JP2018173074A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2018173074A
JP2018173074A JP2017196290A JP2017196290A JP2018173074A JP 2018173074 A JP2018173074 A JP 2018173074A JP 2017196290 A JP2017196290 A JP 2017196290A JP 2017196290 A JP2017196290 A JP 2017196290A JP 2018173074 A JP2018173074 A JP 2018173074A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
purification catalyst
exhaust purification
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017196290A
Other languages
English (en)
Other versions
JP6614223B2 (ja
Inventor
依田 公一
Koichi Yoda
公一 依田
圭一郎 青木
Keiichiro Aoki
圭一郎 青木
剛 林下
Go Hayashita
剛 林下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US15/937,623 priority Critical patent/US10598063B2/en
Priority to DE102018107664.9A priority patent/DE102018107664A1/de
Priority to CN201810278352.1A priority patent/CN108691612B/zh
Publication of JP2018173074A publication Critical patent/JP2018173074A/ja
Application granted granted Critical
Publication of JP6614223B2 publication Critical patent/JP6614223B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】NOxセンサの出力に基づいて排気浄化触媒の異常診断を行うにあたり、誤判定してしまうのを抑制する。
【解決手段】排気浄化装置は、排気浄化触媒20と、排気浄化触媒20下流のNOxセンサ46及び空燃比センサ41と、制御・診断装置とを備える。制御・診断装置は、目標空燃比をリッチ空燃比とリーン空燃比とに交互に設定すると共に、目標空燃比のリッチ空燃比からリーン空燃比への切替を空燃比センサの出力空燃比がリッチ判定空燃比以下になったときに行う。制御・診断装置は、NOxセンサの出力に基づいて排気浄化触媒の異常診断を行うと共に、排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比であるときには排気浄化触媒の異常診断を行うが、排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比であるときには排気浄化触媒の異常診断を行わない。
【選択図】図7

Description

本発明は、内燃機関の排気浄化装置に関する。
従来から、排気浄化触媒よりも排気流れ方向下流側に配置されたNOxセンサの出力に基づいて排気浄化触媒の異常(劣化度合い)を診断する内燃機関の排気浄化装置が知られている。斯かる排気浄化装置としては、例えば、排気浄化触媒から流出する排気ガスの空燃比が理論空燃比近傍であるときのNOxセンサの出力が基準値以上であるときに排気浄化触媒に異常があると判定するものが知られている(例えば、特許文献1)。
特開2002−138821号公報
ところで、上述した特許文献1に記載の排気浄化装置では、排気浄化触媒に流入する排気ガスの目標空燃比が理論空燃比よりもリッチな空燃比(以下、「リッチ空燃比」という)と、理論空燃比よりもリーンな空燃比(以下、「リーン空燃比」という)とに交互に設定される。この排気浄化装置では、目標空燃比をリッチ空燃比に設定しても、排気浄化触媒に吸蔵されている酸素が放出されて排気浄化触媒で未燃ガスが浄化され、よって排気浄化触媒から流出する排気ガスの空燃比がほぼ理論空燃比となる。同様に、目標空燃比をリーン空燃比に設定しても、排気浄化触媒に酸素が吸蔵されるため、排気浄化触媒から流出する排気ガスの空燃比はほぼ理論空燃比となる。
一方、上述したように、特許文献1に記載の排気浄化装置では、排気浄化触媒から流出した排気ガスの空燃比が理論空燃比近傍であるときに排気浄化触媒の異常診断が行われる。したがって、特許文献1に記載の排気浄化装置では、排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比のときにもリーン空燃比のときにも、排気浄化触媒の異常診断が行われることになる。
ところが、排気浄化触媒の酸素吸蔵量が低下して酸素を放出することができない状態で目標空燃比をリッチ空燃比に維持すると、排気浄化触媒に担持されている触媒貴金属の周りに炭化水素(HC)等が付着することがある。このように触媒貴金属の周りにHC等が付着していると、触媒貴金属の酸化作用が低下する(HC被毒)。このような状態で排気浄化触媒に流入する排気ガスの目標空燃比をリーン空燃比に設定すると、排気浄化触媒がHC被毒しているため、排気浄化触媒自体は大きく劣化していないにも関わらず排気浄化触媒の異常診断において排気浄化触媒に異常が生じていると誤判定される可能性がある。
本発明は、上記課題に鑑みてなされたものであって、その目的は、NOxセンサの出力に基づいて排気浄化触媒の異常診断を行うにあたり、誤判定してしまうのを抑制することにある。
本発明は、上記課題を解決するためになされたものであり、その要旨は以下のとおりである。
(1)内燃機関の排気通路に設けられて触媒貴金属を担持する排気浄化触媒と、該排気浄化触媒内又は該排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられたNOxセンサと、前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた空燃比センサと、前記排気浄化触媒に流入する排気ガスの目標空燃比を制御すると共に、前記NOxセンサの出力に基づいて前記排気浄化触媒の状態を推定する制御装置とを備え、前記制御装置は、前記目標空燃比を理論空燃比よりもリッチなリッチ空燃比と理論空燃比よりもリーンなリーン空燃比とに交互に設定すると共に、前記目標空燃比のリッチ空燃比からリーン空燃比への切替を前記空燃比センサによって検出された排気ガスの空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下になったときに行い、前記制御装置は、前記排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比であるときの前記NOxセンサの出力には基づかずに、前記排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比であるときの前記NOxセンサの出力に基づいて、触媒貴金属のシンタリングに伴う前記排気浄化触媒の回復不能な劣化の度合いを推定する第1劣化度合い推定制御を実行する、内燃機関の排気浄化装置。
(2)前記制御装置は、前記回復不能な劣化度合いに基づいて前記排気浄化触媒の異常診断を行うと共に、前記排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比であるときには前記排気浄化触媒の異常診断を行うが、前記排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比であるときには前記排気浄化触媒の異常診断を行わない、上記(1)に記載の内燃機関の排気浄化装置。
(3)前記制御装置は、前記第1劣化度合い推定制御において、前記目標空燃比をリッチ空燃比に切り替えてからリーン空燃比に切り替えるまでの前記排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比である期間のうち、目標空燃比の切り替え時期から離れた中央の期間における前記NOxセンサの出力に基づいて前記排気浄化触媒の回復不能な劣化の度合いを推定する、上記(1)又は(2)に記載の内燃機関の排気浄化装置。
(4)前記制御装置は、前記NOxセンサの出力によらずに、前記回復不能な劣化と前記排気浄化触媒の硫黄被毒による回復可能な劣化とを含む前記排気浄化触媒の総劣化度合いを推定する第2劣化度合い推定制御を実行し、前記制御装置は、前記第2劣化度合い推定制御によって推定された総劣化度合いと、前記第1劣化度合い推定制御によって推定された回復不能な劣化の度合いとに基づいて、前記排気浄化触媒の回復可能な劣化の度合いを推定する、上記(1)〜(3)のいずれか1つに記載の内燃機関の排気浄化装置。
(5)前記制御装置は、前記NOxセンサの出力によらずに、前記回復不能な劣化と前記排気浄化触媒の硫黄被毒による回復可能な劣化とを含む前記排気浄化触媒の総劣化度合いを推定する第2劣化度合い推定制御を実行し、前記制御装置は、前記第1劣化度合い推定制御によって推定された回復不能な劣化の度合いに基づいて前記回復不能な劣化の度合いが大きくなるほど大きくなるように被毒基準値を設定し、前記第2劣化度合い推定制御によって推定された総劣化度合いが前記被毒基準値以上になると前記排気浄化触媒が硫黄被毒していると判定する、上記(3)に記載の内燃機関の排気浄化装置。
(6)前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた空燃比センサを更に具備し、前記制御装置は、前記第2劣化度合い推定制御において、前記空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下の状態から理論空燃比よりもリーンなリーン判定空燃比以上になるまでに前記排気浄化触媒に吸蔵された酸素量又は該酸素量に応じて変化するパラメータの値、又は前記空燃比センサの出力空燃比がリーン判定空燃比以上の状態からリッチ判定空燃比以下になるまでに前記排気浄化触媒から放出された酸素量又は該酸素量に応じて変化するパラメータの値に基づいて、前記排気浄化触媒の総劣化度合いを推定する、上記(4)又は(5)に記載の内燃機関の排気浄化装置。
(7)前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた空燃比センサを更に具備し、前記制御装置は、前記目標空燃比のリッチ空燃比からリーン空燃比への切替を前記空燃比センサによって検出された排気ガスの空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下になったときに行い、前記制御装置は、前記第2劣化度合い推定制御において、前記目標空燃比がリッチ空燃比からリーン空燃比へ切り替えられた後に前記空燃比センサの出力空燃比が理論空燃比に到達するまでの前記空燃比センサの出力空燃比の少なくとも一部の挙動に基づいて、前記排気浄化触媒の総劣化度合いを推定する、上記(4)又は(5)に記載の内燃機関の排気浄化装置。
(8)前記制御装置は、時間又は吸入空気量の積算値の変化に対する前記排気浄化触媒の回復可能な劣化の度合いの推移に基づいて、前記内燃機関に供給されている燃料の硫黄含有率を推定する含有率推定制御を実行する、上記(4)に記載の内燃機関の排気浄化装置。
(9)前記制御装置は、前記排気浄化触媒に吸蔵されている硫黄成分を離脱させる硫黄離脱処理を実行し、前記含有率推定制御は、前記硫黄離脱処理の完了後に開始される、上記(8)に記載の内燃機関の排気浄化装置。
本発明によれば、NOxセンサの出力に基づいて排気浄化触媒の異常診断を行うにあたり、誤判定してしまうのを抑制することができる内燃機関の排気浄化装置が提供される。
