JP2019165635A - L−アミノ酸の製造法 - Google Patents

L−アミノ酸の製造法 Download PDF

Info

Publication number
JP2019165635A
JP2019165635A JP2016157800A JP2016157800A JP2019165635A JP 2019165635 A JP2019165635 A JP 2019165635A JP 2016157800 A JP2016157800 A JP 2016157800A JP 2016157800 A JP2016157800 A JP 2016157800A JP 2019165635 A JP2019165635 A JP 2019165635A
Authority
JP
Japan
Prior art keywords
amino acid
gene
protein
activity
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016157800A
Other languages
English (en)
Inventor
和輝 山田
Kazuki Yamada
和輝 山田
葉 荘
Ye Zhang
葉 荘
阿部 健二
Kenji Abe
健二 阿部
直樹 岩永
Naoki Iwanaga
直樹 岩永
亮 竹下
Akira Takeshita
亮 竹下
由利 上原
Yuri UEHARA
由利 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2016157800A priority Critical patent/JP2019165635A/ja
Priority to EP17839574.5A priority patent/EP3498836A4/en
Priority to CA3033334A priority patent/CA3033334A1/en
Priority to PCT/JP2017/029050 priority patent/WO2018030507A1/ja
Priority to US16/268,082 priority patent/US11198894B2/en
Priority to CL2019000318A priority patent/CL2019000318A1/es
Publication of JP2019165635A publication Critical patent/JP2019165635A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/59Culture of aquatic animals of shellfish of crustaceans, e.g. lobsters or shrimps
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/179Colouring agents, e.g. pigmenting or dyeing agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/20Aspartic acid; Asparagine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Husbandry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Physiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Insects & Arthropods (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Birds (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】L−リジン等のL−アミノ酸の製造法を提供する。【解決手段】カロテノイド生合成酵素の活性が増大するように改変されたL−アミノ酸生産能を有する細菌を培地で培養し、該培地および/または該細菌の菌体よりL−アミノ酸を採取することにより、L−アミノ酸を製造する。【選択図】なし

