端子31、第2信号端子32、及びグランド端子33が、それぞれモジュール基板40の第1信号用ランド41、第2信号用ランド42、及びグランド用ランド43に接続されている。
図4は、第1実施例によるフィルタモジュール50のブロック図である。第1実施例によるフィルタモジュール50は、2つのアンテナ端子51、52、及び2つの出力端子53、54を有する。2つのアンテナ端子51、52が、高周波スイッチ55を介して2つのフィルタ素子30、35に接続されている。一方のフィルタ素子30は、5Gのバンドn77の周波数帯の信号を通過させるバンドパスフィルタであり、他方のフィルタ素子35は、5Gのバンドn79の周波数帯の信号を通過させるバンドパスフィルタである。
フィルタ素子30、35を通過した信号が、それぞれローノイズアンプ56、57に入力される。ローノイズアンプ56、57で増幅された信号が、高周波スイッチ58を介して出力端子53、54から外部に出力される。
図5Aは、モジュール基板40(図3)の第1信号用ランド41、第2信号用ランド42、及びグランド用ランド43が配置されている表面導体層の平面図である。図5Bは、モジュール基板40(図3)のグランドプレーン44が配置されている導体層の平面図である。図5A及び図5Bにおいて、導体部分にハッチングを付している。図5Cは、図5A及び図5Bの一点鎖線5C−5Cにおける断面図である。
平面視において第1信号用ランド41と第2信号用ランド42との間にグランド用ランド43が配置されている。フィルタ素子30の第1信号端子31、第2信号端子32、及びグランド端子33が、それぞれハンダ70を介してモジュール基板40の第1信号用ランド41、第2信号用ランド42、及びグランド用ランド43に接続されている。
グランドプレーン44は、モジュール基板40の厚さ方向に関してグランド用ランド43と異なる位置に配置されている。例えば、グランド用ランド43は、モジュール基板40を構成する誘電体部分の表面に配置されており、グランドプレーン44は誘電体部分の内部に配置されている。グランドプレーン44はグランド用ランド43よりも十分大きく、フィルタ素子30、35、ローノイズアンプ56、57(図4)等からなる高周波回路のグランドとして機能する。グランドプレーン44は、平面視においてモジュール基板40のほぼ全域に亘って配置されている。グランドプレーン44に円形の開口63が設けられている。開口63は、平面視においてグランド用ランド43に部分的に重なっている。
インダクタンス調整配線60が、グランド用ランド43とグランドプレーン44とを接続している。インダクタンス調整配線60は、開口63の縁から開口63の内部に向かって面内方向に延びる1本の面内延伸部分62と、面内延伸部分62とグランド用ランド43とを接続する1本のビア導体61とを含む。
次に、第1実施例の優れた効果について説明する。
第1実施例では、モジュール基板40の厚さ方向に延びるビア導体61に対して面内方向に延びる面内延伸部分62が直列に接続されて、インダクタンス調整配線60を構成している。このため、ビア導体61のみでインダクタンス調整配線60を構成する場合に比べて、インダクタンス調整配線60の持つインダクタンスを大きくすることができる。
ビア導体61のインダクタンスを大きくするためには、グランド用ランド43とグランドプレーン44との間に配置されている誘電体層を厚くすることによってビア導体61の長さHを長くすればよい。ところが、誘電体層の厚さは、伝送線路の特性インピーダンス等に影響を与えるため、誘電体層の厚さを調整する自由度は低い。さらに、誘電体層を厚くすると、モジュール基板40自体の厚さも増大するため、フィルタモジュールとしての高さ方向の制約を受けてしまう。これに対し、面内延伸部分62の長さ調整の自由度は、ビア導体61の長さ調整の自由度に比べて高い。従って、グランド用ランド43とグランドプレーン44とをビア導体61のみで接続する場合と比べて、インダクタンス調整配線60によるインダクタンスの調整の自由度が高いという優れた効果が得られる。
図6A及び図6Bは、フィルタ素子30、面内延伸部分62、開口63等の大きさの関係を示す図である。図6Bに示した例の面内延伸部分62が、図6Aに示した例の面内延伸部分62より長い。このため、図6Aに示した例と、図6Bに示した例とでは、インダクタンス調整配線60の持つインダクタンスが異なる。このように、グランドプレーン44のパターンを変更することにより、インダクタンス調整配線60のインダクタンスを変化させることができる。モジュール基板40に設けられているグランドプレーン44のパターンを変更することにより、フィルタ素子30の変更を行うことなく、減衰特性の異なる種々のフィルタモジュールを実現することが可能である。なお、開口63を大きくする代わりに、または開口63を大きくするとともに、面内延伸部分62を図6Cに示すようにメアンダ形状にしたり、図6Dに示すようにスパイラル形状にしたりすることにより、面内延伸部分62を長くする構成を実現させてもよい。
[第2実施例]
次に、図7Aから図8Bまでの図面を参照して第2実施例によるフィルタモジュールについて説明する。以下、第1実施例によるフィルタモジュール50と共通の構成については説明を省略する。