図1は、一つの実施形態に係る排気浄化装置が用いられている内燃機関を概略的に示す図である。 図2は、空燃比センサ周りの排気ガスの空燃比と空燃比センサの出力電流との関係を示す図である。 図3は、内燃機関の運転時における、上流側排気浄化触媒の酸素吸蔵量等の変化を示すタイムチャートである。 図4は、空燃比補正量設定制御の制御ルーチンを示すフローチャートである。 図5は、目標空燃比がリッチ空燃比である場合における、吸入空気量とNOxセンサによって検出されたNOx濃度との関係を示す図である。 図6は、目標空燃比がリーン空燃比である場合における、吸入空気量とNOxセンサによって検出されたNOx濃度との関係を示す図である。 図7は、上流側排気浄化触媒20の異常診断を行う際の上流側排気浄化触媒20の酸素吸蔵量等の変化を示す、図3と同様なタイムチャートである。 図8は、上流側排気浄化触媒の異常診断を行う異常診断制御の制御ルーチンを示すフローチャートである。 図9は、上流側排気浄化触媒の異常診断を行う際の上流側排気浄化触媒の酸素吸蔵量等の変化を示す、図7と同様なタイムチャートである。 図10は、本実施形態に係る上流側排気浄化触媒の異常診断を行う異常診断制御の制御ルーチンを示すフローチャートである。 図11は、上流側排気浄化触媒の異常診断を行う際の上流側排気浄化触媒の酸素吸蔵量等の変化を示す、図7と同様なタイムチャートである。 図12は、目標空燃比がリッチ空燃比である場合における、吸入空気量とNOxセンサによって検出されるNOx濃度との関係を示す、図5と同様な図である。 図13は、排気浄化触媒の表面近傍を模式的に表す断面図である。 図14は、吸入空気量及びNOxセンサによって検出されたNOx濃度と、上流側排気浄化触媒の永久劣化による劣化度合いとの関係を示す図である。 図15は、上流側排気浄化触媒の永久劣化による劣化度合いの推定を行う劣化度合い推定制御の制御ルーチンを示すフローチャートである。 図16は、図11に示した第三実施形態と同様な空燃比制御を行った場合における、空燃比補正量等のタイムチャートである。 図17は、吸入空気量及び吸蔵可能酸素量と、上流側排気浄化触媒のS被毒劣化による劣化度合いとの関係を示す図である。 図18は、吸入空気量及び吸蔵可能酸素量と、上流側排気浄化触媒のS被毒劣化による劣化度合いとの関係を示す図である。 図19は、上流側排気浄化触媒のS被毒劣化による劣化度合いを判定するS被毒判定制御の制御ルーチンを示すフローチャートである。 図20は、空燃比制御を行った場合における、空燃比補正量等のタイムチャートである。 図21は、第六実施形態に係る排気浄化装置において、上流側排気浄化触媒のS被毒劣化による劣化度合いを判定するS被毒判定制御の制御ルーチンを示すフローチャートである。 図22は、上流側排気浄化触媒のS被毒劣化による劣化度合いのタイムチャートである。 図23は、上流側排気浄化触媒のS被毒劣化による劣化度合いを算出するためのS被毒劣化度合い算出制御の制御ルーチンを示すフローチャートである。 図24は、燃焼室5に供給される燃料中の硫黄成分含有率を推定する硫黄成分含有率推定制御の制御ルーチンを示すフローチャートである。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
<第一実施形態>
≪内燃機関全体の説明≫
図1は、本発明の第一実施形態に係る排気浄化装置が用いられる内燃機関を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の排気浄化装置が用いられる内燃機関では、ガソリン以外の燃料、或いはガソリンとの混合燃料を用いてもよい。
各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36及び出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。
本実施形態では、空燃比センサ40、41として、限界電流式の空燃比センサが用いられる。したがって、空燃比センサ40、41は、図2に示したように、空燃比センサ40、41周りの排気ガスの空燃比が高くなるほど(すなわちリーンになるほど)、空燃比センサ40、41からの出力電流が大きくなるように構成される。特に、本実施形態の空燃比センサ40、41は、空燃比センサ40、41周りの排気ガスの空燃比に対して出力電流がリニアに(比例して)変化するように構成される。なお、本実施形態では、空燃比センサ40、41として限界電流式の空燃比センサを用いているが、排気ガスの空燃比に応じて出力が変化するセンサであれば限界電流式の空燃比センサ以外の空燃比センサを用いてもよい。斯かる空燃比センサとしては、例えば、センサを構成する電極間に電圧が印加されずに理論空燃比近傍で急激に出力が変化する酸素センサ等が挙げられる。
さらに、本実施形態の排気浄化装置では、排気管22内に排気管22内を流れる排気ガスのNOx濃度を検出するNOxセンサ46が配置される。したがって、NOxセンサ46は、上流側排気浄化触媒20の排気流れ方向下流側に配置されて、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガスのNOx濃度を検出する。NOxセンサ46は、排気ガス中のNOx濃度が高くなるほどその出力が大きくなるように構成される。NOxセンサ46の出力は対応するAD変換器38を介して入力ポート36に入力される。なお、NOxセンサ46は上流側ケーシング21に取り付けられて、上流側排気浄化触媒20内のNOx濃度を検出するように構成されてもよい。また、NOxセンサ46は、下流側空燃比センサ41と一体的に形成されてもよい。
また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を制御すると共に、NOxセンサ46の出力に基づいて上流側排気浄化触媒20の異常診断を行う制御・診断装置として機能する。
上流側排気浄化触媒20及び下流側排気浄化触媒24は、酸素吸蔵能力を有する三元触媒である。具体的には、排気浄化触媒20、24は、セラミックから成る担体に、触媒作用を有する触媒貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させた三元触媒である。三元触媒は、三元触媒に流入する排気ガスの空燃比が理論空燃比に維持されていると、未燃HC、CO及びNOxを同時に浄化する機能を有する。加えて、排気浄化触媒20、24に或る程度の酸素が吸蔵されている場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、CO及びNOxとが同時に浄化される。
すなわち、排気浄化触媒20、24が酸素吸蔵能力を有していると、すなわち排気浄化触媒20、24の酸素吸蔵量が最大吸蔵可能酸素量よりも少ないと、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりも若干リーンになったときには、排気ガス中に含まれる過剰な酸素が排気浄化触媒20、24内に吸蔵される。このため、排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、CO及びNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。
一方、排気浄化触媒20、24が酸素を放出することができる状態にあると、すなわち排気浄化触媒20、24の酸素吸蔵量が0よりも多いと、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりも若干リッチになったときには、排気ガス中に含まれている未燃HC、COを還元させるのに不足している酸素が排気浄化触媒20、24から放出される。このため、この場合にも排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、CO及びNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。
このように、排気浄化触媒20、24に或る程度の酸素が吸蔵されている場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、CO及びNOxとが動じに浄化され、排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。
≪基本的な制御≫
次に、本実施形態に係る内燃機関の排気浄化装置における基本的な空燃比制御の概要を説明する。本実施形態の空燃比制御では、上流側空燃比センサ40の出力空燃比に基づいて上流側空燃比センサ40の出力空燃比が目標空燃比となるように燃料噴射弁11からの燃料噴射量を制御するフィードバック制御が行われる。すなわち、本実施形態の空燃比制御では、上流側空燃比センサ40の出力空燃比に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御が行われる。なお、「出力空燃比」は、空燃比センサの出力値に相当する空燃比を意味する。
また、本実施形態の空燃比制御では、下流側空燃比センサ41の出力空燃比等に基づいて目標空燃比が設定される。具体的には、下流側空燃比センサ41の出力空燃比がリッチ空燃比となったときに、目標空燃比がリーン設定空燃比に設定される。この結果、上流側排気浄化触媒20に流入する排気ガスの空燃比もリーン設定空燃比になる。ここで、リーン設定空燃比は、理論空燃比(制御中心となる空燃比)よりも或る程度リーンである予め定められた一定値の空燃比であり、例えば、14.65〜20、好ましくは14.65〜18、より好ましくは14.65〜16程度とされる。また、リーン設定空燃比は、制御中心となる空燃比(本実施形態では、理論空燃比)に正の空燃比補正量を加算した空燃比として表すこともできる。加えて、本実施形態では、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチであるリッチ判定空燃比(例えば、14.55)以下になったときに、下流側空燃比センサ41の出力空燃比がリッチ空燃比になったと判断される。
目標空燃比がリーン設定空燃比に変更されると、上流側排気浄化触媒20に流入する排気ガスの酸素過不足量が積算される。酸素過不足量は、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比にしようとしたときに過剰となる酸素の量又は不足する酸素の量(過剰な未燃HC、CO等(以下、「未燃ガス」という)の量)を意味する。特に、目標空燃比がリーン設定空燃比となっているときには上流側排気浄化触媒20に流入する排気ガス中の酸素は過剰となり、この過剰な酸素は上流側排気浄化触媒20に吸蔵される。したがって、酸素過不足量の積算値(以下、「積算酸素過不足量」という)は、上流側排気浄化触媒20の酸素吸蔵量OSAの推定値であるといえる。
なお、酸素過不足量の算出は、上流側空燃比センサ40の出力空燃比、及びエアフロメータ39の出力等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料供給量等に基づいて行われる。具体的には、酸素過不足量OEDは、例えば、下記式(1)により算出される。
OED=0.23×Qi×(AFup−AFR) …(1)
ここで、0.23は空気中の酸素濃度、Qiは燃料噴射量、AFupは上流側空燃比センサ40の出力空燃比、AFRは制御中心となる空燃比(本実施形態では、基本的には理論空燃比)をそれぞれ表している。
このようにして算出された酸素過不足量を積算した積算酸素過不足量が、予め定められた切替基準値(予め定められた切替基準吸蔵量Crefに相当)以上になると、それまでリーン設定空燃比だった目標空燃比が、リッチ設定空燃比に設定される。リッチ設定空燃比は、理論空燃比(制御中心となる空燃比)よりも或る程度リッチである予め定められた空燃比であり、例えば、12〜14.58、好ましくは13〜14.57、より好ましくは14〜14.55程度とされる。また、リッチ設定空燃比は、制御中心となる空燃比(本実施形態では、理論空燃比)に負の空燃比補正量を加算した空燃比として表すこともできる。なお、本実施形態では、リッチ設定空燃比の理論空燃比からの差(リッチ度合い)は、リーン設定空燃比の理論空燃比からの差(リーン度合い)以下とされる。
その後、下流側空燃比センサ41の出力空燃比が再びリッチ判定空燃比以下となったときに、目標空燃比が再びリーン設定空燃比とされ、その後、同様な操作が繰り返される。このように本実施形態では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリーン設定空燃比とリッチ設定空燃比とに交互に繰り返し設定される。換言すると、本実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比とリーン空燃比とに交互に設定されるといえる。
≪タイムチャートを用いた空燃比制御の説明≫
図3を参照して、上述したような操作について具体的に説明する。図3は、本実施形態の空燃比制御を行った場合における、空燃比補正量、上流側空燃比センサ40の出力空燃比AFup、上流側排気浄化触媒20の酸素吸蔵量OSA、積算酸素過不足量ΣOED、及び下流側空燃比センサ41の出力空燃比AFdwnのタイムチャートである。
なお、空燃比補正量AFCは、上流側排気浄化触媒20に流入する排気ガスの目標空燃比に関する補正量である。空燃比補正量AFCが0のときには目標空燃比は制御中心となる空燃比(以下、「制御中心空燃比」という)に等しい空燃比(本実施形態では、理論空燃比)とされ、空燃比補正量AFCが正の値であるときには目標空燃比は制御中心空燃比よりもリーンな空燃比(本実施形態では、リーン空燃比)となり、空燃比補正量AFCが負の値であるときには目標空燃比は制御中心空燃比よりもリッチな空燃比(本実施形態では、リッチ空燃比)となる。また、「制御中心空燃比」は、機関運転状態に応じて空燃比補正量AFCを加算する対象となる空燃比、すなわち空燃比補正量AFCに応じて目標空燃比を変動させる際に基準となる空燃比を意味する。