Description

本発明は、細菌を用いた発酵法によるL−リジン等のL−アミノ酸の製造法に関する。L−アミノ酸は、調味料原料や飼料添加物等として産業上有用である。
L−アミノ酸は、例えば、L−アミノ酸生産能を有する細菌等の微生物を用いた発酵法により工業生産されている(非特許文献1)。そのような微生物としては、例えば、自然界から分離した菌株やそれらの変異株が用いられている。また、組換えDNA技術により微生物のL−アミノ酸生産能を向上させることができる。
カロテノイドは、8つのイソプレン単位で構成されたC4056の基本骨格を有する化合物であり、一般に黄色、橙色、赤色等の色調を呈する。カロテノイドは、植物、藻類、細菌等の各種生物により生合成される。カロテノイドの生合成とL−アミノ酸生産との関連は報告されていない。
明石邦彦ら著 アミノ酸発酵、学会出版センター、195〜215頁、1986年
本発明は、細菌のL−アミノ酸生産能を向上させる新規な技術を開発し、効率的なL−アミノ酸の製造法を提供することを課題とする。
本発明者は、上記課題を解決するために鋭意研究を行った結果、カロテノイド生合成酵素をコードするcrtEYIB遺伝子の発現が増大するように細菌を改変することによって、細
菌のL−アミノ酸生産能を向上させることができることを見出し、本発明を完成させた。
すなわち、本発明は以下の通り例示できる。
[1]
L−アミノ酸生産能を有する細菌を培地で培養し、該培地中および/または該細菌の菌体内にL−アミノ酸を蓄積すること、および前記培地および/または前記菌体より前記L−アミノ酸を採取すること、を含むL−アミノ酸の製造方法であって、
前記細菌が、カロテノイド生合成酵素の活性が増大するように改変されている、方法。[2]
前記カロテノイド生合成酵素が、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、リコペンβ−サイクラーゼ、カロテンケトラーゼ、およびカロテンヒドロキシラーゼから選択される1種またはそれ以上の酵素である、前記方法。
[3]
少なくとも、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、およびリコペンβ−サイクラーゼから選択される1種またはそれ以上の酵素の活性が増大する、前記方法。
[4]
少なくとも、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィト
エンデサチュラーゼ、およびリコペンβ−サイクラーゼの活性が増大する、前記方法。
[5]
さらに、カロテンケトラーゼおよび/またはカロテンヒドロキシラーゼの活性が増大する、前記方法。
[6]
前記ゲラニルゲラニルピロリン酸シンターゼが、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号12または24に示すアミノ酸配列を含むタンパク質;
(b)配列番号12または24に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、ゲラニルゲラニルピロリン酸シンターゼ活性を有するタンパク質;
(c)配列番号12または24に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、ゲラニルゲラニルピロリン酸シンターゼ活性を有するタンパク質。
[7]
前記フィトエンシンターゼが、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号14または26に示すアミノ酸配列を含むタンパク質;
(b)配列番号14または26に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、フィトエンシンターゼ活性を有するタンパク質;
(c)配列番号14または26に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、フィトエンシンターゼ活性を有するタンパク質。
[8]
前記フィトエンデサチュラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号16または28に示すアミノ酸配列を含むタンパク質;
(b)配列番号16または28に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、フィトエンデサチュラーゼ活性を有するタンパク質;
(c)配列番号16または28に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、フィトエンデサチュラーゼ活性を有するタンパク質。
[9]
前記リコペンβ−サイクラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号18に示すアミノ酸配列を含むタンパク質;
(b)配列番号18に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、リコペンβ−サイクラーゼ活性を有するタンパク質;
(c)配列番号18に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、リコペンβ−サイクラーゼ活性を有するタンパク質。
[10]
前記カロテンケトラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号20または30に示すアミノ酸配列を含むタンパク質;
(b)配列番号20または30に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、カロテンケトラーゼ活性を有するタンパク質;
(c)配列番号20または30に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、カロテンケトラーゼ活性を有するタンパク質。
[11]
前記カロテンヒドロキシラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号22に示すアミノ酸配列を含むタンパク質;
(b)配列番号22に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、カロテンヒドロキシラーゼ活性を有するタンパク質;
(c)配列番号22に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、カロテンヒドロキシラーゼ活性を有するタンパク質。
[12]
前記カロテノイド生合成酵素をコードする遺伝子の発現を上昇させることにより、前記カロテノイド生合成酵素の活性が増大した、前記方法。
[13]
前記遺伝子の発現が、該遺伝子のコピー数を高めること、および/または該遺伝子の発現調節配列を改変することによって上昇した、前記方法。
[14]
前記細菌が、腸内細菌科に属する細菌またはコリネ型細菌である、前記方法。
[15]
前記細菌が、パントエア属細菌またはエシェリヒア属細菌である、前記方法。
[16]
前記細菌が、パントエア・アナナティスまたはエシェリヒア・コリである、前記方法。[17]
前記細菌が、コリネバクテリウム属細菌である、前記方法。
[18]
前記細菌が、コリネバクテリウム・グルタミカムである、前記方法。
[19]
前記L−アミノ酸が、アスパラギン酸系L−アミノ酸および/またはグルタミン酸系L−アミノ酸である、前記方法。
[20]
前記L−アミノ酸が、L−リジン、L−スレオニン、およびL−グルタミン酸から選択される1種またはそれ以上のL−アミノ酸である、前記方法。
[21]
前記細菌がカロテノイド生産能を有し、前記培養により前記菌体内にカロテノイドが蓄積する、前記方法。
[22]
前記菌体が、前記カロテノイドを50μg/g−DCW以上の量で含有する、前記方法。
[23]
前記カロテノイドが、β−カロテン、ゼアキサンチン、カンタキサンチン、およびアスタキサンチンから選択される1種またはそれ以上のカロテノイドである、前記方法。
[24]
さらに、前記菌体を採取することを含む、前記方法。
[25]
L−アミノ酸生産能およびカロテノイド生産能を有する細菌を培地で培養し、該細菌の菌体内にカロテノイドを蓄積すること、および前記菌体を採取すること、を含むカロテノイドを含有する菌体の製造方法であって、
前記細菌が、カロテノイド生合成酵素の活性が増大するように改変されている、方法。[26]
前記菌体が、前記カロテノイドを50μg/g−DCW以上の量で含有する、前記方法。
[27]
前記カロテノイドが、β−カロテン、ゼアキサンチン、カンタキサンチン、およびアスタキサンチンから選択される1種またはそれ以上のカロテノイドである、前記方法。
[28]
細菌の菌体であって、
カロテノイドを含有し、
前記細菌が、L−アミノ酸生産能およびカロテノイド生産能を有し、
前記細菌が、カロテノイド生合成酵素の活性が増大するように改変されている、菌体。[29]
前記カロテノイドを50μg/g−DCW以上の量で含有する、前記菌体。
[30]
前記カロテノイドが、β−カロテン、ゼアキサンチン、カンタキサンチン、およびアスタキサンチンから選択される1種またはそれ以上のカロテノイドである、前記菌体。
本発明によれば、細菌のL−アミノ酸生産能を向上させることができ、L−アミノ酸を効率よく製造することができる。また、本発明の一態様においては、L−アミノ酸生産菌にカロテノイドを生産させることにより、カロテノイドを含有する菌体をL−アミノ酸生産の副産物として取得し利用することができる。
カロテノイド生合成酵素遺伝子(crtEYIB)の発現を増強したE. coli株を用いたL−リジン生産培養の結果を示す図(n = 6)。
以下、本発明を詳細に説明する。
<1>本発明の細菌
本発明の細菌は、カロテノイド生合成酵素の活性が増大するように改変された、L−アミノ酸生産能を有する細菌である。
<1−1>L−アミノ酸生産能を有する細菌
本発明において、「L−アミノ酸生産能を有する細菌」とは、培地で培養したときに、目的とするL−アミノ酸を生成し、回収できる程度に培地中および/または菌体内に蓄積する能力を有する細菌をいう。L−アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL−アミノ酸を培地中および/または菌体内に蓄積することができる細菌であってよい。「非改変株」とは、カロテノイド生合成酵素の活性が増大するように改変されていない対照株をいう。すなわち、非改変株としては、野生株や親株が挙げられる。また、L−アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL−アミノ酸を培地に蓄積することができる細菌であってもよい。
L−アミノ酸としては、L−リジン、L−オルニチン、L−アルギニン、L−ヒスチジン、L−シトルリン等の塩基性アミノ酸、L−イソロイシン、L−アラニン、L−バリン、L−ロイシン、グリシン等の脂肪族アミノ酸、L−スレオニン、L−セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L−プロリン等の環式アミノ酸、L−フェニルアラニン、L−チロシン、L−トリプトファン等の芳香族アミノ酸、L−システイン、L−シスチン、L−メチオニン等の含硫アミノ酸、L−グルタミン酸、L−アスパラギン酸等の酸性アミノ酸、L−グルタミン、L−アスパラギン等の側鎖にアミド基を有するアミノ酸が挙げられる。L−アミノ酸としては、特に、グルタミン酸系L−アミノ酸(L-am
ino acid of glutamate family)やアスパラギン酸系L−アミノ酸(L-amino acid of aspartate family)が挙げられる。「グルタミン酸系L−アミノ酸」とは、L−グルタミン酸、およびL−グルタミン酸を中間体として生合成されるL−アミノ酸の総称である。L−グルタミン酸を中間体として生合成されるL−アミノ酸としては、L−グルタミン、L−プロリン、L−アルギニン、L−シトルリン、L−オルニチンが挙げられる。「アスパラギン酸系L−アミノ酸」とは、アスパラギン酸、およびL−アスパラギン酸を中間体として生合成されるL−アミノ酸の総称である。L−アスパラギン酸を中間体として生合成されるL−アミノ酸としては、L−リジン、L−スレオニン、L−イソロイシン、L−メチオニンが挙げられる。L−アミノ酸として、さらに特には、L−リジン、L−スレオニン、L−グルタミン酸が挙げられる。本発明の細菌は、1種のL−アミノ酸の生産能のみを有していてもよく、2種またはそれ以上のL−アミノ酸の生産能を有していてもよい。
本発明において、「アミノ酸」という用語は、特記しない限り、L−アミノ酸を意味する。また、本発明において、「L−アミノ酸」という用語は、特記しない限り、フリー体のL−アミノ酸、その塩、またはそれらの混合物を意味する。塩については後述する。
細菌としては、腸内細菌科(Enterobacteriaceae)に属する細菌やコリネ型細菌が挙げられる。
腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクタ
ー(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セ
ラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属
、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。
エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes
of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.
)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、W3110株(ATCC 27325)やMG1655株(ATCC 47076)等のエシェリヒア・コリK-12株
;エシェリヒア・コリK5株(ATCC 23506);BL21(DE3)株等のエシェリヒア・コリB株;およびそれらの派生株が挙げられる。
エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的
には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる
。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細
書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea aggl
omeransと分類されているものも存在する。
パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614
)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091
)、SC17(0)株(VKPM B-9246)、及びSC17sucA株(FERM BP-8646)が挙げられる。なお、エンテロバクター属細菌やエルビニア属細菌には、パントエア属に再分類されたものもある(Int. J. Syst. Bacteriol., 39, 337-345 (1989); Int. J. Syst. Bacteriol., 43, 162-173 (1993))。例えば、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 39, 337-345 (1989))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。
エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エル
ビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。
コリネ型細菌としては、コリネバクテリウム(Corynebacterium)属、ブレビバクテリ
ウム(Brevibacterium)属、およびミクロバクテリウム(Microbacterium)属等の属に属する細菌が挙げられる。
コリネ型細菌としては、具体的には、下記のような種が挙げられる。
コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)
コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)
コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)
コリネバクテリウム・カルナエ(Corynebacterium callunae)
コリネバクテリウム・クレナタム(Corynebacterium crenatum)
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)
コリネバクテリウム・リリウム(Corynebacterium lilium)
コリネバクテリウム・メラセコーラ(Corynebacterium melassecola)
コリネバクテリウム・サーモアミノゲネス(コリネバクテリウム・エフィシエンス)(Corynebacterium thermoaminogenes (Corynebacterium efficiens))
コリネバクテリウム・ハーキュリス(Corynebacterium herculis)
ブレビバクテリウム・ディバリカタム(コリネバクテリウム・グルタミカム)(Brevibacterium divaricatum (Corynebacterium glutamicum))
ブレビバクテリウム・フラバム(コリネバクテリウム・グルタミカム)(Brevibacterium
flavum (Corynebacterium glutamicum))
ブレビバクテリウム・イマリオフィラム(Brevibacterium immariophilum)
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)(Brevibacterium lactofermentum (Corynebacterium glutamicum))
ブレビバクテリウム・ロゼウム(Brevibacterium roseum)
ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)
ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)
コリネバクテリウム・アンモニアゲネス(コリネバクテリウム・スタティオニス)(Corynebacterium ammoniagenes (Corynebacterium stationis))
ブレビバクテリウム・アルバム(Brevibacterium album)
ブレビバクテリウム・セリナム(Brevibacterium cerinum)
ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)
コリネ型細菌としては、具体的には、下記のような菌株が挙げられる。
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium crenatum AS1.542
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Brevibacterium divaricatum (Corynebacterium glutamicum) ATCC 14020
Brevibacterium flavum (Corynebacterium glutamicum) ATCC 13826, ATCC 14067, AJ12418 (FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Brevibacterium lactofermentum (Corynebacterium glutamicum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
なお、コリネバクテリウム属細菌には、従来ブレビバクテリウム属に分類されていたが、現在コリネバクテリウム属に統合された細菌(Int. J. Syst. Bacteriol., 41, 255(1991))も含まれる。また、コリネバクテリウム・スタティオニスには、従来コリネバクテ
リウム・アンモニアゲネスに分類されていたが、16S rRNAの塩基配列解析等によりコリネバクテリウム・スタティオニスに再分類された細菌も含まれる(Int. J. Syst. Evol. Microbiol., 60, 874-879(2010))。
これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する
登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。また、これらの菌株は、例えば、各菌株が寄託された寄託機関から入手することができる。
本発明の細菌は、本来的にL−アミノ酸生産能を有するものであってもよく、L−アミノ酸生産能を有するように改変されたものであってもよい。L−アミノ酸生産能を有する細菌は、例えば、上記のような細菌にL−アミノ酸生産能を付与することにより、または、上記のような細菌のL−アミノ酸生産能を増強することにより、取得できる。
L−アミノ酸生産能の付与又は増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77〜100頁参照)。そのよう
な方法としては、例えば、栄養要求性変異株の取得、L−アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L−アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L−アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L−アミノ酸生産菌の育種において、活性が増強されるL−アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。
L−アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL−アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N−メチル−N’−ニトロ−N−ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。
また、L−アミノ酸生産能の付与又は増強は、目的のL−アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより行うことができる。遺伝子の発現を増強する方法は、WO00/18935やEP1010755A等に記載されている。酵素活性を増強する詳細な手法については後述する。
また、L−アミノ酸生産能の付与又は増強は、目的のL−アミノ酸の生合成経路から分岐して目的のL−アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL−アミノ酸の生合成経路から分岐して目的のL−アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性を低下させる手法については後述する。
以下、L−アミノ酸生産菌、およびL−アミノ酸生産能を付与又は増強する方法について具体的に例示する。なお、以下に例示するようなL−アミノ酸生産菌が有する性質およびL−アミノ酸生産能を付与又は増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。
<L−グルタミン酸生産菌>
L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、L−グルタミン酸生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタミン酸シンターゼ(gltBD)、イソクエン酸デヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ
(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ピルビン酸カルボキシラーゼ(pyc)、ピルビン酸デヒドロゲナーゼ(aceEF, lpdA)、ピルビン酸キナーゼ(pykA, pykF)、ホスホエノールピルビン酸シンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセリン酸キナーゼ(pgk)、グリセルアルデヒド−3−リン酸デヒドロゲナーゼ(gapA)、トリオースリン酸イソメラーゼ(tpiA)、フルクトースビスリン酸アルドラーゼ(fbp)、グルコースリン酸
イソメラーゼ(pgi)、6−ホスホグルコン酸デヒドラターゼ(edd)、2−ケト−3−デ
オキシ−6−ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げら
れる。なお、カッコ内は、その酵素をコードする遺伝子の一例である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタミン酸デヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルビン酸カルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1種またはそれ以上の酵素の活性を増強するのが好ましい。
クエン酸シンターゼ遺伝子、ホスホエノールピルビン酸カルボキシラーゼ遺伝子、および/またはグルタミン酸デヒドロゲナーゼ遺伝子の発現が増大するように改変された腸内細菌科に属する株としては、EP1078989A、EP955368A、及びEP952221Aに開示されたものが挙げられる。また、エントナー・ドゥドロフ経路の遺伝子(edd, eda)の発現が増大するように改変された腸内細菌科に属する株としては、EP1352966Bに開示されたものが挙げられる。また、グルタミン酸シンテターゼ遺伝子(gltBD)の発現が増大するように改変さ
れたコリネ型細菌としては、WO99/07853に開示されたものが挙げられる。
また、L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、L−グルタミン酸の生合成経路から分岐してL−グルタミン酸以外の化合物を生成する反応を触媒する酵素から選択される1種またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、イソクエン酸リアーゼ(aceA)、α−ケトグルタル酸デヒドロゲナーゼ(sucA, odhA)、アセト乳酸シンターゼ(ilvI)、ギ酸アセチルトランスフェラーゼ(pfl)、乳酸デヒドロゲナーゼ(ldh)、アルコールデヒドロゲナーゼ(adh)、グルタミン酸デカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)が挙げられる。これらの酵素の中では、例えば
、α−ケトグルタル酸デヒドロゲナーゼ活性を低下又は欠損させることが好ましい。
α−ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌、及びそれらの取得方法は、米国特許第5,378,616号及び米国特許第5,573,945号に記載されている。また、パントエア属細菌、エンテロバクター属細菌、クレブシエラ属細菌、エルビニア属細菌等の腸内細菌においてα−ケトグルタル酸デヒドロゲナーゼ活性を低下または欠損させる方法は、米国特許第6,197,559号、米国特許第6,682,912号、米国特許第6,331,419号、米国特許第8,129,151号、及びWO2008/075483に開示されている。α−ケトグル
タル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、例えば、下記の株が挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624(FERM BP-3853)
E. coli AJ12628(FERM BP-3854)
E. coli AJ12949(FERM BP-4881)
E. coli W3110sucA::Kmrは、E. coli W3110のα−ケトグルタル酸デヒドロゲナーゼを
コードするsucA遺伝子を破壊することにより得られた株である。この株は、α−ケトグルタル酸デヒドロゲナーゼ活性を完全に欠損している。
α−ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したコリネ型細菌、及びそれらの取得方法は、WO2008/075483に記載されている。α−ケトグルタル酸デヒドロゲナ
ーゼ活性が低下または欠損したコリネ型細菌として、具体的には、例えば、下記の株が挙げられる。
Corynebacterium glutamicum(Brevibacterium lactofermentum)L30-2株(特開2006-340603)
Corynebacterium glutamicum(Brevibacterium lactofermentum)ΔS株(WO95/34672)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12821(FERM BP-4172;フランス特許第9401748号公報)
Corynebacterium glutamicum(Brevibacterium flavum)AJ12822(FERM BP-4173;フランス特許第9401748号公報)
Corynebacterium glutamicum AJ12823(FERM BP-4174;フランス特許第9401748号公報)
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis AJ13355株(FERM BP-6614)、Pantoea ananatis SC17株(FERM BP-11091)、Pantoea ananatis SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL−グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選
択された株である(米国特許第6,596,517号)。SC17株は、2009年2月4日に、独立行政法
人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構
特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、α−ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したパントエア属細菌も挙げられる。そのような株としては、AJ13355株のα−ケトグルタル酸デヒドロゲナーゼのE1サブユニット
遺伝子(sucA)欠損株であるAJ13356株(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA株(米国特許第6,596,517号)が挙げられる。AJ13356株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基
盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417が付与され、2004年2月26日に独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-8646として寄託されている。
尚、AJ13355株は、分離された当時はEnterobacter agglomeransと同定されたが、近年
、16S rRNAの塩基配列解析などにより、Pantoea ananatisに再分類されている。よって、AJ13355株及びAJ13356株は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis SC17sucA/RSFCPG+pSTVCB株、Pantoea ananatis AJ13601株、Pantoea ananatis NP106株、及びPantoea ananatis NA1株等のパントエア属細菌も挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)、およびグルタミン酸デヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得られた株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下
で高濃度のL−グルタミン酸に耐性を示す株として選択された株である。また、NP106株
は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。また、NA1株は、NP106株にプラスミドRSFPPGを導入して得られた株である(WO2010/027045)。プラスミドRSFPPGは、プラスミドRSFCPGのgltA遺伝子がメチルクエン酸シンターゼ遺伝子(prpC)に置
換された構造を有し、すなわちprpC遺伝子、ppc遺伝子、およびgdhA遺伝子を含む(WO200
8/020654)。AJ13601株は、1999年8月18日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-17516として寄託