図7Aは、第2実施例によるフィルタモジュールのモジュール基板40(図3)の第1信号用ランド41、第2信号用ランド42、及びグランド用ランド43が配置されている表層導体層の平面図である。図7Bは、モジュール基板40(図3)のグランドプレーン44が配置されている導体層の平面図である。第1実施例では、インダクタンス調整配線60が1本のビア導体61を含んでおり、面内延伸部分62が開口63の縁の1箇所においてグランドプレーン44に接続されている。これに対し第2実施例では、インダクタンス調整配線60が2本のビア導体61を含んでおり、面内延伸部分62が開口63の縁の2か所でグランドプレーン44に接続されている。面内延伸部分62は、開口63の縁の異なる2箇所から開口63の内部に向かって延び、開口63の内部で相互に連続している。
次に、図8A及び図8Bを参照して第2実施例の優れた効果について説明する。ビア導体61の長さH(図5C)は、誘電体層の厚さに依存する。個体間で誘電体層の厚さのばらつきをなくすことは困難であるため、ビア導体61の長さにも個体間でばらつきが生じる。第2実施例では、インダクタンス調整配線60が、相互に並列に接続された2本のビア導体61を含んでいるため、ビア導体61の長さのばらつきがインダクタンス調整配線60の持つインダクタンスに与える影響を軽減することができる。ビア導体61が1本の場合と2本の場合とで、ビア導体61の長さのばらつきが通過係数S21に与える影響をシミュレーションによって評価した。
図8A及び図8Bは、それぞれビア導体61が1本の場合、及び2本の場合のフィルタ素子30(図4)の入力ポートからローノイズアンプ56(図4)の出力ポートまでの通過係数S21のシミュレーション結果を示すグラフである。横軸は周波数を単位「GHz」で表し、縦軸は通過係数S21を単位「dB」で表す。図8A及び図8Bに示したグラフにおいて、太い実線、破線、及び細い実線は、それぞれビア導体61の長さHが20μm、25μm、及び30μmのときの通過係数S21を示す。
図8A、図8Bのいずれの場合も、5Gのバンドn77用のバンドパスフィルタである。ビア導体61の長さが25μmのとき、図8A、図8Bのいずれにおいても通過帯域よりも高い6GHz以上7GHz以下の範囲の近傍に2つの減衰極AL、AHが現れている。ビア導体61の長さHが20μmまで短くなると、高周波側の減衰極AHが高周波側にシフトし、低周波側の減衰極ALが低周波側にシフトする。低周波側の減衰極ALのシフト量は図8A、図8Bの場合でほぼ等しいが、高周波側の減衰極AHのシフト量は、図8Aの場合に約850MHzであり、図8Bの場合には約650MHzである。このように、ビア導体61の本数を増やすと、ビア導体61の長さHが変動した場合の減衰極AHのシフト量が小さくなる。
ビア導体61の長さHが25μmから30μmに長くなると、図8A、図8Bのいずれにおいても2つの減衰極AL、AHが1つにまとまり、6GHzの近傍において通過係数S21が大きくなっている。6GHzの近傍における図8Bの場合の通過係数S21の上昇幅は、図8Aの場合の通過係数S21の上昇幅より小さい。このように、ビア導体61の本数を増やすと、ビア導体61の長さHが変動した場合の通過係数S21の変動幅が小さくなる。
図8A及び図8Bに示したシミュレーションにより、ビア導体61の長さHのばらつきが、フィルタモジュールの通過係数S21に与える影響を軽減することができることが確認された。
次に、図9を参照して第2実施例の変形例について説明する。
図9は、第2実施例の変形例によるフィルタモジュールのグランドプレーン44が配置された導体層の平面図である。第2実施例(図7B)では、インダクタンス調整配線60の面内延伸部分62が、開口63の縁の2箇所においてグランドプレーン44に接続されているが、図9に示した変形例では、面内延伸部分62が、開口63の縁の3箇所においてグランドプレーン44に接続されている。このように、面内延伸部分62とグランドプレーン44との接続箇所を3箇所にしてもよいし、4箇所以上にしてもよい。
また、第2実施例(図7A、図7B)、及び変形例(図9)では、ビア導体61を2本配置しているが、ビア導体61を3本以上配置してもよい。また、開口63の形状を円形にしているが、円形以外の形状、例えばレーストラック形状や楕円形状等にしてもよい。
[第3実施例]
次に、図10を参照して第3実施例によるフィルタモジュールについて説明する。以下、第1実施例によるフィルタモジュールと共通の構成については説明を省略する。
図10は、第3実施例によるフィルタモジュールの断面図である。第1実施例(図5C)では、インダクタンス調整配線60が、フィルタ素子30が実装されている実装面から深さ方向に向かって1層目の導体層に配置されたグランドプレーン44に接続されている。これに対して第3実施例では、インダクタンス調整配線60が、3層目の導体層に配置されたグランドプレーン44に接続されている。例えば、1層目の導体層には、他のグランドプレーン45が配置されており、2層目の導体層には伝送線路46が配置されている。ビア導体61は、グランド用ランド43から、1層目のグランドプレーン45に設けられた開口を通って3層目のグランドプレーン44に達している。
次に、第3実施例の優れた効果について説明する。第3実施例では、第1実施例の場合と比べてビア導体61が長くなる。その結果、インダクタンス調整配線60が持つインダクタンスが大きくなる。インダクタンス調整配線60のインダクタンスを大きくしたい場合に、第3実施例の構造が有効である。
[第4実施例]
次に、図11Aを参照して第4実施例によるフィルタモジュールについて説明する。以下、第1実施例によるフィルタモジュールと共通の構成については説明を省略する。