図示した例では、時刻t1以前の状態では、空燃比補正量AFCがリッチ設定補正量AFCrich(リッチ設定空燃比に相当)とされている。すなわち、目標空燃比はリッチ空燃比とされており、これに伴って上流側空燃比センサ40の出力空燃比がリッチ空燃比となる。上流側排気浄化触媒20に流入する排気ガス中に含まれている未燃ガス等は、上流側排気浄化触媒20で浄化され、これに伴って、上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に減少していく。上流側排気浄化触媒20における浄化により上流側排気浄化触媒20から流出する排気ガス中には未燃ガス等は含まれていないため、下流側空燃比センサ41の出力空燃比AFdwnはほぼ理論空燃比となる。上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は少ない。
上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に減少すると、酸素吸蔵量OSAはゼロに近づき、これに伴って、上流側排気浄化触媒20に流入した未燃ガス等の一部は上流側排気浄化触媒20で浄化されずに流出し始める。これにより、下流側空燃比センサ41の出力空燃比AFdwnが徐々に低下し、時刻t1において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。
本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になると、酸素吸蔵量OSAを増大させるべく、空燃比補正量AFCがリーン設定補正量AFClean(リーン設定空燃比に相当)に切り替えられる。また、このとき、積算酸素過不足量ΣOEDは0にリセットされる。
なお、本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達してから、空燃比補正量AFCの切替を行っている。これは、上流側排気浄化触媒20の酸素吸蔵量が十分であっても、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比から極わずかにずれてしまう場合があるためである。逆に言うと、リッチ判定空燃比は、上流側排気浄化触媒20の酸素吸蔵量が十分であるときには上流側排気浄化触媒20から流出する排気ガスの空燃比が到達することのないような空燃比とされる。
時刻t1において、目標空燃比をリーン空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比からリーン空燃比に変化する。時刻t1において上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAは増大する。また、これに伴って、積算酸素過不足量ΣOEDも徐々に増大していく。
これにより、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力空燃比AFdwnも理論空燃比に収束する。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているが、上流側排気浄化触媒20の酸素吸蔵能力には十分な余裕があるため、流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵され、NOxは還元浄化される。このため、上流側排気浄化触媒20からのNOxの排出量は少ない。
その後、上流側排気浄化触媒20の酸素吸蔵量OSAが増大すると、時刻t2において、上流側排気浄化触媒20の酸素吸蔵量OSAが切替基準吸蔵量Crefに到達する。このため、積算酸素過不足量ΣOEDが、切替基準吸蔵量Crefに相当する切替基準値OEDrefに到達する。本実施形態では、積算酸素過不足量ΣOEDが切替基準値OEDref以上になると、上流側排気浄化触媒20への酸素の吸蔵を中止すべく、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。したがって、目標空燃比はリッチ空燃比とされる。また、このとき、積算酸素過不足量ΣOEDが0にリセットされる。
なお、切替基準吸蔵量Crefは、車両の急加速による意図しない空燃比のずれ等が生じても、酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxには到達しないように十分少ない量とされる。例えば、切替基準吸蔵量Crefは、上流側排気浄化触媒20が未使用であるときの最大吸蔵可能酸素量Cmaxの3/4以下、好ましくは1/2以下、より好ましくは1/5以下とされる。この結果、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比よりも僅かにリーンなリーン判定空燃比(例えば、14.65。理論空燃比からの偏差がリッチ判定空燃比と理論空燃比との差と同程度のリーン空燃比)に到達する前に空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられることになる。
時刻t2において目標空燃比をリッチ空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比からリッチ空燃比に変化する。上流側排気浄化触媒20に流入する排気ガス中には未燃ガス等が含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に減少していく。このときの上流側排気浄化触媒20からのNOxの排出量は少ない。
上流側排気浄化触媒20の酸素吸蔵量OSAは徐々に減少していくと、時刻t3において、時刻t1と同様に、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichに到達する。これにより、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。その後、上述した時刻t1〜t3のサイクルが繰り返される。
以上の説明から分かるように本実施形態によれば、上流側排気浄化触媒20からのNOx排出量を常に少なく抑制することができる。また、積算酸素過不足量ΣOEDを算出する際の積算期間が短いため、長期間に亘って積算する場合に比べて算出誤差が生じにくい。このため、積算酸素過不足量ΣOEDの算出誤差によりNOxが排出されてしまうことが抑制される。
また、一般に、排気浄化触媒の酸素吸蔵量が一定に維持されると、その排気浄化触媒の酸素吸蔵能力が低下する。すなわち、排気浄化触媒の酸素吸蔵能力を高く維持するためには、排気浄化触媒の酸素吸蔵量が変動することが必要になる。これに対して、本実施形態によれば、図3に示したように、上流側排気浄化触媒20の酸素吸蔵量OSAは常に上下に変動しているため、酸素吸蔵能力が低下することが抑制される。
なお、上記実施形態では、時刻t1〜t2において、空燃比補正量AFCはリーン設定補正量AFCleanに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。同様に、上記実施形態では、時刻t2〜t3において、空燃比補正量AFCはリッチ設定補正量AFCrichに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に増大させる等、変動するように設定されてもよい。
なお、このような本実施形態における空燃比補正量AFCの設定、すなわち目標空燃比の設定は、ECU31によって行われる。したがって、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAが切替基準吸蔵量Cref以上になったと推定されるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリーン空燃比に設定する。加えて、ECU31は、上流側排気浄化触媒20の酸素吸蔵量OSAが切替基準吸蔵量Cref以上になったと推定されたときに、酸素吸蔵量OSAが最大吸蔵可能酸素量Cmaxに達することなく下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となるまで、目標空燃比をリッチ空燃比に設定する。
より簡単に言えば、本実施形態では、ECU31は、下流側空燃比センサ41によって検出された空燃比がリッチ判定空燃比以下になったときに目標空燃比(すなわち、上流側排気浄化触媒20に流入する排気ガスの空燃比)をリーン空燃比に切り替えると共に、上流側排気浄化触媒20の酸素吸蔵量OSAが切替基準吸蔵量Cref以上になったときに目標空燃比(すなわち、上流側排気浄化触媒20に流入する排気ガスの空燃比)をリッチ空燃比に切り替えているといえる。
≪空燃比補正量設定制御のフローチャート≫
図4は、空燃比補正量設定制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔(例えば、数msec)で実行される。
図4に示したように、まず、ステップS11において空燃比補正量AFCの算出条件が成立しているか否かが判定される。空燃比補正量AFCの算出条件が成立している場合とは、フィードバック制御が行われる通常制御中であること、例えば燃料カット制御中等ではないこと等が挙げられる。ステップS11において目標空燃比の算出条件が成立していると判定された場合には、ステップS12へと進む。
ステップS12では、リーン設定フラグFlがOFFに設定されているか否かが判定される。リーン設定フラグFlは、空燃比補正量AFCがリーン設定補正量AFCleanに設定されるとONとされ、それ以外の場合にはOFFとされる。ステップS12においてリーン設定フラグFlがOFFに設定されている場合には、ステップS13へと進む。ステップS13では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下であるか否かが判定される。下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrichよりも大きいと判定された場合にはステップS14へと進む。ステップS14では、空燃比補正量AFCがリッチ設定補正量AFCrichに設定されたまま維持され、制御ルーチンが終了せしめられる。
一方、上流側排気浄化触媒20の酸素吸蔵量OSAが減少して、上流側排気浄化触媒20から流出する排気ガスの空燃比が低下すると、ステップS13にて下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下であると判定される。この場合には、ステップS15へと進み、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。次いで、ステップS16では、リーン設定フラグFlがONに設定され、制御ルーチンが終了せしめられる。
リーン設定フラグFlがONに設定されると、次の制御ルーチンにおいては、ステップS12において、リーン設定フラグFlがOFFに設定されていないと判定されて、ステップS17へと進む。ステップS17では、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられてからの積算酸素過不足量ΣOEDが切替基準値OEDrefよりも少ないか否かが判定される。積算酸素過不足量ΣOEDが切替基準値OEDrefよりも少ないと判定された場合にはステップS18へと進み、空燃比補正量AFCが引き続きリーン設定補正量AFCleanに設定されたまま維持され、制御ルーチンが終了せしめられる。一方、上流側排気浄化触媒20の酸素吸蔵量が増大すると、やがてステップS17において積算酸素過不足量ΣOEDが切替基準値OEDref以上であると判定され、ステップS19へと進む。ステップS19では、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。次いで、ステップS20では、リーン設定フラグFlがOFFにリセットされ、制御ルーチンが終了せしめられる。
≪触媒の劣化検出≫
ところで、上述したように構成された排気浄化触媒20、24は、排気浄化触媒20、24が長期間に亘って使用されたり、排気浄化触媒20、24が長時間に亘って高温に曝されたりすると、大きく劣化する。具体的には、排気浄化触媒20、24の担体に微粒子状に分散して担持されていた触媒貴金属がシンタリングによって結合し、触媒活性が低下する。
このように触媒貴金属のシンタリングによってその活性が低下すると、触媒貴金属周りに未燃HCや酸素、NOxが存在しても、これら成分を十分に反応させることができなくなる。すなわち、排気浄化触媒20、24が大きく劣化すると、排気浄化触媒20、24に流入した排気ガスの浄化能力が低下する。
ここで、上述したように、上流側排気浄化触媒20は酸素吸蔵能力を有するため、目標空燃比がリッチ空燃比とされているときであっても、目標空燃比がリーン空燃比とされているときであっても、上流側排気浄化触媒20からのNOx排出量を抑制することができる。
すなわち、目標空燃比がリッチ空燃比とされていて、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比になっているときには、機関本体1から排出される排気ガス中には多量の未燃HCやCO及び少量のNOx及び酸素が含まれている。このため、上流側排気浄化触媒20に流入する排気ガス中のNOxは触媒貴金属の作用によりこれら未燃HCやCOと反応して還元、浄化される。この結果、上流側排気浄化触媒20から流出する排気ガス中のNOx濃度を低く維持することができる。