され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、α−ケトグルタル酸デヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両
方が低下または欠損した株も挙げられる(特開2010-041920)。そのような株として、具
体的には、例えば、Pantoea ananatis NA1のsucAsdhA二重欠損株やCorynebacterium glutamicum ATCC14067のodhAsdhA二重欠損株(Corynebacterium glutamicum 8L3GΔSDH株)が挙げられる(特開2010-041920)。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、栄養要求性変異株も挙げられる。栄養要求性変異株として、具体的には、例えば、E. coli VL334thrC+(VKPM B-8961;EP1172433)が挙げられる。E. coli VL334(VKPM B-1641)は、thrC遺伝子及びilvA遺伝子に変異を有するL−イソロイシン及びL−スレオニン要求性株である(米国特許第4,278,765号)。E. coli VL334thrC+は、thrC遺伝子の野生型アレルをVL334に導入することにより得られた、L−イソロイシン要求性のL−グルタミン酸生産菌である。thrC遺伝子の野生型アレルは、野生型E. coli K-12株(VKPM B-7)の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。
また、L−グルタミン酸生産菌又はそれを誘導するための親株としては、アスパラギン酸アナログに耐性を有する株も挙げられる。これらの株は、例えば、α−ケトグルタル酸デヒドロゲナーゼ活性を欠損していてもよい。アスパラギン酸アナログに耐性を有し、α−ケトグルタル酸デヒドロゲナーゼ活性を欠損した株として、具体的には、例えば、E. coli AJ13199(FERM BP-5807;米国特許第5,908,768号)、さらにL−グルタミン酸分解能が低下したE. coli FERM P-12379(米国特許第5,393,671号)、E. coli AJ13138(FERM BP-5565;米国特許第6,110,714号)が挙げられる。
また、L−グルタミン酸生産能を付与又は増強するための方法としては、例えば、yhfK遺伝子(WO2005/085419)やybjL遺伝子(WO2008/133161)等のL−グルタミン酸排出遺伝子の発現を増強することも挙げられる。
また、コリネ型細菌について、L−グルタミン酸生産能を付与又は増強する方法としては、有機酸アナログや呼吸阻害剤などへの耐性を付与する方法や、細胞壁合成阻害剤に対する感受性を付与する方法も挙げられる。そのような方法として、具体的には、例えば、モノフルオロ酢酸耐性を付与する方法(特開昭50-113209)、アデニン耐性またはチミン
耐性を付与する方法(特開昭57-065198)、ウレアーゼを弱化させる方法(特開昭52-038088)、マロン酸耐性を付与する方法(特開昭52-038088)、ベンゾピロン類またはナフト
キノン類への耐性を付与する方法(特開昭56-1889)、HOQNO耐性を付与する方法(特開昭56-140895)、α-ケトマロン酸耐性を付与する方法(特開昭57-2689)、グアニジン耐性
を付与する方法(特開昭56-35981)、ペニシリンに対する感受性を付与する方法(特開平4-88994)が挙げられる。
このような耐性菌または感受性菌の具体例としては、下記のような菌株が挙げられる。Corynebacterium glutamicum(Brevibacterium flavum)AJ3949(FERM BP-2632;特開昭50-113209)
Corynebacterium glutamicum AJ11628(FERM P-5736;特開昭57-065198)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11355(FERM P-5007;特開昭5
6-1889)
Corynebacterium glutamicum AJ11368(FERM P-5020;特開昭56-1889)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11217(FERM P-4318;特開昭57-2689)
Corynebacterium glutamicum AJ11218(FERM P-4319;特開昭57-2689)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11564(FERM P-5472;特開昭56-140895)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11439(FERM P-5136;特開昭56-35981)
Corynebacterium glutamicum H7684(FERM BP-3004;特開平04-88994)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ11426(FERM P-5123
;特開平56-048890)
Corynebacterium glutamicum AJ11440(FERM P-5137;特開平56-048890)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ11796(FERM P-6402
;特開平58-158192)
また、コリネ型細菌について、L−グルタミン酸生産能を付与又は増強する方法としては、yggB遺伝子の発現を増強する方法やコード領域内に変異を導入した変異型yggB遺伝子を導入する方法も挙げられる(WO2006/070944)。すなわち、本発明の細菌は、yggB遺伝
子の発現が増大するように改変されていてもよく、変異型yggB遺伝子を保持する(有する)ように改変されていてもよい。
yggB遺伝子は、メカノセンシティブチャンネル(mechanosensitive channel)をコードする遺伝子である。yggB遺伝子としては、コリネ型細菌のyggB遺伝子が挙げられる。コリネ型細菌のyggB遺伝子として、具体的には、例えば、Corynebacterium glutamicum ATCC13869、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14967、Corynebacterium melassecola ATCC17965のyggB遺伝子が挙げられる(WO2006/070944)。Corynebacterium glutamicum ATCC13032のyggB遺伝子は、NCBIデータベースにGenBank Accession No. NC_003450で登録されているゲノム配列中、1,336,091〜1,337,692の
配列の相補配列に相当し、NCgl1221とも呼ばれる。Corynebacterium glutamicum ATCC13032のyggB遺伝子にコードされるYggBタンパク質は、GenBank accession No. NP_600492と
して登録されている。また、Corynebacterium glutamicum 2256(ATCC 13869)のyggB遺
伝子の塩基配列、及び同遺伝子がコードするYggBタンパク質のアミノ酸配列を、それぞれ配列番号7および8に示す。
本発明において、後述する「特定の変異」を有するyggB遺伝子を変異型yggB遺伝子、それによりコードされるタンパク質を変異型YggBタンパク質ともいう。また、本発明において、後述する「特定の変異」を有さないyggB遺伝子を野生型yggB遺伝子、それによりコードされるタンパク質を野生型YggBタンパク質ともいう。なお、YggBタンパク質にあっては、yggB遺伝子における「特定の変異」により引き起こされるアミノ酸配列の変化を「特定の変異」ともいう。ここでいう「野生型」とは、「変異型」と区別するための便宜上の記載であり、「特定の変異」を有しない限り、天然に得られるものには限定されない。野生型YggBタンパク質としては、上記例示したYggBタンパク質、例えば配列番号8に示すアミノ酸配列を有するタンパク質、が挙げられる。また、野生型YggBタンパク質としては、上記例示したYggBタンパク質の保存的バリアント(元の機能が維持されたバリアント)であって、「特定の変異」を有しないものも挙げられる。YggBタンパク質についての「元の機能」とは、例えば、メカノセンシティブチャネル(mechanosensitive channel)としての機能であってもよく、コリネ型細菌において発現を上昇させた際にコリネ型細菌のL−グルタミン酸生産能を向上させる性質であってもよい。
「特定の変異」は、上述したような野生型YggBタンパク質のアミノ酸配列を変化させ、コリネ型細菌のL−グルタミン酸生産能を向上させる変異であれば、特に制限されない。「特定の変異」としては、C末端側変異や膜貫通領域の変異が挙げられる(WO2006/070944)。また、「特定の変異」は、それらの変異の組み合わせであってもよい。
(1)C末端側変異
C末端側変異は、野生型yggB遺伝子中の、野生型YggBタンパク質の419〜533位のアミノ
酸残基をコードする領域における変異である。C末端側変異は、同領域中の1またはそれ
以上の箇所に導入されてよい。C末端側変異により引き起こされるアミノ酸配列の変化の
種類は特に制限されない。C末端側変異は、例えば、アミノ酸残基の置換(ミスセンス変
異)、アミノ酸残基の挿入、アミノ酸残基の欠失、ストップコドンの出現(ナンセンス変異)、フレームシフト変異、またはそれらの組み合わせを引き起こすものであってよい。C末端側変異としては、例えば、インサーションシーケンス(以下、「IS」ともいう)や
トランスポゾン等の塩基配列の挿入が好ましい。
(1−1)塩基配列の挿入
C末端側変異としては、例えば、野生型YggBタンパク質の419位のバリン残基をコードする箇所に塩基配列が挿入される変異(2A-1型変異)が挙げられる。2A-1型変異は、例えば、野生型YggBタンパク質の419〜533位のアミノ酸残基の一部または全部の欠失または置換を引き起こすものであってよい。2A-1型変異を有する変異型yggB遺伝子として、具体的には、例えば、配列番号7の1255位の「G」の次にISが挿入され、元の野生型YggBタンパ
ク質(配列番号8)よりも短い全長423アミノ残基の変異型YggBタンパク質をコードするyggB遺伝子が挙げられる。この変異型yggB遺伝子(V419::IS)の塩基配列、及び同遺伝子
がコードする変異型YggBタンパク質(V419::IS)のアミノ酸配列を、それぞれ配列番号9および10に示す。配列番号9中、1〜1269位が変異型YggBタンパク質(V419::IS)のC
DSである。変異型yggB遺伝子(V419::IS)を有するL−グルタミン酸生産菌として、具体的には、例えば、C. glutamicum 2256ΔsucAΔldhA yggB*株(WO2014/185430)が挙げ
られる。
(1−2)プロリン残基の置換
C末端側変異としては、例えば、野生型YggBタンパク質の419〜533位に存在するプロリ
ン残基を他のアミノ酸に置換する変異も挙げられる。そのようなプロリン残基としては、野生型YggBタンパク質の424位、437位、453位、457位、462位、469位、484位、489位、497位、515位、529位、および533位のプロリン残基が挙げられる。中でも、424位および/
または437位のプロリン残基を他のアミノ酸に置換するのが好ましい。「他のアミノ酸」
は、プロリン以外の天然型アミノ酸であれば特に制限されない。「他のアミノ酸」としては、Lys、Glu、Thr、Val、Leu、Ile、Ser、Asp、Asn、Gln、Arg、Cys、Met、Phe、Trp、Tyr、Gly、Ala、Hisが挙げられる。例えば、424位のプロリン残基は、好ましくは疎水性アミノ酸(Ala、Gly、Val、Leu、またはIle)に置換されてよく、より好ましくは分岐鎖ア
ミノ酸(Leu、Val、またはIle)に置換されてよい。また、例えば、437位のプロリン残基は、好ましくは側鎖にヒドロキシル基を有するアミノ酸(Thr、Ser、またはTyr)に置換
されてよく、より好ましくはSerに置換されてよい。
(2)膜貫通領域の変異
YggBタンパク質は、5個の膜貫通領域を有していると推測される。膜貫通領域はそれぞれ、野生型YggBタンパク質の1〜23位(第1膜貫通領域)、25〜47位(第2膜貫通領域)
、62〜84位(第3膜貫通領域)、86〜108位(第4膜貫通領域)、110〜132位(第5膜貫
通領域)のアミノ酸残基に相当する。膜貫通領域の変異は、野生型yggB遺伝子中の、これら膜貫通領域をコードする領域における変異である。膜貫通領域の変異は、同領域中の1またはそれ以上の箇所に導入されてよい。膜貫通領域の変異は、1若しくは数個のアミノ
酸の置換、欠失、付加、挿入、又は逆位を引き起こすものであって、且つ、フレームシフト変異およびナンセンス変異を伴わないものが好ましい。「1若しくは数個」とは、好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個、特に好ましくは1〜3個を意味する。膜貫通領域の変異としては、野生型YggBタンパク質の、14位のロイシン残基と15位のトリプトファン残基間に1又は数個のアミノ酸(例えば、Cys-Ser-Leu)を挿入する変異、100位のアラニン残基を他のアミノ酸残基(例えば、側鎖
にヒドロキシル基を有するアミノ酸(Thr、Ser、またはTyr)、好ましくはThr)へ置換する変異、111位のアラニン残基を他のアミノ酸残基(例えば、側鎖にヒドロキシル基を有するアミノ酸(Thr、Ser、またはTyr)、好ましくはThr)へ置換する変異などが挙げられる。
本発明において、「野生型YggBタンパク質のX位のアミノ酸残基」とは、特記しない限り、配列番号8におけるX位のアミノ酸残基に相当するアミノ酸残基を意味する。アミノ酸配列における「X位」とは、同アミノ酸配列のN末端から数えてX番目の位置を意味し
、N末端のアミノ酸残基が1位のアミノ酸残基である。なお、アミノ酸残基の位置は相対
的な位置を示すものであって、アミノ酸の欠失、挿入、付加などによってその絶対的な位置は前後することがある。例えば、「野生型YggBタンパク質の419位のアミノ酸残基」と
は、配列番号8における419位のアミノ酸残基に相当するアミノ酸残基を意味し、419位よりもN末端側の1アミノ酸残基が欠失している場合は、N末端から418番目のアミノ酸残基
が「野生型YggBタンパク質の419位のアミノ酸残基」であるものとする。また、419位よりもN末端側に1アミノ酸残基挿入されている場合は、N末端から420番目のアミノ酸残基が
「野生型YggBタンパク質の419位のアミノ酸残基」であるものとする。具体的には、例え
ば、Corynebacterium glutamicum ATCC14967株のYggBタンパク質においては、419〜529位のアミノ酸残基が、野生型YggBタンパク質の419〜533位のアミノ酸残基に相当する。
任意のYggBタンパク質のアミノ酸配列において、どのアミノ酸残基が「配列番号8におけるX位のアミノ酸残基に相当するアミノ酸残基」であるかは、当該YggBタンパク質のアミノ酸配列と配列番号8のアミノ酸配列とのアライメントを行うことにより決定できる。アライメントは、例えば、公知の遺伝子解析ソフトウェアを利用して行うことができる。具体的なソフトウェアとしては、日立ソリューションズ製のDNASISや、ゼネティックス製のGENETYXなどが挙げられる(Elizabeth C. Tyler et al., Computers and Biomedical Research, 24(1), 72-96, 1991;Barton GJ et al., Journal of molecular biology, 198(2), 327-37. 1987)。
変異型yggB遺伝子は、野生型yggB遺伝子を上述の「特定の変異」を有するよう改変することにより取得できる。DNAの改変は公知の手法により行うことができる。具体的には、例えば、DNAの目的部位に目的の変異を導入する部位特異的変異法としては、PCRを
用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる
方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T.
A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、変異型yggB遺伝子は、化学合成によっても取得できる。
変異型yggB遺伝子を有するように細菌を改変することは、変異型yggB遺伝子を細菌に導入することにより達成できる。また、変異型yggB遺伝子を有するように細菌を改変することは、自然変異や変異原処理により細菌が有するyggB遺伝子に変異を導入することによっても達成できる。
なお、L−グルタミン酸の生産能を付与又は増強する方法は、L−グルタミン酸を中間体として生合成されるL−アミノ酸(例えば、L−グルタミン、L−プロリン、L−アル
ギニン、L−シトルリン、L−オルニチン)の生産能を付与又は増強するためにも有効であり得る。すなわち、これらL−グルタミン酸を中間体として生合成されるL−アミノ酸の生産能を有する細菌は、上記のようなL−グルタミン酸生産菌が有する性質を適宜有していてよい。例えば、これらL−グルタミン酸を中間体として生合成されるL−アミノ酸の生産能を有する細菌は、α−ケトグルタル酸デヒドロゲナーゼおよび/またはコハク酸デヒドロゲナーゼの活性が低下するように改変されていてもよい。
<L−グルタミン生産菌>
L−グルタミン生産能を付与又は増強するための方法としては、例えば、L−グルタミン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。なお、グルタミンシンセターゼの活性は、グルタミンアデニリルトランスフェラーゼ遺伝子(glnE)の破壊やPII制御タンパク質遺伝子(glnB)の破壊によって増強してもよい(EP1229121)。
また、L−グルタミン生産能を付与又は増強するための方法としては、例えば、L−グルタミンの生合成経路から分岐してL−グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1種またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。
L−グルタミン生産菌又はそれを誘導するための親株として、具体的には、例えば、グルタミン酸デヒドロゲナーゼ(gdhA)および/またはグルタミンシンセターゼ(glnA)の活性を増強したコリネ型細菌(EP1229121, EP1424398)やグルタミナーゼ活性が低下したコリネ型細菌(特開2004-187684)が挙げられる。また、L−グルタミン生産菌又はそれ
を誘導するための親株としては、グルタミンシンセターゼの397位のチロシン残基が他の
アミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(US2003-0148474A)。
また、コリネ型細菌について、L−グルタミン生産能を付与又は増強する方法としては、6-ジアゾ-5-オキソ-ノルロイシン耐性を付与する方法(特開平3-232497)、プリンアナログ耐性及びメチオニンスルホキシド耐性を付与する方法(特開昭61-202694)、α-ケトマロン酸耐性を付与する方法(特開昭56-151495)が挙げられる。L−グルタミン生産能
を有するコリネ型細菌として、具体的には、例えば、以下の株が挙げられる。
Corynebacterium glutamicum(Brevibacterium flavum)AJ11573(FERM P-5492;特開昭56-151495)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11576(FERM BP-10381;特開
昭56-151495)
Corynebacterium glutamicum(Brevibacterium flavum)AJ12212(FERM P-8123;特開昭61-202694)
<L−プロリン生産菌>
L−プロリン生産能を付与又は増強するための方法としては、例えば、L−プロリン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、グルタミン酸−5−キナーゼ(proB)、γ‐グルタミル−リン酸レダクターゼ、ピロリン−5−カルボキシレートレダクターゼ(putA)が挙げられる。酵素活性の増強には、例えば、L−プロリンによるフィードバック阻害が解除されたグルタミン酸−5−キナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
また、L−プロリン生産能を付与又は増強するための方法としては、例えば、L−プロリン分解に関与する酵素の活性が低下するように細菌を改変する方法が挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。
L−プロリン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli NRRL B-12403及びNRRL B-12404(英国特許第2075056号)、E. coli VKPM B-8012(ロシア特許出願第2000124295号)、ドイツ特許第3127361号に記載のE. coliプラスミド変異体、Bloom F.R. et al(The 15th Miami winter symposium, 1983, p.34)に記載のE. coliプラスミド変異体、3,4−デヒドロキシプロリンおよびアザチジン−2−カルボキシレートに耐性のE. coli 702株(VKPM B-8011)、702株のilvA遺伝子欠損株であるE. coli
702ilvA株(VKPM B-8012;EP1172433)が挙げられる。
<L−スレオニン生産菌>
L−スレオニン生産能を付与又は増強するための方法としては、例えば、L−スレオニン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパル
トキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びス
レオニンシンターゼから選択される1種またはそれ以上の酵素の活性を増強するのが好ましい。L−スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578)が挙げられる。
L−スレオニン生合成系酵素の活性は、最終産物のL−スレオニンによって阻害される。従って、L−スレオニン生産菌を構築するためには、L−スレオニンによるフィードバック阻害を受けないようにL−スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987);
WO02/26993; WO2005/049808; WO2003/097839)。
スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715)。また、スレオニン生合成関与遺伝子がラムダファ−ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(EP0593792B)。また、L−スレオニンによるフィードバック阻害を受けないように改変された細菌は、L−スレオニンアナログであるα-amino-
β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。
このようにL−スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニ
ンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ−ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。
また、L−スレオニン生産能を付与又は増強する方法としては、宿主にL−スレオニン耐性を付与する方法やL−ホモセリン耐性を付与する方法も挙げられる。耐性の付与は、例えば、L−スレオニンに耐性を付与する遺伝子、L−ホモセリンに耐性を付与する遺伝子の発現を強化することにより達成できる。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123−135 (2003))、rhtB遺伝子(EP0994190A)、rhtC遺伝子(EP1013765A)、yfiK遺伝子、yeaS遺伝子(EP1016710A)が挙げられる。また、宿主にL−
スレオニン耐性を付与する方法は、EP0994190AやWO90/04636に記載の方法を参照出来る。
L−スレオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E.
coli TDH-6/pVIC40(VKPM B-3996;米国特許第5,175,107号, 米国特許第5,705,371号)
、E. coli 472T23/pYN7(ATCC 98081;米国特許第5,631,157号)、E. coli NRRL B-21593(米国特許第5,939,307号)、E. coli FERM BP-3756(米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520(米国特許第5,376,538号)、E. coli MG442(Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055
(EP1149911A)、ならびにE. coli VKPM B-5318(EP0593792B)が挙げられる。
VKPM B-3996株は、TDH-6株に、プラスミドpVIC40を導入した株である。TDH-6株は、ス
クロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有
する。また、TDH-6株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する
耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニ
ンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンに
よるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)
に、受託番号VKPM B-3996で寄託されている。
VKPM B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオ
ペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-5318で国際寄託されている。
E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子
は明らかにされている(ヌクレオチド番号337〜2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801〜3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝
子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らか
にされている(ヌクレオチド番号3734〜5020, GenBank accession NC_000913.2, gi: 491
75990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリ
ーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に
存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。
E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1(ybiF遺伝子, ヌクレオチド番号764〜1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝
子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明してい
る(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract
No. 457, EP1013765A)。
E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511〜3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989))。他の微生物のasd遺伝子も同様に得ることができる。
また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742〜984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づい
て作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子
も同様に得ることができる。
また、L−スレオニン生産能を有するコリネ型細菌としては、例えば、Corynebacterium acetoacidophilum AJ12318(FERM BP-1172;米国特許第5,188,949号)が挙げられる。
<L−リジン生産菌>
L−リジン生産能を付与又は増強するための方法としては、例えば、L−リジン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラー
ゼ(phosphoenolpyruvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenase)(asd)、アスパラギン酸アミノ
トランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランス
フェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1種またはそれ以上の酵素の活性を増強するのが好ましい。また、L−リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナー
ゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国
特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL−リジンによるフィ
ードバック阻害を受けるので、同酵素の活性を増強するには、L−リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用し
てもよい(米国特許第5,932,453号)。L−リジンによるフィードバック阻害が解除され
たアスパルトキナーゼIIIとしては、318位のメチオニン残基がイソロイシン残基に置換される変異、323位のグリシン残基がアスパラギン酸残基に置換される変異、352位のスレオニン残基がイソロイシン残基に置換される変異の1またはそれ以上の変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIが挙げられる(米国特許第5,661,012号、米国特許第6,040,160号)。また、ジヒドロジピコリン酸合成酵素(dapA)はL−リジンによ
るフィードバック阻害を受けるので、同酵素の活性を増強するには、L−リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。L−リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素としては、118位のヒスチジン残基がチロシン残基に置換される変異を
有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素が挙げられる(米国特許第6,040,160号)。
また、L−リジン生産能を付与又は増強するための方法としては、例えば、L−リジンの生合成経路から分岐してL−リジン以外の化合物を生成する反応を触媒する酵素から選択される1種またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。
また、コリネ型細菌について、L−リジン生産能を付与又は増強するための方法としては、例えば、リジン排出系(lysE)の活性が増大するように細菌を改変する方法が挙げられる(WO97/23597)。Corynebacterium glutamicum ATCC 13032のlysE遺伝子は、NCBIデ
ータベースにGenBank accession NC_006958(VERSION NC_006958.1 GI:62388892)とし
て登録されているゲノム配列中、1329712〜1330413位の配列の相補配列に相当する。Corynebacterium glutamicum ATCC13032のLysEタンパク質は、GenBank accession YP_225551
(YP_225551.1 GI:62390149)として登録されている。
