JP2019048272A - Catalyst carrier for carbon nano-tube aggregate synthesis and member for carbon nano-tube aggregate synthesis - Google Patents

Catalyst carrier for carbon nano-tube aggregate synthesis and member for carbon nano-tube aggregate synthesis Download PDF

Info

Publication number
JP2019048272A
JP2019048272A JP2017174501A JP2017174501A JP2019048272A JP 2019048272 A JP2019048272 A JP 2019048272A JP 2017174501 A JP2017174501 A JP 2017174501A JP 2017174501 A JP2017174501 A JP 2017174501A JP 2019048272 A JP2019048272 A JP 2019048272A
Authority
JP
Japan
Prior art keywords
catalyst
underlayer
cnt
synthesis
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174501A
Other languages
Japanese (ja)
Other versions
JP6950939B2 (en
Inventor
俊介 桜井
Shunsuke Sakurai
俊介 桜井
享志 辻
Takashi Tsuji
享志 辻
ドン ノリミ フタバ
Don Norimi Futaba
ドン ノリミ フタバ
賢治 畠
Kenji Hata
賢治 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017174501A priority Critical patent/JP6950939B2/en
Publication of JP2019048272A publication Critical patent/JP2019048272A/en
Application granted granted Critical
Publication of JP6950939B2 publication Critical patent/JP6950939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a catalyst carrier for carbon nano-tube aggregate synthesis and a member for carbon nano-tube aggregate synthesis capable of manufacturing a carbon nanotube aggregate at higher efficiency than prior art.SOLUTION: There is provided a catalyst carrier 10 for carbon nano-tube aggregate synthesis having a substrate 11 and a catalyst ground layer 15 arranged on a surface of the substrate 11, in which the catalyst ground layer 15 has a first ground layer 13 arranged on the surface of the substrate 11 and a second ground layer 14 arranged on a surface of the first ground layer 13, the first ground layer 13 prevents a catalyst metal fine particle and/or an atom constituting the catalyst metal fine particle arranged on the surface of the catalyst carrier 10 from in-solid phase diffusion to inside of the catalyst carrier, the second ground layer 14 prevents the catalyst metal fine particle and/or the atom constituting the catalyst metal fine particle from surface diffusion on a catalyst carrier surface and suppresses reduction of the number and/or size change of the catalyst metal fine particle.SELECTED DRAWING: Figure 1

Description

本発明は、カーボンナノチューブ集合体合成用触媒担持体及びカーボンナノチューブ集合体合成用部材に関する。 The present invention relates to a catalyst support for carbon nanotube aggregate synthesis and a member for carbon nanotube aggregate synthesis.

近時、電子デバイス材料、光学素子材料、導電性材料、及び生体関連材料などの機能性新素材へのカーボンナノチューブ(以下、CNTとも称する)の展開が期待されており、その用途、品質、および量産性などに対する検討が精力的に進められている。   Recently, the development of carbon nanotubes (hereinafter also referred to as CNT) to functional new materials such as electronic device materials, optical element materials, conductive materials, and biorelated materials is expected, and their applications, qualities, and Investigations into mass productivity etc. are energetically underway.

CNTの製造方法の一つに、化学気相成長法(以下、CVD法とも称する)が知られている(特許文献1などを参照されたい)。この方法は、約500℃〜1000℃の高温雰囲気下で炭素化合物などの原料ガスを触媒微粒子と接触させることを特徴としている。CVD法は、触媒金属の種類や配置、又は原料ガスの種類や、還元ガス、キャリアガス、合成炉や反応条件といった態様を様々に変化させた中でのCNTの製造が可能であり、CNTの大量生産に適したものとして注目されている。また、このCVD法は、単層カーボンナノチューブ(SWCNT)と多層カーボンナノチューブ(MWCNT)とのいずれも製造可能である上、触媒金属を担持した基材を用いることで、基材面に多数のCNTが垂直に配向したCNT集合体を製造することができる、という利点を備えている。   Chemical vapor deposition (hereinafter also referred to as CVD) is known as one of the methods for producing CNTs (see Patent Document 1 and the like). This method is characterized in that a raw material gas such as a carbon compound is brought into contact with the catalyst fine particles in a high temperature atmosphere of about 500 ° C. to 1000 ° C. The CVD method can produce CNTs in various forms such as the type and arrangement of catalyst metals, or the type of source gas, reducing gas, carrier gas, synthesis furnace and reaction conditions. It is noted as being suitable for mass production. In addition, this CVD method can produce both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), and by using a base material supporting a catalyst metal, a large number of CNTs can be formed on the base surface. Has the advantage that vertically aligned CNT aggregates can be produced.

CNTのなかでも単層CNTは、電気的特性(極めて高い電流密度)、熱的特性(ダイアモンドに匹敵する熱伝導度)、光学特性(光通信帯波長域での発光)、水素貯蔵能、及び金属触媒担持能などの各種特性に優れている。そのため、電子デバイス、蓄電デバイスの電極、MEMS部材、及び機能性複合材料のフィラーなどの材料として注目されている。また、配向性を持つCNT集合体は、指向性を持つ伝熱・放熱材料や、物質・エネルギー貯蔵材料としての様々な用途において、非常に好適である。   Among CNTs, single-walled CNTs have electrical properties (very high current density), thermal properties (thermal conductivity comparable to diamond), optical properties (emission in the optical communication band wavelength range), hydrogen storage capacity, and Excellent in various properties such as metal catalyst loading ability. Therefore, it attracts attention as materials such as an electronic device, an electrode of a storage device, a MEMS member, and a filler of a functional composite material. In addition, the aligned CNT aggregate is very suitable in various applications as a directional heat transfer / heat dissipating material and a material / energy storage material.

特に、金属不純物が少なく、比表面積が800m2/g〜2600m2/gの範囲にある単層CNTの集合体は、触媒の担持体やエネルギー・物質貯蔵材として有効であり、スーパーキャパシターやアクチュエータなどの用途に好適である。 In particular, less metal impurities, aggregates of single-walled CNT specific surface area in the range of 800m 2 / g~2600m 2 / g is effective as a support and energy and material storage material of the catalyst, the supercapacitor and actuators And other applications.

このような高比表面積の配向したCNT集合体が創製されれば、CNTの応用分野が飛躍的に拡大するものと予測されるが、実用化を推進するためには、高比表面積の配向したCNT集合体の量産性を向上させることが重要である。   If such a high specific surface area oriented CNT aggregate is created, it is expected that the application field of CNT will be expanded dramatically, but in order to promote the practical use, the high specific surface area oriented It is important to improve the mass productivity of the CNT assembly.

特開2003−171108号公報JP 2003-171108 A

Shunsuke Sakurai et al, Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth, J. Am. Chem. Soc., 2012, vol.134, P.2148-2153Shunsuke Sakurai et al, Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotubes Forest Growth, J. Am. Chem. Soc., 2012, vol. 134, P. 2148-2153 Takashi Tsuji et al, Unexpected Efficient Synthesis of Millimeter-Scale Single-Wall Carbon Nanotube Forests Using a Sputtered MgO Catalyst Underlayer Enabled by a Simple Treatment Process, J. Am. Chem. Soc., 2016, vol.138, P.16608-16611Takashi Tsuji et al, Unexpected Efficient Synthesis of Millimeter-Scale Single-Wall Carbon Nanotube Forests Using a Sputtered MgO Catalyst Underlayer Enabled by a Simple Treatment Process, J. Am. Chem. Soc., 2016, vol. 138, P. 16608- P. 16611 Don N Futaba et al, 84% Catalyst Activity of Water-Assisted Growth of Single Walled Carbon Nanotube Forest Characterization by a Statistical and Macroscopic Approach, J. Phys. Chem. B, 2006, 110 (15), p.8035-8038Don N Futaba et al, 84% Catalyst Activity of Water-Assisted Growth of Single Walled Carbon Nanotubes Forest Characterization by a Statistical Approach and Macroscopic Approach, J. Phys. Chem. B, 2006, 110 (15), p. 8035-8038

本発明は、従来技術の問題点を解決するものであり、より高い効率でカーボンナノチューブ集合体を製造することが可能なカーボンナノチューブ集合体合成用触媒担持体及びカーボンナノチューブ集合体合成用部材を提供する。   The present invention solves the problems of the prior art, and provides a catalyst support for synthesizing carbon nanotube assembly and a member for synthesizing carbon nanotube assembly capable of producing an aggregate of carbon nanotubes with higher efficiency. Do.

発明者らは鋭意検討の結果、それぞれ異なる物質組成からなる複数の層から構成される触媒下地層を用いることにより、従来技術では同時に解決することが困難であった触媒金属の表面拡散と固相内拡散を共に防止することが可能になることを見出した。具体的には、まず触媒下地層の最上層には、触媒金属の表面拡散を抑制するために、欠陥を有する薄膜を配置する。そして触媒下地層の下層には、触媒金属の固相内拡散を防止するために、欠陥の少ない層を配置する。上記のような構造を有する触媒下地層を用いることで、所望のサイズを有する触媒微粒子の個数密度を長時間維持することを可能にした。   As a result of intensive investigations, the inventors of the present invention have found that by using a catalyst underlayer composed of a plurality of layers composed of different substance compositions, it is difficult to simultaneously solve the surface diffusion and solid phase of catalyst metals in the prior art. It has been found that it is possible to prevent inward diffusion together. Specifically, first, a thin film having defects is disposed on the uppermost layer of the catalyst underlayer in order to suppress surface diffusion of the catalyst metal. Then, in the lower layer of the catalyst base layer, a layer with few defects is disposed in order to prevent the solid phase diffusion of the catalytic metal. By using the catalyst underlayer having the above-described structure, the number density of catalyst fine particles having a desired size can be maintained for a long time.

本発明の一実施形態によると、基材と、前記基材の表面上に設けられる触媒下地層と、を備えるカーボンナノチューブ集合体合成用触媒担持体であり、前記触媒下地層は、前記基材の表面上に設けられている第一下地層と、前記第一下地層の表面上に設けられている第二下地層と、を備え、前記第一下地層は、前記触媒担持体の表面上に設けられる触媒金属微粒子及び/又は前記触媒金属微粒子を構成する原子の、前記触媒担持体内部への固相内拡散を防止し、前記第二下地層は、前記触媒金属微粒子及びは/又は前記触媒金属微粒子を構成する原子の、前記触媒担持体表面における表面拡散を防止して、前記触媒金属微粒子の個数の減少及び/又はサイズ変化を抑制する、カーボンナノチューブ集合体合成用触媒担持体が提供される。   According to one embodiment of the present invention, there is provided a catalyst support for carbon nanotube aggregate synthesis, comprising: a base material; and a catalyst base layer provided on the surface of the base material, wherein the catalyst base layer is the base material And a second underlayer provided on the surface of the first underlayer, wherein the first underlayer is formed on the surface of the catalyst carrier. In the solid phase of the catalyst carrier, diffusion of catalyst metal particles provided in the catalyst metal particles and / or atoms constituting the catalyst metal particles is prevented, and the second undercoat layer is formed of the catalyst metal particles and / or A catalyst support for carbon nanotube aggregate synthesis is provided, which prevents the surface diffusion of atoms constituting catalyst metal fine particles on the surface of the catalyst support to suppress the decrease in the number and / or the size change of the catalyst metal fine particles. Be done.

前記カーボンナノチューブ集合体合成用触媒担持体において、前記第一下地層が、耐食性金属の酸化物を含む、厚さ2nm以上の層であってもよい。   In the catalyst support for synthesizing a carbon nanotube aggregate, the first underlayer may be a layer having a thickness of 2 nm or more, which contains an oxide of a corrosion-resistant metal.

前記カーボンナノチューブ集合体合成用触媒担持体において、前記耐食性金属が、マグネシウム、亜鉛、アルミニウム、チタン、ジルコニウム、ハフニウム、スズ、鉛、ベリリウム、バナジウム、ニオブ、タンタル、クロム、鉄及びニッケルからなる群から選択される一以上を含んでもよい。   In the catalyst support for synthesizing carbon nanotube aggregate, the corrosion-resistant metal is selected from the group consisting of magnesium, zinc, aluminum, titanium, zirconium, hafnium, tin, lead, beryllium, vanadium, niobium, tantalum, chromium, iron and nickel. It may include one or more selected.