一方、目標空燃比がリーン空燃比とされていて、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比になっているときには、機関本体1から排出される排気ガス中には多量の酸素及びNOx及び少量の未燃HC、COが含まれている。多量の酸素及びNOxが含まれた排気ガスが上流側排気浄化触媒20に流入すると、排気ガス中の酸素は上流側排気浄化触媒20に吸蔵される。この結果、排気ガス中にはNOxが残り、排気ガス中に残ったNOxは触媒貴金属の作用により排気ガス中に含まれている未燃HCやCOと反応して還元、浄化される。この結果、上流側排気浄化触媒20から流出する排気ガス中のNOx濃度を低く維持することができる。
ところが、上流側排気浄化触媒20が劣化すると、すなわち触媒貴金属のシンタリングによってその活性が低下すると、上流側排気浄化触媒20は、流入した排気ガス中の未燃HC、CO及びNOxを十分に反応させることができなくなる。この結果、上流側排気浄化触媒20が劣化すると、上流側排気浄化触媒20に酸素が吸蔵されているときであっても、目標空燃比がリッチ空燃比に設定されて上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比になると、上流側排気浄化触媒20からNOxが流出することになる。同様に、上流側排気浄化触媒20に酸素を吸蔵可能な状態であっても、目標空燃比がリーン空燃比に設定されて上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比になると、上流側排気浄化触媒20からNOxが流出することになる。
逆にいうと、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリッチ空燃比に設定すると共に上流側排気浄化触媒20の酸素吸蔵量OSAがゼロ近傍になっていないとき(すなわち、上流側排気浄化触媒20の酸素吸蔵能力により上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比近傍となっているとき)に、上流側排気浄化触媒20から流出するNOx量が多い場合には、上流側排気浄化触媒20が大きく劣化していると判断することができる。同様に、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリーン空燃比に設定すると共に上流側排気浄化触媒20の酸素吸蔵量OSAが最大吸蔵可能酸素量Cmax近傍になっていないとき(すなわち、上流側排気浄化触媒20の酸素吸蔵能力により上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比近傍となっているとき)に、上流側排気浄化触媒20から流出するNOx量が多い場合には、上流側排気浄化触媒20が大きく劣化していると判断することができる。
≪リッチ破綻と劣化検出の関係≫
ところで、上述したように、本実施形態では、目標空燃比をリッチ空燃比に設定している状態で下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比以下になると、目標空燃比がリッチ空燃比からリーン空燃比へ切り替えられる(図3の時刻t1やt3)。したがって、目標空燃比をリッチ空燃比からリーン空燃比へ切り替えるときには、上流側排気浄化触媒20の酸素吸蔵量OSAはほぼゼロとなっている。加えて、目標空燃比をリッチ空燃比からリーン空燃比へ切り替えてから、実際に上流側排気浄化触媒20にリーン空燃比の排気ガスが流入するまでには或る程度の時間がかかる。したがって、目標空燃比をリッチ空燃比からリーン空燃比に切り替えてから上流側排気浄化触媒20にリーン空燃比の排気ガスが流入するまでの間には、上流側排気浄化触媒20の酸素吸蔵量OSAがほぼゼロとなっている状態で、未燃HCやCOを含んだリッチ空燃比の排気ガスが一時的に上流側排気浄化触媒20に流入することになる。
このように上流側排気浄化触媒20の酸素吸蔵量OSAがほぼゼロとなっている状態で、リッチ空燃比の排気ガスが一時的に上流側排気浄化触媒20に流入すると、上流側排気浄化触媒20の触媒貴金属上には未燃HCやCOが付着することになる。触媒貴金属上に未燃HCやCOが付着すると、触媒作用を提供できる触媒貴金属の表面積が減少し、結果的に触媒貴金属の触媒作用の低下を招く(以下、このような現象を「HC被毒」という)。したがって、目標空燃比をリッチ空燃比からリーン空燃比に切り替えてから或る程度の時間は、触媒貴金属の触媒作用が低下した状態となる。
触媒貴金属の表面上に付着した未燃HCやCOは、その後、上流側排気浄化触媒20にリーン空燃比の排気ガスが継続的に流入すると、排気ガス中の酸素と反応して徐々に触媒貴金属から離脱していく。このような未燃HCやCOの触媒貴金属からの離脱に伴って触媒貴金属の触媒作用も回復し、よってHC被毒が解消されることになる。
ところが、上述したようなHC被毒が生じると、触媒貴金属の触媒作用が低下することから、上流側排気浄化触媒20が大きく劣化していないにも関わらず上流側排気浄化触媒20から流出するNOx量が多くなる。したがって、上述したように上流側排気浄化触媒20から流出したNOx量に応じて上流側排気浄化触媒20の異常診断を行っている場合、上流側排気浄化触媒20に大きな劣化が生じていると判定してしまう可能性がある。
図5は、目標空燃比がリッチ空燃比である場合(例えば、図3における時刻t2〜t3)における、吸入空気量とNOxセンサ46によって検出されたNOx濃度との関係を示す図である。図5中の四角印は上流側排気浄化触媒20が正常な場合(浄化能力が大きく低下するほどは劣化していない触媒)、丸印は上流側排気浄化触媒20が異常な場合(浄化能力が大きく低下するほど劣化した、いわゆるクライテリア触媒)の関係を示している。
図5からわかるように、目標空燃比がリッチ空燃比である場合、すなわち上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比である場合には、吸入空気量に関わらず、上流側排気浄化触媒20が異常であるときの方が正常であるときに比べてNOxセンサ46によるNOx検出量が多い。これは、上述したように、上流側排気浄化触媒20が大きく劣化しているときには、上流側排気浄化触媒20から流出するNOx量が増大することによるものである。なお、上流側排気浄化触媒20が異常である場合に吸入空気量が増えるほどNOxセンサ46によって検出されるNOx濃度が増大しているのは、吸入空気量の増大に伴って単位時間当たりに上流側排気浄化触媒20から流出するNOxが増大することによるものである。一方、上流側排気浄化触媒20が正常である場合には、吸入空気量が増大してもNOxは上流側排気浄化触媒20で浄化されるため、NOxセンサ46によって検出されるNOx濃度は低いまま維持される。
一方、図6は、目標空燃比がリーン空燃比である場合(例えば、図3における時刻t1〜t2)における、吸入空気量とNOxセンサ46によって検出されるNOx濃度との関係を示す図である。図6中の四角印は上流側排気浄化触媒20が正常な場合、丸印は上流側排気浄化触媒20が異常な場合の関係を示している。目標空燃比がリッチ空燃比とされた状態で下流側空燃比センサ41がリッチ判定空燃比以下となって、目標空燃比をリーン空燃比に切り替えた後の吸入空気量とNOxセンサ46によって検出されるNOx濃度との関係を示している。
図6からわかるように、目標空燃比がリーン空燃比である場合、すなわち上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合には、吸入空気量が少ないと、上流側排気浄化触媒20が異常であるときと正常であるときとでNOxセンサ46によるNOx検出量はほとんど変わらない。これは、上述したように、上流側排気浄化触媒20が大きく劣化していなくても、目標空燃比をリーン空燃比に切り替えた時点で上流側排気浄化触媒20がHC被毒をしていることによるものである。したがって、目標空燃比がリーン空燃比である場合にNOxセンサ46によって検出されるNOx濃度に基づいて上流側排気浄化触媒20の異常診断を行うと、上流側排気浄化触媒20が大きく劣化していなくても上流側排気浄化触媒20に異常があると判定してしまうことになる。
一方、図6からわかるように、目標空燃比がリッチ空燃比である場合でも、吸入空気量が多いときには、上流側排気浄化触媒20が異常であるときの方が正常であるときに比べてNOxセンサ46によるNOx検出量が多い。これは、吸入空気量が多いと上流側排気浄化触媒20に流入する酸素量も多く、その結果、HC被毒が早期に解消されるためだと考えられる。したがって、目標空燃比がリッチ空燃比である場合であっても、吸入空気量が多ければ、NOxセンサ46によって検出されるNOx濃度に基づいて上流側排気浄化触媒20の異常診断を適切に行うことができる。
≪第一実施形態に係る制御≫
本実施形態では、NOxセンサ46によって検出されるNOx濃度に基づいて上流側排気浄化触媒20の異常診断を行う。特に、本実施形態では、NOxセンサ46によって検出されたNOx濃度Cnoxが予め定められた判定基準値Cnoxref以上である場合には、触媒貴金属のシンタリングに伴う上流側排気浄化触媒20の劣化(上流側排気浄化触媒20の回復不能な劣化。以下、「永久劣化」ともいう)度合いが高く、上流側排気浄化触媒20に異常が生じていると判定する。加えて、本実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であって上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比であるときには上流側排気浄化触媒20の異常診断を行い、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であるときには上流側排気浄化触媒20の異常診断を行わないようにしている。換言すると、本実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であるときのNOxセンサ46の出力には基づかずに、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であるときのNOxセンサ46の出力に基づいて、永久劣化の度合いを推定し、これにより上流側排気浄化触媒20の異常診断を行っていると言える。
図7は、上流側排気浄化触媒20の異常診断を行う際の上流側排気浄化触媒20の酸素吸蔵量等の変化を示す、図3と同様なタイムチャートである。特に、NOxセンサ46によって検出されるNOx濃度については、図中の実線は上流側排気浄化触媒20が正常な場合、図中の破線は上流側排気浄化触媒20が異常な場合をそれぞれ示している。加えて、図7は、吸入空気量が比較的少ない場合におけるNOx濃度等を示している。図7に示したように、上流側排気浄化触媒20の異常診断を行う際にも、図3と同様な空燃比制御が行われている。
図7に破線で示したとおり、上流側排気浄化触媒20に異常が生じている場合(図中の破線)には、目標空燃比がリッチ空燃比であるとき(空燃比補正量AFCが負の値となっているとき)にも、目標空燃比がリーン空燃比であると(空燃比補正量AFCが正の値となっているとき)にも、NOxセンサ46によって検出されるNOx濃度は判定基準値Cnoxref以上となっている。
一方、図7に実線で示したとおり、上流側排気浄化触媒20が正常である場合(図中の実線)には、目標空燃比がリッチ空燃比であるとき(空燃比補正量AFCが負の値となっているとき)には、NOxセンサ46によって検出されるNOx濃度は判定基準値Cnoxref未満の低い値となっている。これに対して、上述したHC被毒の影響により、目標空燃比がリーン空燃比であるとき(空燃比補正量AFCが正の値となっているとき)には、NOxセンサ46によって検出されるNOx濃度は判定基準値Cnoxref以上の高い値となっている。
そして、上述したように、本実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であるとき、すなわち図中のX1で示した期間中にのみ上流側排気浄化触媒20の異常診断を行うようにしている。図7からわかるように、図中の期間X1においては、上流側排気浄化触媒20に異常が生じている場合にはNOxセンサ46によって検出されるNOx濃度は判定基準値Cnoxref以上になる。一方、この期間X1においては、上流側排気浄化触媒20に正常である場合にはNOxセンサ46によって検出されるNOx濃度は判定基準値Cnoxref未満になる。したがって、この期間X1にNOxセンサ46によって検出されたNOx濃度が判定基準値Cnoxref以上であるか否かに基づいて上流側排気浄化触媒20の異常診断を行うことにより、上流側排気浄化触媒20の異常を正確に判定することができるようになる。