図11Aは、第4実施例によるフィルタモジュールのモジュール基板40(図3)に形成された表層導体層の平面図である。第1実施例では、インダクタンス調整配線60が接続されているグランドプレーン44(図5C)が1層目の導体層に配置されているが、第4実施例では、インダクタンス調整配線60が、表層導体層に配置されたグランドプレーン44に接続されている。このため、インダクタンス調整配線60は、異なる導体層間を接続するビア導体を含まず、表層導体層に配置された面内延伸部分62のみを含んでいる。グランド用ランド43には、グランドプレーン44に接続するためのビア導体が接続されていない。
次に、第4実施例の優れた効果について説明する。
モジュール基板40の表層導体層にグランドプレーン44が配置されている場合には第4実施例による構造を採用することができる。第4実施例の場合においても、面内延伸部分62の長さを調整することによって、インダクタンス調整配線60のインダクタンスを調整することができる。
次に、図11Bを参照して第4実施例の変形例について説明する。
図11Bは、第4実施例の変形例によるフィルタモジュールのモジュール基板40(図3)に形成された表層導体層の平面図である。本変形例では、表層導体層に形成されたグランドプレーン44に、縁から内部に向かう切り欠き部47が設けられている。インダクタンス調整配線60は、切り欠き部47の最奥部の縁に接続されている。
図11Bに示した変形例では、グランド用ランド43とグランドプレーン44との間隔に依存することなく、切り欠き部47の深さを調整することにより、インダクタンス調整配線60の長さを調整することができる。なお、インダクタンス調整配線60のインダクタンス値を大きくするために、インダクタンス調整配線60をメアンダ形状やスパイラル形状にしてもよい。
[第5実施例]
次に、図12を参照して第5実施例によるフィルタモジュールについて説明する。以下、第1実施例によるフィルタモジュールと共通の構成については説明を省略する。
図12は、第5実施例によるフィルタモジュールの等価回路図である。モジュール基板40の構成は、第1実施例によるモジュール基板40の構成と同一である。フィルタ素子30は、1段目から4段目までの4個の並列共振回路PR1、PR2、PR3、PR4を含む。1段目の並列共振回路PR1は、並列接続されたインダクタL1とキャパシタC1とを含む。2段目の並列共振回路PR2は、並列接続されたインダクタL2とキャパシタC2とを含む。3段目の並列共振回路PR3は、並列接続されたインダクタL3とキャパシタC3とを含む。4段目並列共振回路PR4は、並列接続されたインダクタL4とキャパシタC4とを含む。フィルタ素子30は、例えば5Gのバンドn77用のバンドパスフィルタである。
4個の並列共振回路PR1、PR2、PR3、PR4の各々の一方の端子(以下、グランド側の端子という。)が共通のインダクタLgを介してグランド端子33に接続されている。並列共振回路PR1、PR2、PR3、PR4の各々のグランド側の端子とは反対側の端子を、信号側の端子という。
1段目の並列共振回路PR1の信号側の端子が第1信号端子31に接続されている。1段目の並列共振回路PR1の信号側の端子と、2段目の並列共振回路PR2の信号側の端子との間にキャパシタC12が接続されている。4段目の並列共振回路PR4の信号側の端子が第2信号端子32に接続されている。3段目の並列共振回路PR3の信号側の端子と、4段目の並列共振回路PR4の信号側の端子との間にキャパシタC34が接続されている。第1信号端子31と第2信号端子32との間にキャパシタC14が接続されている。4個の並列共振回路PR1、PR2、PR3、PR4のインダクタL1、L2、L3、L4は相互に誘導結合している。インダクタLgに対して、モジュール基板40側のインダクタンス調整配線60が直列に挿入される。
次に、第5実施例の優れた効果について説明する。
第5実施例では、モジュール基板40側のインダクタンス調整配線60のインダクタンスを調整することにより、並列共振回路PR1、PR2、PR3、PR4のグランド側の端子とモジュール基板40のグランドプレーン44との間に挿入されるインダクタンスを調整することができる。その結果、第1実施例の場合と同様に、フィルタ素子30の設計変更を行うことなく、第1信号端子31から第2信号端子32までの通過係数S21の減衰特性を調整することができる。
次に、第5実施例の変形例について説明する。
モジュール基板40に実装するフィルタ素子30として、図3に示した第1実施例によるフィルタ回路、図12に示した第5実施例によるフィルタ回路以外のフィルタ回路を持つものを用いてもよい。この場合にも、モジュール基板40側のインダクタンス調整配線60のインダクタンスを調整することにより、フィルタ素子30の減衰特性を調整することが可能である。
上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
20 フィルタ素子
21 ローノイズアンプ
22 モジュール基板
23 第1信号用ランド
24 グランド用ランド
25 第2信号用ランド
26 第3信号用ランド
27 第4信号用ランド
28 ビア導体
29 グランドプレーン
30 フィルタ素子
31 第1信号端子
32 第2信号端子
33 グランド端子
35 フィルタ素子
40 モジュール基板
41 第1信号用ランド
42 第2信号用ランド
43 グランド用ランド
44、45 グランドプレーン
46 伝送線路
47 切り欠き部
50 フィルタモジュール
51、52 アンテナ端子
53、54 出力端子
55 高周波スイッチ
56、57 ローノイズアンプ
58 高周波スイッチ
60 インダクタンス調整配線
61 ビア導体
62 面内延伸部分
63 開口
70 ハンダ