前記カーボンナノチューブ集合体合成用触媒担持体において、前記第二下地層は、平均厚さが0.2nm以上5nm以下の金属化合物又は金属を含む薄膜であってもよい。   In the catalyst support for synthesizing a carbon nanotube aggregate, the second underlayer may be a thin film containing a metal compound or a metal having an average thickness of 0.2 nm or more and 5 nm or less.

前記カーボンナノチューブ集合体合成用触媒担持体において、前記第一下地層が、前記第二下地層を構成する物質とは異なる物質を含んでもよい。   In the catalyst support for synthesizing a carbon nanotube aggregate, the first underlayer may contain a material different from the material constituting the second underlayer.

前記カーボンナノチューブ集合体合成用触媒担持体において、前記第一下地層が酸化ジルコニウム又は酸化ハフニウムを含み、且つ前記第二下地層が酸化アルミニウムを含んでもよく、又は前記第一下地層が酸化アルミニウムを含み、且つ前記第二下地層が酸化マグネシウムを含んでもよい。   In the catalyst support for synthesizing carbon nanotube aggregate, the first underlayer may contain zirconium oxide or hafnium oxide, and the second underlayer may contain aluminum oxide, or the first underlayer may be aluminum oxide. And the second underlayer may include magnesium oxide.

また、本発明の一実施形態によると、前記いずれかに記載のカーボンナノチューブ集合体合成用触媒担持体の表面上に、触媒金属からなる触媒金属微粒子を設けてなるカーボンナノチューブ集合体合成用部材が提供される。   Further, according to an embodiment of the present invention, there is provided a carbon nanotube aggregate synthesizing member, wherein catalyst metal fine particles comprising a catalyst metal are provided on the surface of the catalyst support for synthesizing carbon nanotube aggregate described in any one of the above. Provided.

本発明によれば、長尺のカーボンナノチューブ集合体を高効率で生産することが可能となる。また、本発明によれば、カーボンナノチューブ集合体の生産において、基材面積辺りに高い個数密度且つ寿命の長い触媒金属微粒子を配置することが可能となり、その結果、長尺のカーボンナノチューブ集合体を高効率で生産することが可能となる。   According to the present invention, it is possible to produce long carbon nanotube aggregates with high efficiency. Further, according to the present invention, it is possible to arrange catalyst metal fine particles having a high number density and a long life around the substrate area in the production of a carbon nanotube aggregate, and as a result, a long carbon nanotube aggregate can be obtained. It becomes possible to produce with high efficiency.

本発明の一実施形態に係るCNT集合体合成用触媒担持体10を示す断面図である。It is a sectional view showing catalyst supporting object 10 for CNT aggregate synthesis concerning one embodiment of the present invention. 本発明の一実施形態に係るCNT集合体合成用部材50を示す断面図である。It is a sectional view showing member 50 for CNT aggregate composition concerning one embodiment of the present invention. 本発明の一実施形態に係るCNT集合体合成用触媒担持体10の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the catalyst supporting body 10 for CNT aggregate synthesis which concerns on one Embodiment of this invention. 本発明の一実施形態に係るCNT集合体合成用部材50の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the member 50 for CNT aggregate synthetic | combination which concerns on one Embodiment of this invention. 従来の触媒下地層92を配置したCNT集合体合成用部材90を示す断面図である。It is sectional drawing which shows the member 90 for CNT aggregate synthesis which arrange | positioned the conventional catalyst base layer 92. As shown in FIG. 本発明の一実施例に係るCNT集合体合成用部材の表面の原子間力顕微鏡像を示す。The atomic force microscope image of the surface of the member for CNT aggregate synthesis concerning one example of the present invention is shown. 本発明の一実施例に係るCNT集合体合成用部材の表面の原子間力顕微鏡像を示す。The atomic force microscope image of the surface of the member for CNT aggregate synthesis concerning one example of the present invention is shown. 本発明の一実施例に係るCNT集合体合成用部材の表面の原子間力顕微鏡像を示す。The atomic force microscope image of the surface of the member for CNT aggregate synthesis concerning one example of the present invention is shown. 比較例のCNT集合体合成用部材の表面の原子間力顕微鏡像を示す。The atomic force microscope image of the surface of the member for CNT assembly synthetic | combination of a comparative example is shown. 比較例のCNT集合体合成用部材の表面の原子間力顕微鏡像を示す。The atomic force microscope image of the surface of the member for CNT assembly synthetic | combination of a comparative example is shown. (a)は本発明の一実施例に係るCNT集合体合成用部材上に合成したCNT集合体を示し、(b)はCNT集合体のラマンスペクトルを示し、(c)はCNT集合体の成長曲線を示す。(A) shows a CNT assembly synthesized on a member for synthesizing CNT assembly according to an embodiment of the present invention, (b) shows a Raman spectrum of the CNT assembly, (c) shows a growth of the CNT assembly Show a curve. (a)は本発明の一実施例に係るCNT集合体のTEM像であり、(b)はTEM像から求めた本発明の一実施例に係るCNTの直径の分布を示す。(A) is a TEM image of the CNT assembly which concerns on one Example of this invention, (b) shows distribution of the diameter of CNT which concerns on one Example of this invention calculated | required from the TEM image. (a)は本発明の一実施例に係るCNT集合体合成用部材上に合成したCNT集合体を示し、(b)はCNT集合体のラマンスペクトルを示し、(c)はCNT集合体の成長曲線を示す。(A) shows a CNT assembly synthesized on a member for synthesizing CNT assembly according to an embodiment of the present invention, (b) shows a Raman spectrum of the CNT assembly, (c) shows a growth of the CNT assembly Show a curve. (a)は本発明の一実施例に係るCNT集合体合成用部材上に合成したCNT集合体を示し、(b)はCNT集合体のラマンスペクトルを示し、(c)はCNT集合体の成長曲線を示す。(A) shows a CNT assembly synthesized on a member for synthesizing CNT assembly according to an embodiment of the present invention, (b) shows a Raman spectrum of the CNT assembly, (c) shows a growth of the CNT assembly Show a curve. 比較例のCNT集合体合成用部材上に合成したCNT集合体を示す。The CNT assembly synthesize | combined on the member for CNT assembly synthetic | combinations of a comparative example is shown. 比較例のCNT集合体合成用部材上に合成したCNT集合体を示す。The CNT assembly synthesize | combined on the member for CNT assembly synthetic | combinations of a comparative example is shown. 比較例のCNT集合体合成用部材上に合成したCNT集合体を示す。The CNT assembly synthesize | combined on the member for CNT assembly synthetic | combinations of a comparative example is shown. (a)は本発明の一実施例に係るCNT集合体合成用部材上に合成したCNT集合体を示し、(b)はCNT集合体のラマンスペクトルを示し、(c)はCNT集合体の成長曲線を示す。(A) shows a CNT assembly synthesized on a member for synthesizing CNT assembly according to an embodiment of the present invention, (b) shows a Raman spectrum of the CNT assembly, (c) shows a growth of the CNT assembly Show a curve.

以下、図面を参照して本発明に係るCNT集合体合成用触媒担持体及びCNT集合体合成用部材について説明する。なお、本発明のCNT集合体合成用触媒担持体及びCNT集合体合成用部材は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 The catalyst support for synthesizing a CNT assembly and the member for synthesizing a CNT assembly according to the present invention will be described below with reference to the drawings. The catalyst support for synthesizing a CNT aggregate and the member for synthesizing a CNT aggregate according to the present invention are not construed as being limited to the description of the embodiments and examples described below. Note that in the drawings referred to in this embodiment mode and the examples to be described later, the same portions or portions having similar functions are denoted by the same reference numerals, and repeated description thereof will be omitted.

CNT集合体、特に単層CNT集合体を高効率で合成するためには、CNT合成に適した高温下において、高触媒活性を発現する金属(以下、触媒金属とも称する)からなる触媒金属微粒子(以下、触媒微粒子とも称する)を基材上に高密度に配置し、さらに触媒金属微粒子のサイズをCNTの合成に適した範囲内に長時間維持する必要がある。従来技術によるCVD法においては、触媒微粒子を調整するための方法として、基材表面に触媒下地層を成膜する方法が知られていた。具体的には、酸化アルミニウムや酸化マグネシウムが非特許文献1及び非特許文献2でそれぞれ触媒下地層として用いられている。   In order to synthesize CNT assembly, particularly single-walled CNT assembly with high efficiency, catalyst metal fine particles (hereinafter also referred to as catalyst metal) that exhibit high catalytic activity at high temperature suitable for CNT synthesis ( Hereinafter, it is necessary to arrange the catalyst fine particles (also referred to as fine particles of the catalyst) at a high density on the base material, and further to maintain the size of the catalyst metal fine particles for a long time within the range suitable for CNT synthesis. In the CVD method according to the prior art, a method of forming a catalyst underlayer on the surface of a substrate has been known as a method for adjusting catalyst fine particles. Specifically, aluminum oxide and magnesium oxide are used as catalyst underlayers in Non-Patent Document 1 and Non-Patent Document 2, respectively.

図5は、従来の触媒下地層92を配置したCNT集合体合成用部材90を示す断面図である。CNT集合体合成用部材90は、基材11と基材11の表面上に設けられた触媒下地層92を備えるCNT集合体合成用触媒担持体80と、触媒下地層92の表面上に、触媒金属からなる触媒金属微粒子99が設けられている。   FIG. 5 is a cross-sectional view showing a member for CNT aggregate synthesis 90 in which a conventional catalyst base layer 92 is disposed. The member 90 for CNT aggregate synthesis comprises a catalyst support for CNT aggregate synthesis 80 provided with the base material 11 and the catalyst base layer 92 provided on the surface of the base material 11, and the catalyst on the surface of the catalyst base layer 92. Catalyst metal fine particles 99 made of metal are provided.

上記の従来技術においては、単一成分からなる触媒下地層82が用いられている。発明者らは、触媒下地層82が触媒金属微粒子99の形成過程において果たしている役割を鋭意検討した。その結果、従来の触媒下地層82は、触媒下地層82が果たすべき以下の二つの機能を両立させる事が困難であり、結果として触媒金属微粒子99の個数密度や寿命に問題があることが分かった。本発明において、これらの問題に対する新しい解決手段を見出した。   In the above-mentioned prior art, a catalyst base layer 82 composed of a single component is used. The inventors intensively studied the role played by the catalyst base layer 82 in the process of forming the catalyst metal particles 99. As a result, it is difficult for the conventional catalyst base layer 82 to have both the following two functions that the catalyst base layer 82 should perform, and as a result, it is understood that there are problems in the number density and the life of the catalyst metal fine particles 99. The In the present invention, new solutions to these problems have been found.

CNT集合体合成用触媒担持体80の表面に触媒金属微粒子99を形成する場合、触媒下地層82の表面上に配置した金属層を還元条件下で加熱して、金属材料を粒子化する。このとき、触媒金属微粒子99は、オストワルド熟成により、隣接する大きな触媒金属微粒子99a側へ凝集し、小さな触媒金属微粒子99の個数が減少するとともに、大きな触媒金属微粒子99aが成長する。すなわち、本発明の第1の課題は、触媒金属微粒子99及び/又は触媒金属微粒子99を構成する原子の、CNT集合体合成用触媒担持体80の表面における拡散(以下、表面拡散と称する)を防止することで、触媒金属微粒子99の個数減少及び/又はサイズ増加を防ぐことである。これにより、所望のサイズを有する触媒金属微粒子99の個数密度を維持することが可能になる。   When catalyst metal fine particles 99 are formed on the surface of the catalyst support for synthesizing CNT aggregate 80, the metal layer disposed on the surface of the catalyst base layer 82 is heated under reducing conditions to particleize the metal material. At this time, the catalyst metal fine particles 99 are aggregated to the side of the large catalyst metal fine particles 99a adjacent to each other by Ostwald ripening, the number of small catalyst metal fine particles 99 decreases, and the large catalyst metal fine particles 99a grow. That is, the first object of the present invention is the diffusion (hereinafter referred to as surface diffusion) of the catalyst metal fine particles 99 and / or the atoms constituting the catalyst metal fine particles 99 on the surface of the catalyst carrier 80 for synthesizing CNT aggregate. The prevention is to prevent the number decrease and / or the size increase of the catalyst metal fine particles 99. This makes it possible to maintain the number density of the catalyst metal fine particles 99 having a desired size.