なお、上記実施形態では、吸入空気量に無関係に、目標空燃比がリーン空燃比であるときには上流側排気浄化触媒20の異常診断を行わないようにしている。しかしながら、図5及び図6からわかるように、目標空燃比がリーン空燃比であっても吸入空気量が多いときには、NOxセンサ46によって検出されたNOx濃度に基づいて上流側排気浄化触媒20の異常を正確に診断することができる。したがって、目標空燃比がリーン空燃比であっても、内燃機関の燃焼室5内への吸入空気量が予め定められた所定の空気量(例えば、15g/sec)以上である場合には、上流側排気浄化触媒20の異常診断を行うようにしてもよい。
≪フローチャートの説明≫
図8は、上流側排気浄化触媒20の異常診断を行う異常診断制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔毎に実行される。
図8に示したように、まず、ステップS21では、異常診断の実行条件が成立しているか否かが判定される。異常診断の実行条件は、例えば、上流側排気浄化触媒20の温度が活性温度以上であって且つ空燃比センサ40、41及びNOxセンサ46の温度が活性温度以上であるときに成立する。上流側排気浄化触媒20の温度は、例えば、上流側排気浄化触媒20の温度を検出する温度センサ(図示せず)によって検出されるか、又は機関冷却水の温度を検出する温度センサ(図示せず)の出力に基づいて推定される。ステップS21において、異常診断の実行条件が成立していないと判定された場合には、制御ルーチンが終了せしめられる。
一方、ステップS21において、異常診断の実行条件が成立していると判定された場合には、ステップS22へと進む。ステップS22では、空燃比補正量AFCが正の値であるか否か、すなわち目標空燃比がリーン空燃比であるか否かが判定される。ステップS22において、空燃比補正量AFCが正の値であると判定された場合、すなわち目標空燃比がリーン空燃比であると判定された場合には、上流側排気浄化触媒20の異常診断を行わないため、制御ルーチンが終了せしめられる。一方、ステップS22において、空燃比補正量AFCが負の値であると判定された場合、すなわち目標空燃比がリッチ空燃比であると判定された場合には、ステップS23へと進む。
ステップS23では、上流側排気浄化触媒20の温度、吸入空気量等に基づいて判定基準値Cnoxrefが算出される。判定基準値Cnoxrefは、例えば、上流側排気浄化触媒20の温度が低いほど、また吸入空気量が多いほど、大きくなるように設定される。なお、判定基準値Cnoxrefは予め定められた一定の値であってもよく、よってこの場合にはステップS23は省略される。
次いで、ステップS24では、NOxセンサ46によって検出されたNOx濃度Cnoxが、ステップS23において算出された判定基準値Cnoxref以上であるか否かが判定される。ステップS24において、検出されたNOx濃度Cnoxが判定基準値Cnoxref未満である場合には、上流側排気浄化触媒20には異常が生じておらず、よって制御ルーチンが終了せしめられる。
一方、ステップS24において、検出されたNOx濃度Cnoxが判定基準値Cnoxref以上である場合には、ステップS25へと進む。ステップS25では、過去の制御ルーチンの情報を参照して、検出されたNOx濃度Cnoxが判定基準値Cnoxref以上である状態が連続的に継続しているか否かが判定される。これは、NOxセンサ46の計ノイズ等により、検出されたNOx濃度Cnoxが一時的に判定基準値Cnoxref以上になってしまって、上流側排気浄化触媒20が異常である旨の誤判定を行ってしまうことを防止するためのステップである。具体的には、例えば、複数回の制御ルーチンにおいて、ステップS24において検出されたNOx濃度Cnoxが判定基準値Cnoxref以上と連続して判定された場合に、検出されたNOx濃度Cnoxが判定基準値Cnoxref以上である状態が連続的に継続していると判定される。
ステップS25において、検出されたNOx濃度Cnoxが判定基準値Cnoxref以上である状態が連続的に継続していないと判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS25において、検出されたNOx濃度Cnoxが判定基準値Cnoxref以上である状態が連続的に継続していると判定された場合には、ステップS26へと進む。ステップS26では、上流側排気浄化触媒20に異常が生じていると判定され、例えば、警告灯が点灯せしめられる。
<第二実施形態>
次に、図9及び図10を参照して、第二実施形態に係る排気浄化装置について説明する。第二実施形態に係る排気浄化装置における構成及び制御は基本的に第一実施形態に係る排気浄化装置における構成及び制御と同様であるため、以下では、第一実施形態に係る排気浄化装置と異なる部分を中心に説明する。
図9は、上流側排気浄化触媒20の異常診断を行う際の上流側排気浄化触媒20の酸素吸蔵量等の変化を示す、図7と同様なタイムチャートである。図9においても図7と同様に、NOxセンサ46によって検出されるNOx濃度については、図中の実線は上流側排気浄化触媒20が正常な場合、図中の破線は上流側排気浄化触媒20が異常な場合をそれぞれ示している。
ところで、目標空燃比をリッチ空燃比からリーン空燃比に切り替える時(例えば、時刻t1)近傍や、目標空燃比をリーン空燃比からリッチ空燃比に切り替える時(例えば、時刻t2)近傍では、上流側排気浄化触媒20内の雰囲気が大きく変化する。このため、上流側排気浄化触媒20内の雰囲気の変化に伴って、上流側排気浄化触媒20が正常であるにも関わらず、上流側排気浄化触媒20からNOxが流出する可能性がある。
そこで、本第二実施形態に係る排気浄化装置では、目標空燃比をリッチ空燃比に設定している期間(例えば、時刻t2〜t3)のうち、目標空燃比をリーン空燃比からリッチ空燃比へ切り替えた時(例えば、時刻t2)及び目標空燃比をリッチ空燃比からリーン空燃比へ切り替えた時(例えば、時刻t3)から離れた期間(図中の期間X)においてのみ上流側排気浄化触媒20の異常診断を行うことにしている。すなわち、本実施形態では、目標空燃比をリッチ空燃比に設定している期間のうち中央の一部の期間(例えば、全期間のうちの半分の期間)おいてのみ上流側排気浄化触媒20の異常診断を行うことにしている。
具体的には、上記期間X2に相当する期間は、目標空燃比をリーン空燃比からリッチ空燃比へ切り替えた時(例えば、時刻t2)からの経過時間に基づいて設定される。目標空燃比を切り替えた時からの経過時間が第1の所定時間以上になると上流側排気浄化触媒20の異常診断が開始され、第2の所定時間に到達するまでに異常診断が完了せしめられる。ここで、第1の所定時間は、例えば、目標空燃比をリッチ空燃比に切り替えてからリーン空燃比に切り替えるまでに通常要する時間の1/8から1/3程度に設定される。また、第2の所定時間は、例えば、目標空燃比をリッチ空燃比に切り替えてからリーン空燃比に切り替えるまでに通常要する時間の2/3から7/8程度に設定される。これにより、目標空燃比の切り替えに伴って上流側排気浄化触媒20からNOxが流出することで上流側排気浄化触媒20に異常が生じていると誤診断してしまうのを抑制することができる。
なお、上述した例では、期間X2に相当する期間を、目標空燃比をリッチ空燃比へ切り替えた時からの経過時間に基づいて設定しているが、例えば積算酸素不足量等に基づいて設定してもよい。この場合、目標空燃比を切り替えた時からの積算酸素不足量が第1の所定量以下になると上流側排気浄化触媒20の異常診断が開始され、第2の所定量に到達するまでに異常診断が完了せしめられる。ここで、第1の所定量は、例えば、上流側排気浄化触媒20の吸蔵可能酸素量の1/8から1/3程度に設定される。また、第2の所定量は、例えば、上流側排気浄化触媒20の吸蔵可能酸素量の2/3から7/8程度に設定される。
図10は、本実施形態に係る上流側排気浄化触媒20の異常診断を行う異常診断制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔毎に実行される。図10のステップS31、S32は図8のステップS21、S22と同様であり、また、図10のステップS34〜S37は図8のステップS23〜S26と同様であるため、これらについては説明を省略する。
ステップS32において、空燃比補正量AFCが負の値であると判定された場合、すなわち目標空燃比がリッチ空燃比であると判定された場合には、ステップS33へと進む。ステップS33では、現時刻が上述した期間X2に相当する特定期間内であるか否かが判定される。現時刻が特定期間内であるか否かは、目標空燃比をリッチ空燃比に切り替えてからの時間や、積算酸素過不足量ΣOEDに基づいて判定される。ステップS33において、現時刻が上記特定期間内ではないと判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS33において、現時刻が上記特定期間内であると判定された場合には、ステップS34へと進む。
<第三実施形態>
次に、図11を参照して、第三実施形態に係る排気浄化装置について説明する。第三実施形態に係る排気浄化装置における構成及び制御は基本的に第一実施形態及び第二実施形態に係る排気浄化装置における構成及び制御と同様であるため、以下では、第一実施形態及び第二実施形態に係る排気浄化装置と異なる部分を中心に説明する。
上記第一実施形態及び第二実施形態では、空燃比制御において、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になると目標空燃比がリッチ空燃比からリーン空燃比へと切り替えられる。加えて、積算酸素過不足量ΣOEDが切替基準値OEDref以上になると、目標空燃比がリーン空燃比からリッチ空燃比へと切り替えられる。
これに対して、本実施形態では、目標空燃比のリッチ空燃比からリーン空燃比への切り替えは同様なタイミングで、すなわち下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になったときに行われる。一方、目標空燃比のリーン空燃比からリッチ空燃比への切り替えは、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になったときに行われる。
このような空燃比制御を行った場合でも、目標空燃比をリーン空燃比に設定しているときには、上流側排気浄化触媒20にはHC被毒が生じる可能性がある。したがって、本実施形態においても、目標空燃比をリッチ空燃比に設定している期間(図11中の期間X1)又はこの期間のうちの一部の特定期間(上記第二実施形態の特定期間に相当)において上流側排気浄化触媒20の異常診断を行うこととしている。
<第四実施形態>
次に、図12〜図15を参照して、第四実施形態に係る排気浄化装置について説明する。第四実施形態に係る排気浄化装置における構成及び制御は基本的に第一実施形態から第三実施形態に係る排気浄化装置における構成及び制御と同様であるため、以下では、これら実施形態に係る排気浄化装置とは異なる部分を中心に説明する。
≪触媒劣化の種類≫
ところで、上流側排気浄化触媒20の劣化には、上述したような触媒貴金属のシンタリングによる劣化に加えて、上流側排気浄化触媒20に排気ガス中の硫黄成分が吸蔵されることによって生じるS被毒劣化が挙げられる。
触媒貴金属のシンタリングによる劣化では、一旦シンタリングによって触媒貴金属同士が結合してしまうと、上流側排気浄化触媒20を車両に搭載した状態では結合した触媒貴金属を元に戻すことはできない。したがって、触媒貴金属のシンタリングによる劣化は、回復不能な劣化であるということができる(上述したように、このような劣化を、「永久劣化」ともいう)。
一方、S被毒劣化では、上流側排気浄化触媒20に硫黄成分が吸蔵されても、特定の条件下(例えば、上流側排気浄化触媒20の温度を一定以上の高温にすると共に上流側排気浄化触媒20に流入する排気ガスの空燃比をリッチ空燃比にする)において吸蔵されている硫黄成分を離脱させることができる。したがって、S被毒劣化は、回復可能な劣化であるということができる。
なお、以下では、これら永久劣化とS被毒劣化とを含む上流側排気浄化触媒20の劣化を総劣化と称する。したがって、上流側排気浄化触媒20の永久劣化による劣化度合いが高くなると上流側排気浄化触媒20の総劣化度合いが高くなり、同様に上流側排気浄化触媒20のS被毒劣化による劣化度合いが高くなると上流側排気浄化触媒20の総劣化度合いが高くなる。
≪劣化推定によって推定される劣化≫