Claims (6)

  1. モジュール基板と、
    前記モジュール基板に実装されたフィルタ素子と
    を有し、
    前記フィルタ素子は、グランド端子、及び一対の信号端子を有し、
    前記モジュール基板は、グランドプレーンと、グランド用ランドと、前記グランド用ランドを前記グランドプレーンに接続するインダクタンス調整配線とを有し、
    前記フィルタ素子の前記グランド端子が前記モジュール基板の前記グランド用ランドに接続されており、
    前記インダクタンス調整配線は、前記モジュール基板の面内方向に延びる面内延伸部分を含んでいるフィルタモジュール。
  2. 前記グランド用ランドと前記グランドプレーンとは、前記モジュール基板の厚さ方向に関して異なる位置に配置されており、前記グランドプレーンに開口が設けられており、
    前記開口は、平面視において前記グランド用ランドと少なくとも部分的に重なる位置に配置されており、
    前記インダクタンス調整配線は、さらに、前記面内延伸部分と前記グランド用ランドとを接続する少なくとも1本のビア導体とを含む請求項1に記載のフィルタモジュール。
  3. 前記少なくとも1本のビア導体は、複数本のビア導体を含む請求項2に記載のフィルタモジュール。
  4. 前記面内延伸部分は、前記開口の縁の異なる複数の箇所から前記開口の内部に向かって延びている請求項2または3に記載のフィルタモジュール。
  5. 前記グランド用ランドと前記グランドプレーンとが同一の導体層内に配置されており、前記インダクタンス調整配線は、前記グランド用ランド及び前記グランドプレーンと同一の導体層内において両者を接続している請求項1に記載のフィルタモジュール。
  6. 前記面内延伸部分は、平面視においてメアンダ形状またはスパイラル形状を有する請求項1乃至5のいずれか1項に記載のフィルタモジュール。
JP2019107984A 2019-06-10 2019-06-10 フィルタモジュール Pending JP2020202484A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019107984A JP2020202484A (ja) 2019-06-10 2019-06-10 フィルタモジュール
KR1020200051894A KR102443977B1 (ko) 2019-06-10 2020-04-29 필터 모듈
TW109118299A TWI793423B (zh) 2019-06-10 2020-06-01 濾波器模組
CN202010515535.8A CN112073020A (zh) 2019-06-10 2020-06-08 滤波器模块
US16/896,542 US11689173B2 (en) 2019-06-10 2020-06-09 Filter module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107984A JP2020202484A (ja) 2019-06-10 2019-06-10 フィルタモジュール