上記の触媒下地層82の第1の課題を解決するためには、触媒下地層82は欠陥を多く有し、触媒金属微粒子99及び/又は触媒金属微粒子99を構成する原子を触媒下地層82の表面の欠陥位置に固定しやすいことが望ましい。そのため触媒下地層82は、点欠陥を多く含む結晶性の低い結晶子により構成されるか、結晶粒界が多くなる微小結晶により構成されることが望ましい。   In order to solve the first problem of the catalyst base layer 82 described above, the catalyst base layer 82 has many defects, and the atoms forming the catalyst metal fine particles 99 and / or the catalyst metal fine particles 99 It is desirable to be easy to fix at the defect position on the surface. Therefore, it is desirable that the catalyst base layer 82 be composed of crystallites with low crystallinity including many point defects, or be composed of microcrystals with many grain boundaries.

また、触媒下地層82の表面上に配置した金属層を還元条件下で加熱して、金属材料を粒子化する際に、CNT集合体合成用触媒担持体80の表面に触媒金属微粒子99を形成する場合、触媒金属微粒子99及び/又は触媒金属微粒子99を構成する原子(図4中の触媒金属微粒子99b)がCNT集合体合成用触媒担持体80の内部へ固相内拡散する。すなわち、触媒下地層82の第2の課題は、触媒金属微粒子99及び/又は触媒金属微粒子99を構成する原子がCNT集合体合成用触媒担持体80の内部へ固相内拡散することを防止することである。これにより、触媒金属微粒子99のサイズや個数密度の時間経過に伴う減少を抑えることが可能になる。   Further, when the metal layer disposed on the surface of the catalyst base layer 82 is heated under reducing conditions to particleize the metal material, the catalyst metal fine particles 99 are formed on the surface of the catalyst support 80 for synthesizing CNT aggregate. In this case, the catalyst metal fine particles 99 and / or the atoms constituting the catalyst metal fine particles 99 (the catalyst metal fine particles 99 b in FIG. 4) diffuse in the solid phase into the inside of the catalyst support 80 for CNT aggregate synthesis. That is, the second problem of the catalyst base layer 82 is to prevent diffusion of the catalyst metal fine particles 99 and / or atoms constituting the catalyst metal fine particles 99 into the solid phase of the CNT aggregate synthesis catalyst support 80 in the solid phase. It is. This makes it possible to suppress the decrease in size and number density of the catalyst metal particles 99 with the passage of time.

上記の触媒下地層82の第2の課題を解決するためには、触媒下地層82が有する欠陥の量を極力少なくすることにより、触媒金属微粒子99及び/又は原子の触媒下地層82の内部への拡散(以下、固相内拡散と称する)を防ぐことが望ましい。そのため触媒下地層82は、十分に大きなサイズを有し、かつ結晶性の高い結晶子により構成されることが望ましい。   In order to solve the second problem of the catalyst base layer 82 described above, by minimizing the amount of defects possessed by the catalyst base layer 82, the catalyst metal fine particles 99 and / or atoms of the catalyst base layer 82 are obtained. It is desirable to prevent the diffusion (hereinafter referred to as diffusion in the solid phase) of Therefore, it is desirable that the catalyst base layer 82 be composed of crystallites having a sufficiently large size and high crystallinity.

しかしながら、上記のような状況を鑑みれば、上記の触媒下地層82の第1及び第2の課題を同時に望ましく解決することが容易でないことが明らかである。即ち、従来の触媒下地層82においては、欠陥が少ないと表面拡散が、欠陥が多いと固相内拡散が容易に進行しやすくなり、所望のサイズを有する触媒金属微粒子99の個数密度を高温下で維持することが困難になる。結果として、触媒金属微粒子99の寿命が短くなり、CNT集合体、特に単層CNT集合体を高い生産効率で生産することが困難になる。   However, in view of the above situation, it is clear that it is not easy to desirably and simultaneously solve the first and second problems of the catalyst base layer 82 described above. That is, in the conventional catalyst base layer 82, the surface diffusion is easy when the number of defects is small, and the diffusion in the solid phase is easily facilitated when the number of defects is large, and the number density of the catalyst metal fine particles 99 having a desired size is It becomes difficult to maintain. As a result, the life of the catalyst metal fine particles 99 is shortened, and it becomes difficult to produce CNT aggregates, particularly single-walled CNT aggregates with high production efficiency.

[CNT集合体合成用触媒担持体]
図1は、本発明の一実施形態に係るCNT集合体合成用触媒担持体10を示す断面図である。CNT集合体合成用触媒担持体10は、基材11と、基材11の表面上に設けられる触媒下地層15と、を備える。触媒下地層15は、基材の表面上に設けられている第一下地層13と、第一下地層13の表面上に設けられている第二下地層14と、を備える。第一下地層13は、CNT集合体合成用触媒担持体10の表面上に設けられる触媒金属微粒子及び/又は触媒金属微粒子を構成する原子の、触媒担持体内部への固相内拡散を防止し、第二下地層14は、触媒金属微粒子及び/又は触媒金属微粒子を構成する原子の、CNT集合体合成用触媒担持体10の表面における表面拡散を防止して、触媒金属微粒子の個数の減少及び/又はサイズ変化を抑制する。
[Catalyst support for synthesis of CNT aggregate]
FIG. 1 is a cross-sectional view showing a catalyst assembly for CNT aggregate synthesis 10 according to an embodiment of the present invention. The catalyst support for synthesizing CNT aggregate 10 includes a base 11 and a catalyst base layer 15 provided on the surface of the base 11. The catalyst base layer 15 includes a first base layer 13 provided on the surface of the base material and a second base layer 14 provided on the surface of the first base layer 13. The first foundation layer 13 prevents diffusion of catalyst metal particles and / or atoms constituting the catalyst metal particles provided on the surface of the CNT aggregate synthesis catalyst support 10 into the solid phase inside the catalyst support. The second undercoat layer 14 prevents the surface diffusion of the catalyst metal particles and / or atoms constituting the catalyst metal particles on the surface of the catalyst carrier for synthesizing CNT aggregate 10, thereby reducing the number of catalyst metal particles and And / or suppress size changes.

[基材]
本明細書において、基材(基板)とは、その表面にCNTを成長させるための触媒下地層及び触媒金属微粒子を担持することのできる部材である。基材11としては、400℃以上の高温でも基材の形状を維持できるものであれば適宜のものを用いることができる。基材11の形態としては、平板等の平面状の形態が、本発明の効果を用いて、大量のCNTを製造するために好ましい。しかしながら、粉末、または線状体の集合体で、平面状をなす基材でもよい。平面状の基材を用いると、原料ガスと触媒賦活物質を触媒に均一に供給しやすいため好ましい。基材11を構成する材料としては、石英、シリコン、ゲルマニウム、グラファイト又はサファイア(酸化アルミニウム)などであってもよい。
[Base material]
In the present specification, a substrate (substrate) is a member capable of supporting a catalyst base layer and catalyst metal fine particles for growing CNTs on the surface thereof. As the substrate 11, any suitable substrate can be used as long as it can maintain the shape of the substrate even at a high temperature of 400 ° C. or higher. As a form of the substrate 11, a planar form such as a flat plate is preferable in order to produce a large amount of CNTs by using the effect of the present invention. However, it may be a flat substrate in the form of a powder or an assembly of linear bodies. Use of a planar base material is preferable because it is easy to uniformly supply the raw material gas and the catalyst activating material to the catalyst. The material constituting the base 11 may be quartz, silicon, germanium, graphite or sapphire (aluminum oxide).

[第一下地層]
第一下地層13は、触媒金属原子及び/又は触媒微粒子の触媒担持体内部への固相内拡散を抑制するための層である。そのため、第一下地層13を構成する物質としては、触媒金属原子の固相内拡散が生じづらい化学的性質を有する物質を含むことが好ましい。本発明者らは、表面に形成される金属酸化物層が不働態皮膜として機能し、耐食性を示す金属に注目した。上記不働態皮膜は塩化物イオン(Cl-)や酸化物イオン(O2-)など様々な化学種に対して化学的反応を示さず、かつ固相内拡散をも抑制する性質を併せ持つため、触媒金属微粒子を構成する原子の固相内拡散をも防止する性質を示し得ることを発想するに至った。
[First base layer]
The first underlayer 13 is a layer for suppressing the diffusion in the solid phase of the catalyst metal atom and / or the catalyst fine particles into the inside of the catalyst carrier. Therefore, it is preferable that the material forming the first underlayer 13 includes a material having chemical properties that hardly cause diffusion of catalytic metal atoms in the solid phase. The present inventors focused on a metal exhibiting a corrosion resistance, in which the metal oxide layer formed on the surface functions as a passive film. The passive film is chloride ion (Cl -) and showed no chemical reaction to a variety of species such as an oxide ion (O 2-), and since the both the property of inhibiting solid phase diffusion, We came up with the idea that it could also exhibit the property of preventing diffusion in the solid phase of atoms that make up the catalyst metal fine particles.

上記耐食性金属としては、マグネシウム、亜鉛、アルミニウム、チタン、ジルコニウム、ハフニウム、スズ、鉛、ベリリウム、バナジウム、ニオブ、タンタル、クロム、鉄及びニッケルからなる群から選択される一以上を用いることができる。上記耐食性金属の酸化物を含んでいれば、第一下地層13は複数の物質から構成されていても構わない。一実施形態において、第一下地層13には、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム又は酸化ハフニウムを用いることが好ましい。   As the corrosion resistant metal, one or more selected from the group consisting of magnesium, zinc, aluminum, titanium, zirconium, hafnium, tin, lead, beryllium, vanadium, niobium, tantalum, chromium, iron and nickel can be used. As long as the oxide of the corrosion resistant metal is contained, the first underlayer 13 may be composed of a plurality of substances. In one embodiment, magnesium oxide, aluminum oxide, zirconium oxide or hafnium oxide is preferably used for the first underlayer 13.

第一下地層13の内部においては触媒金属原子の拡散が極力起こらない事が望ましいことから、上記耐食性金属の酸化物は、高い結晶性を有することが望ましい。結晶性の評価法としては、例えばX線回折(XRD)が挙げられる。X線回折パターンに対して以下に示すシェラー式(式1)を適用して算出した平均結晶子径Dが13nmよりも大きく100nmより小さい、13nmよりも大きく50nmより小さい、あるいは20nmよりも大きく50nmより小さい結晶子を備える。   Since it is desirable that diffusion of catalytic metal atoms does not occur as much as possible inside the first underlayer 13, it is desirable that the oxide of the corrosion resistant metal have high crystallinity. As an evaluation method of crystallinity, X-ray diffraction (XRD) is mentioned, for example. The average crystallite diameter D calculated by applying the Scherrer formula (equation 1) shown below to the X-ray diffraction pattern is larger than 13 nm and smaller than 100 nm, larger than 13 nm and smaller than 50 nm, or larger than 20 nm to 50 nm It has smaller crystallites.

ここで、K、λ、B、θはそれぞれ、X線回折スペクトルにおけるシェラー定数、入射光の波長、回折線幅、ブラック角であり、シェラー定数にはK=0.94が適用される。また、平均結晶子径Dとは、X線回折パターンに現れる酸化マグネシウムの(111)面、(200)面、(220)面、(311)面、(222)面由来の各回折ピークにシェラー式を適用して算出した結晶子径の平均である。   Here, K, λ, B, and θ are the Scherrer constant, the wavelength of incident light, the diffraction line width, and the black angle in the X-ray diffraction spectrum, respectively, and K = 0.94 is applied to the Scherrer constant. In addition, the average crystallite diameter D refers to the Schiller of each diffraction peak derived from (111), (200), (220), (311), and (222) planes of magnesium oxide appearing in the X-ray diffraction pattern. It is the average of the crystallite diameter calculated by applying the equation.