また、L−リジン生産菌又はそれを誘導するための親株としては、L−リジンアナログに耐性を有する変異株が挙げられる。L−リジンアナログは腸内細菌科の細菌やコリネ型細菌等の細菌の生育を阻害するが、この阻害は、L−リジンが培地に共存するときには完全にまたは部分的に解除される。L−リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S−(2−アミノエチル)−L−システイン(AEC)、γ−メチルリジン、α−クロロカプロラクタムが挙げられる。これらのリジンアナ
ログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。
L−リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11442(FERM BP-1543, NRRL B-12185;米国特許第4,346,170号)及びE. coli VL611
が挙げられる。これらの株では、アスパルトキナーゼのL−リジンによるフィードバック阻害が解除されている。
L−リジン生産菌又はそれを誘導するための親株として、具体的には、E. coli WC196
株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与すること
により育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され
、1994年12月6日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技
術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。
好ましいL−リジン生産菌として、E. coli WC196ΔcadAΔldcやE. coli WC196ΔcadA
Δldc/pCABD2が挙げられる(WO2010/061890)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldcに、リジン生合成系遺伝子を含
むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である
。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日に、独立行政法人産業技術
総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120
号室)に受託番号FERM BP-11027として国際寄託された。pCABD2は、L−リジンによるフ
ィードバック阻害が解除される変異(H118Y)を有するエシェリヒア・コリ由来のジヒド
ロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L−リジンによるフィードバック阻害が解除される変異(T352I)を有するエシェリヒア・コリ由来のアスパ
ルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロ
ジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでい
る。
好ましいL−リジン生産菌として、E. coli AJIK01株(NITE BP-01520)も挙げられる
。AJIK01株は、E. coli AJ111046と命名され、2013年1月29日に、独立行政法人製品評価
技術基盤機構 特許微生物寄託センター(郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託され、2014年5月15日にブダペスト条約に基づく国際寄託に移管され、受託番号NITE BP-01520が付与されている。
また、L−リジン生産能を有するコリネ型細菌としては、例えば、AEC耐性変異株(Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ11082(NRRL B-11470)
株等;特公昭56-1914、特公昭56-1915、特公昭57-14157、特公昭57-14158、特公昭57-30474、特公昭58-10075、特公昭59-4993、特公昭61-35840、特公昭62-24074、特公昭62-36673、特公平5-11958、特公平7-112437、特公平7-112438);その生育にL−ホモセリン等のアミノ酸を必要とする変異株(特公昭48-28078、特公昭56-6499);AECに耐性を示し、更にL−ロイシン、L−ホモセリン、L−プロリン、L−セリン、L−アルギニン、L−アラニン、L−バリン等のアミノ酸を要求する変異株(米国特許第3,708,395号, 米国特許
第3,825,472号);DL−α−アミノ−ε−カプロラクタム、α−アミノ−ラウリルラク
タム、アスパラギン酸アナログ、スルファ剤、キノイド、N−ラウロイルロイシンに耐性を示す変異株;オキザロ酢酸デカルボキシラーゼ阻害剤または呼吸系酵素阻害剤に対する耐性を示す変異株(特開昭50-53588、特開昭50-31093、特開昭52-102498、特開昭53-9394、特開昭53-86089、特開昭55-9783、特開昭55-9759、特開昭56-32995、特開昭56-39778、特公昭53-43591、特公昭53-1833);イノシトールまたは酢酸を要求する変異株(特開昭55-9784、特開昭56-8692);フルオロピルビン酸または34℃以上の温度に対して感受性を
示す変異株(特開昭55-9783、特開昭53-86090);エチレングリコールに耐性を示す変異
株(米国特許第4,411,997号)が挙げられる。
<L−アルギニン生産菌>
L−アルギニン生産能を付与又は増強するための方法としては、例えば、L−アルギニン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、N−アセチルグルタミン酸シンターゼ(argA)、N−アセチルグルタミン酸キナーゼ(argB)、N−アセチルグルタミルリン酸レダクターゼ(argC)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)、オルニチンカルバモイルトランスフェラーゼ(argF, argI)、アルギニノコハク酸シンターゼ(argG)、アルギニノコハク酸リアーゼ(argH)、オルニチンアセチルトランスフェラーゼ(argJ)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。N−アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位〜19位に相当するアミノ酸残基が置換さ
れ、L−アルギニンによるフィードバック阻害が解除された変異型N−アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(EP1170361A)。
L−アルギニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E.
coli 237株(VKPM B-7925;US2002-058315A1)、変異型N−アセチルグルタミン酸シン
ターゼをコードするargA遺伝子が導入されたその誘導株(ロシア特許出願第2001112869号, EP1170361A1)、237株由来の酢酸資化能が向上した株であるE. coli 382株(VKPM B-7926;EP1170358A1)、及び382株にE. coli K-12株由来の野生型ilvA遺伝子が導入された株であるE. coli 382ilvA+株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管され
た。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny
proezd., 1 Moscow 117545, Russia)にVKPM B-7926の受託番号で寄託されている。
また、L−アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログ等への耐性を有する株も挙げられる。そのような株としては、例えば、α−メチルメチオニン、p−フルオロフェニルアラニン、D−アルギニン、アルギニンヒドロキサム酸、S−(2−アミノエチル)−システイン、α−メチルセリン、β−2−チエニルアラニン、またはスルファグアニジンに耐性を有するE. coli変異株(特開昭56-106598)が挙げられる。
また、L−アルギニン生産菌又はそれを誘導するための親株としては、アルギニンリプレッサーであるArgRを欠損した株(US2002-0045223A)や細胞内のグルタミンシンテター
ゼ活性を上昇させた株(US2005-0014236A)等のコリネ型細菌も挙げられる。
また、L−アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログなどへの耐性を有するコリネ型細菌の変異株も挙げられる。そのような株としては、例えば、2−チアゾールアラニン耐性に加えて、L−ヒスチジン、L−プロリン、L−スレオニン、L−イソロイシン、L−メチオニン、またはL−トリプトファン要求性を有する株(特開昭54-44096);ケトマロン酸、フルオロマロン酸、又はモノフルオロ酢酸に耐性を有する株(特開昭57-18989);アルギニノールに耐性を有する株(特公昭62-24075);X−グアニジン(Xは脂肪鎖又はその誘導体)に耐性を有する株(特開平2-186995);アルギニンヒドロキサメート及び6−アザウラシルに耐性を有する株(特開昭57-150381)
が挙げられる。L−アルギニン生産能を有するコリネ型細菌の具体例としては、下記のよ
うな菌株が挙げられる。
Corynebacterium glutamicum(Brevibacterium flavum)AJ11169(FERM BP-6892)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12092(FERM BP-6906)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11336(FERM BP-6893)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11345(FERM BP-6894)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12430(FERM BP-2228)
<L−シトルリン生産菌およびL−オルニチン生産菌>
L−シトルリンおよびL−オルニチンは、L−アルギニン生合成経路における中間体である。よって、L−シトルリンおよび/またはL−オルニチンの生産能を付与又は増強するための方法としては、例えば、L−アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、L−シトルリンについて、N−アセチルグルタミン酸シンターゼ(argA)、N−アセチルグルタミン酸キナーゼ(argB)、N−アセチルグルタミルリン酸レダクターゼ(argC)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)、オルニチンカルバモイルトランスフェラーゼ(argF, argI)、オルニチンアセチルトランスフェラーゼ(argJ)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。また、そのような酵素としては、特に制限されないが
、L−オルニチンについて、N−アセチルグルタミン酸シンターゼ(argA)、N−アセチルグルタミン酸キナーゼ(argB)、N−アセチルグルタミルリン酸レダクターゼ(argC)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)、オルニチンアセチルトランスフェラーゼ(argJ)が挙げられる。
また、L−シトルリン生産菌は、例えば、任意のL−アルギニン生産菌(E. coli 382
株(VKPM B-7926)等)から、argG遺伝子にコードされるアルギニノコハク酸シンターゼ
の活性を低下させることにより容易に得ることができる。また、L−オルニチン生産菌は、例えば、任意のL−アルギニン生産菌(E. coli 382株(VKPM B-7926)等)から、argF及びargI両遺伝子によりコードされるオルニチンカルバモイルトランスフェラーゼの活性を低下させることにより容易に得ることができる。
L−シトルリン生産菌又はそれを誘導するための親株として、具体的には、例えば、変異型N−アセチルグルタミン酸シンターゼを保持するE. coli 237/pMADS11株、237/pMADS12株、及び237/pMADS13株(ロシア特許第2215783号, 米国特許第6,790,647号, EP1170361B1)、フィードバック阻害に耐性のカルバモイルリン酸シンセターゼを保持するE. coli 333株(VKPM B-8084)及び374株(VKPM B-8086)(ロシア特許第2264459号)、α−ケト
グルタル酸シンターゼの活性が増大し、且つフェレドキシンNADP+レダクターゼ、ピルビ
ン酸シンターゼ、及び/又はα−ケトグルタル酸デヒドロゲナーゼの活性がさらに改変されたE. coli株(EP2133417A1)等のエシェリヒア属に属する株や、コハク酸デヒドロゲナーゼ及びα−ケトグルタル酸デヒドロゲナーゼの活性が低下したP. ananatis NA1sucAsdhA株(US2009-286290A1)が挙げられる。
<L−ヒスチジン生産菌>
L−ヒスチジン生産能を付与又は増強するための方法としては、例えば、L−ヒスチジン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル−AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル−ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ−5−アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、
アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
これらの内、hisG及びhisBHAFIにコードされるL−ヒスチジン生合成系酵素は、L−ヒスチジンにより阻害されることが知られている。従って、L−ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、付与又は増強することができる(ロシア特許第2003677号及びロシア特許第2119536号)。
L−ヒスチジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E.
coli 24株(VKPM B-5945;RU2003677)、E. coli NRRL B-12116〜B-12121(米国特許第4,388,405号)、E. coli H-9342(FERM BP-6675)及びH-9343(FERM BP-6676)(米国特許第6,344,347号)、E. coli H-9341(FERM BP-6674;EP1085087)、E. coli AI80/pFM201
(米国特許第6,258,554号)、L−ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM P-5038及びFERM P-5048(特開昭56-005099号)、アミノ
酸輸送の遺伝子を導入したE. coli株(EP1016710A)、スルファグアニジン、DL−1,
2,4−トリアゾール−3−アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270;ロシア特許第2119536号)等のエシェリヒア属に属する株が挙げられる。
<L−システイン生産菌>
L−システイン生産能を付与又は増強するための方法としては、例えば、L−システイン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼ(cysE)や3−ホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571やUS2005-0112731Aに開示されている。また、3−ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3−ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3−ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
また、L−システイン生産能を付与又は増強するための方法としては、例えば、L−システインの生合成経路から分岐してL−システイン以外の化合物を生成する反応を触媒する酵素から選択される1種またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、例えば、L−システインの分解に関与する酵素が挙げられる。L−システインの分解に関与する酵素としては、特に制限されないが、シスタチオニン−β−リアーゼ(metC)(特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA)(特開2003-169668、Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218)、O−アセチルセリンスルフヒドリラーゼB(cysM)(特開2005-245311)、malY遺伝子産物(特開2005-245311)、Pantoea ananatisのd0191遺伝子産物(特開2009-232844)、システインデスルフヒドラーゼ(aecD)(特開2002-233384)が挙げられる。
また、L−システイン生産能を付与又は増強するための方法としては、例えば、L−システイン排出系を増強することや硫酸塩/チオ硫酸塩輸送系を増強することも挙げられる。L−システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(
特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。
L−システイン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害耐性の変異型セリンアセチルトランスフェラーゼをコードする種々のcysEアレルで形質転換されたE. coli JM15(米国特許第6,218,168号, ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現
遺伝子を有するE. coli W3110(米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株(特開平11-155571)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110(WO01/27307A1)が
挙げられる。
また、L−システイン生産能を有するコリネ型細菌としては、例えば、L−システインによるフィードバック阻害が低減されたセリンアセチルトランスフェラーゼを保持することにより、細胞内のセリンアセチルトランスフェラーゼ活性が上昇したコリネ型細菌(特開2002-233384)が挙げられる。
<L−セリン生産菌>
L−セリン生産能を付与又は増強するための方法としては、例えば、L−セリン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる(特開平11-253187)。そのような酵素としては、特に制限されないが
、3−ホスホグリセリン酸デヒドロゲナーゼ(serA)、ホスホセリントランスアミナーゼ(serC)、ホスホセリンホスファターゼ(serB)が挙げられる(特開平11-253187)。3
−ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3−ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3−ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
L−セリン生産菌又はそれを誘導するための親株としては、例えば、アザセリンまたはβ−(2−チエニル)−DL−アラニンに耐性を示し、かつL−セリン分解能を欠失したコリネ型細菌が挙げられる(特開平10-248588)。そのようなコリネ型細菌として、具体
的には、例えば、アザセリンに耐性を示し、かつL−セリン分解能を欠失したCorynebacterium glutamicum(Brevibacterium flavum)AJ13324(FERM P-16128)や、β−(2−チエニル)−DL−アラニンに耐性を示し、かつL−セリンの分解能を欠失したCorynebacterium glutamicum(Brevibacterium flavum)AJ13325(FERM P-16129)が挙げられる(特開平10-248588)。
<L−メチオニン生産菌>
L−メチオニン生産菌又はそれを誘導するための親株としては、L−スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L−
メチオニン生産菌又はそれを誘導するための親株としては、L−メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US2009-0029424A)。なお、L−メチオニンはL−システインを中間体として生合成されるため、L−システインの生産能の向上によりL−メチオニンの生産能も向上させることができる(特開2000-139471、US2008-0311632A)。
L−メチオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E.
coli AJ11539(NRRL B-12399)、E. coli AJ11540(NRRL B-12400)、E. coli AJ11541
(NRRL B-12401)、E. coli AJ11542(NRRL B-12402)(英国特許第2075055号)、L−メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株(VKPM B-8125;ロシア特許第2209248号)や73株(VKPM B-8126;ロシア特許第2215782号)、E. coli AJ13425(FERM P-16808;特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS−アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ−シンターゼ活性、及びアスパルトキナーゼ−ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来の
L−スレオニン要求株である。
<L−ロイシン生産菌>
L−ロイシン生産能を付与又は増強するための方法としては、例えば、L−ロイシン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロ
ンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L−ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
L−ロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、ロイシン耐性のE. coli株(例えば、57株(VKPM B-7386;米国特許第6,124,121号))、β−
2−チエニルアラニン、3−ヒドロキシロイシン、4−アザロイシン、5,5,5−トリフルオロロイシン等のロイシンアナログに耐性のE. coli株(特公昭62-34397及び特開平8-70879)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068(特開平8-70879)等のエシェリヒア属に属する株が挙げられる。
L−ロイシン生産能を有するコリネ型細菌としては、例えば、2−チアゾールアラニン及びβ−ハイドロキシロイシンに耐性で、且つイソロイシン及びメチオニン要求性である、Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ3718(FERM P-2516)が挙げられる。
<L−イソロイシン生産菌>
L−イソロイシン生産能を付与又は増強するための方法としては、例えば、L−イソロイシン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458, EP0356739A, 米国特許第5,998,178号)。
L−イソロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、6−ジメチルアミノプリンに耐性を有する変異株(特開平5-304969)、チアイソロイシン、イソロイシンヒドロキサメート等のイソロイシンアナログに耐性を有する変異株、イソロイシンアナログに加えてDL−エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号)等のエシェリヒア属細菌が挙げられる。
L−イソロイシン生産能を有するコリネ型細菌としては、例えば、分岐鎖アミノ酸排出タンパク質をコードするbrnE遺伝子を増幅したコリネ型細菌(特開2001-169788)、L−
リジン生産菌とのプロトプラスト融合によりL−イソロイシン生産能を付与したコリネ型細菌(特開昭62-74293)、ホモセリンデヒドロゲナーゼを強化したコリネ型細菌(特開昭62-91193)、スレオニンハイドロキサメート耐性株(特開昭62-195293)、α-ケトマロン耐性株(特開昭61-15695)、メチルリジン耐性株(特開昭61-15696)、Corynebacterium glutamicum(Brevibacterium flavum)AJ12149(FERM BP-759;米国特許第4,656,135号)
が挙げられる。
<L−バリン生産菌>
L−バリン生産能を付与又は増強するための方法としては、例えば、L−バリン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸
シンターゼを、ilvCはイソメロリダクターゼ(WO00/50624)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L−バリン、L−イソロイシン、および/またはL−ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL−バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L−イソロイシン生合成系の律速段階であるL−スレオニンから2−ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L−バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
また、L−バリン生産能を付与又は増強するための方法としては、例えば、L−バリンの生合成経路から分岐してL−バリン以外の化合物を生成する反応を触媒する酵素から選択される1種またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、L−ロイシン合成に関与するスレオニンデヒドラターゼやD−パントテン酸合成に関与する酵素が挙げられる(WO00/50624)。
L−バリン生産菌又はそれを誘導するための親株として、具体的には、例えば、ilvGMEDAオペロンを過剰発現するように改変されたE. coli株(米国特許第5,998,178号)が挙げられる。
また、L−バリン生産菌又はそれを誘導するための親株としては、アミノアシルt-RNA
シンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株
としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショ
ナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP
GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。また、L−バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。
また、L−バリン生産菌又はそれを誘導するための親株としては、アミノ酸アナログなどへの耐性を有する株も挙げられる。そのような株としては、例えば、L−イソロイシンおよびL−メチオニン要求性、ならびにD−リボース、プリンリボヌクレオシド、またはピリミジンリボヌクレオシドに耐性を有し、且つL−バリン生産能を有するコリネ型細菌株(FERM P-1841、FERM P-29)(特公昭53-025034)、ポリケトイド類に耐性を有するコ
リネ型細菌株(FERM P-1763、FERM P-1764)(特公平06-065314)、酢酸を唯一の炭素源
とする培地でL−バリン耐性を示し、且つグルコースを唯一の炭素源とする培地でピルビン酸アナログ(フルオロピルビン酸等)に感受性を有するコリネ型細菌株(FERM BP-3006、FERM BP-3007)(特許3006929号)が挙げられる。
<L−アラニン生産菌>
L−アラニン生産菌又はそれを誘導するための親株としては、H+-ATPaseを欠失してい
るコリネ型細菌(Appl Microbiol Biotechnol. 2001 Nov;57(4):534-40)やアスパラギン酸β−デカルボキシラーゼ活性が増強されたコリネ型細菌(特開平07-163383)が挙げら
れる。
<L−トリプトファン生産菌、L−フェニルアラニン生産菌、L−チロシン生産菌>
L−トリプトファン生産能、L−フェニルアラニン生産能、および/またはL−チロシン生産能を付与又は増強するための方法としては、例えば、L−トリプトファン、L−フェニルアラニン、および/またはL−チロシンの生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3−デオキシ−D−アラビノヘプツロン酸−7−リン酸シンターゼ(aroG)、3−デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5−エノール酸ピルビルシキミ酸3−リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(EP763127B)。これらの酵素をコードする遺伝子の発現は
チロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(EP763127B)。
L−トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒド
ロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L−トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL−トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL−セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)
の発現を増大させることによりL−トリプトファン生産能を付与又は増強してもよい(WO2005/103275)。
L−フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ−プレフェン酸デヒドラターゼはL−フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
L−チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ−プレフェン酸デヒドロゲナーゼはL−チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
L−トリプトファン、L−フェニルアラニン、および/またはL−チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L−トリプトファン、L−フェニルアラニン、および/またはL−チロシ
ンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L−トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L−フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L−チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。
L−トリプトファン生産菌又はそれを誘導するための親株として、具体的には、例えば、部分的に不活化されたトリプトファニル-tRNAシンテターゼをコードする変異型trpS遺
伝子を保持するE. coli JP4735/pMU3028(DSM10122)及びJP6015/pMU91(DSM10123)(米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラ
ニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィー
ドバック阻害を受けないホスホグリセリン酸デヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5)(米国特許第6,180,373号)、トリプト
ファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株(特開昭57-71397, 特開昭62-244382, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44)(NRRL B-12263)及びAGX6(pGX50)aroP(NRRL B-12264)(米国特許第4,371,614号)、ホス
ホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps(WO9708333,
米国特許第6,319,696号)、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活
性が増大したエシェリヒア属に属する株(US2003-0148473A1及びUS2003-0157667A1)が挙げられる。
L−トリプトファン生産能を有するコリネ型細菌としては、例えば、サルファグアニジンに耐性のCorynebacterium glutamicum AJ12118(FERM BP-478)(特許第01681002号)
、トリプトファンオペロンが導入された株(特開昭63-240794)、コリネ型細菌由来のシ
キミ酸キナーゼをコードする遺伝子が導入された株(特許第1994749号)が挙げられる。
L−フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、コリスミ酸ムターゼ−プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739(tyrA::Tn10, tyrR)(VKPM B-8197;WO03/044191)、フィード
バック阻害が解除されたコリスミ酸ムターゼ−プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089(ATCC 55371;米国特許第5,354,672号)
、E. coli MWEC101-b(KR8903681)、E. coli NRRL B-12141、NRRL B-12145、NRRL B-12146、NRRL B-12147(米国特許第4,407,952号)が挙げられる。また、L−フェニルアラニ
ン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害が解除されたコリスミ酸ムターゼ−プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 <W3110 (tyrA)/pPHAB>(FERM BP-3566)、E. coli K-12 <W3110 (tyrA)/pPHAD>(FERM BP-12659)、E. coli K-12 <W3110 (tyrA)/pPHATerm>(FERM BP-12662)、E. coli K-12 AJ 12604 <W3110 (tyrA)/pBR-aroG4, pACMAB>(FERM BP-3579)も挙げられる(EP488424B1)。また、L−フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(US2003-0148473A,
US2003-0157667A, WO03/044192)。
L−フェニルアラニン生産能を有するコリネ型細菌としては、例えば、ホスホエノールピルビン酸カルボキシラーゼまたはピルビン酸キナーゼ活性が低下した、Corynebacterium glutamicum BPS-13株(FERM BP-1777)、Corynebacterium glutamicum K77(FERM BP-2062)、Corynebacterium glutamicum K78(FERM BP-2063;EP331145A, 特開平02-303495
)、チロシン要求性株(特開平05-049489)が挙げられる。
L−チロシン生産能を有するコリネ型細菌としては、例えば、Corynebacterium glutamicum AJ11655(FERM P-5836;特公平2-6517)、Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12081(FERM P-7249;特開昭60-70093)が挙げられる。
また、L−アミノ酸生産能を付与又は増強する方法としては、例えば、細菌の細胞からL−アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L−アミノ酸を排出する活性は、例えば、L−アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874)。
また、L−アミノ酸生産能を付与又は増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。
糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6−リン酸イソメラーゼ遺伝子(pgi;WO01/02542)、ピルビン酸カルボキシラーゼ遺伝
子(pyc;WO99/18228, EP1092776A)、ホスホグルコムターゼ遺伝子(pgm;WO03/04598)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;WO03/04664)、トランスアル
ドラーゼ遺伝子(talB;WO03/008611)、フマラーゼ遺伝子(fum;WO01/02545)、non-PTSスクロース取り込み遺伝子(csc;EP1149911A)、スクロース資化性遺伝子(scrABオペ
ロン;米国特許第7,179,623号)が挙げられる。
エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許第5,830,716号)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;EP1070376A)が挙げられる。
また、L−アミノ酸等の有用物質の生産能を付与又は増強するための方法としては、例えば、ホスホケトラーゼの活性が増大するように細菌を改変する方法も挙げられる(WO2006/016705)。すなわち、本発明の細菌は、ホスホケトラーゼの活性が増大するように改
変されていてよい。同方法は、特に、L−グルタミン酸等のグルタミン酸系L−アミノ酸の生産能を付与又は増強するために有効であり得る。ホスホケトラーゼとしては、D−キシルロース−5−リン酸−ホスホケトラーゼやフルクトース−6−リン酸ホスホケトラーゼが挙げられる。D−キシルロース−5−リン酸−ホスホケトラーゼ活性及びフルクトース−6−リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。
D−キシルロース−5−リン酸−ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース−5−リン酸をグリセルアルデヒド−3−リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献(Methods Enzymol., 9,515-520 (1966))またはL. Meileの文献(J.Bacteriol. (2001) 183; 2929-2936)に記載の方法によって測定することができる。D−キシルロース−5−リン酸ホスホ
ケトラーゼとしては、アセトバクター属、ビフィドバクテリウム属、ラクトバチルス属、チオバチルス属、ストレプトコッカス属、メチロコッカス属、ブチリビブリオ属、またはフィブロバクター属に属する細菌や、カンジダ属、ロドトルラ属、ロドスポリジウム属、ピキア属、ヤロウイア属、ハンセヌラ属、クルイベロミセス属、サッカロミセス属、トリコスポロン属、またはウィンゲア属に属する酵母のD−キシルロース−5−リン酸ホスホ
ケトラーゼが挙げられる。D−キシルロース−5−リン酸ホスホケトラーゼおよびそれをコードする遺伝子の具体例は、WO2006/016705に開示されている。
また、フルクトース−6−リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6−リン酸をエリスロース−4−リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, E.の文献(Methods Enzymol., 5, 276-280 (1962))またはL. Meileの文献(J.Bacteriol. (2001) 183; 2929-2936)に記載の方法によって測定することができる。フルクトース−6−リン酸ホスホケトラーゼとしては、アセトバクター属、ビフィドバクテリウム属、クロロビウム属、ブルセラ属、メチロコッカス属、またはガードネレラ属に属する細菌や、ロドトルラ属、カンジダ属、サッカロミセス属等に属する酵母のフルクトース−6−リン酸ホスホケトラーゼが挙げられる。フルクトース−6−リン酸ホスホケトラーゼおよびそれをコードする遺伝子の具体例は、WO2006/016705に開示されている。
両ホスホケトラーゼ活性が、単一の酵素(D−キシルロース−5−リン酸/フルクトース−6−リン酸ホスホケトラーゼ)によって保持される場合もありうる。
L−アミノ酸生産菌の育種に使用される遺伝子およびタンパク質は、それぞれ、例えば、上記例示した遺伝子およびタンパク質等の公知の遺伝子およびタンパク質の塩基配列およびアミノ酸配列を有していてよい。また、L−アミノ酸生産菌の育種に使用される遺伝子およびタンパク質は、それぞれ、上記例示した遺伝子およびタンパク質等の公知の遺伝子およびタンパク質の保存的バリアントであってもよい。具体的には、例えば、L−アミノ酸生産菌の育種に使用される遺伝子は、元の機能が維持されている限り、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。遺伝子およびタンパク質の保存的バリアントについては、後述するカロテノイド生合成酵素遺伝子およびカロテノイド生合成酵素の保存的バリアントに関する記載を準用できる。
また、本発明の細菌は、カロテノイド生産能を有していてもよい。本発明において、「カロテノイド生産能を有する細菌」とは、培地で培養したときに、目的とするカロテノイドを生成し、菌体内に蓄積する能力を有する細菌をいう。カロテノイド生産能を有する細菌は、非改変株よりも多い量の目的とするカロテノイドを菌体内に蓄積することができる細菌であってよい。「非改変株」とは、カロテノイド生合成酵素の活性が増大するように改変されていない対照株をいう。すなわち、非改変株としては、野生株や親株が挙げられる。また、カロテノイド生産能を有する細菌は、好ましくは50μg/g−DCW以上、より好ましくは100μg/g−DCW以上、さらに好ましくは200μg/g−DCW以上、特に好ましくは500μg/g−DCW以上の量の目的とするカロテノイドを菌体内に蓄積することができる細菌であってもよい。「DCW」は、乾燥菌体重量(dry cell
weight)を示す。カロテノイドとしては、カロテン類やキサントフィル類が挙げられる
。カロテノイドとして、具体的には、例えば、フィトエン(phytoene)、フィトフルエン(phytofluene)、Ζ−カロテン(zeta-carotene)、ニューロスポレン(neurosporene)、リコペン(lycopene)、β−カロテン(beta-carotene)、β−クリプトキサンチン(beta-cryptoxanthin)、エキネノン(echinenone)、3−ヒドロキシエキネノン(3-hydroxyechinenone)、3’−ヒドロキシエキネノン(3'-hydroxyechinenone)、ゼアキサンチン(zeaxanthin)、カンタキサンチン(canthaxanthin)、アドニキサンチン(adonixanthin)、アドニルビン(adonirubin)、アスタキサンチン(astaxanthine)が挙げられる
。カロテノイドとしては、特に、β−カロテン、ゼアキサンチン、カンタキサンチン、アスタキサンチンが挙げられる。カロテノイドとして、さらに特には、アスタキサンチンが挙げられる。本発明の細菌は、1種のカロテノイドの生産能のみを有していてもよく、2
種またはそれ以上のカロテノイドの生産能を有していてもよい。本発明の細菌は、本来的にカロテノイド生産能を有するものであってもよく、カロテノイド生産能を有するように改変されたものであってもよい。カロテノイド生産能を有する細菌は、例えば、上記のような細菌にカロテノイド生産能を付与することにより、または、上記のような細菌のカロテノイド生産能を増強することにより、取得できる。カロテノイド生産能は、例えば、カロテノイド生合成酵素の活性が増大するように細菌を改変することにより、付与又は増強することができる。
<1−2>カロテノイド生合成酵素の活性の増強
本発明の細菌は、カロテノイド生合成酵素の活性が増大するように改変されている。本発明の細菌は、L−アミノ酸生産能を有する細菌を、カロテノイド生合成酵素の活性が増大するように改変することにより取得できる。また、本発明の細菌は、カロテノイド生合成酵素の活性が増大するように細菌を改変した後に、L−アミノ酸生産能を付与または増強することによっても取得できる。なお、本発明の細菌は、カロテノイド生合成酵素の活性が増大するように改変されたことにより、L−アミノ酸生産能を獲得したものであってもよい。本発明の細菌は、カロテノイド生合成酵素の活性が増大するように改変されていることに加えて、例えば、上記のようなL−アミノ酸生産菌が有する性質を適宜有していてよい。本発明の細菌を構築するための改変は、任意の順番で行うことができる。
カロテノイド生合成酵素の活性が増大するように細菌を改変することによって、細菌のL−アミノ酸生産能を向上させることができ、すなわち同細菌によるL−アミノ酸生産を増大させることができる。
以下に、カロテノイド生合成酵素およびそれをコードする遺伝子について説明する。
「カロテノイド生合成酵素」とは、カロテノイドの生合成に関与するタンパク質をいう。また、カロテノイド生合成酵素をコードする遺伝子を「カロテノイド生合成酵素遺伝子」ともいう。
カロテノイドは、ファルネシルピロリン酸(farnesyl pyrophosphate)を中間体として生合成される。すなわち、カロテノイド生合成酵素としては、ファルネシルピロリン酸からアスタキサンチン等のカロテノイドへの変換を触媒する酵素が挙げられる。
アスタキサンチンは、例えば、以下の反応を経て生合成され得る。すなわち、ファルネシルピロリン酸は、ゲラニルゲラニルピロリン酸シンターゼ(geranylgeranyl pyrophosphate synthase)の作用により、ゲラニルゲラニルピロリン酸(geranylgeranyl pyrophosphate)へと変換され得る。ゲラニルゲラニルピロリン酸は、フィトエンシンターゼ(phytoene synthase)の作用により、フィトエン(phytoene)へと変換され得る。フィトエンは、フィトエンデサチュラーゼ(phytoene desaturase)の作用により、4段階の不飽和
化を経てリコペン(lycopene)へと変換され得る。リコペンは、リコペンβ−サイクラーゼ(lycopene beta-cyclase)の作用により、β−カロテン(beta-carotene)へと変換され得る。β−カロテンは、カロテンケトラーゼ(carotene ketolase)およびカロテンヒ
ドロキシラーゼ(carotene hydroxylase)の作用により、2段階のケト化と2段階の水酸化を経てアスタキサンチンへと変換され得る。よって、カロテノイド生合成酵素として、具体的には、例えば、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、リコペンβ−サイクラーゼ、カロテンケトラーゼ、カロテンヒドロキシラーゼが挙げられる。
「ゲラニルゲラニルピロリン酸シンターゼ」とは、ファルネシルピロリン酸とイソペンテニルピロリン酸(isopentenyl pyrophosphate)をゲラニルゲラニルピロリン酸とピロ
リン酸に変換する反応を触媒する活性を有するタンパク質をいう(EC 2.5.1.29)。同活
性を「ゲラニルゲラニルピロリン酸シンターゼ活性」ともいう。ゲラニルゲラニルピロリン酸シンターゼとしては、crtE遺伝子にコードされるCrtEタンパク質が挙げられる。
「フィトエンシンターゼ」とは、2分子のゲラニルゲラニルピロリン酸を1分子のフィトエンと2分子のピロリン酸に変換する反応を触媒する活性を有するタンパク質をいう(EC 2.5.1.32またはEC 2.5.1.99)。同活性を「フィトエンシンターゼ活性」ともいう。フィトエンシンターゼとしては、crtB遺伝子にコードされるCrtBタンパク質が挙げられる。
「フィトエンデサチュラーゼ」とは、フィトエン、フィトフルエン、Ζ−カロテン、ニューロスポレン等の線状カロテンを不飽和化する反応を触媒する活性を有するタンパク質をいう。同活性を「フィトエンデサチュラーゼ活性」ともいう。フィトエンは、4段階の不飽和化を経てリコペンへと変換され得る。フィトエンは、具体的には、順次、フィトフルエン、Ζ−カロテン、ニューロスポレン、リコペンへと不飽和化され得る。フィトエンデサチュラーゼとして、具体的には、例えば、フィトエンからリコペンまでの4段階の不飽和化を触媒するフィトエンデサチュラーゼ(lycopene-forming)(EC 1.3.99.31、等)、フィトエンからΖ−カロテンまでの2段階の不飽和化を触媒するフィトエンデサチュラーゼ(zeta-carotene-forming)(EC 1.3.5.6、EC 1.3.99.29、等)、Ζ−カロテンから
リコペンまでの2段階の不飽和化を触媒するΖ−カロテンデサチュラーゼ(EC 1.3.5.6、EC 1.3.99.26、等)が挙げられる。フィトエンデサチュラーゼ(lycopene-forming)としては、crtI遺伝子にコードされるCrtIタンパク質が挙げられる。フィトエンデサチュラーゼ(zeta-carotene-forming)としては、crtP遺伝子(pds遺伝子ともいう)にコードされるCrtPタンパク質(Pdsタンパク質ともいう)が挙げられる。Ζ−カロテンデサチュラー
ゼとしては、crtQ遺伝子にコードされるCrtQタンパク質が挙げられる。フィトエンデサチュラーゼとしては、例えば、フィトエンデサチュラーゼ(lycopene-forming)を用いてもよいし、フィトエンデサチュラーゼ(zeta-carotene-forming)とΖ−カロテンデサチュ
ラーゼを組み合わせて用いてもよい。
「リコペンβ−サイクラーゼ」とは、リコペンを環状化しβ−カロテン(beta-carotene)を生成する反応を触媒する活性を有するタンパク質をいう(EC 5.5.1.19)。同活性を「リコペンβ−サイクラーゼ活性」ともいう。リコペンβ−サイクラーゼとしては、crtYおよびcrtL遺伝子にそれぞれコードされるCrtYおよびCrtLタンパク質が挙げられる。
「カロテンケトラーゼ」とは、β−カロテン等の環状カロテンのイオノン環にケト基を導入する反応を触媒する活性を有するタンパク質をいう(EC 1.3.5.B4、EC 1.14.11.B16
、EC 1.17.5.B2、等)。同活性を「カロテンケトラーゼ活性」ともいう。カロテンケトラーゼとしては、crtWおよびcrtO遺伝子にそれぞれコードされるCrtWおよびCrtOタンパク質が挙げられる。
「カロテンヒドロキシラーゼ」とは、β−カロテン等の環状カロテンのイオノン環に水酸基を導入する反応を触媒する活性を有するタンパク質をいう(EC 1.14.13.129)。同活性を「カロテンヒドロキシラーゼ活性」ともいう。カロテンヒドロキシラーゼとしては、crtZおよびcrtR遺伝子にそれぞれコードされるCrtZおよびCrtRタンパク質が挙げられる。
本発明においては、1種のカロテノイド生合成酵素の活性を増強してもよく、2種またはそれ以上のカロテノイド生合成酵素の活性を増強してもよい。活性が増強されるカロテノイド生合成酵素の数および種類は、L−アミノ酸生産能の向上効果が得られる限り特に制限されない。活性が増強されるカロテノイド生合成酵素は、例えば、カロテノイド生産能が付与または増強されるように選択されてもよい。例えば、少なくとも、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、および
リコペンβ−サイクラーゼから選択される1種またはそれ以上の酵素の活性が増強されてもよい。また、例えば、少なくとも、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、およびリコペンβ−サイクラーゼの活性が増強されてもよい。また、例えば、これ(ら)の酵素の活性に加えて、さらに、カロテンケトラーゼおよび/またはカロテンヒドロキシラーゼの活性が増強されてもよい。
カロテノイド生合成酵素遺伝子としては、植物、藻類、細菌等の各種生物の遺伝子が挙げられる。カロテノイド生合成酵素遺伝子を有する細菌としては、例えば、Pantoea属細
菌等の腸内細菌科(Enterobacteriaceae)に属する細菌、Brevundimonas属細菌等のカウ
ロバクター科(Caulobacteraceae)に属する細菌、Corynebacterium属細菌等のコリネ型
細菌、Nostoc属細菌やSynechococcus属細菌等のシアノバクテリアが挙げられる。各種生
物由来のカロテノイド生合成酵素遺伝子の塩基配列およびそれらにコードされるカロテノイド生合成酵素のアミノ酸配列は、例えば、NCBI等の公開データベースから取得できる。crtE、crtB、crtI、crtY、およびcrtZ遺伝子として、具体的には、例えば、Pantoea ananatisやPantoea agglomerans等のPantoea属細菌のcrtE、crtB、crtI、crtY、およびcrtZ遺伝子が挙げられる。Pantoea ananatis AJ13355のcrtE、crtB、crtI、crtY、およびcrtZ遺伝子の塩基配列を、それぞれ配列番号11、13、15、17、および21に示す。また、同遺伝子がコードするCrtE、CrtB、CrtI、CrtY、およびCrtZタンパク質のアミノ酸配列を、それぞれ配列番号12、14、16、18、および22に示す。また、crtE、crtB、およびcrtI遺伝子として、具体的には、例えば、Corynebacterium glutamicum等のCorynebacterium属細菌のcrtE、crtB、およびcrtI遺伝子が挙げられる。Corynebacterium glutamicum ATCC 13032のcrtE(cg0723)、crtB(cg0721)、およびcrtI(cg0720)遺伝子の塩基配列を、それぞれ配列番号23、25、および27に示す。また、同遺伝子がコードするCrtE、CrtB、およびCrtIタンパク質のアミノ酸配列を、それぞれ配列番号24、26、および28に示す。また、crtW遺伝子として、具体的には、例えば、Nostoc sp.等のNostoc属細菌やBrevundimonas aurantiaca等のBrevundimonas属細菌のcrtW遺伝子が挙げ
られる。Nostoc sp. PCC 7120のcrtW遺伝子の塩基配列、及び同遺伝子がコードするタン
パク質のアミノ酸配列を、それぞれ配列番号19および20に示す。Brevundimonas aurantiacaのcrtW遺伝子の塩基配列、及び同遺伝子がコードするタンパク質のアミノ酸配列を、それぞれ配列番号29および30に示す。また、crtP、crtQ、crtO、およびcrtR遺伝子として、具体的には、例えば、Synechococcus属細菌等のシアノバクテリアのcrtP(pds)、crtQ、crtO、およびcrtR遺伝子が挙げられる。すなわち、カロテノイド生合成酵素遺伝子は、例えば、上記例示したカロテノイド生合成酵素遺伝子の塩基配列(例えば配列番号11、13、15、17、19、21、23、25、27、または29に示す塩基配列)を有する遺伝子であってよい。また、カロテノイド生合成酵素は、例えば、上記例示したカロテノイド生合成酵素のアミノ酸配列(例えば配列番号12、14、16、18、20、22、24、26、28、または30に示すアミノ酸配列)を有するタンパク質であってよい。なお、「(アミノ酸または塩基)配列を有する」という表現は、当該「(アミノ酸または塩基)配列を含む」場合および当該「(アミノ酸または塩基)配列からなる」場合を包含する。
カロテノイド生合成酵素遺伝子は、元の機能が維持されている限り、上記例示したカロテノイド生合成酵素遺伝子(例えば配列番号11、13、15、17、19、21、23、25、27、または29に示す塩基配列を有する遺伝子)のバリアントであってもよい。同様に、カロテノイド生合成酵素は、元の機能が維持されている限り、上記例示したカロテノイド生合成酵素(例えば配列番号12、14、16、18、20、22、24、26、28、または30に示すアミノ酸配列を有するタンパク質)のバリアントであってもよい。なお、そのような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。上記遺伝子名で特定される遺伝子および上記タンパク質名で特定されるタンパク質は、それぞれ、上記例示した遺伝子およびタンパク質に加えて、それらの保存的バ
リアントを包含するものとする。すなわち、例えば、「crtE遺伝子」という用語は、上記例示したcrtE遺伝子に加えて、それらの保存的バリアントを包含するものとする。同様に、例えば、「CrtEタンパク質」という用語は、上記例示したCrtEタンパク質に加えて、それらの保存的バリアントを包含するものとする。保存的バリアントとしては、例えば、上記例示したカロテノイド生合成酵素遺伝子やカロテノイド生合成酵素のホモログや人為的な改変体が挙げられる。
「元の機能が維持されている」とは、遺伝子またはタンパク質のバリアントが、元の遺伝子またはタンパク質の機能(活性や性質)に対応する機能(活性や性質)を有することをいう。遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントが、元の機能が維持されたタンパク質をコードすることをいう。すなわち、カロテノイド生合成酵素遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントが対応するカロテノイド生合成酵素の活性(例えば、ゲラニルゲラニルピロリン酸シンターゼ遺伝子についてゲラニルゲラニルピロリン酸シンターゼ活性)を有するタンパク質をコードすることをいう。また、カロテノイド生合成酵素についての「元の機能が維持されている」とは、タンパク質のバリアントが対応するカロテノイド生合成酵素の活性(例えば、ゲラニルゲラニルピロリン酸シンターゼについてゲラニルゲラニルピロリン酸シンターゼ活性)を有することをいう。
各カロテノイド生合成酵素の活性は、例えば、酵素と測定する活性に対応する基質とをインキュベートし、酵素および基質依存的な測定する活性に対応する産物の生成を測定することにより、測定できる。例えば、ゲラニルゲラニルピロリン酸シンターゼ活性の活性は、酵素と基質(ファルネシルピロリン酸およびイソペンテニルピロリン酸)とをインキュベートし、酵素および基質依存的な産物(ゲラニルゲラニルピロリン酸)の生成を測定することにより、測定できる。
以下、保存的バリアントについて例示する。
カロテノイド生合成酵素遺伝子のホモログまたはカロテノイド生合成酵素のホモログは、例えば、上記例示したカロテノイド生合成酵素遺伝子の塩基配列または上記例示したカロテノイド生合成酵素のアミノ酸配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、カロテノイド生合成酵素遺伝子のホモログは、例えば、各種生物の染色体を鋳型にして、これら公知のカロテノイド生合成酵素遺伝子の塩基配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得することができる。
カロテノイド生合成酵素遺伝子は、元の機能が維持されている限り、上記アミノ酸配列(例えば配列番号12、14、16、18、20、22、24、26、28、または30に示すアミノ酸配列)において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。例えば、コードされるタンパク質は、そのN末端および/またはC末端が、延長または短縮されていてもよい。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、具体的には、例えば、1〜50個、1〜40個、1〜30個、好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個、特に好ましくは1〜3個を意味する。
上記の1若しくは数個のアミノ酸の置換、欠失、挿入、および/または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸で
ある場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸
性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln
、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
また、カロテノイド生合成酵素遺伝子は、元の機能が維持されている限り、上記アミノ酸配列全体に対して、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有する
タンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を意味する。
また、カロテノイド生合成酵素遺伝子は、元の機能が維持されている限り、上記塩基配列(例えば配列番号11、13、15、17、19、21、23、25、27、または29に示す塩基配列)から調製され得るプローブ、例えば上記塩基配列の全体または一部に対する相補配列、とストリンジェントな条件下でハイブリダイズするDNAであってもよい
。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例
えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さら
に好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイ
ズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザ
ンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2〜3回洗浄する条件を挙げることができる。
上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、上述の遺伝子を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いる
ことができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリ
ダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。
また、宿主によってコドンの縮重性が異なるので、カロテノイド生合成酵素遺伝子は、任意のコドンをそれと等価のコドンに置換したものであってもよい。すなわち、カロテノイド生合成酵素遺伝子は、遺伝コードの縮重による上記例示したカロテノイド生合成酵素遺伝子のバリアントであってもよい。例えば、カロテノイド生合成酵素遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。
2つの配列間の配列同一性のパーセンテージは、例えば、数学的アルゴリズムを用いて決定できる。このような数学的アルゴリズムの限定されない例としては、Myers 及び Miller (1988) CABIOS 4:11 17のアルゴリズム、Smith et al (1981) Adv. Appl. Math. 2:
482の局所ホモロジーアルゴリズム、Needleman及びWunsch (1970) J. Mol. Biol. 48:443 453のホモロジーアライメントアルゴリズム、Pearson及びLipman (1988) Proc. Natl. Acad. Sci. 85:2444 2448の類似性を検索する方法、Karlin 及びAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873 5877に記載されているような、改良された、Karlin及びAltschul (1990) Proc. Natl. Acad. Sci. USA 872264のアルゴリズムが挙げられる。
これらの数学的アルゴリズムに基づくプログラムを利用して、配列同一性を決定するための配列比較(アラインメント)を行うことができる。プログラムは、適宜、コンピュータにより実行することができる。このようなプログラムとしては、特に限定されないが、PC/GeneプログラムのCLUSTAL(Intelligenetics, Mountain View, Calif.から入手可能)、ALIGNプログラム(Version 2.0)、並びにWisconsin Genetics Software Package, Version 8(Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USAから入手可能)のGAP、BESTFIT、BLAST、FASTA、及びTFASTAが挙げられる。これらのプログラムを用いたアライメントは、例えば、初期パラメーターを用いて行うことができる。CLUSTALプログラムについては、HigGlns et al. (1988) Gene 73:237 244 (1988)、HigGlns et al. (1989) CABIOS 5:151 153、Corpet et al. (1988) Nucleic Acids Res. 16:10881 90、Huang et al. (1992) CABIOS 8:155 65、及びPearson et al. (1994) Meth. Mol. Biol. 24:307 331によく記載されている。