上述したように、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリッチ空燃比に設定すると共に上流側排気浄化触媒20の酸素吸蔵量OSAがゼロ近傍になっていないとき(すなわち、上流側排気浄化触媒20の酸素吸蔵能力により上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比近傍となっているとき)には、上流側排気浄化触媒20から流出するNOxの濃度が高いほど、上流側排気浄化触媒20が大きく劣化していると判断することができる。また、HC被毒を考慮しなければ、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリーン空燃比に設定すると共に上流側排気浄化触媒20の酸素吸蔵量OSAが最大吸蔵可能酸素量Cmax近傍になっていないとき(すなわち、上流側排気浄化触媒20の酸素吸蔵能力により上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比近傍となっているとき)にも、上流側排気浄化触媒20から流出するNOxの濃度が高いほど、上流側排気浄化触媒20が大きく劣化していると判断することができる。すなわち、上流側排気浄化触媒20から流出するNOxの濃度に基づいて上流側排気浄化触媒20の劣化度合いを推定することができる。
このとき推定される上流側排気浄化触媒20の劣化度合いは、永久劣化による劣化度合いであると考えられる。すなわち、このとき推定される上流側排気浄化触媒20の劣化度合いは、総劣化のうちS被毒劣化による影響が排除された上流側排気浄化触媒20の劣化の度合いであると考えられる。以下では、このように考えられる理由について説明する。
図12は、目標空燃比がリッチ空燃比である場合における、吸入空気量とNOxセンサ46によって検出されるNOx濃度との関係を示す、図5と同様な図である。図12中の四角印は上流側排気浄化触媒20が正常な場合の関係を示している。一方、図12中の丸印は上流側排気浄化触媒20にS被毒劣化は生じていないが永久劣化が生じている場合の関係を、三角印は上流側排気浄化触媒20に永久劣化は生じていないがS被毒劣化が生じている場合の関係を、それぞれ示している。
図12からわかるように、上流側排気浄化触媒20に永久劣化が生じている場合には、上流側排気浄化触媒20が正常である場合に比べてNOxセンサ46によって検出されるNOx濃度が高い。これは、上述したように、上流側排気浄化触媒20に永久劣化が生じている場合には、上流側排気浄化触媒20から流出するNOx量が増大することによるものである。その一方で、上流側排気浄化触媒20にS被毒劣化が生じている場合には、NOxセンサ46によって検出されるNOx濃度は上流側排気浄化触媒20が正常である場合と同程度となる。斯かる結果から、上流側排気浄化触媒20から流出するNOxの濃度に基づいて推定される上流側排気浄化触媒20の劣化度合いは、永久劣化による劣化度合いであると考えられる。
このように上流側排気浄化触媒20から流出するNOxの濃度が永久劣化による劣化度合いに応じて変化すると共にS被毒劣化に応じては変化しないという現象が生じるメカニズムについては解明できていない。しかしながら、以下のようなメカニズムによって斯かる現象が生じると考えられる。
図13は、排気浄化触媒の表面近傍を模式的に表す断面図である。図13の(a)に示したように、排気浄化触媒の表面では、酸素吸蔵能力を有する物質を担持した担体50上にパラジウム51及びロジウム52が触媒貴金属として担持されている。このように構成された排気浄化触媒において永久劣化が生じると、担体50上に担持されたパラジウム51の粒子同士、及びロジウム52の粒子同士がシンタリングによって結合する。この結果、パラジウム51及びロジウム52の表面積が小さくなり、これら触媒貴金属による触媒作用が低下する。
図13の(b)は、S被毒劣化が生じているときの断面図を示している。図13の(b)に示したように、硫黄成分53はパラジウム51の表面上に吸着すると共に、ロジウム52の表面上には吸着しにくい傾向がある。したがって、排気浄化触媒にS被毒劣化が生じていると、パラジウム51による触媒作用は低下するが、ロジウム52による触媒作用はそれほど低下しない。ここで、排気ガス中のNOxの還元は主にロジウム52によって促進される。このため、排気浄化触媒にS被毒劣化が生じていても、ロジウム52によるNOxの還元はそれほど制限されない。このようなメカニズムにより、図12に示したようにS被毒劣化が生じても上流側排気浄化触媒20から流出するNOxの濃度はS被毒劣化に応じては変化していないものと考えられる。
≪第四実施形態における制御≫
以上のような現象を考慮すると、上流側排気浄化触媒20から流出するNOxの濃度に基づいて上流側排気浄化触媒20の永久劣化による劣化度合いを推定することができる。ただし、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合には、上述したようにHC被毒によりNOx濃度から上流側排気浄化触媒20の劣化度合いを正確に推定できないことがある。そこで、本実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であるときのNOxセンサ46の出力には基づかずに、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であるときのNOxセンサ46の出力に基づいて、上流側排気浄化触媒20の永久劣化による劣化度合いを推定する。
図14は、吸入空気量及びNOxセンサ46によって検出されたNOx濃度と、上流側排気浄化触媒20の永久劣化による劣化度合いとの関係を示す図である。本実施形態では、斯かる関係を用いて、吸入空気量及びNOx濃度に基づいて上流側排気浄化触媒20の永久劣化による劣化度合いが推定される。図14に示したように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であるときにNOxセンサ46によって検出されたNOx濃度が高いほど、上流側排気浄化触媒20の永久劣化による劣化度合いが高いものとして永久劣化による劣化度合いが推定される。また、図14に示したように、燃焼室5内への吸入空気量が少ないほど、上流側排気浄化触媒20の永久劣化による劣化度合いが高いものとして永久劣化による劣化度合いが推定される。
加えて、図14に示したようにNOxセンサ46によって検出されたNOx濃度が判定基準値Cnoxref以上である場合には、永久劣化による劣化度合いが非常に高いことから、上流側排気浄化触媒20には異常が生じていると判定する。このときの判定基準値Cnoxrefは、例えば、第一実施形態における判定基準値Cnoxrefと同様に設定される。したがって、判定基準値Cnoxrefは、吸入空気量が多いほど大きくなるように設定される。
図15は、上流側排気浄化触媒20の永久劣化による劣化度合いの推定を行う劣化度合い推定制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔毎に実行される。
図15に示したように、まず、ステップS41では、劣化度合い推定制御の実行条件が成立しているか否かが判定される。劣化度合い推定制御の実行条件は、例えば、図8のステップS21における異常診断の実行条件と同様である。ステップS41において、異常診断の実行条件が成立していると判定された場合には、ステップS42へと進む。
ステップS42では、空燃比補正量AFCが正の値であるか否か、すなわち上流側排気浄化触媒20に流入する排気ガスがリーン空燃比であるか否かが判定される。ステップS42において、空燃比補正量AFCが正の値であると判定された場合には、劣化度合いの推定を行わずに制御ルーチンが終了せしめられる。一方、ステップS42において、空燃比補正量AFCが負の値であると判定された場合には、ステップS43へと進む。
ステップS43では、例えば、エアフロメータ39の出力に基づいて燃焼室5内への吸入空気量が算出されると共に、算出された吸入空気量に基づいて判定基準値Cnoxrefが算出される。判定基準値Cnoxrefは、上述したように吸入空気量が多いほど大きくなるように算出される。
次いで、ステップS44では、NOxセンサ46によって検出されたNOx濃度CnoxがステップS43において算出された判定基準値Cnoxref以上であるか否かが判定される。なお、ステップS43において用いられるNOx濃度Cnoxは、所定時間においてNOxセンサ46によって検出されたNOx濃度の平均値等であってもよい。ステップS43において、検出されたNOx濃度Cnoxが判定基準値Cnoxref未満であると判定された場合には、ステップS45へと進む。
ステップS45では、ステップS43において算出された吸入空気量とNOxセンサ46によって検出されたNOx濃度Cnoxとに基づいて、図14に示したマップを用いて、上流側排気浄化触媒20の永久劣化による劣化度合いが算出され、制御ルーチンが終了せしめられる。
一方、ステップS43において、検出されたNOx濃度Cnoxが判定基準値Cnoxref以上であると判定された場合には、ステップS46へと進む。ステップS46では、上流側排気浄化触媒20には異常が生じていると判定され、例えば、警告灯が点灯せしめられる。
<第五実施形態>
次に、図16〜図19を参照して、第五実施形態に係る排気浄化装置について説明する。第五実施形態に係る排気浄化装置における構成及び制御は基本的に第三実施形態及び第四実施形態に係る排気浄化装置における構成及び制御と同様であるため、以下では、これら実施形態に係る排気浄化装置とは異なる部分を中心に説明する。
≪S被毒劣化の推定手法≫
ところで、上述したように、上流側排気浄化触媒20の劣化には、大きく分けて永久劣化とS被毒劣化が含まれる。このうち、永久劣化については、第四実施形態に係る手法によりその劣化度合いを推定することができる。しかしながら、第四実施形態に係る手法ではS被毒劣化による劣化度合いを推定することはできない。そこで、本実施形態では、S被毒劣化による劣化度合いを推定する手法を提供する。
図16は、図11に示した第三実施形態と同様な空燃比制御を行った場合における、空燃比補正量等のタイムチャートである。図16に示したように、本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になったときに、空燃比補正量AFCがリッチ設定補正量AFCrichからリーン設定補正量AFCleanへ切り替えられる。したがって、このとき目標空燃比がリッチ空燃比からリーン空燃比へ切り替えられ、よって上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比からリーン空燃比へ変化する。一方、本実施形態では、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になったときに、空燃比補正量AFCがリーン設定補正量AFClenaからリッチ設定補正量AFCrichへ切り替えられる。したがって、このとき目標空燃比がリーン空燃比からリッチ空燃比へ切り替えられ、よって上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比からリッチ空燃比へ変化する。
ここで、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下の状態で上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化してから、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上になるまでに、上流側排気浄化触媒20に吸蔵された酸素の量は上流側排気浄化触媒20が吸蔵可能な酸素量を表す。すなわち、図16において、例えば時刻t1から時刻t2までの間の積算酸素過不足量ΣOED(図中のΣOED1)は上流側排気浄化触媒20が吸蔵可能な酸素量を表す。
同様に、下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上の状態で上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比に変化してから、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になるまでに、上流側排気浄化触媒20から放出された酸素の量も上流側排気浄化触媒20が吸蔵可能な酸素の量を表す。すなわち、図16において、例えば時刻t2から時刻t3までの間の積算酸素過不足量ΣOED(図中のΣOED2)は上流側排気浄化触媒20が吸蔵可能な酸素量を表す。
また、排気浄化触媒の吸蔵可能酸素量は排気浄化触媒の総劣化度合いに応じて変化することが知られている。特に、上述した永久劣化とS被毒劣化とを含む排気浄化触媒の総劣化度合いが高くなるほど、排気浄化触媒の吸蔵可能酸素量は減少する。したがって、上述したように積算酸素過不足量ΣOEDに基づいて算出される上流側排気浄化触媒20の吸蔵可能酸素量は、上流側排気浄化触媒20の総劣化度合いが高くなるほど減少する。したがって、上述したように上流側排気浄化触媒20の吸蔵可能酸素量を算出することができれば、算出された上流側排気浄化触媒20の吸蔵可能酸素量に基づいて上流側排気浄化触媒20の総劣化度合いを推定することができる。
そして、上流側排気浄化触媒20の永久劣化による劣化度合いに加えて、このように上流側排気浄化触媒20の総劣化度合いを求めることができれば、これらに基づいて上流側排気浄化触媒20のS被毒劣化による劣化度合いを算出することができる。
≪第五実施形態おける制御≫