第一下地層13の膜厚としては、触媒金属原子が基材11まで浸透することを防止する必要があることから、2nm以上、好ましくは5nm以上、より好ましくは20nm以上であることが望ましい。第一下地層13の膜厚が2nmより薄いと、CNT集合体合成用触媒担持体10の内部への触媒金属微粒子及び/又は触媒金属微粒子を構成する原子の固相内拡散を十分に抑制することができないため、好ましくない。第一下地層13は基材11の表面上の全体を被覆している必要は必ずしもないが、より高い割合の基材11の表面上に設けられていることが望ましい。   The film thickness of the first underlayer 13 is desirably 2 nm or more, preferably 5 nm or more, and more preferably 20 nm or more, because it is necessary to prevent the catalyst metal atoms from penetrating to the base material 11. When the film thickness of the first foundation layer 13 is smaller than 2 nm, the intra-solid-phase diffusion of the catalyst metal fine particles and / or atoms constituting the catalyst metal fine particles into the inside of the catalyst support 10 for CNT aggregate synthesis is sufficiently suppressed. It is not desirable because it can not The first underlying layer 13 does not have to cover the entire surface of the substrate 11, but it is desirable that the first underlayer 13 be provided on the surface of the substrate 11 in a higher proportion.

(第二下地層)
第二下地層14は、触媒金属原子及び/又は触媒微粒子の触媒担持体表面における表面拡散を防止するための金属化合物又は金属を含む薄膜である。第二下地層14を構成する物質は特に限定はされず、金属、金属酸化物、金属窒化物などが挙げられる。例示的には、従来触媒下地層として報告されている物質が挙げられ、好ましくは、酸化アルミニウム、酸化マグネシウムが挙げられる。
(Second base layer)
The second underlayer 14 is a thin film containing a metal compound or a metal for preventing surface diffusion of catalyst metal atoms and / or catalyst fine particles on the surface of the catalyst support. The material constituting the second underlayer 14 is not particularly limited, and metal, metal oxide, metal nitride and the like can be mentioned. Illustrative examples include materials conventionally reported as catalyst underlayers, preferably aluminum oxide and magnesium oxide.

第二下地層14の膜厚は、第二下地層14内に固相内拡散してしまう触媒金属成分を極力下げるために、より薄い方が好ましい。具体的には5nm以下、好ましくは2nm以下であることが望ましい。第二下地層14の膜厚が5nmを超えると、第二下地層14内に固相内拡散する触媒金属成分が増加し、従来の触媒下地層を備えるCNT集合体合成用触媒担持体に対して、有意な効果を得にくく、好ましくない。ただし、第一下地層13の表面を高い割合で被覆するために、ある程度の平均膜厚を有することが望ましい。具体的には、0.2nm以上、好ましくは0.5nm以上の平均膜厚を有することが望ましい。   The film thickness of the second underlayer 14 is preferably thinner in order to reduce the catalyst metal component diffused in the solid phase in the second underlayer 14 as much as possible. Specifically, the thickness is desirably 5 nm or less, preferably 2 nm or less. When the film thickness of the second underlayer 14 exceeds 5 nm, the catalyst metal component diffused in the solid phase in the second underlayer 14 increases, and the catalyst support for synthesizing CNT aggregate provided with the conventional catalyst underlayer is obtained. It is difficult to obtain a significant effect, which is not preferable. However, in order to cover the surface of the first underlayer 13 at a high rate, it is desirable to have a certain average film thickness. Specifically, it is desirable to have an average film thickness of 0.2 nm or more, preferably 0.5 nm or more.

第一下地層13は、第二下地層14を構成する物質と同じ物質を含んでいても構わない。例えば、第一下地層13には、触媒金属の固相内拡散を抑制することを意図して、第二下地層14と同じ物質組成であるが、欠陥が少なく結晶性の高い層を用いても良い。ただし、第一下地層13は、第二下地層14を構成する物質とは異なる物質を含むことが望ましい。これは、第一下地層13と第二下地層14が全て同じ物質組成であると、後述する触媒微粒子形成工程における加熱過程に伴い、第一下地層13と第二下地層14の境界が消失するためである。そのため、第一下地層13は、第二下地層14を構成する物質と同じ物質を含まないことがより望ましい。   The first underlayer 13 may contain the same material as the material forming the second underlayer 14. For example, the first underlayer 13 has the same material composition as that of the second underlayer 14 in order to suppress the diffusion in the solid phase of the catalytic metal, but uses a layer with a small number of defects and high crystallinity. Also good. However, it is preferable that the first underlayer 13 contains a material different from the material forming the second underlayer 14. This is because if the first underlayer 13 and the second underlayer 14 have the same material composition, the boundary between the first underlayer 13 and the second underlayer 14 disappears along with the heating process in the catalyst particle forming step described later. In order to Therefore, it is more desirable that the first base layer 13 does not contain the same substance as the substance forming the second base layer 14.

一実施形態において、第一下地層13が酸化ジルコニウム又は酸化ハフニウムを含み、且つ第二下地層14が酸化アルミニウムを含むことが好ましい。また、一実施形態において、第一下地層13が酸化アルミニウムを含み、且つ第二下地層14が酸化マグネシウムを含むことが好ましい。   In one embodiment, it is preferred that the first underlayer 13 comprises zirconium oxide or hafnium oxide and the second underlayer 14 comprises aluminum oxide. Further, in one embodiment, it is preferable that the first underlayer 13 contains aluminum oxide and the second underlayer 14 contains magnesium oxide.

[CNT集合体合成用部材]
図2は、本発明の一実施形態に係るCNT集合体合成用部材50を示す断面図である。CNT集合体合成用部材50は、CNT集合体合成用触媒担持体10の表面上に、触媒金属からなる触媒金属微粒子59を設けてなる。具体的には、第二下地層14の表面上に、触媒金属微粒子59が配置される。
[Member for CNT aggregate synthesis]
FIG. 2 is a cross-sectional view showing a member 50 for CNT aggregate synthesis according to an embodiment of the present invention. The member 50 for CNT aggregate synthesis is provided with catalyst metal fine particles 59 made of a catalyst metal on the surface of the catalyst support for CNT aggregate synthesis 10. Specifically, catalyst metal fine particles 59 are disposed on the surface of the second underlayer 14.

[触媒金属]
触媒金属は、CNT集合体の製造に用いられる公知の金属であれば特に制限はないが、特に鉄、コバルト及びニッケルからなる群から選択される少なくともいずれか1つを含む金属であることが望ましい。
[Catalytic metal]
The catalyst metal is not particularly limited as long as it is a known metal used for the production of a CNT aggregate, but is preferably a metal containing at least one selected from the group consisting of iron, cobalt and nickel. .

[触媒金属微粒子]
触媒金属微粒子59は、上記触媒金属から構成され、CNT集合体合成用触媒担持体10の表面に配置される。触媒金属微粒子59のサイズは1nm以上10nm以下、より好ましくは1nm以上5nm以下の範囲にあることが望ましい。また、CNT集合体合成用触媒担持体10の表面における個数密度は1×1010個/cm2以上、より好ましくは1×1011個/cm2以上、さらには3×1011個/cm2以上であることが望ましい。
[Catalytic metal particles]
The catalyst metal fine particles 59 are composed of the above-mentioned catalyst metal and are disposed on the surface of the catalyst carrier for synthesizing CNT aggregate 10. The size of the catalyst metal fine particles 59 is preferably in the range of 1 nm to 10 nm, more preferably in the range of 1 nm to 5 nm. Further, the number density on the surface of the catalyst support 10 for synthesizing CNT aggregate is 1 × 10 10 pieces / cm 2 or more, more preferably 1 × 10 11 pieces / cm 2 or more, and further 3 × 10 11 pieces / cm 2 It is desirable that it is more than.

個数密度の測定法としては、例えば、後述する触媒微粒子形成工程の後で触媒担持体をCNT製造装置から取り出した後、触媒担持体表面を原子力顕微鏡(Atomic Force Microscope;AFM)で直接測定してもよい。あるいは、次のCNT合成工程で得られたCNT集合体におけるCNTの本数密度を以下のように求め、これが触媒の個数密度と同等であると仮定して評価してもよい。即ち、CNTの本数密度は(CNT集合体の重量密度)/(CNTの線密度)となるが、CNT集合体の重量密度はCNT集合体の重量測定と高さ測定を行うことで算出し、またCNT線密度は、非特許文献3に記載されているCNTの直径との比例関係から算出する。CNTの直径は透過型電子顕微鏡(Transmission Electron Microscope;TEM)による直接観察や吸収スペクトルにおける吸収バンドエネルギーから測定される。   As a method of measuring the number density, for example, after the catalyst support is taken out from the CNT manufacturing apparatus after the catalyst fine particle forming step described later, the surface of the catalyst support is directly measured with an atomic force microscope (AFM). It is also good. Alternatively, the number density of CNTs in the CNT aggregate obtained in the next CNT synthesis step may be determined as follows, and it may be evaluated assuming that this is equivalent to the number density of the catalyst. That is, although the number density of CNT is (weight density of CNT aggregate) / (linear density of CNT), the weight density of CNT aggregate is calculated by performing weight measurement and height measurement of CNT aggregate, In addition, the CNT linear density is calculated from the proportional relationship with the diameter of CNT described in Non-Patent Document 3. The diameter of CNT is measured from direct observation with a transmission electron microscope (TEM) or absorption band energy in an absorption spectrum.

また、一実施形態において、触媒金属微粒子59の個数密度は、CNT集合体の合成開始時点での触媒金属微粒子59の個数密度を100%とした場合、合成開始20分後にも70%以上、望ましくは90%以上が維持されることが望ましい。なお、本明細書においては、CNT集合体が合成後の実際の触媒個数を評価するのは困難であるため、触媒金属微粒子形成工程において、CNT集合体合成用触媒担持体10の水素加熱時間を20分間延長したCNT集合体合成用部材で触媒個数を評価するものとする。   In one embodiment, the number density of the catalyst metal fine particles 59 is preferably 70% or more even 20 minutes after the start of synthesis, assuming that the number density of the catalyst metal fine particles 59 at the start of synthesis of CNT aggregate is 100%. It is desirable that 90% or more be maintained. In the present specification, it is difficult to evaluate the actual number of catalysts after synthesis by the CNT aggregate, so in the catalyst metal fine particle forming step, the hydrogen heating time of the catalyst carrier 10 for CNT aggregate synthesis is The number of catalysts should be evaluated using a member for CNT aggregate synthesis extended for 20 minutes.

[CNT集合体合成用触媒担持体の製造方法]
[第一下地層の成膜工程]
図3は、本発明の一実施形態に係るCNT集合体合成用触媒担持体10の製造方法を説明する模式図である。第一下地層13の成膜工程は特に限定されない。例えば、基材11を準備し(図3(a))、基材11の表面を酸化することによって金属酸化物層を成膜しても良い。ただし典型的には、第一下地層13を構成する物質又はその前駆体の基材11上への堆積工程と、その後の後処理工程に分けられる。
[Method of producing catalyst support for synthesizing CNT aggregate]
[Step of forming first underlying layer]
FIG. 3 is a schematic view illustrating a method of manufacturing a catalyst assembly for CNT aggregate synthesis 10 according to an embodiment of the present invention. The film formation process of the first underlayer 13 is not particularly limited. For example, the substrate 11 may be prepared (FIG. 3A), and the surface of the substrate 11 may be oxidized to form a metal oxide layer. However, typically, the process can be divided into a process of depositing the material constituting the first underlayer 13 or a precursor thereof onto the substrate 11 and a subsequent process.