対象のタンパク質をコードするヌクレオチド配列と相同性があるヌクレオチド配列を得るために、具体的には、例えば、BLASTヌクレオチド検索を、BLASTNプログラム、スコア
=100、ワード長=12にて行うことができる。対象のタンパク質と相同性があるアミノ酸
配列を得るために、具体的には、例えば、BLASTタンパク質検索を、BLASTXプログラム、
スコア=50、ワード長=3にて行うことができる。BLASTヌクレオチド検索やBLASTタンパ
ク質検索については、http://www.ncbi.nlm.nih.govを参照されたい。また、比較を目的
としてギャップを加えたアライメントを得るために、Gapped BLAST(BLAST 2.0)を利用
できる。また、PSI-BLAST (BLAST 2.0)を、配列間の離間した関係を検出する反復検索を
行うのに利用できる。Gapped BLASTおよびPSI-BLASTについては、Altschul et al. (1997) Nucleic Acids Res. 25:3389を参照されたい。BLAST、Gapped BLAST、またはPSI-BLASTを利用する場合、例えば、各プログラム(例えば、ヌクレオチド配列に対してBLASTN、アミノ酸配列に対してBLASTX)の初期パラメーターが用いられ得る。アライメントは、手動にて行われてもよい。
2つの配列間の配列同一性は、2つの配列を最大一致となるように整列したときに2つの配列間で一致する残基の比率として算出される。
なお、上記の遺伝子やタンパク質の保存的バリアントに関する記載は、L−アミノ酸生合成系酵素等の任意のタンパク質、およびそれらをコードする遺伝子にも準用できる。
<1−3>タンパク質の活性を増大させる手法
以下に、カロテノイド生合成酵素等のタンパク質の活性を増大させる手法について説明する。
「タンパク質の活性が増大する」とは、同タンパク質の細胞当たりの活性が非改変株に対して増大していることを意味する。ここでいう「非改変株」とは、標的のタンパク質の活性が増大するように改変されていない対照株を意味する。非改変株としては、野生株や親株が挙げられる。なお、「タンパク質の活性が増大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の
活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下または消失させた上で、好適な標的のタンパク質の活性を付与してもよい。
タンパク質の活性の増大の程度は、タンパク質の活性が非改変株と比較して増大していれば特に制限されない。タンパク質の活性は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、非改変株が標的のタンパク質の活性を有していない場合は、同タンパク質をコードする遺伝子を導入することにより同タンパク質が生成されていればよいが、例えば、同タンパク質はその活性が測定できる程度に生産されていてよい。
タンパク質の活性が増大するような改変は、例えば、同タンパク質をコードする遺伝子の発現を上昇させることによって達成される。「遺伝子の発現が上昇する」とは、同遺伝子の細胞当たりの発現量が野生株や親株等の非改変株と比較して増大することを意味する。「遺伝子の発現が上昇する」とは、具体的には、遺伝子の転写量(mRNA量)が増大すること、および/または、遺伝子の翻訳量(タンパク質の量)が増大することを意味してよい。なお、「遺伝子の発現が上昇する」ことを、「遺伝子の発現が増強される」ともいう。遺伝子の発現は、例えば、非改変株と比較して、1.5倍以上、2倍以上、または3倍以上に上昇してよい。また、「遺伝子の発現が上昇する」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。
遺伝子の発現の上昇は、例えば、遺伝子のコピー数を増加させることにより達成できる。
遺伝子のコピー数の増加は、宿主の染色体へ同遺伝子を導入することにより達成できる。染色体への遺伝子の導入は、例えば、相同組み換えを利用して行うことができる(Miller, J. H. Experiments in Molecular Genetics, 1972, Cold Spring Harbor Laboratory)。相同組み換えを利用する遺伝子導入法としては、例えば、Redドリブンインテグレー
ション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受
性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、ファージを用いたtransduction法が挙げられる。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、
トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入す
ることもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。
染色体上に標的遺伝子が導入されたことの確認は、同遺伝子の全部又は一部と相補的な配列を持つプローブを用いたサザンハイブリダイゼーション、又は同遺伝子の配列に基づ
いて作成したプライマーを用いたPCR等によって確認できる。
また、遺伝子のコピー数の増加は、同遺伝子を含むベクターを宿主に導入することによっても達成できる。例えば、標的遺伝子を含むDNA断片を、宿主で機能するベクターと連結して同遺伝子の発現ベクターを構築し、当該発現ベクターで宿主を形質転換することにより、同遺伝子のコピー数を増加させることができる。標的遺伝子を含むDNA断片は、例えば、標的遺伝子を有する微生物のゲノムDNAを鋳型とするPCRにより取得できる。ベクターとしては、宿主の細胞内において自律複製可能なベクターを用いることができる。ベクターは、マルチコピーベクターであるのが好ましい。また、形質転換体を選択するために、ベクターは抗生物質耐性遺伝子などのマーカーを有することが好ましい。また、ベクターは、挿入された遺伝子を発現するためのプロモーターやターミネーターを備えていてもよい。ベクターは、例えば、細菌プラスミド由来のベクター、酵母プラスミド由来のベクター、バクテリオファージ由来のベクター、コスミド、またはファージミド等であってよい。エシェリヒア・コリ等の腸内細菌科の細菌において自律複製可能なベクターとして、具体的には、例えば、pUC19、pUC18、pHSG299、pHSG399、pHSG398、pBR322、pSTV29(いずれもタカラバイオ社より入手可)、pACYC184、pMW219(ニッポンジーン社)
、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロ
ンテック社)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、pCold TF DNA(TaKaRa)、pACYC系ベクター、広宿主域ベクターRSF1010が挙げられる。コリネ型細菌で自律複製可能なベクターとして、具体的には、例えば、pHM1519(Agric. Biol. Chem., 48, 2901-2903(1984));pAM330(Agric. Biol. Chem., 48, 2901-2903(1984));
これらを改良した薬剤耐性遺伝子を有するプラスミド;pCRY30(特開平3-210184);pCRY21、pCRY2KE、pCRY2KX、pCRY31、pCRY3KE、およびpCRY3KX(特開平2-72876、米国特許5,185,262号);pCRY2およびpCRY3(特開平1-191686);pAJ655、pAJ611、およびpAJ1844(
特開昭58-192900);pCG1(特開昭57-134500);pCG2(特開昭58-35197);pCG4およびpCG11(特開昭57-183799);pVK7(特開平10-215883);pVK9(US2006-0141588);pVC7(
特開平9-070291);pVS7(WO2013/069634)が挙げられる。
遺伝子を導入する場合、遺伝子は、発現可能に宿主に保持されていればよい。具体的には、遺伝子は、宿主で機能するプロモーター配列による制御を受けて発現するように保持されていればよい。プロモーターは、宿主において機能するものであれば特に制限されない。「宿主において機能するプロモーター」とは、宿主においてプロモーター活性を有するプロモーターをいう。プロモーターは、宿主由来のプロモーターであってもよく、異種由来のプロモーターであってもよい。プロモーターは、導入する遺伝子の固有のプロモーターであってもよく、他の遺伝子のプロモーターであってもよい。プロモーターとしては、例えば、後述するような、より強力なプロモーターを利用してもよい。
遺伝子の下流には、転写終結用のターミネーターを配置することができる。ターミネーターは、宿主において機能するものであれば特に制限されない。ターミネーターは、宿主由来のターミネーターであってもよく、異種由来のターミネーターであってもよい。ターミネーターは、導入する遺伝子の固有のターミネーターであってもよく、他の遺伝子のターミネーターであってもよい。ターミネーターとして、具体的には、例えば、T7ターミネーター、T4ターミネーター、fdファージターミネーター、tetターミネーター、およびtrpAターミネーターが挙げられる。
各種微生物において利用可能なベクター、プロモーター、ターミネーターに関しては、例えば「微生物学基礎講座8 遺伝子工学、共立出版、1987年」に詳細に記載されており、それらを利用することが可能である。
また、2またはそれ以上の遺伝子を導入する場合、各遺伝子が、発現可能に宿主に保持
されていればよい。例えば、各遺伝子は、全てが単一の発現ベクター上に保持されていてもよく、全てが染色体上に保持されていてもよい。また、各遺伝子は、複数の発現ベクター上に別々に保持されていてもよく、単一または複数の発現ベクター上と染色体上とに別々に保持されていてもよい。また、2またはそれ以上の遺伝子でオペロンを構成して導入してもよい。「2またはそれ以上の遺伝子を導入する場合」としては、例えば、2またはそれ以上のタンパク質(例えば酵素)をそれぞれコードする遺伝子を導入する場合、単一のタンパク質複合体(例えば酵素複合体)を構成する2またはそれ以上のサブユニットをそれぞれコードする遺伝子を導入する場合、およびそれらの組み合わせが挙げられる。
導入される遺伝子は、宿主で機能するタンパク質をコードするものであれば特に制限されない。導入される遺伝子は、宿主由来の遺伝子であってもよく、異種由来の遺伝子であってもよい。導入される遺伝子は、例えば、同遺伝子の塩基配列に基づいて設計したプライマーを用い、同遺伝子を有する生物のゲノムDNAや同遺伝子を搭載するプラスミド等を
鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同
遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。取得
した遺伝子は、そのまま、あるいは適宜改変して、利用することができる。遺伝子の改変は公知の手法により行うことができる。例えば、部位特異的変異法により、DNAの目的部
位に目的の変異を導入することができる。すなわち、例えば、部位特異的変異法により、コードされるタンパク質が特定の部位においてアミノ酸残基の置換、欠失、挿入または付加を含むように、遺伝子のコード領域を改変することができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。
なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が増大する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、遺伝子の発現を上昇させることによりタンパク質の活性を増大させる場合、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強してもよく、一部の発現のみを増強してもよい。通常は、それらのサブユニットをコードする複数の遺伝子の全ての発現を増強するのが好ましい。また、複合体を構成する各サブユニットは、複合体が標的のタンパク質の機能を有する限り、1種の生物由来であってもよく、2種またはそれ以上の異なる生物由来であってもよい。すなわち、例えば、複数のサブユニットをコードする、同一の生物由来の遺伝子を宿主に導入してもよく、それぞれ異なる生物由来の遺伝子を宿主に導入してもよい。
また、遺伝子の発現の上昇は、遺伝子の転写効率を向上させることにより達成できる。また、遺伝子の発現の上昇は、遺伝子の翻訳効率を向上させることにより達成できる。遺伝子の転写効率や翻訳効率の向上は、例えば、発現調節配列の改変により達成できる。「発現調節配列」とは、遺伝子の発現に影響する部位の総称である。発現調節配列としては、例えば、プロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、およびRBSと開始コドンとの間のスペーサー領域が挙げられる。発現調節配列は、プロモーター検索ベクターやGENETYX等の遺伝子解析ソフトを用いて決定することができる。これら発現調節配列の改変は、例えば、温度感受性ベクターを用いた方法や、Redドリブンインテグレーション法(WO2005/010175)により行うことがで
きる。
遺伝子の転写効率の向上は、例えば、染色体上の遺伝子のプロモーターをより強力なプロモーターに置換することにより達成できる。「より強力なプロモーター」とは、遺伝子の転写が、もともと存在している野生型のプロモーターよりも向上するプロモーターを意
味する。より強力なプロモーターとしては、例えば、公知の高発現プロモーターであるT7プロモーター、trpプロモーター、lacプロモーター、thrプロモーター、tacプロモーター、trcプロモーター、tetプロモーター、araBADプロモーター、rpoHプロモーター、PRプロモーター、およびPLプロモーターが挙げられる。また、コリネ型細菌で利用できるより強力なプロモーターとしては、例えば、人為的に設計変更されたP54-6プロモーター(Appl.
Microbiol. Biotechnolo., 53, 674-679(2000))、コリネ型細菌内で酢酸、エタノール
、ピルビン酸等で誘導できるpta、aceA、aceB、adh、amyEプロモーター、コリネ型細菌内で発現量が多い強力なプロモーターであるcspB、SOD、tuf(EF-Tu)プロモーター(Journal of Biotechnology 104 (2003) 311-323, Appl Environ Microbiol. 2005 Dec;71(12):8587-96.)、lacプロモーター、tacプロモーター、trcプロモーターが挙げられる。また
、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモータ
ー(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強
力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1, 105-128 (1995))等に記載されている。
遺伝子の翻訳効率の向上は、例えば、染色体上の遺伝子のシャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene,
1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5’-UTR)における数個のヌクレオチドの置換、あるいは挿入
、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。
遺伝子の翻訳効率の向上は、例えば、コドンの改変によっても達成できる。例えば、遺伝子中に存在するレアコドンを、より高頻度で利用される同義コドンに置き換えることにより、遺伝子の翻訳効率を向上させることができる。すなわち、導入される遺伝子は、例えば、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。コドンの置換は、例えば、DNAの目的の部位に目的の変異を導入する部位特異的変異法により行うことができる。また、コドンが置換された遺伝子断片を全合成してもよい。種々の生物におけるコドンの使用頻度は、「コドン使用データベース」(http://www.kazusa.or.jp/codon; Nakamura, Y. et al, Nucl. Acids Res., 28, 292 (2000))に開示
されている。
また、遺伝子の発現の上昇は、遺伝子の発現を上昇させるようなレギュレーターを増幅すること、または、遺伝子の発現を低下させるようなレギュレーターを欠失または弱化させることによっても達成できる。
上記のような遺伝子の発現を上昇させる手法は、単独で用いてもよく、任意の組み合わせで用いてもよい。
また、タンパク質の活性が増大するような改変は、例えば、タンパク質の比活性を増強することによっても達成できる。比活性の増強には、フィードバック阻害の脱感作(desensitization to feedback inhibition)も含まれる。すなわち、タンパク質が代謝物によるフィードバック阻害を受ける場合は、フィードバック阻害が脱感作された変異型タンパ
ク質をコードする遺伝子を細菌に保持させることにより、タンパク質の活性を増大させることができる。なお、本発明において、「フィードバック阻害の脱感作」には、特記しない限り、フィードバック阻害が完全に解除される場合、および、フィードバック阻害が低減される場合が包含される。また、「フィードバック阻害が脱感作されている」(すなわちフィードバック阻害が低減又は解除されている)ことを「フィードバック阻害に耐性」ともいう。比活性が増強されたタンパク質は、例えば、種々の生物を探索し取得することができる。また、在来のタンパク質に変異を導入することで高活性型のものを取得してもよい。導入される変異は、例えば、タンパク質の1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されるものであってよい。変異の導入は、例えば、上述したような部位特異的変異法により行うことができる。また、変異の導入は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN−メチル−N'−ニトロ−N−ニトロソグアニジン(MNNG)、エチル
メタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し
、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強する手法と任意に組み合わせて用いてもよい。
形質転換の方法は特に限定されず、従来知られた方法を用いることができる。例えば、エシェリヒア・コリ K-12について報告されているような、受容菌細胞を塩化カルシウム
で処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53,
159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組
換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S. and Choen, S. N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400;
Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気
パルス法(特開平2-207791)を利用することもできる。
タンパク質の活性が増大したことは、同タンパク質の活性を測定することで確認できる。
タンパク質の活性が増大したことは、同タンパク質をコードする遺伝子の発現が上昇したことを確認することによっても、確認できる。遺伝子の発現が上昇したことは、同遺伝子の転写量が上昇したことを確認することや、同遺伝子から発現するタンパク質の量が上昇したことを確認することにより確認できる。
遺伝子の転写量が上昇したことの確認は、同遺伝子から転写されるmRNAの量を野生株または親株等の非改変株と比較することによって行うことができる。mRNAの量を評価する方法としてはノーザンハイブリダイゼーション、RT-PCR等が挙げられる(Sambrook, J., et
al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)。mRNAの量は、非改変株と比較し
て、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
タンパク質の量が上昇したことの確認は、抗体を用いてウェスタンブロットによって行うことができる(Molecular Cloning(Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
上記したタンパク質の活性を増大させる手法は、カロテノイド生合成酵素の活性増強に加えて、任意のタンパク質、例えばL−アミノ酸生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。
<1−4>タンパク質の活性を低下させる手法
以下に、タンパク質の活性を低下させる手法について説明する。
「タンパク質の活性が低下する」とは、同タンパク質の細胞当たりの活性が非改変株と比較して減少していることを意味し、活性が完全に消失している場合を含む。ここでいう「非改変株」とは、標的のタンパク質の活性が低下するように改変されていない対照株を意味する。非改変株としては、野生株や親株が挙げられる。「タンパク質の活性が低下する」とは、具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることをいう。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性の低下の程度は、タンパク質の活性が非改変株と比較して低下していれば特に制限されない。タンパク質の活性は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子の発現を低下させることにより達成できる。「遺伝子の発現が低下する」とは、同遺伝子の細胞当たりの発現量が野生株や親株等の非改変株と比較して減少することを意味する。「遺伝子の発現が低下する」とは、具体的には、遺伝子の転写量(mRNA量)が低下すること、および/または、遺伝子の翻訳量(タンパク質の量)が低下することを意味してよい。「遺伝子の発現が低下する」ことには、同遺伝子が全く発現していない場合が含まれる。なお、「遺伝子の発現が低下する」ことを、「遺伝子の発現が弱化される」ともいう。遺伝子の発現は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
遺伝子の発現の低下は、例えば、転写効率の低下によるものであってもよく、翻訳効率の低下によるものであってもよく、それらの組み合わせによるものであってもよい。遺伝子の発現の低下は、例えば、遺伝子のプロモーター、シャインダルガノ(SD)配列(リボソーム結合部位(RBS)ともいう)、RBSと開始コドンとの間のスペーサー領域等の発現調節配列を改変することにより達成できる。発現調節配列を改変する場合には、発現調節配列は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上が改変される。また、発現調節配列の一部または全部を欠失させてもよい。また、遺伝子の発現の低下は、例えば、発現制御に関わる因子を操作することによっても達成できる。発現制御に関わる因子としては、転写や翻訳制御に関わる低分子(誘導物質、阻害物質など)、タンパク質(転写因子など)、核酸(siRNAなど)等が挙げられる。また、
遺伝子の発現の低下は、例えば、遺伝子のコード領域に遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。
また、タンパク質の活性が低下するような改変は、例えば、同タンパク質をコードする遺伝子を破壊することにより達成できる。「遺伝子が破壊される」とは、正常に機能するタンパク質を産生しないように同遺伝子が改変されることを意味する。「正常に機能するタンパク質を産生しない」ことには、同遺伝子からタンパク質が全く産生されない場合や、同遺伝子から分子当たりの機能(活性や性質)が低下又は消失したタンパク質が産生される場合が含まれる。
遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域の一部又は全部を欠損させることにより達成できる。さらには、染色体上の遺伝子の前後の配列を含めて、遺伝子全体を欠失させてもよい。タンパク質の活性の低下が達成できる限り、欠失させる領域は、N末端領域、内部領域、C末端領域等のいずれの領域であってもよい。通常、欠失させる領域は長い方が確実に遺伝子を不活化することができる。また、欠失させる領域の前後の配列は、リーディングフレームが一致しないことが好ましい。
また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、終止コドンを導入すること(ナンセンス変異)、あるいは1〜2塩基を付加または欠失するフレームシフト変異を導入すること等によっても達成できる(Journal of Biological Chemistry 272:8611-8617(1997), Proceedings of the National Academy of Sciences, USA 95 5511-5515(1998), Journal of Biological Chemistry 26 116, 20833-20839(1991))。
また、遺伝子の破壊は、例えば、染色体上の遺伝子のコード領域に他の配列を挿入することによっても達成できる。挿入部位は遺伝子のいずれの領域であってもよいが、挿入する配列は長い方が確実に遺伝子を不活化することができる。また、挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、コードされるタンパク質の活性を低下又は消失させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子等のマーカー遺伝子や目的物質の生産に有用な遺伝子が挙げられる。
染色体上の遺伝子を上記のように改変することは、例えば、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該欠失型遺伝子を含む組換えDNAで宿主を形質転換して、欠失型遺伝子と染色体上の野生型遺伝子とで相同組換えを起こさせることにより、染色体上の野生型遺伝子を欠失型遺伝子に置換することによって達成できる。その際、組換えDNAには、宿主の栄養要求性等の形質にしたがって、マーカー遺伝子を含ませておくと操作がしやすい。欠失型遺伝子としては、遺伝子の全領域あるいは一部の領域を欠失した遺伝子、ミスセンス変異を導入した遺伝子ナンセンス変異を導入した遺伝子、フレームシフト変異を導入した遺伝子、トランスポゾンやマーカー遺伝子等の挿入配列を導入した遺伝子が挙げられる。欠失型遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E.
H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組
み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性
複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。
また、タンパク質の活性が低下するような改変は、例えば、突然変異処理により行ってもよい。突然変異処理としては、X線の照射、紫外線の照射、ならびにN−メチル−N'
−ニトロ−N−ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。
なお、タンパク質が複数のサブユニットからなる複合体として機能する場合、結果としてタンパク質の活性が低下する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、複数のアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。
タンパク質の活性が低下したことは、同タンパク質の活性を測定することで確認できる。
タンパク質の活性が低下したことは、同タンパク質をコードする遺伝子の発現が低下したことを確認することによっても、確認できる。遺伝子の発現が低下したことは、同遺伝子の転写量が低下したことを確認することや、同遺伝子から発現するタンパク質の量が低下したことを確認することにより確認できる。
遺伝子の転写量が低下したことの確認は、同遺伝子から転写されるmRNAの量を非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT−PCR等が挙げられる(Molecular Cloning(Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。mRNAの量は、非改変株
と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
タンパク質の量が低下したことの確認は、抗体を用いてウェスタンブロットによって行うことが出来る(Molecular Cloning(Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001))。タンパク質の量は、非改変株と比較して、例えば、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
遺伝子が破壊されたことは、破壊に用いた手段に応じて、同遺伝子の一部または全部の塩基配列、制限酵素地図、または全長等を決定することで確認できる。
上記したタンパク質の活性を低下させる手法は、任意のタンパク質、例えば目的のL−アミノ酸の生合成経路から分岐して目的のL−アミノ酸以外の化合物を生成する反応を触媒する酵素、の活性低下や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現低下に利用できる。
<2>本発明の方法
<2−1>L−アミノ酸の製造方法
本発明の方法の一態様(「本発明の方法の第1の態様」ともいう)は、本発明の細菌を培地で培養し、該培地中および/または該細菌の菌体内にL−アミノ酸を蓄積すること、および前記培地および/または前記菌体より前記L−アミノ酸を採取すること、を含むL−アミノ酸の製造方法である。本発明の方法の第1の態様においては、1種のL−アミノ酸が製造されてもよく、2種またはそれ以上のL−アミノ酸が製造されてもよい。
使用する培地は、本発明の細菌が増殖でき、目的のL−アミノ酸が生産される限り、特に制限されない。培地としては、例えば、コリネ型細菌や腸内細菌科の細菌等の細菌の培
養に用いられる通常の培地を用いることができる。培地としては、例えば、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有する培地を用いることができる。培地成分の種類や濃度は、使用する細菌の種類等の諸条件に応じて適宜設定してよい。
炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸等の有機酸類、グリセロール、粗グリセロール、エタノール等のアルコール類、脂肪酸類が挙げられる。なお、炭素源としては、植物由来原料を好適に用いることができる。植物としては、例えば、トウモロコシ、米、小麦、大豆、サトウキビ、ビート、綿が挙げられる。植物由来原料としては、例えば、根、茎、幹、枝、葉、花、種子等の器官、それらを含む植物体、それら植物器官の分解産物が挙げられる。植物由来原料の利用形態は特に制限されず、例えば、未加工品、絞り汁、粉砕物、精製物等のいずれの形態でも利用できる。また、キシロース等の5炭糖、グルコース等の6炭糖、またはそれらの混合物は、例えば、植物バイオマスから取得して利用できる。具体的には、これらの糖類は、植物バイオマスを、水蒸気処理、濃酸加水分解、希酸加水分解、セルラーゼ等の酵素による加水分解、アルカリ処理等の処理に供することにより取得できる。なお、ヘミセルロースは一般的にセルロースよりも加水分解されやすいため、植物バイオマス中のヘミセルロースを予め加水分解して5炭糖を遊離させ、次いで、セルロースを加水分解して6炭糖を生成させてもよい。また、キシロースは、例えば、本発明の細菌にグルコース等の6炭糖からキシロースへの変換経路を保有させて、6炭糖からの変換により供給してもよい。炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。
窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。
リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。
硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。
その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビ
タミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L−リジン生産菌は、L−リジン生合成経路が強化され、L−リジン分解能が弱化されている場合が多い。そのようなL−リ
ジン生産菌を培養する場合には、例えば、L−スレオニン、L−ホモセリン、L−イソロイシン、L−メチオニンから選ばれる1またはそれ以上のアミノ酸を培地に補添するのが好ましい。
また、培地中のビオチン量を制限することや、培地に界面活性剤またはペニシリンを添加することも好ましい。
培養条件は、本発明の細菌が増殖でき、目的のL−アミノ酸が生産される限り、特に制限されない。培養は、例えば、コリネ型細菌や腸内細菌科の細菌等の細菌の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類等の諸条件に応じて適宜設定してよい。
培養は、液体培地を用いて行うことができる。培養の際には、本発明の細菌を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、本発明の細菌を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。培養開始時に培地に含有される本発明の細菌の量は特に制限されない。本培養は、例えば、本培養の培地に、種培養液を1〜50%(v/v)植菌することにより行ってよい。
培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養または連続培養において培養系(発酵槽)に供給する培地を、「流加培地」ともいう。また、流加培養または連続培養において培養系に流加培地を供給することを、「流加」ともいう。なお、培養が種培養と本培養とに分けて行われる場合、例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。
本発明において、各培地成分は、初発培地、流加培地、またはその両方に含有されていてよい。初発培地に含有される成分の種類は、流加培地に含有される成分の種類と、同一であってもよく、そうでなくてもよい。また、初発培地に含有される各成分の濃度は、流加培地に含有される各成分の濃度と、同一であってもよく、そうでなくてもよい。また、含有する成分の種類および/または濃度の異なる2種またはそれ以上の流加培地を用いてもよい。例えば、複数回の流加が間欠的に行われる場合、各回の流加培地に含有される成分の種類および/または濃度は、同一であってもよく、そうでなくてもよい。
培地中の炭素源の濃度は、本発明の細菌が増殖でき、L−アミノ酸が生産される限り、特に制限されない。培地中の炭素源の濃度は、例えば、L−アミノ酸の生産が阻害されない範囲で可能な限り高くしてよい。培地中の炭素源の濃度は、例えば、初発濃度(初発培地中の濃度)として、1〜30 w/v%、好ましくは3〜10 w/v%であってよい。また、適宜、炭素源を追加で培地に添加してもよい。例えば、発酵の進行に伴う炭素源の消費に応じて、炭素源を追加で培地に添加してもよい。
培養は、例えば、好気条件で行うことができる。好気条件とは、液体培地中の溶存酸素濃度が、酸素膜電極による検出限界である0.33 ppm以上であることをいい、好ましくは1.5 ppm以上であることであってよい。酸素濃度は、例えば、飽和酸素濃度に対して5〜50%、好ましくは10%程度に制御されてもよい。好気条件での培養は、具体的には、通気培養、振盪培養、撹拌培養、またはそれらの組み合わせで行うことができる。培地のpHは、例えば、pH3〜10、好ましくはpH4.0〜9.5であってよい。培養中、必要に応じて培地のpHを
調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培養温度は、例えば、20〜40℃、好ましくは25℃〜37℃であってよい。培養期間は、例えば、10時間〜120時間であってよい。培養は、例えば、培地中の
炭素源が消費されるまで、あるいは本発明の細菌の活性がなくなるまで、継続してもよい。このような条件下で本発明の細菌を培養することにより、培地中および/または菌体内にL−アミノ酸が蓄積する。
また、L−リジン等の塩基性アミノ酸を製造する場合、培養工程(発酵工程)は、重炭酸イオン及び/又は炭酸イオンが塩基性アミノ酸のカウンタイオンとなるように実施してもよい。そのような発酵形態を「炭酸塩発酵」ともいう。炭酸塩発酵によれば、塩基性アミノ酸のカウンタイオンとして従来利用されていた硫酸イオン及び/又は塩化物イオンの使用量を削減しつつ、塩基性アミノ酸を発酵生産することができる。
炭酸塩発酵は、例えば、US2002-025564A、EP1813677A、特開2002-65287に記載されているように実施することができる。
炭酸塩発酵は、具体的には、例えば、重炭酸イオン及び/又は炭酸イオンが培地中に20
mM以上、好ましくは30 mM以上、より好ましくは40 mM以上存在する培養期があるように
して実施することができる。なお、上記例示した濃度は、重炭酸イオンの濃度及び炭酸イオンの濃度の合計である。「重炭酸イオン及び/又は炭酸イオンが培地中に所定の濃度で存在する培養期がある」とは、重炭酸イオン及び/又は炭酸イオンが、培養の少なくとも一部の期間において当該濃度で培地中に存在していることをいう。すなわち、重炭酸イオン及び/又は炭酸イオンは、培養の全期間において上記例示した濃度で培地中に存在していてもよく、培養の一部の期間において上記例示した濃度で培地中に存在していてもよい。「一部の期間」は、所望の塩基性アミノ酸の生産性が得られる限り、特に制限されない。「一部の期間」とは、例えば、培養の全期間の10%以上、20%以上、30%以上、50%以上、70%以上、または90%以上の期間であってよい。なお、「培養の全期間」とは、培養が種培養と本培養とに分けて行われる場合には、本培養の全期間を意味する。重炭酸イオン及び/又は炭酸イオンは、塩基性アミノ酸が生産されている期間に上記例示した濃度で培地中に存在するのが好ましい。すなわち、例えば、培養工程(発酵工程)が、塩基性アミノ酸生産菌を増殖させる段階(増殖期)と塩基性アミノ酸を産生させる段階(生産期)を含む場合、重炭酸イオン及び/又は炭酸イオンは、少なくとも物質生産期に上記例示した濃度で培地中に存在するのが好ましい。「増殖期」とは、炭素源が主に菌体生育に使用されている時期を意味し、具体的には、培養開始から3時間、6時間、または10時間までの期間を意味してもよい。「生産期」とは、炭素源が主に物質生産に用いられている時期を意味し、具体的には、培養開始の3時間後以降、6時間後以降、または10時間後以降の期間を意味してもよい。
重炭酸イオン及び/又は炭酸イオンを培地中に存在させることは、発酵槽内圧力を正となるように制御すること、炭酸ガスを培地に供給すること、またはその組み合わせにより実施することができる。発酵槽内圧力を正となるように制御することは、例えば、給気圧を排気圧より高くすることにより実施できる。発酵槽内圧力を正となるように制御することによって、発酵により生成する炭酸ガスが培地に溶解して重炭酸イオン及び/又は炭酸イオンを生じ、重炭酸イオン及び/又は炭酸イオンが塩基性アミノ酸のカウンタイオンとなり得る。発酵槽内圧力は、具体的には、例えば、ゲージ圧(大気圧に対する差圧)で、0.03〜0.2 MPa、好ましくは0.05〜0.15 MPa、より好ましくは0.1〜0.3 MPaであってよい
。また、炭酸ガスを培地に供給することは、例えば、純炭酸ガス又は炭酸ガスを含有する混合ガスを培地に吹き込むことにより実施できる。炭酸ガスを含有する混合ガスとしては
、炭酸ガスを5 v/v%以上含有する混合ガスが挙げられる。発酵槽内圧力、炭酸ガスの供給量、および制限された給気量は、例えば、培地のpH、培地中の重炭酸イオン及び/又は炭酸イオン濃度、および培地中のアンモニア濃度等の諸条件に応じて適宜設定できる。
従来の塩基性アミノ酸の製造方法においては、塩基牲アミノ酸のカウンタイオン源として十分量の硫酸アンモニウム及び/又は塩化アンモニウムが、また、栄養成分としてタンパク質等の硫酸分解物及び/又は塩酸分解物が培地に添加されていた。そのため、培地中には硫酸イオン及び/又は塩化物イオンが多量に存在し、弱酸性である炭酸イオン濃度はppmオーダーと極めて低かった。
一方、炭酸塩発酵は、硫酸イオン及び/又は塩化物イオンの使用量を削減し、微生物が発酵時に放出する炭酸ガス及び/又は外部から供給される炭酸ガスを培地中に溶解せしめ、塩基牲アミノ酸のカウンタイオンとして利用することに特徴がある。すなわち、炭酸塩発酵においては、硫酸イオン及び/又は塩化物イオンの使用量を削減することが目的の一つであるため、硫酸イオン及び/又は塩化物イオンを塩基性アミノ酸生産菌の生育に必要な量以上に培地に添加する必要はない。好ましくは、培養当初は生育に必要な量の硫酸アンモニウム等を培地にフィードし、培養途中でフィードを止める。あるいは、培地中の炭酸イオン及び/又は重炭酸イオンの溶存量とのバランスを保ちつつ、硫酸アンモニウム等をフィードしてもよい。硫酸イオン及び/又は塩化物イオンの使用量を削減することにより、培地中の硫酸イオン及び/又は塩化物イオン濃度を低減することができる。硫酸イオン及び/又は塩化物イオン濃度を低減することにより、重炭酸イオン及び/又は炭酸イオンをより容易に培地中に存在させることができる。よって、炭酸塩発酵においては、従来法に比べて、塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させるための培地のpHを低く抑えることが可能となる。培地に含まれる硫酸イオンおよび塩化物イオンのモル濃度の合計は、具体的には、例えば、900 mM以下、好ましくは700 mM以下、より好ましくは500 mM以下、さらに好ましくは300 mM以下、さらに好ましくは200 mM以下、特に好ましくは100 mM以下であってよい。
炭酸塩発酵において、培地のpHは、重炭酸イオン及び/又は炭酸イオンを所定の濃度で培地中に存在させることができ、且つ、所望の塩基性アミノ酸の生産性が得られる限り、特に制限されない。培地のpHは、用いる微生物の種類、培地中の重炭酸イオン及び/又は炭酸イオン濃度、および培地中のアンモニア濃度等の諸条件に応じて適宜設定できる。培地のpHは、培養中、例えば、6.5〜9.0、好ましくは7.2〜9.0に制御されてよい。培地のpHは、培養の少なくとも一部の期間において上記例示した値に制御されてよい。すなわち、培地のpHは、培養の全期間において上記例示した値に制御されてもよく、培養の一部の期間において上記例示した値に制御されてもよい。培地のpHが制御される「一部の期間」については、重炭酸イオン及び/又は炭酸イオンが培地中に存在する培養期についての記載を準用できる。すなわち、培地のpHは、例えば、塩基性アミノ酸が生産されている期間に上記例示した値に制御されてよい。また、培地のpHは、培養終了時に、例えば、7.2以上
、好ましくは7.2〜9.0であってよい。すなわち、培地のpHは、上記例示した培養終了時のpHの値が得られるように、制御されてもよい。培地のpHは、例えば、pH自体を指標として直接的に制御されてもよく、総アンモニア濃度を制御することによって間接的に制御されてもよい(WO2006/038695)。
また、培地には、重炭酸イオン及び/又は炭酸イオン以外のアニオン(他のアニオンともいう)が含まれ得る。培地中の他のアニオンの濃度は、塩基性アミノ酸生産菌の生育に必要な量が含まれてさえいれば、低いことが好ましい。他のアニオンとしては、塩化物イオン、硫酸イオン、リン酸イオン、有機酸イオン、水酸化物イオンが挙げられる。培地に含まれる他のアニオンのモル濃度の合計は、具体的には、例えば、900 mM以下、好ましくは700 mM以下、より好ましくは500 mM以下、さらに好ましくは300 mM以下、特に好ましく
は200 mM以下、100 mM以下、50 mM以下、または20 mM以下であってよい。
また、培地には、塩基性アミノ酸以外のカチオン(他のカチオンともいう)が含まれ得る。他のカチオンとしては、培地成分由来のKイオン、Naイオン、Mgイオン、Caイオンが
挙げられる。培地に含まれる他のカチオンのモル濃度の合計は、具体的には、例えば、総カチオンのモル濃度の、50%以下、好ましくは10%以下、より好ましくは5%以下、特に好ましくは2%以下であってよい。
また、炭酸塩発酵においては、培地中の総アンモニア濃度を、塩基性アミノ酸の生産を阻害しない濃度に制御するのが好ましい(WO2006/038695、WO2015/050234)。「総アンモニア濃度」とは、解離していないアンモニア(NH)の濃度およびアンモニウムイオン(NH )の濃度の合計をいう。「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度としては、例えば、最適な条件において塩基性アミノ酸を生産する場合の収率及び/又は生産性に比べて、好ましくは50%以上、より好ましくは70%以上、特に好ましくは90%
以上の収率及び/又は生産性が得られる総アンモニア濃度が挙げられる。培地中の総アンモニア濃度は、具体的には、例えば、300 mM以下、250 mM以下、200 mM以下、100 mM以下、または50 mM以下であってよい。アンモニアの解離度はpHが高くなると低下する。解離
していないアンモニアは、アンモニウムイオンよりも菌に対して毒性が強い。そのため、総アンモニア濃度の上限は、培養液のpHにも依存する。すなわち、培養液のpHが高いほど、許容される総アンモニア濃度は低くなる。したがって、「塩基性アミノ酸の生産を阻害しない」総アンモニア濃度は、pH毎に設定することが好ましい。しかし、培養中の最も高いpHにおいて許容される総アンモニア濃度範囲を、培養期間を通じての総アンモニア濃度範囲として用いてもよい。培地中の総アンモニア濃度は、培養の少なくとも一部の期間において上記例示した濃度に制御されてよい。すなわち、培地中の総アンモニア濃度は、培養の全期間において上記例示した濃度に制御されてもよく、培養の一部の期間において上記例示した濃度に制御されてもよい。培地中の総アンモニア濃度が制御される「一部の期間」については、重炭酸イオン及び/又は炭酸イオンが培地中に存在する培養期についての記載を準用できる。すなわち、培地中の総アンモニア濃度は、例えば、塩基性アミノ酸が生産されている期間に上記例示した濃度に制御されてよい。また、培地中の総アンモニア濃度が制御される「一部の期間」として、具体的には、塩基性アミノ酸の蓄積に対して、硫酸イオン及び塩化物イオン等のカウンタイオンが不足することにより培地のpHが上昇する期間が挙げられる。
一方、塩基性アミノ酸生産菌の生育及び塩基性アミノ酸の生産に必要な窒素源としての総アンモニア濃度は、培養中にアンモニアが枯渇した状態が継続せず、且つ、窒素源が不足することによる塩基性アミノ酸の生産性の低下が起こらない限り、特に制限されず、適宜設定することができる。例えば、培養中にアンモニア濃度を経時的に測定し、培地中のアンモニアが枯渇したら少量のアンモニアを培地に添加してもよい。アンモニアを添加したときのアンモニア濃度は、具体的には、例えば、総アンモニア濃度として、好ましくは1 mM以上、より好ましくは10 mM以上、特に好ましくは20 mM以上であってよい。
培地中の総アンモニア濃度は、例えば、WO2015/050234に記載のアンモニア制御装置お
よびアンモニア制御方法を利用して制御することができる。
また、L−グルタミン酸を製造する場合、L−グルタミン酸が析出する条件に調整された液体培地を用いて、培地中にL−グルタミン酸を析出させながら培養を行うことも出来る。L−グルタミン酸が析出する条件としては、例えば、pH5.0〜4.0、好ましくはpH4.5
〜4.0、さらに好ましくはpH4.3〜4.0、特に好ましくはpH4.0の条件が挙げられる(EP1078989A)。
L−アミノ酸が生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMR
が挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて用いることができる。
発酵液からのL−アミノ酸の回収(採取)は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法(Nagai, H. et al., Separation Science and Technology, 39(16), 3691-3710)、沈殿法、膜分離法(特開平9-164323、特開平9-173792)、晶析法(WO2008/078448、WO2008/078646)が挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて用いることができる。なお、菌体内にL−アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL−アミノ酸を回収することができる。回収されるL−アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。L−リジンを製造する場合、回収されるL−リジンは、具体的には、例えば、フリー体のL−リジン、L−リジン硫酸塩、L−リジン塩酸塩、L−リジン炭酸塩、またはそれらの混合物であってもよい。L−グルタミン酸を製造する場合、回収されるL−グルタミン酸は、具体的には、例えば、フリー体のL−グルタミン酸、L−グルタミン酸ナトリウム(monosodium L-glutamate;MSG)、L−グルタミン酸アンモニウム(monoammonium L-glutamate)、またはそれらの混合物であってもよい。例えば、発酵液中のL−グルタミン酸アンモニウムを酸を加えて晶析させ、結晶に等モルの水酸化ナトリウムを添加することでL−グルタミン酸ナトリウム(MSG)が得られる。なお、晶析前後に活性炭を加えて脱色してもよい(グルタミン酸ナトリウムの工業晶析 日本海水学会誌 56巻 5号 川喜田哲哉参照)。L−グルタ
ミン酸ナトリウム結晶は、例えば、うま味調味料として用いることができる。L−グルタミン酸ナトリウム結晶は、同様にうま味を有するグアニル酸ナトリウムやイノシン酸ナトリウム等の核酸と混合して調味料として用いてもよい。
また、L−アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL−アミノ酸は、培地中に溶解しているL−アミノ酸を晶析した後に、併せて単離してもよい。
尚、回収されるL−アミノ酸は、L−アミノ酸以外に、細菌菌体、培地成分、水分、及び細菌の代謝副産物等の成分を含んでいてもよい。L−アミノ酸は、所望の程度に精製されていてもよい。回収されるL−アミノ酸の純度は、例えば、50%(w/w)以上、好まし
くは85%(w/w)以上、特に好ましくは95%(w/w)以上であってよい(JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714, US2005/0025878)。L−アミノ酸は、L−アミノ酸を含有する造粒乾燥物として提供され
てもよい。例えば、L−リジンを含有する造粒乾燥物を製造する方法としては、US7416740に記載の方法が挙げられる。
また、上記のような条件下で本発明の細菌を培養することにより、菌体内にカロテノイドが蓄積し得る。具体的には、本発明の細菌がカロテノイド生産能を有する場合、同細菌を培養することにより、菌体内にカロテノイドが蓄積し得る。本発明においては、1種のカロテノイドが菌体内に蓄積してもよく、2種またはそれ以上のカロテノイドが菌体内に蓄積してもよい。
カロテノイドが菌体内に蓄積する場合、当該菌体(カロテノイドを含有する菌体)を回収(採取)してもよい。すなわち、本発明の方法の第1の態様は、さらに、菌体(カロテノイドを含有する菌体)を採取することを含んでいてもよい。すなわち、本発明の方法の
第1の態様は、カロテノイドを含有する菌体の製造方法を包含してもよい。発酵液から菌体を回収する手法は特に制限されない。発酵液からの菌体の回収は、例えば、公知の手法により行うことができる。発酵液から菌体を回収する手法としては、例えば、自然沈降、遠心分離、濾過が挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて用いることができる。
<2−2>カロテノイドを含有する菌体の製造方法
上述の通り、カロテノイドが菌体内に蓄積する場合、カロテノイドを含有する菌体を得ることができる。すなわち、本発明の方法の別の態様(「本発明の方法の第2の態様」ともいう)は、カロテノイド生産能を有する本発明の細菌を培地で培養し、該細菌の菌体内にカロテノイドを蓄積すること、および前記菌体を採取すること、を含むカロテノイドを含有する菌体の製造方法である。本発明においては、1種のカロテノイドが菌体内に蓄積してもよく、2種またはそれ以上のカロテノイドが菌体内に蓄積してもよい。
また、本発明の細菌は、L−アミノ酸生産能を有する。よって、本発明の方法の第2の態様においては、本発明の細菌を培養することにより、L−アミノ酸が培地中および/または菌体内に蓄積し得る。L−アミノ酸が培地中および/または菌体内に蓄積する場合、L−アミノ酸を回収(採取)してもよい。すなわち、本発明の方法の第2の態様は、さらに、L−アミノ酸を培地および/または菌体から採取することを含んでいてもよい。すなわち、本発明の方法の第2の態様は、L−アミノ酸の製造方法を包含してもよい。本発明の方法の第2の態様においては、1種のL−アミノ酸が製造されてもよく、2種またはそれ以上のL−アミノ酸が製造されてもよい。
本発明の方法の第2の態様の実施条件(培地組成、培養条件、菌体の回収方法、等)は、カロテノイドを含有する菌体が得られる限り、特に制限されない。本発明の方法の第2の態様の実施条件については、本発明の方法の第1の態様の実施条件についての記載を準用できる。
なお、一態様において、本発明の方法の第1の態様と本発明の方法の第2の態様とは同一であってよい。具体的には、本発明の方法の第1の態様と本発明の方法の第2の態様において、L−アミノ酸と菌体の両方が生成し回収される場合、両態様は同一であり得る。
<3>本発明の菌体
本発明の菌体は、カロテノイドを含有する菌体である。本発明の菌体は、本発明の細菌の菌体であって、カロテノイドを含有するものであってよい。具体的には、本発明の細菌がカロテノイド生産能を有する場合、同細菌の菌体はカロテノイドを含有し得る。すなわち、本発明の菌体は、より具体的には、細菌の菌体であって、カロテノイドを含有し、前記細菌がL−アミノ酸生産能およびカロテノイド生産能を有し、且つ、前記細菌がカロテノイド生合成酵素の活性が増大するように改変されている、菌体であってよい。本発明の菌体は、1種のカロテノイドを含有していてもよく、2種またはそれ以上のカロテノイドを含有していてもよい。本発明の菌体は、例えば、本発明の細菌を培養し、菌体を回収(採取)することにより製造できる。すなわち、本発明の菌体は、例えば、本発明の方法によって製造することができる。菌体中のカロテノイド含有量は、常法により測定できる。菌体中のカロテノイド含有量は、例えば、実施例に記載の手法により測定できる。本発明の菌体の用途は特に制限されない。本発明の菌体は、例えば、養魚用飼料等の飼料の成分として利用できる。
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれにより制限されるものではない。
実施例:カロテノイド生合成酵素遺伝子の発現を増強したE. coli株を用いたリジン生産
培養
本実施例では、カロテノイド生合成酵素遺伝子(crtEYIB)を導入したE. coliのリジン生産株を用いてリジン生産を行い、カロテノイド生合成酵素遺伝子の発現増強がリジン生産に与える影響について評価した。
(1)材料
本実施例で使用した材料は以下の通りである。
Figure 2019165635
Figure 2019165635
<培地組成>
LB培地:バクトトリプトン 10g/L、酵母エキス 5 g/L、NaCl 5 g/L、pH 7.0。
LBGM9培地:LB培地に、最少培地成分(グルコース5 g/L、硫酸マグネシウム2 mM、リン酸二水素カリウム 3 g/L、塩化ナトリウム 0.5 g/L、塩化アンモニウム 1 g/L、リン酸
水素二ナトリウム 6 g/L)を添加。pH 7.0(KOHで調整)。
MS培地:グルコース 40 g/L、MgSO4・7H2O 1.0 g/L、(NH4)2SO4 24 g/L、KH2PO4 1 g/L、酵母エキス 2 g/L、FeSO4・7H2O 10 mg/L、MnSO4・5H2O 8 mg/L。pH 7.0(KOHで
調整)。
(2)菌株の構築
(2−1)P. ananatis SC17(0)ΔcrtEX::Ptac_crtE_Kmrの構築
P. ananatis SC17(0)::Ptac-kdp株(WO2008/090770)の染色体DNAを鋳型として、プラ
イマーcrtE-attL-FとcrtE-Ptac407X-Rとを用いたPCRにより、λattL配列およびλattR配
列がそれぞれの末端に付加されたカナマイシン耐性遺伝子配列と、tacプロモーター配列
とを含むDNA断片(λattL_Kmr_λattR_Ptac(WO2008/090770に記載))を増幅した。一方、P. ananatis SC17(0)株より抽出されたDNAを鋳型として、プライマーPtac407X-crtE-F
とcrtY-SD-crtE-Rとを用いたPCRにより、crtE遺伝子配列を含むDNA断片を取得した。SC17(0)株は、2005年9月21日にRussian National Collection of Industrial Microorganisms(VKPM、FGUP GosNII Genetika, Russian Federation, 117545 Moscow, 1st Dorozhny proezd, 1)に受託番号VKPM B-9246のもとに寄託されている。PCRは、PrimeSTAR GXL polymerase(タカラバイオ株式会社)を用い、同酵素に付属のプロトコルに従って行った。両DNA断片を鋳型として、プライマーcrtE-attL-FとcrtY-SD-crtE-Rを用いたクロスオーバーPCRにより、crtE遺伝子配列の5’末端側にλattL_Kmr_λattR_Ptac配列が連結された塩基
配列を含むDNA断片λattL_Kmr_λattR_Ptac_crtEを得た。
既報(WO2010/027022A1)に従い、λ-red法(US2006-0160191A、Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))によりλattL_Kmr_λattR_Ptac_crtEを用いてP. ananatis SC17(0)株を形質転換し、40 μg/mLのカナマイシンを含むLBGM9寒天培地で形質転換体を選抜した。得られた形質転換体のうち、crtEXYIBオペロン上のcrtX遺伝子を欠失し、且つcrtE遺伝子のプロモーターがtacプロモーターに置換された株をP. ananatis SC17(0)ΔcrtEX::Ptac_crtE_Kmr株とした。
(2−2)E. coli WC196LC_crtEYIBの構築
P. ananatis SC17(0)ΔcrtEX::Ptac_crtE_Kmr株より抽出されたDNAを鋳型として、プライマーargT_attL_fwとargT_crtB_rvとを用いたPCRにより、λattL_Kmr_λattR_Ptac配列
の下流にcrtEYIB遺伝子配列が連結された塩基配列を含むDNA断片λattL_Kmr_λattR_Ptac_crtEYIBを得た。
常法に従い、λ-red法(US2006-0160191A、Datsenko, K. A, and Wanner, B. L. Proc.
Natl. Acad. Sci. U S A. 97:6640-6645 (2000))によりλattL_Kmr_λattR_Ptac_crtEYIBを用いてE. coli MG1655株を形質転換し、50 μg/mLのカナマイシンを含むLB寒天培地
で形質転換体を選抜した。得られた形質転換体のうち、染色体上のargT遺伝子内にλattL_Kmr_λattR_Ptac_crtEYIBの挿入が確認されたものをE. coli MG1655ΔargT::Ptac_crtEYIB_Kmr株とした。
E. coli MG1655ΔargT::Ptac_crtEYIB_Kmr株をドナー、L−リジン生産菌E. coli WC196LC株(FERM BP-11027)をレシピエントとして、常法に従ってP1形質導入法を行い、カロテノイド生合成酵素遺伝子(crtEYIB)が導入されたE. coli WC196LCΔargT::Ptac_crtEYIB_Kmr株(以下、WC196LC_crtEYIB株とする)を得た。
(3)カロテノイドの抽出および定量
WC196LC株およびWC196LC_crtEYIB株を、それぞれ、LB寒天培地で37℃、48時間培養した。培養後のプレートから菌体をかきとり(直径約8 cm範囲)、1 mLの滅菌水に懸濁した。得られた菌体懸濁液を一部分取し、乾燥菌体量を測定した。一方、残りの菌体懸濁液を遠心分離し、得られた菌体を等量のエタノールに再懸濁した。エタノール菌体懸濁液に対して等量のφ0.5 mmグラスビーズ(YGBLA05、安井機械株式会社)を添加した後、マルチビ
ーズショッカー(R)(安井機械株式会社)を用いて30秒間2,700 rpmで処理の後、30秒間の
静置を1サイクルとして、20サイクル繰り返すことで菌体を破砕した。菌体破砕液を20,000xg、2 min遠心し上清を得た。得られた上清をエタノールで2倍に希釈し、A450を測定し
た。A450の測定値から、カロテノイド量を下記式(I)によって算出した(Britton G., Geteral carotenoid methods., Methods. Enzymol., 111: 113-149 (1985))。
総カロテノイド量 (μg/L) = A450 x 2/(2620 x 100) x 1000 x 1000000 ・・・(I
結果を表3に示す。WC196LC株ではカロテノイドの蓄積が確認されなかったのに対し、WC196LC_crtEYIB株ではカロテノイドの蓄積が確認された。
Figure 2019165635
(4)L−リジン生産培養
WC196LC株およびWC196LC_crtEYIB株を、それぞれ、LB寒天培地上に均一に塗布し、37℃にて24時間培養した。培養後のプレートからおよそ1 cm四方の菌体をかきとり、1 mLの生理食塩水に懸濁し、分光光度計U-2800(株式会社日立ハイテクノロジーズ)で波長620 nmの濁度(OD620)を測定した。得られた菌体懸濁液を、500 mL容坂口フラスコにはりこま
れた20 mLのMS培地に、終OD620値が0.126になるように接種し、予め乾熱滅菌しておいた
局方CaCO3を0.6 g添加した。往復振とう培養装置で攪拌速度120 rpm、温度37℃において
約48時間培養した。培養終了後に、培地に蓄積したL−リジンの量、及び培地に残存しているグルコースの量を、バイオテックアナライザーAS210(サクラエスアイ株式会社)を
用いて測定した。
結果を図1に示す。WC196LC_crtEYIB株は、WC196LC株に対してL−リジン生産が向上した。
〔配列表の説明〕
配列番号1〜6:プライマー
配列番号7:Corynebacterium glutamicum 2256 (ATCC 13869)のyggB遺伝子の塩基配列
配列番号8:Corynebacterium glutamicum 2256 (ATCC 13869)のYggBタンパク質のアミノ酸配列
配列番号9:Corynebacterium glutamicum 2256 (ATCC 13869)の変異型yggB遺伝子(V419::IS)の塩基配列
配列番号10:Corynebacterium glutamicum 2256 (ATCC 13869)の変異型YggBタンパク質(V419::IS)のアミノ酸配列
配列番号11:Pantoea ananatis AJ13355のcrtE遺伝子の塩基配列
配列番号12:Pantoea ananatis AJ13355のCrtEタンパク質のアミノ酸配列
配列番号13:Pantoea ananatis AJ13355のcrtB遺伝子の塩基配列
配列番号14:Pantoea ananatis AJ13355のCrtBタンパク質のアミノ酸配列
配列番号15:Pantoea ananatis AJ13355のcrtI遺伝子の塩基配列
配列番号16:Pantoea ananatis AJ13355のCrtIタンパク質のアミノ酸配列
配列番号17:Pantoea ananatis AJ13355のcrtY遺伝子の塩基配列
配列番号18:Pantoea ananatis AJ13355のCrtYタンパク質のアミノ酸配列
配列番号19:Nostoc sp. PCC 7120のcrtW遺伝子の塩基配列
配列番号20:Nostoc sp. PCC 7120のCrtWタンパク質のアミノ酸配列
配列番号21:Pantoea ananatis AJ13355のcrtZ遺伝子の塩基配列
配列番号22:Pantoea ananatis AJ13355のCrtZタンパク質のアミノ酸配列
配列番号23:Corynebacterium glutamicum ATCC 13032のcrtE遺伝子の塩基配列
配列番号24:Corynebacterium glutamicum ATCC 13032のCrtEタンパク質のアミノ酸配