Publications (1)

Publication Number Publication Date
JP2020202484A true JP2020202484A (ja) 2020-12-17

Family

ID=73651762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107984A Pending JP2020202484A (ja) 2019-06-10 2019-06-10 フィルタモジュール

Country Status (5)

Country Link
US (1) US11689173B2 (ja)
JP (1) JP2020202484A (ja)
KR (1) KR102443977B1 (ja)
CN (1) CN112073020A (ja)
TW (1) TWI793423B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424849B2 (ja) * 2020-01-31 2024-01-30 太陽誘電株式会社 フィルタ、マルチプレクサおよび通信用モジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491561B2 (ja) * 1999-06-04 2004-01-26 株式会社村田製作所 周波数逓倍器
JP2003258587A (ja) * 2001-12-25 2003-09-12 Ngk Spark Plug Co Ltd 積層型lcフィルタ
JP2005167969A (ja) * 2003-11-14 2005-06-23 Fujitsu Media Device Kk 弾性波素子および弾性波素子の製造方法
JP4811935B2 (ja) 2006-07-27 2011-11-09 株式会社村田製作所 ノイズフィルタアレイ
JP2009021725A (ja) * 2007-07-11 2009-01-29 Sharp Corp フィルタ装置
CN102549690B (zh) 2010-03-18 2014-10-29 株式会社村田制作所 高频层叠元器件及层叠型高频滤波器
JP5605519B2 (ja) 2012-08-30 2014-10-15 株式会社村田製作所 フィルタ装置
JP5800113B2 (ja) 2013-05-29 2015-10-28 株式会社村田製作所 高周波モジュール部品
JP6406266B2 (ja) * 2014-01-10 2018-10-17 株式会社村田製作所 高周波モジュール
JP6020780B1 (ja) * 2015-02-25 2016-11-02 株式会社村田製作所 高周波モジュール
US9807882B1 (en) 2016-08-17 2017-10-31 Qualcomm Incorporated Density-optimized module-level inductor ground structure

Also Published As

Publication number Publication date
US11689173B2 (en) 2023-06-27
KR102443977B1 (ko) 2022-09-16
KR20200141380A (ko) 2020-12-18
CN112073020A (zh) 2020-12-11
TWI793423B (zh) 2023-02-21
TW202101904A (zh) 2021-01-01
US20200389144A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US7859364B2 (en) Layered low-pass filter
KR100541089B1 (ko) 적층형 저역 통과 필터
US8970327B2 (en) Filter based on a combined via structure
TW201929428A (zh) 積層帶通濾波器
JPWO2014034605A1 (ja) 弾性波フィルタ装置及びデュプレクサ
KR20060111850A (ko) 밴드패스 필터, 고주파 모듈 및 무선통신기기
JP6183462B2 (ja) 高周波モジュール
JP5783186B2 (ja) 積層基板モジュール
JP4669722B2 (ja) 共振回路、フィルタ回路、多層基板並びに回路モジュール
WO2018043206A1 (ja) Lcフィルタ、高周波フロントエンド回路および通信装置
KR102424038B1 (ko) 멀티플렉서
KR102443977B1 (ko) 필터 모듈
KR102343603B1 (ko) 필터 모듈
US11509345B2 (en) Wireless communication module
US7782157B2 (en) Resonant circuit, filter circuit, and multilayered substrate
KR102485475B1 (ko) 앰프 모듈
US9787353B2 (en) Radio frequency (RF) front-end without signal switches
JP4415279B2 (ja) 電子部品
KR20130008817A (ko) 광대역 플래너 필터를 구비한 마이크로스트립 전송선로장치
KR101628696B1 (ko) 캐비티 타입의 저대역 통과 필터
WO2018003378A1 (ja) フィルタ装置およびマルチプレクサ
JPH10224044A (ja) フィルタ実装多層基板
CN107834136B (zh) 带通滤波器
KR100550877B1 (ko) 적층형 lc 필터 어레이
JP2023147842A (ja) 積層型フィルタ装置