堆積工程としては、例えば、電気化学的手法や、スピンコート或いはディップコートなどの湿式手法、又はスパッタ或いは蒸着やCVDなどのドライプロセスが用いられる。後処理工程の内容については特に限定はないが、第一下地層13の結晶性は高い方が望まれることから、酸化雰囲気、不活性雰囲気又は還元性雰囲気における熱処理(アニーリング)を含むことが好ましい。このようにして、基材11の表面上に第一下地層13が成膜される(図3(b))。   As the deposition process, for example, an electrochemical method, a wet method such as spin coating or dip coating, or a dry process such as sputtering, vapor deposition, or CVD is used. Although the content of the post-treatment step is not particularly limited, it is preferable that the heat treatment (annealing) in an oxidizing atmosphere, an inert atmosphere or a reducing atmosphere be included because higher crystallinity of the first underlayer 13 is desired. . Thus, the first underlayer 13 is formed on the surface of the substrate 11 (FIG. 3B).

[第二下地層の成膜工程]
第二下地層14の成膜工程は特に限定されない。ただし第二下地層14は第一下地層13の表面を高い割合で被覆する一方で、膜厚は極力薄いことが望まれるため、スパッタ法や有機金属CVD(MOCVD)法などが望ましい。このようにして、基材11の表面上に第一下地層13が成膜される(図3(c))。以上により、本発明の一実施形態に係るCNT集合体合成用触媒担持体10を製造することができる。
[Step of forming second underlying layer]
The film formation process of the second underlayer 14 is not particularly limited. However, while it is desirable that the second underlayer 14 covers the surface of the first underlayer 13 at a high rate, but the film thickness is as thin as possible, the sputtering method, the metal organic CVD (MOCVD) method, etc. are preferable. Thus, the first underlayer 13 is formed on the surface of the base material 11 (FIG. 3 (c)). By the above, the catalyst assembly for CNT aggregate synthesis 10 according to one embodiment of the present invention can be manufactured.

[CNT集合体合成用部材の製造方法]
図4を参照して、本発明の一実施形態に係るCNT集合体合成用部材の製造方法を説明する。
[Method of manufacturing member for synthesizing CNT aggregate]
A method of manufacturing a member for synthesizing CNT aggregate according to an embodiment of the present invention will be described with reference to FIG.

[触媒原料堆積工程]
CNT集合体合成用部材50の製造法は特に限定はされないが、まず触媒金属を含んだ触媒原料をCNT集合体合成用触媒担持体10の表面に堆積させ、触媒前駆体層55を形成する工程から始まる(図4(a))。触媒原料は触媒金属そのものでも触媒金属の化合物でも構わないし、有機物等の他の物質を含んでいても構わない。形状も特に限定されず、一様な膜としてCNT集合体合成用触媒担持体10の表面に堆積させても良いし、予め微粒子の形状に加工された触媒原料をCNT集合体合成用触媒担持体10の表面に担持させても構わない。
[Catalyst material deposition process]
The method for producing the member 50 for CNT aggregate synthesis is not particularly limited, but first, a catalyst raw material containing a catalyst metal is deposited on the surface of the catalyst support 10 for CNT aggregate synthesis to form a catalyst precursor layer 55. Starting with (Fig. 4 (a)). The catalyst raw material may be a catalyst metal itself or a compound of a catalyst metal, or may contain another substance such as an organic substance. The shape is also not particularly limited, and may be deposited on the surface of the catalyst support 10 for CNT aggregate synthesis as a uniform film, or the catalyst raw material previously processed into the shape of fine particles is the catalyst support for CNT aggregate synthesis It may be supported on the surface of ten.

触媒原料の堆積方法も特に限定はされない。触媒原料の存在量としては、例えば、これまでのCNTの製造に実績のある量を使用することができ、例えば純鉄からなる一様な膜を触媒原料として用いる場合、触媒前駆体層55の厚さは、0.1nm以上100nm以下が好ましく、0.5nm以上5nm以下がさらに好ましく、0.8nm以上2nm以下が特に好ましい。   The method of depositing the catalyst raw material is also not particularly limited. As the existing amount of the catalyst raw material, for example, an amount proven in the production of CNT up to now can be used, for example, when using a uniform film made of pure iron as the catalyst raw material The thickness is preferably 0.1 nm or more and 100 nm or less, more preferably 0.5 nm or more and 5 nm or less, and particularly preferably 0.8 nm or more and 2 nm or less.

[触媒金属微粒子形成工程]
CNT集合体合成用触媒担持体10の表面上に堆積させた触媒前駆体層55を加熱することで、触媒金属の還元及び微粒子化の少なくともいずれか一つを行い、CNT集合体合成用触媒担持体10の表面上に触媒金属微粒子59を調整する工程により、所望のサイズと個数密度を有する触媒微粒子を形成する(図4(b))。
[Step of forming catalyst metal fine particles]
By heating the catalyst precursor layer 55 deposited on the surface of the catalyst support 10 for CNT aggregate synthesis, at least one of reduction and micronization of catalyst metal is performed, and catalyst support for CNT aggregate synthesis is carried out. By adjusting the catalyst metal particles 59 on the surface of the body 10, catalyst particles having a desired size and number density are formed (FIG. 4 (b)).

加熱時のガス雰囲気は真空、あるいは還元性ガス及び/又は不活性ガスからなることが望ましい。還元性ガスには、水素、一酸化炭素、アンモニア、二窒化酸素(N2O)、二酸化硫黄(SO2)が含まれるが、これらに限定されない。不活性ガスとして、ヘリウム、アルゴン、窒素、ネオン、クリプトンなどや、これらの混合ガスが挙げられる。特に、窒素、ヘリウム、アルゴン、及びこれらの混合ガスが不活性ガスとして好適である。なお、不活性ガスに変えて還元性ガスが用いられてもよいし、不活性ガスに還元性ガスが加えられてもよい。後述する触媒賦活物質がガス中に含まれていても構わない。 It is desirable that the gas atmosphere at the time of heating be vacuum, or a reducing gas and / or an inert gas. The reducing gas includes, but is not limited to, hydrogen, carbon monoxide, ammonia, dinitrogen nitride (N 2 O), and sulfur dioxide (SO 2 ). The inert gas may, for example, be helium, argon, nitrogen, neon, krypton, or a mixed gas thereof. In particular, nitrogen, helium, argon and mixed gas thereof are suitable as the inert gas. The reducing gas may be used instead of the inert gas, or the reducing gas may be added to the inert gas. The catalyst activation material described later may be contained in the gas.

また、加熱温度は特に限定されず、後述するCNT合成工程と違っていてもよい。触媒原料の還元及び/又は微粒子化を進行させるのに十分高い温度が必要であることから、加熱温度は300℃以上、好ましくは500℃以上であることが望ましい。加えて、触媒金属微粒子59のCNT集合体合成用触媒担持体10の表面での熱運動や担持体内部への浸透を極力回避するために加熱温度は900℃未満、より好ましくは800℃未満であることが望ましい。また、加熱時間は、特に制限はなく、1秒から10分以内の範囲で適宜設定してもよい。   Moreover, a heating temperature is not specifically limited, You may differ from the CNT synthetic | combination process mentioned later. The heating temperature is desirably 300 ° C. or more, preferably 500 ° C. or more, because a sufficiently high temperature is required to promote reduction and / or atomization of the catalyst raw material. In addition, the heating temperature is preferably less than 900 ° C., more preferably less than 800 ° C., in order to prevent thermal movement of the catalyst metal fine particles 59 on the surface of the catalyst support 10 for CNT aggregate synthesis and permeation into the support as much as possible. It is desirable to have. The heating time is not particularly limited, and may be appropriately set within a range of 1 second to 10 minutes.

以上により、触媒金属微粒子形成工程において、適切な触媒原料物質の量や混合状態、ならびに加熱温度と時間が適宜選択される。これにより、CNT集合体合成用触媒担持体10に直交する向きに配向したCNT集合体を成長させるのに好適なサイズや個数密度を有する触媒金属微粒子59がCNT集合体合成用触媒担持体10の表面上に形成される。   By the above, in the catalyst metal fine particle forming step, an appropriate amount and mixed state of the catalyst raw material, and the heating temperature and time are appropriately selected. Thus, catalyst metal fine particles 59 having a size and a number density suitable for growing a CNT aggregate oriented in a direction orthogonal to the CNT aggregate synthesis catalyst support 10 are the catalyst aggregate 10 of the CNT aggregate synthesis. Formed on the surface.

[CNT集合体合成工程]
上記のCNT集合体合成用部材50を用いれば、高効率でCNT集合体を合成することができる。公知のCNT集合体の合成工程であれば限定はされない。以下にCNT集合体の合成工程を例示する。
[CNT aggregate synthesis process]
By using the above-described CNT aggregate synthesizing member 50, it is possible to synthesize a CNT aggregate with high efficiency. There is no limitation as long as it is a known synthesis process of CNT assembly. The synthesis process of the CNT assembly is illustrated below.

まず、上記のCNT集合体合成用部材50を加熱し、炭素供給源としてCNT集合体の製造に用いられる原料ガス、触媒の表面を被覆する不純物炭素を除去し触媒の活性を維持するための触媒賦活物質、及びキャリアガスからなる混合ガスを製造装置内に投入する。その後、原料ガスの投入を停止し、CNT集合体合成用部材50への加熱を停止することで、CNT集合体合成用部材50の表面上に配置されたCNT集合体を得ることができる。   First, the above-described CNT assembly synthesizing member 50 is heated, a source gas used as a carbon supply source for producing the CNT assembly, a catalyst for removing impurity carbon covering the surface of the catalyst and maintaining the activity of the catalyst A mixed gas consisting of an activating material and a carrier gas is introduced into the manufacturing apparatus. Thereafter, the supply of the raw material gas is stopped, and the heating to the CNT aggregate synthesizing member 50 is stopped, whereby the CNT aggregate arranged on the surface of the CNT aggregate synthesizing member 50 can be obtained.

原料ガスは、炭素数2以上、炭素数10以下、さらに好ましくは炭素数5以下の鎖状飽和炭化水素化合物または不飽和炭化水素化合物が用いられる。例えば、原料ガスには、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、エチレン、アセチレンなどが用いられる。   As the source gas, a chain saturated hydrocarbon compound or unsaturated hydrocarbon compound having 2 or more carbon atoms and 10 or less carbon atoms, more preferably 5 or less carbon atoms is used. For example, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, ethylene, acetylene and the like are used as source gases.

本工程においては、必要に応じて触媒賦活物質が添加されてもよい。触媒賦活物質は、酸素もしくは、硫黄などの酸化力を有する物質であり、且つ成長温度でCNTに多大なダメージを与えない物質である。触媒賦活物質には、例えば、水、酸素、オゾン、酸性ガス、及び酸化窒素、一酸化炭素、二酸化炭素などの低炭素数の含酸素化合物、又はエタノール、メタノール、イソプロパノールなどのアルコール類、テトラヒドロフランなどのエーテル類、アセトンなどのケトン類、アルデヒドロ類、酸類、塩類、アミド類、エステル類、並びにこれらの混合物が有効である。この中でも、水、酸素、二酸化炭素、一酸化炭素、エーテル類、アルコール類が好ましいが、特に、極めて容易に入手できる水が好適である。また、触媒賦活物質として、炭素を含むものを用いた場合、触媒賦活物質中の炭素が、CNTの原料となりうる。キャリアガスは不活性ガス及び/又は還元性ガスから構成されることが望ましい。   In the present step, a catalyst activation material may be added as needed. The catalyst activator is a substance having an oxidizing power such as oxygen or sulfur and is a substance that does not cause much damage to CNTs at the growth temperature. Examples of the catalyst activation material include water, oxygen, ozone, acid gas, and nitrogen oxides, carbon monoxide, oxygen-containing compounds having a low carbon number such as carbon dioxide, or alcohols such as ethanol, methanol, isopropanol, tetrahydrofuran, etc. Ethers, ketones such as acetone, aldehydes, acids, salts, amides, esters, and mixtures thereof are effective. Among these, water, oxygen, carbon dioxide, carbon monoxide, ethers, and alcohols are preferable, and particularly, water which is extremely easily available is preferable. Moreover, when what contains carbon is used as a catalyst activation material, carbon in a catalyst activation material can become a raw material of CNT. The carrier gas is preferably composed of an inert gas and / or a reducing gas.