配列番号25:Corynebacterium glutamicum ATCC 13032のcrtB遺伝子の塩基配列
配列番号26:Corynebacterium glutamicum ATCC 13032のCrtBタンパク質のアミノ酸配

配列番号27:Corynebacterium glutamicum ATCC 13032のcrtI遺伝子の塩基配列
配列番号28:Corynebacterium glutamicum ATCC 13032のCrtIタンパク質のアミノ酸配

配列番号29:Brevundimonas aurantiacaのcrtW遺伝子の塩基配列
配列番号30:Brevundimonas aurantiacaのCrtWタンパク質のアミノ酸配列

Claims (30)

  1. L−アミノ酸生産能を有する細菌を培地で培養し、該培地中および/または該細菌の菌体内にL−アミノ酸を蓄積すること、および前記培地および/または前記菌体より前記L−アミノ酸を採取すること、を含むL−アミノ酸の製造方法であって、
    前記細菌が、カロテノイド生合成酵素の活性が増大するように改変されている、方法。
  2. 前記カロテノイド生合成酵素が、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、リコペンβ−サイクラーゼ、カロテンケトラーゼ、およびカロテンヒドロキシラーゼから選択される1種またはそれ以上の酵素である、請求項1に記載の方法。
  3. 少なくとも、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、およびリコペンβ−サイクラーゼから選択される1種またはそれ以上の酵素の活性が増大する、請求項2に記載の方法。
  4. 少なくとも、ゲラニルゲラニルピロリン酸シンターゼ、フィトエンシンターゼ、フィトエンデサチュラーゼ、およびリコペンβ−サイクラーゼの活性が増大する、請求項2に記載の方法。
  5. さらに、カロテンケトラーゼおよび/またはカロテンヒドロキシラーゼの活性が増大する、請求項2または3に記載の方法。
  6. 前記ゲラニルゲラニルピロリン酸シンターゼが、下記(a)、(b)、または(c)に記載のタンパク質である、請求項2〜5のいずれか一項に記載の方法:
    (a)配列番号12または24に示すアミノ酸配列を含むタンパク質;
    (b)配列番号12または24に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、ゲラニルゲラニルピロリン酸シンターゼ活性を有するタンパク質;
    (c)配列番号12または24に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、ゲラニルゲラニルピロリン酸シンターゼ活性を有するタンパク質。
  7. 前記フィトエンシンターゼが、下記(a)、(b)、または(c)に記載のタンパク質である、請求項2〜6のいずれか一項に記載の方法:
    (a)配列番号14または26に示すアミノ酸配列を含むタンパク質;
    (b)配列番号14または26に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、フィトエンシンターゼ活性を有するタンパク質;
    (c)配列番号14または26に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、フィトエンシンターゼ活性を有するタンパク質。
  8. 前記フィトエンデサチュラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、請求項2〜7のいずれか一項に記載の方法:
    (a)配列番号16または28に示すアミノ酸配列を含むタンパク質;
    (b)配列番号16または28に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、フィトエンデサチュラーゼ活性を有するタンパク質;
    (c)配列番号16または28に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、フィトエンデサチュラーゼ活性を有するタンパク質。
  9. 前記リコペンβ−サイクラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、請求項2〜8のいずれか一項に記載の方法:
    (a)配列番号18に示すアミノ酸配列を含むタンパク質;
    (b)配列番号18に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、リコペンβ−サイクラーゼ活性を有するタンパク質;
    (c)配列番号18に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、リコペンβ−サイクラーゼ活性を有するタンパク質。
  10. 前記カロテンケトラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、請求項2〜9のいずれか一項に記載の方法:
    (a)配列番号20または30に示すアミノ酸配列を含むタンパク質;
    (b)配列番号20または30に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、カロテンケトラーゼ活性を有するタンパク質;
    (c)配列番号20または30に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、カロテンケトラーゼ活性を有するタンパク質。
  11. 前記カロテンヒドロキシラーゼが、下記(a)、(b)、または(c)に記載のタンパク質である、請求項2〜10のいずれか一項に記載の方法:
    (a)配列番号22に示すアミノ酸配列を含むタンパク質;
    (b)配列番号22に示すアミノ酸配列において、1〜10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、カロテンヒドロキシラーゼ活性を有するタンパク質;
    (c)配列番号22に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、カロテンヒドロキシラーゼ活性を有するタンパク質。
  12. 前記カロテノイド生合成酵素をコードする遺伝子の発現を上昇させることにより、前記カロテノイド生合成酵素の活性が増大した、請求項1〜11のいずれか一項に記載の方法。
  13. 前記遺伝子の発現が、該遺伝子のコピー数を高めること、および/または該遺伝子の発現調節配列を改変することによって上昇した、請求項12に記載の方法。
  14. 前記細菌が、腸内細菌科に属する細菌またはコリネ型細菌である、請求項1〜13のいずれか一項に記載の方法。
  15. 前記細菌が、パントエア属細菌またはエシェリヒア属細菌である、請求項1〜14のいずれか一項に記載の方法。
  16. 前記細菌が、パントエア・アナナティスまたはエシェリヒア・コリである、請求項15に記載の方法。
  17. 前記細菌が、コリネバクテリウム属細菌である、請求項1〜14のいずれか一項に記載の方法。
  18. 前記細菌が、コリネバクテリウム・グルタミカムである、請求項17に記載の方法。
  19. 前記L−アミノ酸が、アスパラギン酸系L−アミノ酸および/またはグルタミン酸系L
    −アミノ酸である、請求項1〜18のいずれか一項に記載の方法。
  20. 前記L−アミノ酸が、L−リジン、L−スレオニン、およびL−グルタミン酸から選択される1種またはそれ以上のL−アミノ酸である、請求項1〜19のいずれか一項に記載の方法。
  21. 前記細菌がカロテノイド生産能を有し、前記培養により前記菌体内にカロテノイドが蓄積する、請求項1〜20のいずれか一項に記載の方法。
  22. 前記菌体が、前記カロテノイドを50μg/g−DCW以上の量で含有する、請求項21に記載の方法。
  23. 前記カロテノイドが、β−カロテン、ゼアキサンチン、カンタキサンチン、およびアスタキサンチンから選択される1種またはそれ以上のカロテノイドである、請求項21または22に記載の方法。
  24. さらに、前記菌体を採取することを含む、請求項21〜23のいずれか一項に記載の方法。
  25. L−アミノ酸生産能およびカロテノイド生産能を有する細菌を培地で培養し、該細菌の菌体内にカロテノイドを蓄積すること、および前記菌体を採取すること、を含むカロテノイドを含有する菌体の製造方法であって、
    前記細菌が、カロテノイド生合成酵素の活性が増大するように改変されている、方法。
  26. 前記菌体が、前記カロテノイドを50μg/g−DCW以上の量で含有する、請求項25に記載の方法。
  27. 前記カロテノイドが、β−カロテン、ゼアキサンチン、カンタキサンチン、およびアスタキサンチンから選択される1種またはそれ以上のカロテノイドである、請求項25または26に記載の方法。
  28. 細菌の菌体であって、
    カロテノイドを含有し、
    前記細菌が、L−アミノ酸生産能およびカロテノイド生産能を有し、
    前記細菌が、カロテノイド生合成酵素の活性が増大するように改変されている、菌体。
  29. 前記カロテノイドを50μg/g−DCW以上の量で含有する、請求項28に記載の菌体。
  30. 前記カロテノイドが、β−カロテン、ゼアキサンチン、カンタキサンチン、およびアスタキサンチンから選択される1種またはそれ以上のカロテノイドである、請求項28または29に記載の菌体。
JP2016157800A 2016-08-10 2016-08-10 L−アミノ酸の製造法 Pending JP2019165635A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016157800A JP2019165635A (ja) 2016-08-10 2016-08-10 L−アミノ酸の製造法
EP17839574.5A EP3498836A4 (en) 2016-08-10 2017-08-10 MANUFACTURING PROCESS FOR L-AMINO ACID
CA3033334A CA3033334A1 (en) 2016-08-10 2017-08-10 Production method for l-amino acid
PCT/JP2017/029050 WO2018030507A1 (ja) 2016-08-10 2017-08-10 L-アミノ酸の製造法
US16/268,082 US11198894B2 (en) 2016-08-10 2019-02-05 Method of producing an l-amino acid involving a carotenoid biosynthesis enzyme
CL2019000318A CL2019000318A1 (es) 2016-08-10 2019-02-07 Método para producir un l-aminoácido tal como l-lisina.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157800A JP2019165635A (ja) 2016-08-10 2016-08-10 L−アミノ酸の製造法

Publications (1)

Publication Number Publication Date
JP2019165635A true JP2019165635A (ja) 2019-10-03

Family

ID=61162306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157800A Pending JP2019165635A (ja) 2016-08-10 2016-08-10 L−アミノ酸の製造法

Country Status (6)

Country Link
US (1) US11198894B2 (ja)
EP (1) EP3498836A4 (ja)
JP (1) JP2019165635A (ja)
CA (1) CA3033334A1 (ja)
CL (1) CL2019000318A1 (ja)
WO (1) WO2018030507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102254632B1 (ko) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 신규한 피토엔 탈포화효소 변이체 및 이를 이용한 imp 생산 방법
WO2022154189A1 (ko) * 2021-01-15 2022-07-21 씨제이제일제당 (주) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3861109A1 (en) 2018-10-05 2021-08-11 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
JPWO2020203885A1 (ja) 2019-03-29 2020-10-08
CN110964683B (zh) * 2019-12-02 2021-08-13 天津科技大学 生产l-精氨酸的基因工程菌及其构建方法与应用
WO2022231037A1 (ko) * 2021-04-29 2022-11-03 씨제이제일제당 (주) 신규한 변이체 및 이를 이용한 imp 생산 방법
EP4381961A1 (en) 2021-08-02 2024-06-12 Ajinomoto Co., Inc. Method for improving flavor of food
CN113678767B (zh) * 2021-08-10 2022-08-23 中国水产科学研究院黄海水产研究所 一种对虾抗病性状的选育方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203818A3 (en) * 1993-12-27 2002-06-12 Kirin Beer Kabushiki Kaisha DNA Strands useful for the synthesis of xanthophylls and the process for producing the xanthophylls
ES2216027T3 (es) 1995-06-09 2004-10-16 Dsm Ip Assets B.V. Produccion de carotenoides fermentativos.
US5744341A (en) * 1996-03-29 1998-04-28 University Of Maryland College Park Genes of carotenoid biosynthesis and metabolism and a system for screening for such genes
US6703227B2 (en) * 1999-02-11 2004-03-09 Renessen Llc Method for producing fermentation-based products from high oil corn
AU2003256264A1 (en) * 2002-06-04 2003-12-19 California Institute Of Technology Carotenoid synthesis
MXPA05001944A (es) * 2002-08-20 2005-06-22 Sungene Gmbh & Co Kgaa Procedimiento para elaborar cetocarotenoides en frutos de plantas.
US6929928B2 (en) 2003-06-12 2005-08-16 E. I. Du Pont De Nemours And Company Genes encoding carotenoid compounds
DE102004007622A1 (de) * 2004-02-17 2005-08-25 Sungene Gmbh & Co. Kgaa Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten, nicht-humanen Organismen
WO2006078039A1 (en) * 2005-01-18 2006-07-27 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing l-amino acid
AU2006227165B2 (en) * 2005-03-18 2011-11-10 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
RU2008105482A (ru) * 2005-07-18 2009-08-27 Эвоник Дегусса ГмБх (DE) Применение meti-гена bacillus для улучшения продуцирования метионина в микроорганизмах
GB0524873D0 (en) 2005-12-06 2006-01-11 New Royal Holloway & Bedford Bacterial production of carotenoids
JP5706056B2 (ja) 2006-10-17 2015-04-22 Jx日鉱日石エネルギー株式会社 サケ類の肉色改善方法
WO2008090770A1 (ja) * 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
US9562220B2 (en) * 2011-06-10 2017-02-07 National University Corporation Chiba University Method for producing carotenoids each having 50 carbon atoms
JP6306583B2 (ja) * 2012-07-18 2018-04-04 イェダ リサーチ アンド デベロップメント カンパニー リミテッド 代謝経路の生成物の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102254632B1 (ko) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 신규한 피토엔 탈포화효소 변이체 및 이를 이용한 imp 생산 방법
WO2022154189A1 (ko) * 2021-01-15 2022-07-21 씨제이제일제당 (주) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154186A1 (ko) * 2021-01-15 2022-07-21 씨제이제일제당 (주) 신규한 피토엔 탈포화효소 변이체 및 이를 이용한 imp 생산 방법
CN116897204A (zh) * 2021-01-15 2023-10-17 Cj第一制糖株式会社 新型八氢番茄红素合成酶变体及使用其生产xmp或gmp的方法
CN116897204B (zh) * 2021-01-15 2024-02-27 Cj第一制糖株式会社 新型八氢番茄红素合成酶变体及使用其生产xmp或gmp的方法

Also Published As

Publication number Publication date
WO2018030507A1 (ja) 2018-02-15
EP3498836A4 (en) 2020-04-29
CA3033334A1 (en) 2018-02-15
US20190161780A1 (en) 2019-05-30
US11198894B2 (en) 2021-12-14
EP3498836A1 (en) 2019-06-19
CL2019000318A1 (es) 2019-06-07

Similar Documents

Publication Publication Date Title
CN107893089B (zh) 用于生产l-氨基酸的方法
US7833762B2 (en) Method for producing L-amino acid
CN108690856B (zh) 生产l-氨基酸的方法
US11198894B2 (en) Method of producing an l-amino acid involving a carotenoid biosynthesis enzyme
US10787691B2 (en) Method for producing L-amino acid
US10563234B2 (en) Method for producing L-amino acids
WO2012002486A1 (ja) L-アミノ酸の製造法
WO2015064648A1 (ja) 脂肪酸を生成する緑藻類
US9487806B2 (en) Method for producing L-amino acid
JP2016208852A (ja) 脂肪酸を生成する緑藻改変株
JP2010200645A (ja) L−アミノ酸の製造法
WO2014061804A1 (ja) L-アミノ酸の製造法
WO2014061805A1 (ja) L-アミノ酸の製造法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160810