そこで、本実施形態によれば、まず、上流側排気浄化触媒20の総劣化度合いを推定する総劣化度合い推定制御が行われる。本実施形態における総劣化度合い推定制御では、上流側排気浄化触媒20の吸蔵可能酸素量又は吸蔵可能酸素量に応じて変化するパラメータ(例えば、積算酸素過不足量)に基づいて、上流側排気浄化触媒20の総劣化度合いが推定される。上流側排気浄化触媒20の吸蔵可能酸素量又はこれに応じて変化するパラメータは、例えば、下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下の状態からリーン判定空燃比AFlean以上になるまでに上流側排気浄化触媒20に吸蔵された酸素量又はこの酸素量に応じて変化するパラメータの値、又は下流側空燃比センサ41の出力空燃比AFdwnがリーン判定空燃比AFlean以上の状態からリッチ判定空燃比AFrich以下になるまでに上流側排気浄化触媒20から放出された酸素量又は該酸素量に応じて変化するパラメータの値として算出される。
そして、NOxセンサ46の出力に基づいて推定された上流側排気浄化触媒20の永久劣化による劣化度合いと、上流側排気浄化触媒20の吸蔵可能酸素量に基づいて推定された上流側排気浄化触媒20の総劣化度合いとに基づいて、上流側排気浄化触媒20のS被毒劣化による劣化度合いが算出される。
図17及び図18は、吸入空気量及び吸蔵可能酸素量OSCと、上流側排気浄化触媒20のS被毒劣化による劣化度合いとの関係を示す図である。本実施形態では、斯かる関係を用いて、吸入空気量及び吸蔵可能酸素量OSCに基づいて上流側排気浄化触媒20のS被毒劣化による劣化度合いが推定される。特に、図17は、上流側排気浄化触媒20の永久劣化による劣化度合いが低い場合における関係を、図18は、上流側排気浄化触媒20の永久劣化による劣化度合いが高い場合における関係をそれぞれ示している。なお、図18中の破線は、上流側排気浄化触媒20の永久劣化による劣化度合いが低い場合における関係、すなわち図17の関係を示している。
図17及び図18に示したように、吸蔵可能酸素量OSCが多いほど、すなわち上流側排気浄化触媒20の総劣化度合いが低いほど、S被毒劣化による劣化度合いが低いものとして、S被毒劣化による劣化度合いが推定される。また、図17及び図18に示したように、燃焼室5内への吸入空気量が少ないほど、上流側排気浄化触媒20のS被毒劣化による劣化度合いが高いものとしてS被毒劣化による劣化度合いが推定される。
また、図17に示した関係と図18に示した関係とを対比するとわかるように、上流側排気浄化触媒20の永久劣化による劣化度合いが高い場合(図18)には、低い場合(図17)に比べて、吸蔵可能酸素量OSCに対して、すなわち上流側排気浄化触媒20の総劣化度合いに対して、S被毒劣化による劣化度合いが低く推定される。したがって、永久劣化による劣化度合いが高い場合(図18)には、低い場合(図17)に比べて、吸蔵可能酸素量OSCが同一であっても、すなわち上流側排気浄化触媒20の総劣化度合いが同一であっても、S被毒劣化による劣化度合いが低く推定される。
また、本実施形態では、S被毒劣化による劣化度合いが一定以上になると、上流側排気浄化触媒20の硫黄被毒が大きくなっている旨の判定が行われる。具体的には、吸蔵可能酸素量OSCが被毒基準酸素量OSCref以下になった場合、すなわち上流側排気浄化触媒20の総劣化度合いが被毒基準値以上になった場合には、上流側排気浄化触媒20の硫黄被毒が大きくなっている旨の判定が行われる。被毒基準酸素量OSCref、すなわち被毒基準値は上流側排気浄化触媒20の永久劣化による劣化度合いに基づいて設定される。具体的には、被毒基準酸素量OSCrefは、永久劣化による劣化度合いが大きくなるほど小さくなるように設定される。したがって、被毒基準値は、永久劣化による劣化度合いが大きくなるほど大きくなるように設定される。
上流側排気浄化触媒20の硫黄被毒が大きくなっている旨の判定が行われた場合には、上流側排気浄化触媒20から硫黄成分を離脱させるために硫黄離脱処理が行われ、また、上流側排気浄化触媒20に硫黄成分が更に吸蔵されるのを抑制するために、吸蔵抑制処理が行われる。硫黄離脱処理では、例えば、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比にされると共に、上流側排気浄化触媒20の温度が硫黄離脱温度以上に成るように昇温せしめられる。また、吸蔵抑制処理では、上述した基本的な空燃比制御を行うにあたって、リッチ設定空燃比のリッチ度合いが小さくされると共にリーン設定空燃比のリーン度合いが大きくされる。これにより、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比になっている時間が相対的に長くなり、その結果、上流側排気浄化触媒20に硫黄成分が吸蔵されにくくなる。
本実施形態によれば、永久劣化や総劣化と分離して、S被毒劣化による劣化度合いを推定することができる。これにより、S被毒劣化による劣化度合いに基づいて硫黄離脱処理等を行うことができるため、硫黄離脱処理を適切なタイミングで行うことができる。ここで、硫黄離脱処理は、上流側排気浄化触媒20の昇温等のために燃費の悪化を招く。これに対して、本実施形態によれば硫黄離脱処理が適切なタイミングで行われるため、不必要に高い頻度で硫黄離脱処理が行われることによる燃費の悪化を抑制することができ、また、硫黄離脱処理の頻度が低すぎて上流側排気浄化触媒20の浄化能力が低下してしまうことを抑制することができる。
図19は、上流側排気浄化触媒20のS被毒劣化による劣化度合いを判定するS被毒判定制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔毎に実行される。図19に示したステップS51〜S56は、図15のステップS41〜S46と同様であるため説明を省略する。
ステップS55において上流側排気浄化触媒20の永久劣化による劣化度合いが算出されると、次いでステップS57では、図17及び図18に示したようなマップを用いて、吸入空気量、及び永久劣化による劣化度合いに基づいて、被毒基準酸素量OSCrefが算出される。なお、このときに、図17及び図18に示したようなマップを用いて、S被毒劣化による劣化度合いを算出してもよい。
次いで、ステップS58では、積算酸素過不足量ΣOEDに基づいて吸蔵可能酸素量OSCが算出されると共に、算出された吸蔵可能酸素量OSCがステップS57で算出された被毒基準酸素量OSCref以下であるか否かが判定される。ステップS58において、吸蔵可能酸素量OSCが被毒基準酸素量OSCrefよりも多いと判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS58において、吸蔵可能酸素量OSCが被毒基準酸素量OSCref以下であると判定された場合には、ステップS59へと進む。ステップS59では、上流側排気浄化触媒20から硫黄成分を離脱させるべく硫黄離脱処理が実行される。また、硫黄離脱処理の実行条件が成立せずに硫黄離脱処理をすぐには実行することができない場合には、硫黄離脱処理の実行条件が成立するまで、上流側排気浄化触媒20に硫黄成分が更に吸蔵されるのを抑制するために、吸蔵抑制処理が行われる。
<第六実施形態>
次に、図20及び図21を参照して、第六実施形態に係る排気浄化装置について説明する。第六実施形態に係る排気浄化装置における構成及び制御は基本的に第五実施形態に係る排気浄化装置における構成及び制御と同様であるため、以下では、第五実施形態に係る排気浄化装置とは異なる部分を中心に説明する。
ところで、第五実施形態に係る排気浄化装置では、上流側排気浄化触媒20の総劣化度合いの推定は、上流側排気浄化触媒20の吸蔵可能酸素量に基づいて行われていた。しかしながら、上流側排気浄化触媒20の総劣化度合いの推定は異なる方法で行うこともできる。そこで、第六実施形態の排気浄化装置では、第五実施形態に係る排気浄化装置とは異なる方法で上流側排気浄化触媒20の総劣化度合いの推定が行うこととしている。
図20は、上述した空燃比制御を行った場合における、空燃比補正量、上流側排気浄化触媒20の酸素吸蔵量OSA及び下流側空燃比センサ41の出力空燃比AFdwnのタイムチャートである。図20に示した例では、時刻t1以前において、空燃比補正量AFCがリッチ設定補正量AFCrichに設定され、よって上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比となっている。このため、上流側排気浄化触媒20の酸素吸蔵量OSAが徐々に減少している。
その後、上流側排気浄化触媒20の酸素吸蔵量OSAが少なくなると、時刻t1において下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になる。下流側空燃比センサ41の出力空燃比AFdwnがリッチ判定空燃比AFrich以下になると、空燃比補正量AFCはリッチ設定補正量AFCrichからリーン設定補正量AFCleanに切り替えられ、よって上流側排気浄化触媒20に流入する排気ガスの空燃比もリッチ空燃比からリーン空燃比へ切り替えられる。
しかしながら、下流側空燃比センサ41の出力空燃比AFdwnは、時刻t1において空燃比補正量AFCが切り替えられても、すぐには上昇せず、時刻t1以降も低下し続ける。これは、機関本体1から上流側排気浄化触媒20までは距離があることから、空燃比補正量AFCを切り替えてもすぐには上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化しないことによるものである。そして、このとき、下流側空燃比センサ41の出力空燃比AFdwnの挙動が、上流側排気浄化触媒20の状態に応じて変化する。
図20において、下流側空燃比センサ41の出力空燃比AFdwnにおける実線は、上流側排気浄化触媒20が正常である場合、破線は上流側排気浄化触媒20にS被毒劣化が生じている場合、一点鎖線は永久劣化が生じている場合をそれぞれ示している。
図20に実線で示したように、上流側排気浄化触媒20が正常である場合には、出力空燃比AFdwnが到達する最小値が低く(図中のAFdwn1)、また、出力空燃比AFdwnの理論空燃比との差の積分値(出力空燃比AFdwnと14.6における直線とで囲まれる部分の面積)も大きい。一方、図20に破線及び一点鎖線で示したように、上流側排気浄化触媒20にS被毒劣化又は永久劣化が生じている場合には、出力空燃比AFdwnが到達する最小値は相対的に高く(図中のAFdwn2)、また、出力空燃比AFdwnの理論空燃比との差の積分値も相対的に小さい。
このような現象は、排気ガス中の水素によって生じる。限界電流式の空燃比センサでは、水素の空燃比センサの拡散律速層内の拡散速度が速いことから、排気ガス中の水素濃度が高いと空燃比センサの出力空燃比が実際の排気ガスの空燃比よりもリッチ側にシフトすることが知られている。
一方、上流側排気浄化触媒20では、リッチ空燃比の排気ガスが流入すると、上流側排気浄化触媒20の触媒作用によって水素が生成される。このとき生成される水素の量は、上流側排気浄化触媒20の貴金属触媒の活性が高いほど多くなる。したがって、上流側排気浄化触媒20に永久劣化やS被毒劣化等の劣化が生じていないときには水素が多く生成される。この結果、下流側空燃比センサ41の出力空燃比AFdwnは実際の排気ガスの空燃比よりも大きくリッチ側にシフトし、よって図20に実線で示したようにその最小値が低くなる。一方で、上流側排気浄化触媒20にS被毒劣化や永久劣化が生じているときには水素は少量のみしか生成されない。この結果、下流側空燃比センサ41の出力空燃比AFdwnは実際の排気ガスの空燃比より僅かにリッチ側にシフトし、よって図20に破線や一点鎖線で示したように、その最小値はそれほど低くならない。
≪第六実施形態における制御≫
そこで、本実施形態における総劣化度合い推定制御では、空燃比補正量AFCがリッチ設定空燃比AFCrichからリーン設定空燃比AFCleanに切り替えられた後、すなわち目標空燃比がリッチ空燃比からリーン空燃比に切り替えられた後、下流側空燃比センサ41の出力空燃比AFdwnが理論空燃比に到達するまでの収束期間において、下流側空燃比センサ41の出力空燃比AFdwnの少なくとも一部の挙動に基づいて、上流側排気浄化触媒20の総劣化度合いが推定される。具体的には、上述したように、上記収束期間における下流側空燃比センサ41の出力空燃比AFdwnの最小値に基づいて、この最小値が低いほど総劣化度合いが低いものとして総劣化度合いが推定される。或いは、上記収束期間における出力空燃比AFdwnの理論空燃比との差の積分値に基づいて、この積分値が大きいほど総劣化度合いが低いものとして総劣化度合いが推定される。
そして、上記第五実施形態に係る排気浄化装置と同様に、NOxセンサ46の出力に基づいて推定された上流側排気浄化触媒20の永久劣化による劣化度合いと、下流側空燃比センサ41の出力空燃比AFdwnの挙動に基づいて推定された上流側排気浄化触媒20の総劣化度合いとに基づいて、上流側排気浄化触媒20のS被毒劣化による劣化度合いが算出される。
本実施形態によれば、上記第五実施形態と同様に、永久劣化や総劣化と分離して、S被毒劣化による劣化度合いを推定することができる。これにより、硫黄離脱処理を適切なタイミングで行うことができるようになり、燃費の悪化や上流側排気浄化触媒20の浄化能力の低下を抑制することができる。