なお、加熱温度は特に限定されない。したがって、加熱温度は、500℃以上900℃未満の範囲で適宜設定すればよい。また、加熱時間は、特に制限ないが、還元性ガス発生物質の分解が十分に開始してから、完全に分解が終了するまでの間が望ましい。還元性ガス発生物質やその量、また分解温度に依存するが、1秒から20分以内の範囲で適宜設定すればよい。   The heating temperature is not particularly limited. Therefore, the heating temperature may be appropriately set in the range of 500 ° C. or more and less than 900 ° C. The heating time is not particularly limited, but is preferably from the time when decomposition of the reducing gas generating material sufficiently starts to the time when decomposition completely ends. Although depending on the reducing gas generating substance, the amount thereof, and the decomposition temperature, it may be appropriately set within the range of 1 second to 20 minutes.

一般に触媒のサイズとCNTの直径は相関または一致する。上記CNT成長工程において、ラマン分光分析で幅広い波長範囲に渡ってピークを有するCNT、すなわち、大きく異なる複数の直径を有するCNTが合成される。この複数の直径を有するCNTの集合体をCNT集合体109という。本実施形態に係るCNT集合体の製造方法において、基材11に被着した触媒金属微粒子59から高速、且つ高収量で効率良くCNT集合体が製造される。   In general, the size of the catalyst and the diameter of the CNTs correlate or match. In the above-mentioned CNT growth process, CNTs having a peak over a wide wavelength range in Raman spectroscopy are synthesized, ie, CNTs having a plurality of widely different diameters. The aggregate of CNTs having a plurality of diameters is referred to as a CNT aggregate 109. In the method for producing a CNT aggregate according to the present embodiment, the CNT aggregate is efficiently produced at high speed and in a high yield from the catalyst metal fine particles 59 deposited on the base material 11.

[CNT集合体]
上記製造方法により製造されるCNT集合体は、垂直配向体である。典型的な例として10分間のCNT合成工程により得られるCNT集合体の高さは、10μm以上であることが望ましい。より好ましくは、50μm以上、さらに好ましくは100μm以上であることが望ましい。また、CNT集合体の触媒担持体面積辺りの重量(以下、収量とする)は、0.3mg/cm2以上、より好ましくは1mg/cm2以上、さらに好ましくは2mg/cm2以上であることが望ましい。
[CNT assembly]
The CNT assembly produced by the above production method is a vertically aligned body. As a typical example, it is desirable that the height of the CNT assembly obtained by the 10-minute CNT synthesis process is 10 μm or more. More preferably, it is 50 μm or more, and more preferably 100 μm or more. In addition, the weight (hereinafter referred to as yield) per area of catalyst aggregate of CNT aggregate is 0.3 mg / cm 2 or more, more preferably 1 mg / cm 2 or more, and still more preferably 2 mg / cm 2 or more. Is desirable.

また、CNT集合体の層数は、問わないが単層を10%以上含むことが望ましい。より好ましくは、50%以上であることが望ましい。CNTの直径は1nm以上10nmが好しまく、1.2nm以上5nm以下であることがより好ましい。CNTの直径は、透過型電子顕微鏡(Transmission Electron Microscope;TEM)による直接観察や吸収スペクトルにおける吸収バンドエネルギーから測定される。   Further, the number of layers of the CNT assembly is not limited, but it is desirable to include 10% or more of a single layer. More preferably, 50% or more is desirable. The diameter of the CNT is preferably 1 nm or more and 10 nm, and more preferably 1.2 nm or more and 5 nm or less. The diameter of CNTs is measured from direct observation with a transmission electron microscope (TEM) or absorption band energy in an absorption spectrum.

[実施例1]
実施例1として、第一下地層として酸化ハフニウムを用い、第二下地層として酸化アルミニウムを用いて、CNT集合体合成用部材を製造した。まず、基材としてシリコンウエハ(縦40mm×横40mm)を準備し、基材の表面に酸化ハフニウムをスパッタリング法により40nm堆積させた。空気中、50℃/minで昇温させ、900℃で20分間維持してアニーリングし、第一下地層を形成した。第一下地層の表面上にアルミナをスパッタリング法により堆積させ、1.3nmの第二下地層を形成した。このようにして、実施例1のCNT集合体合成用触媒担持体を製造した。
Example 1
In Example 1, a member for synthesizing a CNT aggregate was manufactured using hafnium oxide as the first underlayer and aluminum oxide as the second underlayer. First, a silicon wafer (40 mm long × 40 mm wide) was prepared as a substrate, and hafnium oxide was deposited to 40 nm by sputtering on the surface of the substrate. The temperature was raised at 50 ° C./min in air, and annealing was performed by maintaining the temperature at 900 ° C. for 20 minutes to form a first underlayer. Alumina was deposited by sputtering on the surface of the first underlayer to form a 1.3 nm second underlayer. Thus, the catalyst assembly for CNT aggregate synthesis of Example 1 was produced.

実施例1のCNT集合体合成用触媒担持体の第二下地層の表面上に、高周波マグネトロンスパッタリングにより1.3nmの鉄を蒸着し、触媒前駆体層を形成した。   On the surface of the second base layer of the catalyst support for synthesizing CNT aggregate of Example 1, 1.3 nm of iron was vapor deposited by high frequency magnetron sputtering to form a catalyst precursor layer.

[実施例2]
実施例2として、第一下地層として酸化ジルコニウムを用い、第二下地層として酸化アルミニウムを用いて、CNT集合体合成用部材を製造した。スパッタリング法により酸化ジルコニウムを40nm堆積させたこと以外は、実施例1と同様の製造方法によりCNT集合体合成用触媒担持体を製造し、第二下地層の表面上に、高周波マグネトロンスパッタリングにより1.3nmの鉄を蒸着し、触媒前駆体層を形成した。
Example 2
In Example 2, a member for synthesizing a CNT aggregate was manufactured using zirconium oxide as the first underlayer and aluminum oxide as the second underlayer. A catalyst support for synthesizing CNT aggregate is produced by the same production method as in Example 1 except that 40 nm of zirconium oxide is deposited by sputtering, and the surface of the second underlayer is subjected to 1. Iron of 3 nm was deposited to form a catalyst precursor layer.

[実施例3]
実施例3として、第一下地層として酸化マグネシウムを用い、第二下地層として酸化アルミニウムを用いて、CNT集合体合成用触媒担持体を製造した。スパッタリング法によりマグネシウムを100nm堆積させたこと以外は、実施例1と同様の製造方法によりCNT集合体合成用触媒担持体を製造し、第二下地層の表面上に、高周波マグネトロンスパッタリングにより1.8nmの鉄を蒸着し、触媒前駆体層を形成した。
[Example 3]
In Example 3, a catalyst support for synthesizing a CNT aggregate was manufactured using magnesium oxide as the first underlayer and aluminum oxide as the second underlayer. A catalyst support for synthesizing CNT aggregate is manufactured by the same manufacturing method as in Example 1 except that 100 nm of magnesium is deposited by sputtering, and 1.8 nm is formed on the surface of the second underlayer by high frequency magnetron sputtering. Iron was deposited to form a catalyst precursor layer.

[比較例1]
比較例1として、第一下地層として酸化ハフニウムを用い、第二下地層を形成せずに、CNT集合体合成用触媒担持体を製造した。実施例1と同様の方法により酸化ハフニウムを40nm堆積させてCNT集合体合成用触媒担持体を製造し、第一下地層の表面上に、高周波マグネトロンスパッタリングにより1.3nmの鉄を蒸着し、触媒前駆体層を形成した。
Comparative Example 1
As Comparative Example 1, hafnium oxide was used as a first underlayer, and a catalyst support for synthesizing a CNT aggregate was manufactured without forming a second underlayer. Hafnium oxide is deposited to 40 nm by the same method as in Example 1 to produce a catalyst support for CNT aggregate synthesis, and 1.3 nm of iron is deposited on the surface of the first underlayer by high frequency magnetron sputtering, and the catalyst is produced. A precursor layer was formed.

[比較例2]
比較例2として、第一下地層として酸化ジルコニウムを用い、第二下地層を形成せずに、CNT集合体合成用触媒担持体を製造した。実施例2と同様の方法によりジルコニウムを40nm堆積させてCNT集合体合成用触媒担持体を製造し、第一下地層の表面上に、高周波マグネトロンスパッタリングにより1.3nmの鉄を蒸着し、触媒前駆体層を形成した。
Comparative Example 2
As Comparative Example 2, a catalyst support for synthesizing a CNT aggregate was manufactured using zirconium oxide as a first underlayer and without forming a second underlayer. 40 nm of zirconium is deposited by the same method as in Example 2 to produce a catalyst support for CNT aggregate synthesis, and 1.3 nm of iron is deposited on the surface of the first underlayer by high frequency magnetron sputtering to obtain a catalyst precursor A body layer was formed.

[比較例3]
比較例3として、第一下地層としてシリコン酸化膜を用い、第二下地層として酸化アルミニウムを用いて、CNT集合体合成用触媒担持体を製造した。まず、基材としてシリコンウエハ(縦40mm×横40mm)を準備し、基材を空気中、750℃で20分間加熱し、シリコン酸化膜の第一下地層を形成した。第一下地層の表面上にアルミナをスパッタリング法により堆積させ、1.3nmの第二下地層を形成した。下地層を形成した基材をアセントで超音波洗浄した後に、IPAで更に超音波洗浄した。このようにして、比較例3のCNT集合体合成用触媒担持体を製造した。
Comparative Example 3
As Comparative Example 3, a catalyst support for synthesizing a CNT aggregate was manufactured using a silicon oxide film as a first underlayer and aluminum oxide as a second underlayer. First, a silicon wafer (40 mm long × 40 mm wide) was prepared as a substrate, and the substrate was heated in air at 750 ° C. for 20 minutes to form a first underlayer of a silicon oxide film. Alumina was deposited by sputtering on the surface of the first underlayer to form a 1.3 nm second underlayer. The substrate on which the underlayer was formed was subjected to ultrasonic cleaning with ascent and then to ultrasonic cleaning with IPA. Thus, a catalyst assembly for CNT aggregate synthesis of Comparative Example 3 was produced.

比較例3のCNT集合体合成用触媒担持体の第二下地層の表面上に、高周波マグネトロンスパッタリングにより1.3nmの鉄を蒸着し、触媒前駆体層を形成した。   On the surface of the second base layer of the catalyst support for synthesizing CNT aggregate of Comparative Example 3, 1.3 nm of iron was vapor deposited by high frequency magnetron sputtering to form a catalyst precursor layer.

[比較例4]
従来の下地層を有する比較例4として、第一下地層として酸化アルミニウムを用い、第二下地層を形成せずに、CNT集合体合成用触媒担持体を製造した。実施例1と同様の方法によりアルミニウムを40nm堆積させてCNT集合体合成用触媒担持体を製造し、第一下地層の表面上に、高周波マグネトロンスパッタリングにより1.3nmの鉄を蒸着し、触媒前駆体層を形成した。
Comparative Example 4
As Comparative Example 4 having a conventional underlayer, aluminum oxide was used as a first underlayer, and a catalyst support for synthesizing a CNT aggregate was manufactured without forming a second underlayer. 40 nm of aluminum is deposited by the same method as in Example 1 to produce a catalyst support for CNT aggregate synthesis, and 1.3 nm of iron is deposited on the surface of the first underlayer by high frequency magnetron sputtering to obtain a catalyst precursor A body layer was formed.

[触媒金属微粒子形成]
実施例1〜3及び比較例1〜4のCNT集合体合成用触媒担持体を合成炉にそれぞれ搬入し、Heを500sccm供給しながら、750℃で6分間加熱して、触媒金属元素を微粒子化して、触媒金属微粒子を形成した。
[Catalytic metal particle formation]
The catalyst support for synthesizing CNT aggregate of each of Examples 1 to 3 and Comparative Examples 1 to 4 is carried into a synthesis furnace, and heated at 750 ° C. for 6 minutes while supplying 500 sccm of He to form fine particles of catalytic metal elements. Thus, catalyst metal fine particles were formed.

触媒金属微粒子を形成したCNT集合体合成用部材を合成炉から取り出し、CNT集合体合成用部材の表面に形成された触媒金属微粒子を原子間力顕微鏡(AFM)により観察した。実施例1〜3及び比較例1及び4のCNT集合体合成用部材のAFM像を図6〜図10に示す。また、CNT集合体合成中での触媒金属微粒子の安定性を評価するため、実施例1〜3及び比較例4のCNT集合体合成用部材については、水素雰囲気下、750℃で6分間加熱して、触媒金属元素を微粒子化した後、さらに750℃で20分間(合計26分間)加熱したCNT集合体合成用部材についてもAFMにより観察した。本実施例においては、CNT集合体が成長後の実際の触媒個数を評価するのは困難であるため、水素加熱を20分間延長したCNT集合体合成用部材を評価した。   The member for CNT aggregate synthesis in which catalyst metal fine particles were formed was taken out from the synthesis furnace, and catalyst metal fine particles formed on the surface of the member for CNT aggregate synthesis were observed with an atomic force microscope (AFM). AFM images of the members for CNT aggregate synthesis of Examples 1 to 3 and Comparative Examples 1 and 4 are shown in FIGS. In addition, in order to evaluate the stability of catalyst metal fine particles during CNT aggregate synthesis, the members for CNT aggregate synthesis in Examples 1 to 3 and Comparative Example 4 were heated at 750 ° C. for 6 minutes in a hydrogen atmosphere. After the catalyst metal element was micronized, the member for CNT aggregate synthesis, which was further heated at 750 ° C. for 20 minutes (total 26 minutes), was also observed by AFM. In this example, since it is difficult to evaluate the actual number of catalysts after growth of the CNT assembly, a member for CNT assembly synthesis in which hydrogen heating was extended for 20 minutes was evaluated.

得られたAFM像について、100nm四方当たりの触媒金属微粒子の個数を計数した。実施例1〜3及び比較例1及び4のCNT集合体合成用部材について、触媒金属微粒子の個数を表1に示す。なお、比較例1については、6分間加熱後のCNT集合体合成用部材において触媒金属微粒子を検出することができなかったため、26分間加熱後のCNT集合体合成用部材については触媒金属微粒子の計数を行っていない。
The number of catalyst metal particles per 100 nm square was counted for the obtained AFM image. The number of catalyst metal fine particles in the members for CNT aggregate synthesis of Examples 1 to 3 and Comparative Examples 1 and 4 is shown in Table 1. In Comparative Example 1, since catalyst metal fine particles could not be detected in the member for CNT aggregate synthesis after heating for 6 minutes, counting of catalyst metal fine particles was performed for the member for CNT aggregate synthesis after heating for 26 minutes. Did not go.

図10は、比較例4のCNT集合体合成用部材の表面のAFM像であり、図10(a)は水素雰囲気下、750℃で6分間加熱後のCNT集合体合成用部材の表面のAFM像である。また、図10(b)は水素雰囲気下、750℃で26分間加熱後のCNT集合体合成用部材の表面のAFM像である。図10(a)と図10(b)とをそれぞれ比較すると、加熱時間を延長することにより、CNT集合体合成用部材の表面の触媒金属微粒子が大きくなリ、触媒金属微粒子が減少することが表1からも明らかである。したがって、従来の下地層を有するCNT集合体合成用部材では、CNT集合体の合成過程において、触媒金属微粒子が減少することが明らかとなった。   FIG. 10 is an AFM image of the surface of the CNT aggregate synthesizing member of Comparative Example 4. FIG. 10 (a) is an AFM image of the surface of the CNT aggregate synthesizing member after heating at 750 ° C. for 6 minutes in a hydrogen atmosphere. It is an image. Further, FIG. 10 (b) is an AFM image of the surface of the member for synthesizing CNT aggregate after heating at 750 ° C. for 26 minutes in a hydrogen atmosphere. Comparing FIG. 10 (a) with FIG. 10 (b), the catalyst metal particles on the surface of the member for synthesizing CNT aggregate become large and the catalyst metal particles decrease as the heating time is extended. It is clear also from Table 1. Therefore, it was revealed that, in the conventional CNT aggregate synthesizing member having an underlayer, the number of catalyst metal fine particles decreases in the process of synthesizing the CNT aggregate.

図6〜図9は、実施例1〜3のCNT集合体合成用部材の表面のAFM像であり、それぞれ、(a)は水素雰囲気下、750℃で6分間加熱後のCNT集合体合成用部材の表面のAFM像である。また、(b)は水素雰囲気下、750℃で26分間加熱後のCNT集合体合成用部材の表面のAFM像である。(a)の図と(b)の図とをそれぞれ比較すると、実施例1〜3のCNT集合体合成用部材においては、加熱時間を延長しても、CNT集合体合成用部材の表面の触媒金属微粒子のサイズの変化は抑制され、触媒金属微粒子の個数も維持されることが表1からも明らかである。したがって、本実施例に係るCNT集合体合成用部材は、CNT集合体の生産において、基材面積辺りに高い個数密度の触媒金属微粒子を配置することが可能となり、その結果、長尺のカーボンナノチューブ集合体を高効率で生産することが可能となる。   6 to 9 are AFM images of the surface of the member for synthesizing CNT aggregate of Examples 1 to 3, respectively, in which (a) is for synthesizing CNT aggregate after heating at 750 ° C. for 6 minutes in a hydrogen atmosphere. It is an AFM image of the surface of a member. (B) is an AFM image of the surface of a member for synthesizing CNT aggregate after heating at 750 ° C. for 26 minutes in a hydrogen atmosphere. Comparing the figure of (a) with the figure of (b), in the member for CNT aggregate synthesis of Examples 1 to 3, the catalyst on the surface of the member for CNT aggregate synthesis even if the heating time is extended It is also apparent from Table 1 that the change in the size of the metal particles is suppressed and the number of catalyst metal particles is maintained. Therefore, in the CNT aggregate synthesizing member according to the present embodiment, catalyst metal fine particles having a high number density can be arranged around the substrate area in the production of the CNT aggregate, and as a result, long carbon nanotubes can be obtained. It is possible to produce an assembly with high efficiency.

[CNT集合体の合成]
触媒金属微粒子形成後の実施例1〜3及び比較例1〜4のCNT集合体合成用部材が配置された合成炉に、水素の供給量を500sccmから0sccmへ250sccm/minで減少させ、ヘリウムを460sccm、水をバブリングした窒素(以下、H2O/N2とも称する。H2O:約1500ppm)を100 sccmを合成炉に2分間供給した。
[Synthesis of CNT assembly]
The amount of supplied hydrogen is reduced from 500 sccm to 0 sccm at 250 sccm / min in the synthesis furnace in which the members for CNT aggregate synthesis of Examples 1 to 3 and Comparative Examples 1 to 4 after catalyst metal fine particle formation are arranged, and helium is reduced. At a flow rate of 460 sccm, nitrogen bubbled with water (hereinafter also referred to as H 2 O / N 2 : H 2 O: about 1500 ppm) was supplied to the synthesis furnace for 2 minutes at 100 sccm.

その後、20% アセチレン(C22)(窒素で20%に希釈したアセチレン)を10sccm、触媒賦活物質として、H2O/N2を100sccm、ヘリウムを470sccm合成炉に導入し、CNT集合体を合成した。 Thereafter, 10 sccm of 20% acetylene (C 2 H 2 ) (acetylene diluted to 20% with nitrogen), 100 sccm of H 2 O / N 2 as a catalyst activator, and 470 sccm of helium are introduced into a synthesis furnace, and CNT aggregate Was synthesized.

図11(a)、図13(a)及び図14(a)は、実施例1〜3のCNT集合体合成用部材上に合成したCNT集合体を示し、図15〜図17は比較例1〜3のCNT集合体合成用部材上に合成したCNT集合体を示し、図18(a)は、比較例4のCNT集合体合成用部材上に合成したCNT集合体を示す。また、CNT集合体の平均高さ及び収量を表2に示す。   FIGS. 11 (a), 13 (a) and 14 (a) show CNT assemblies synthesized on the members for CNT aggregate synthesis of Examples 1 to 3, and FIGS. 15 to 17 show Comparative Example 1 18A shows a CNT assembly synthesized on the CNT assembly synthesizing member of ̃3 and FIG. 18A shows a CNT assembly synthesized on the CNT assembly synthesizing member of Comparative Example 4. FIG. Also, the average height and yield of the CNT assembly are shown in Table 2.

実施例1〜3のCNT集合体合成用部材上に合成したCNT集合体のラマンスペクトルを図11(b)、図13(b)及び図14(b)に示す。また、比較例4のCNT集合体合成用部材上に合成したCNT集合体のラマンスペクトルを図18(b)に示す。ラマンスペクトルは、ラマン分光測定装置(サーモエレクトロン社)を使用して、532nmの励起波長を用いた。1560cm-1以上1600cm-1以下の範囲内での最大のピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大のピーク強度をDとしたときのG/D比を、CNT集合体の品質の指標として用いることができる。G/D比が大きいほど、グラファイト化度が高く、高品質のCNT集合体である。実施例1〜3及び比較例4のCNT集合体のG/D比を表2に示す。 The Raman spectra of the CNT assembly synthesized on the CNT assembly synthesizing member of Examples 1 to 3 are shown in FIG. 11 (b), FIG. 13 (b) and FIG. 14 (b). Moreover, the Raman spectrum of the CNT assembly synthesize | combined on the member for CNT assembly synthetic | combination of Comparative Example 4 is shown in FIG.18 (b). The Raman spectrum used the excitation wavelength of 532 nm using the Raman spectroscopy measuring apparatus (Thermo Electron Co., Ltd.). The maximum peak intensity at 1560 cm -1 or 1600 cm -1 in the range G, the G / D ratio when the maximum peak intensity in the range of 1310cm -1 or 1350 cm -1 or less was D, CNT It can be used as an indicator of aggregate quality. The larger the G / D ratio, the higher the degree of graphitization and the higher the quality of the CNT assembly. The G / D ratio of the CNT assembly of Examples 1 to 3 and Comparative Example 4 is shown in Table 2.

実施例1〜3及び比較例4のCNT集合体合成用部材上に合成したCNT集合体について、合成時間に対して平均高さをプロットして成長曲線を得た。実施例1〜3及び比較例4のCNT集合体の成長曲線を図11(c)、図13(c)、図14(c)及び図18(c)に示す。また、成長曲線から成長寿命を求めた。実施例1〜3及び比較例4のCNT集合体合成用部材上に合成したCNT集合体の成長寿命を表2に示す。   The average heights of the CNT assemblies synthesized on the CNT assembly synthesizing members of Examples 1 to 3 and Comparative Example 4 were plotted against the synthesis time to obtain growth curves. The growth curves of the CNT assembly of Examples 1 to 3 and Comparative Example 4 are shown in FIG. 11 (c), FIG. 13 (c), FIG. 14 (c) and FIG. 18 (c). Also, the growth lifetime was determined from the growth curve. The growth lifetime of the CNT assembly synthesized on the CNT assembly synthesizing member of Examples 1 to 3 and Comparative Example 4 is shown in Table 2.

図15〜図17及び表2から明らかなように、第二下地層を形成していない比較例1〜2及び第一下地層として耐食性金属ではないシリコン酸化膜を用いた比較例4のCNT集合体合成用部材では、CNT集合体がほとんど合成されなかった。従来の下地層を有する比較例4のCNT集合体合成用部材では、CNT集合体が合成されるが、実施例1〜3のCNT集合体合成用部材では、平均高さも高く、高収量でCNT集合体が合成された。また、従来の下地層を有する比較例4のCNT集合体合成用部材では成長寿命が12分以下であった。表1の結果を考慮すると、従来の下地層を有するCNT集合体合成用部材では、CNT集合体の合成過程において、触媒金属微粒子が減少することにより、成長寿命が短くなると推察される。   As apparent from FIGS. 15 to 17 and Table 2, the CNT assembly of Comparative Examples 1 and 2 in which the second underlayer is not formed and Comparative Example 4 in which a silicon oxide film which is not a corrosion resistant metal is used as the first underlayer. In the members for body synthesis, the CNT aggregate was hardly synthesized. In the CNT aggregate synthesizing member of Comparative Example 4 having the conventional underlayer, the CNT aggregate is synthesized, but in the CNT aggregate synthesizing member of Examples 1 to 3, the average height is also high, and the CNTs are obtained in high yield. Aggregates were synthesized. In addition, in the member for CNT aggregate synthesis of Comparative Example 4 having the conventional base layer, the growth life was 12 minutes or less. In consideration of the results in Table 1, it is surmised that in the conventional CNT aggregate synthesizing member having an underlayer, the growth life becomes short due to the decrease of the catalyst metal fine particles in the synthesis process of the CNT aggregate.

一方、実施例1〜3のCNT集合体合成用部材では、CNT集合体の生産において、基材面積辺りに高い個数密度且つ寿命の長い触媒金属微粒子を配置することが可能となり、その結果、長尺のカーボンナノチューブ集合体を高効率で生産することが可能となると推察される。   On the other hand, in the CNT assembly synthesizing member of Examples 1 to 3, it is possible to arrange catalyst metal fine particles having a high number density and a long life around the substrate area in the production of the CNT assembly, and as a result, It is presumed that it is possible to produce a large scale carbon nanotube aggregate with high efficiency.

実施例1のCNT集合体合成用部材で合成したCNT集合体について、TEMによる観察を行った。図12(a)は実施例1のCNT集合体のTEM像であり、図12(b)はTEM像から求めた実施例1で合成したCNTの直径の分布を示す。実施例1のCNT集合体合成用部材で合成したCNT集合体は、直径が1.2nm以上5nm以下である単層CNTが大部分を占めるCNT集合体であることが明らかとなった。   The CNT aggregate synthesized by the member for synthesizing CNT aggregate of Example 1 was observed by TEM. Fig.12 (a) is a TEM image of the CNT aggregate | assembly of Example 1, FIG.12 (b) shows distribution of the diameter of the CNT synthesize | combined in Example 1 calculated | required from the TEM image. It was revealed that the CNT assembly synthesized by the member for synthesizing CNT assembly of Example 1 is a CNT assembly in which a single layer CNT having a diameter of 1.2 nm or more and 5 nm or less occupies most.

10 集合体合成用触媒担持体、11 基材、13 第一下地層、14 第二下地層、15 触媒下地層、50 集合体合成用部材、55 触媒前駆体層、59 触媒金属微粒子、80 集合体合成用触媒担持体、82 触媒下地層、90 集合体合成用部材、92 触媒下地層、99 触媒金属微粒子、99a 触媒金属微粒子、109 集合体 DESCRIPTION OF SYMBOLS 10 Catalyst support for aggregate synthesis, 11 base material, 13 first underlayer, 14 second underlayer, 15 catalyst underlayer, 50 member for aggregate synthesis, 55 catalyst precursor layer, 59 catalyst metal fine particles, 80 aggregate Catalyst support for body synthesis, 82 catalyst underlayer, 90 aggregate synthesis member, 92 catalyst underlayer, 99 catalyst metal fine particles, 99a catalyst metal fine particles, 109 aggregate

Claims (7)

基材と、
前記基材の表面上に設けられる触媒下地層と、を備えるカーボンナノチューブ集合体合成用触媒担持体であり、
前記触媒下地層は、
前記基材の表面上に設けられている第一下地層と、
前記第一下地層の表面上に設けられている第二下地層と、を備え、
前記第一下地層は、前記触媒担持体の表面上に設けられる触媒金属微粒子及び/又は前記触媒金属微粒子を構成する原子の、前記触媒担持体内部への固相内拡散を防止し、
前記第二下地層は、前記触媒金属微粒子及びは/又は前記触媒金属微粒子を構成する原子の、前記触媒担持体表面における表面拡散を防止して、前記触媒金属微粒子の個数の減少及び/又はサイズ変化を抑制する、
カーボンナノチューブ集合体合成用触媒担持体。
A substrate,
A catalyst support for synthesizing a carbon nanotube aggregate, comprising: a catalyst base layer provided on the surface of the base material;
The catalyst underlayer is
A first underlayer provided on the surface of the substrate;
And a second underlayer provided on the surface of the first underlayer,
The first undercoat layer prevents diffusion of catalyst metal particles provided on the surface of the catalyst carrier and / or atoms constituting the catalyst metal particles into the solid phase inside the catalyst carrier.
The second underlayer prevents the surface diffusion of the catalyst metal particles and / or atoms constituting the catalyst metal particles on the surface of the catalyst carrier, thereby reducing the number and / or size of the catalyst metal particles. Suppress the change,
Catalyst support for carbon nanotube aggregate synthesis.
前記第一下地層が、耐食性金属の酸化物を含む、厚さ2nm以上の層である、請求項1に記載のカーボンナノチューブ集合体合成用触媒担持体。 The catalyst support for carbon nanotube aggregate synthesis according to claim 1, wherein the first underlayer is a layer having a thickness of 2 nm or more containing an oxide of a corrosion resistant metal. 前記耐食性金属が、マグネシウム、亜鉛、アルミニウム、チタン、ジルコニウム、ハフニウム、スズ、鉛、ベリリウム、バナジウム、ニオブ、タンタル、クロム、鉄及びニッケルからなる群から選択される一以上を含む、請求項2に記載のカーボンナノチューブ集合体合成用触媒担持体。 The corrosion resistant metal comprises one or more selected from the group consisting of magnesium, zinc, aluminum, titanium, zirconium, hafnium, tin, lead, beryllium, vanadium, niobium, tantalum, chromium, iron and nickel. The catalyst support body for carbon nanotube aggregate synthesis described. 前記第二下地層は、厚さが0.2nm以上5nm以下の金属化合物又は金属を含む薄膜である、請求項1乃至3の何れか一に記載のカーボンナノチューブ集合体合成用触媒担持体。 The catalyst support for carbon nanotube aggregate synthesis according to any one of claims 1 to 3, wherein the second underlayer is a thin film containing a metal compound or a metal having a thickness of 0.2 nm or more and 5 nm or less. 前記第一下地層が、前記第二下地層を構成する物質とは異なる物質を含む、請求項1乃至3の何れか一に記載のカーボンナノチューブ集合体合成用触媒担持体。 The catalyst support for carbon nanotube aggregate synthesis according to any one of claims 1 to 3, wherein the first underlayer includes a material different from the material constituting the second underlayer. 前記第一下地層が酸化ジルコニウム又は酸化ハフニウムを含み、且つ前記第二下地層が酸化アルミニウムを含む、又は前記第一下地層が酸化アルミニウムを含み、且つ前記第二下地層が酸化マグネシウムを含む、請求項5に記載のカーボンナノチューブ集合体合成用触媒担持体。   The first underlayer comprises zirconium oxide or hafnium oxide, and the second underlayer comprises aluminum oxide, or the first underlayer comprises aluminum oxide, and the second underlayer comprises magnesium oxide. The catalyst support for carbon nanotube aggregate synthesis according to claim 5. 請求項1から6のいずれか1項に記載のカーボンナノチューブ集合体合成用触媒担持体の表面上に、
触媒金属からなる触媒金属微粒子を設けてなるカーボンナノチューブ集合体合成用部材。
A surface of the catalyst support for synthesizing a carbon nanotube aggregate according to any one of claims 1 to 6,
A member for synthesizing a carbon nanotube aggregate provided with catalyst metal fine particles comprising a catalyst metal.
JP2017174501A 2017-09-12 2017-09-12 Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates Active JP6950939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174501A JP6950939B2 (en) 2017-09-12 2017-09-12 Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174501A JP6950939B2 (en) 2017-09-12 2017-09-12 Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates

Publications (2)

Publication Number Publication Date
JP2019048272A true JP2019048272A (en) 2019-03-28
JP6950939B2 JP6950939B2 (en) 2021-10-13

Family

ID=65905320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174501A Active JP6950939B2 (en) 2017-09-12 2017-09-12 Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates

Country Status (1)

Country Link
JP (1) JP6950939B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116626A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Methods for forming carbon nanotube thermal pads
JP2013199403A (en) * 2012-03-23 2013-10-03 Fujitsu Ltd Carbon nanotube sheet and method for producing the same
JP2015530961A (en) * 2012-07-11 2015-10-29 カーバイス ナノテクノロジーズ, インコーポレイテッド Vertically aligned array of carbon nanotubes formed on a multilayer substrate
JP2016014859A (en) * 2014-06-12 2016-01-28 国立研究開発法人産業技術総合研究所 Optical member and method for producing the same
JP2016522996A (en) * 2014-05-30 2016-08-04 華為技術有限公司Huawei Technologies Co.,Ltd. Heat dissipation structure and synthesis method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116626A1 (en) * 2005-05-11 2007-05-24 Molecular Nanosystems, Inc. Methods for forming carbon nanotube thermal pads
JP2013199403A (en) * 2012-03-23 2013-10-03 Fujitsu Ltd Carbon nanotube sheet and method for producing the same
JP2015530961A (en) * 2012-07-11 2015-10-29 カーバイス ナノテクノロジーズ, インコーポレイテッド Vertically aligned array of carbon nanotubes formed on a multilayer substrate
JP2016522996A (en) * 2014-05-30 2016-08-04 華為技術有限公司Huawei Technologies Co.,Ltd. Heat dissipation structure and synthesis method thereof
JP2016014859A (en) * 2014-06-12 2016-01-28 国立研究開発法人産業技術総合研究所 Optical member and method for producing the same

Also Published As

Publication number Publication date
JP6950939B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
US20120321544A1 (en) Method for producing aligned carbon nanotube aggregate
EP1810950B1 (en) Carbon nanotube aggregate and process for producing the same
EP2431325B1 (en) Process for producing carbon nanotubes
JP4730707B2 (en) Catalyst for carbon nanotube synthesis and method for producing the same, catalyst dispersion, and method for producing carbon nanotube
Guerra-Nuñez et al. Morphology and crystallinity control of ultrathin TiO 2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition
JPWO2015064772A1 (en) carbon nanotube
JP5622278B2 (en) Base material for manufacturing aligned carbon nanotube aggregate, method for manufacturing aligned carbon nanotube assembly, and method for manufacturing base material for manufacturing aligned carbon nanotube assembly
JP4706852B2 (en) Method for producing carbon nanotube
JP6847412B2 (en) Catalytic base material for manufacturing carbon nanotube aggregates and method for manufacturing carbon nanotube aggregates
KR102164225B1 (en) Carbon nanotubes and production method thereof
JP6950939B2 (en) Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
Rajesh et al. Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition
JP6623512B2 (en) Carbon nanostructure aggregate and method for producing the same
JP6476759B2 (en) Method of manufacturing aligned carbon nanotube assembly
JP6762005B2 (en) Method for manufacturing carbon nanotube aggregates
Sakurai et al. Limitation in growth temperature for water-assisted single wall carbon nanotube forest synthesis
WO2015099195A1 (en) Carbon nanotube, carbon nanotube assembly, and method for producing carbon nanotube assembly
JP6095173B2 (en) Method for producing carbon-containing metal catalyst particles for carbon nanotube synthesis, and method for producing carbon nanotube
JP6709913B2 (en) Method for producing catalyst carrier for producing carbon nanotube, and method for producing carbon nanotube
Tsuji et al. Synthesis of sub-millimeter tall SWNT forests on a catalyst underlayer of MgO single crystal
JP2014166936A (en) Method of producing carbon nanotube aggregate
KR20230109573A (en) Bundle-type Carbon Nanotubes
KR20110138100A (en) Method for preparing carbon nanotube using fullerene based compound and carbon nanotube prepared by the same
Oida et al. Epitaxial Ag layers on Si substrates as a buffer layer for carbon nanotube growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6950939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150