図21は、第六実施形態に係る排気浄化装置において、上流側排気浄化触媒20のS被毒劣化による劣化度合いを判定するS被毒判定制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔毎に実行される。図21に示したステップS61〜S66は、図15のステップS41〜S46と同様であるため説明を省略する。
ステップS65において上流側排気浄化触媒20の永久劣化による劣化度合いが算出されると、次いでステップS67では、吸入空気量、及び永久劣化による劣化度合いに基づいて、被毒基準空燃比AFrefが算出される。被毒基準空燃比AFrefは、吸入空気量が多くなるほど低くなるように(リッチ側に)設定され、永久劣化による劣化度合いが大きくなるほど高く(リーン側)に設定される。なお、このときに、吸入空気量と永久劣化による劣化度合いとS被毒劣化による劣化度合いとの関係を示すマップを用いて、S被毒劣化による劣化度合いを算出してもよい。
次いで、ステップS68では、上記収束期間における下流側空燃比センサ41の出力空燃比の最小値AFdwnminが算出されると共に、算出された最小値AFdwnminがステップS67で算出された被毒基準空燃比AFref以上であるか否かが判定される。ステップS68において、最小値AFdwnminが被毒基準空燃比AFref未満であると判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS68において、最小値AFdwnminが被毒基準空燃比AFref以上であると判定された場合には、ステップS69へと進む。ステップS69では、硫黄離脱処理や吸蔵抑制処理が行われ、制御ルーチンが終了せしめられる。
<第七実施形態>
次に、図22及び図23を参照して、第七実施形態に係る排気浄化装置について説明する。第七実施形態に係る排気浄化装置における構成及び制御は基本的に第五実施形態及び第六実施形態に係る排気浄化装置における構成及び制御と同様であるため、以下では、第五実施形態及び第六実施形態に係る排気浄化装置とは異なる部分を中心に説明する。
≪燃料の硫黄成分含有率とS被毒劣化による劣化度合いとの関係≫
ところで、内燃機関に供給される燃料中の硫黄成分含有率は、燃料毎に異なる。硫黄成分含有率の高い燃料を用いる場合にはS被毒劣化が生じ易く、一方、硫黄成分含有率の低い燃料を用いる場合にはS被毒劣化が生じにくい。このため、燃費の悪化や上流側排気浄化触媒20の浄化性能の低下を抑制するためには、硫黄成分含有率に応じて内燃機関の制御を変更する必要がある。例えば、硫黄成分含有率の高い燃料を用図いる場合には、硫黄成分含有率の低い燃料を用いる場合と比べて、リッチ設定空燃比のリッチ度合いを高くすると共にリーン設定空燃比のリーン度合いを低くすることが考えられる。このように、燃料中の硫黄成分含有率に応じて内燃機関の制御を変更するためには、燃料中の硫黄成分含有率を推定することが必要になる。
図22は、上流側排気浄化触媒20のS被毒劣化による劣化度合いのタイムチャートである。図22に示した例では、時刻t1において内燃機関の燃料タンク(図示せず)へ燃料の供給が行われ、時刻t2において硫黄離脱処理が行われる。
図22からわかるように、上流側排気浄化触媒20のS被毒劣化による劣化度合いは時間の経過と共に上昇する。これは燃焼室5から排出される排気ガス中には燃焼室5に供給される燃料中の硫黄成分含有率に応じて硫黄成分が含まれており、排気ガスが上流側排気浄化触媒20を流通するときにこの硫黄成分が上流側排気浄化触媒20に吸蔵されるためである。燃焼室5に供給される燃料中の硫黄成分含有率が一定であれば、時間に対するS被毒劣化による劣化度合いの上昇率はほぼ一定となる(より正確には、吸入空気量の積算値に対するS被毒劣化による劣化度合いの上昇率がほぼ一定となる)。このため、図22に示したように、時刻t1以前においては、S被毒劣化による劣化度合いの上昇率(すなわち、図22における傾き)は一定のまま維持される。
その後、時刻t1において、燃料タンクへの燃料の供給が行われると、時刻t1以降は時刻t1以前に比べてS被毒劣化による劣化度合いの上昇率が高くなる。これは、時刻t1において供給された燃料中の硫黄成分含有率が、時刻t1以前に供給されていた燃料中の硫黄成分含有率よりも高いためである。
その後、時刻t2において、硫黄離脱処理が行われる。硫黄離脱処理を行うと、上流側排気浄化触媒20に吸蔵されていた硫黄成分が離脱せしめられる。このため、時刻t2においえは、S被毒劣化による劣化度合いがほぼゼロとなる。その後、内燃機関の運転時間が長くなると、上流側排気浄化触媒20のS被毒劣化による劣化度合いが再び徐々に上昇する。
上述したように単位時間当たり(または、吸入空気量の積算値の単位増加量当たり)のS被毒劣化による劣化度合いの上昇量(S被毒劣化による劣化度合いの上昇率)は燃焼室5内に供給される燃料中の硫黄成分含有率に比例する。したがって、単位時間当たりのS被毒劣化による劣化度合いの上昇率を算出することによって燃料中の硫黄成分含有率を算出することができる。
特に、燃料タンクへの燃料の供給が行われると、燃焼室5に供給される燃料中の硫黄成分含有率も変化することから、燃料タンクへの燃料の供給が行われた直後の単位時間当たりのS被毒劣化による劣化度合いの上昇率に基づいて燃料中の硫黄成分含有率を算出することが好ましい。また、硫黄離脱処理を行うと、上流側排気浄化触媒20に吸蔵されている硫黄成分がほぼゼロになり、このときのS被毒劣化による劣化度合いはかなり正確に推定することができる。したがって、硫黄離脱処理の完了直後の単位時間値理のS被毒劣化による劣化度合いの上昇率に基づいて燃料中の硫黄成分含有率を算出することが好ましい。
≪第七実施形態における制御≫
そこで、本実施形態では、時間又は吸入空気量の積算値の変化に対する上流側排気浄化触媒20のS被毒劣化による劣化度合いの推移に基づいて、内燃機関に供給されている燃料中の硫黄成分含有率を推定する含有率推定制御が実行される。特に、時間又は吸入空気量の積算値の変化に対する上流側排気浄化触媒20のS被毒劣化による劣化度合いが大きいほど(S被毒劣化による劣化度合いの上昇率が高いほど)、燃料中の硫黄成分含有率は高いものとして推定される。
また、本実施形態では、含有率推定制御は、上流側排気浄化触媒20に吸蔵されている硫黄成分を離脱させる硫黄離脱処理の完了後に開始される。或いは、本実施形態では、含有率推定制御は、燃料タンクへの燃料供給の完了後に開始される。
本実施形態によれば、上流側排気浄化触媒20のS被毒劣化による劣化度合いの推移に基づいて、燃料中の硫黄成分含有率を正確に推定することができる。また、含有率推定制御を硫黄離脱処理の完了直後に行うことにより、より正確に燃料中の硫黄成分含有率を推定することができる。
図23は、上流側排気浄化触媒20のS被毒劣化による劣化度合いを算出するためのS被毒劣化度合い算出制御の制御ルーチンを示すフローチャートである。燃料中の硫黄成分含有率を算出するためには上流側排気浄化触媒20のS被毒劣化による劣化度合いの算出が必要であるため、本制御が実行される。図示した制御ルーチンは一定時間間隔で実行される。図23に示したステップS71〜S76は、図15のステップS41〜S46と同様であるため説明を省略する。
ステップS75において上流側排気浄化触媒20の永久劣化による劣化度合いが算出されると、次いでステップS77では、図17及び図18に示したようなマップを用いて、S被毒劣化による劣化度合いが算出され、制御ルーチンが終了せしめられる。
図24は、燃焼室5に供給される燃料中の硫黄成分含有率を推定する硫黄成分含有率推定制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは、一定時間間隔毎に実行される。
まず、ステップS81では、推定フラグFがONになっているか否かが判定される。推定フラグFは、硫黄成分含有率の推定中にONにされ、それ以外のときにはOFFとされるフラグである。ステップS81において、未だ硫黄成分含有率の推定中ではなく、推定フラグFがOFFになっていると判定された場合にはステップS82へと進む。
ステップS82では、硫黄離脱処理が実行されたか否かが判定され、ステップS83では、燃料タンクへの燃料の供給が行われたか否かが判定される。燃料タンクへの燃料の供給の検出は、例えば、燃料タンク内の燃料量を検出するセンサによって検出された燃料量が増加したこと、又は燃料タンクのキャップの開閉を検出するキャップセンサによってキャップが開かれたことが検出されることによって行われる。ステップS82において硫黄離脱処理は実行されていないと判定され、且つステップS83において燃ロウタンクへの燃料の供給は行われていないと判定されたときには、制御ルーチンが終了せしめられる。一方、ステップS82において硫黄理妥当処理が実行されたと判定された場合、又はステップS83において燃料タンクへの燃料の供給が行われたと判定された場合には、ステップS84へと進む。ステップS84では、推定フラグFがONにセットされると共に、時間カウンタTが0にリセットされる。
推定フラグFがONにセットされると次の制御ルーチンでは、ステップS81において推定フラグFがONにセットされていると判定され、ステップS85へと進む。ステップS85では、時間カウンタTに1を加算したものが新たな時間カウンタTの値とされる。次いで、ステップS86では、図23のステップS77において算出されたS被毒劣化による劣化度合いが取得される。
次いでステップS87では、ステップS85において算出された時間カウンタTの値が予め定められた基準値Tref以上であるか否かが判定される。ステップS87において、時間カウンタTの値が基準値Tref未満であると判定された場合には、制御ルーチンが終了せしめられる。一方、ステップS87において、時間カウンタTの値が基準値Tref以上であると判定された場合にはステップS88へと進む。
ステップS88では、推定フラグがONにされてからのS被毒劣化による劣化度合いの変化量を時間カウンタの基準値Trefに対応する時間で割った値が、単位時間当たりのS被毒劣化による劣化度合いの変化率として算出される。次いで、ステップS89では、ステップS88で算出された単位時間当たりのS被毒劣化による劣化度合いの変化率に基づいて燃料中の硫黄成分含有率が算出される。次いで、ステップS90では、推定フラグFがOFFにリセットされ、制御ルーチンが終了せしめられる。
なお、上記全ての実施形態において、基本的な空燃比制御として、目標空燃比をリッチ設定空燃比とリーン設定空燃比とに交互に繰り返し設定する制御が行われている。しかしながら、このような制御は必ずしも行われる必要はなく、目標空燃比がリッチ設定空燃比とリーン設定空燃比とに交互に少なくとも1回ずつ設定すれば、繰り返し設定しなくてもよい。
1 機関本体
5 燃焼室
7 吸気ポート
9 排気ポート
19 排気マニホルド
20 上流側排気浄化触媒
24 下流側排気浄化触媒
31 ECU
40 上流側空燃比センサ
41 下流側空燃比センサ
46 NOxセンサ

Claims (9)

  1. 内燃機関の排気通路に設けられて触媒貴金属を担持する排気浄化触媒と、該排気浄化触媒内又は該排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられたNOxセンサと、前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた空燃比センサと、前記排気浄化触媒に流入する排気ガスの目標空燃比を制御すると共に、前記NOxセンサの出力に基づいて前記排気浄化触媒の状態を推定する制御装置とを備え、
    前記制御装置は、前記目標空燃比を理論空燃比よりもリッチなリッチ空燃比と理論空燃比よりもリーンなリーン空燃比とに交互に設定すると共に、前記目標空燃比のリッチ空燃比からリーン空燃比への切替を前記空燃比センサによって検出された排気ガスの空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下になったときに行い、
    前記制御装置は、前記排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比であるときの前記NOxセンサの出力には基づかずに、前記排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比であるときの前記NOxセンサの出力に基づいて、触媒貴金属のシンタリングに伴う前記排気浄化触媒の回復不能な劣化の度合いを推定する第1劣化度合い推定制御を実行する、内燃機関の排気浄化装置。
  2. 前記制御装置は、前記回復不能な劣化度合いに基づいて前記排気浄化触媒の異常診断を行うと共に、前記排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比であるときには前記排気浄化触媒の異常診断を行うが、前記排気浄化触媒に流入する排気ガスの空燃比がリーン空燃比であるときには前記排気浄化触媒の異常診断を行わない、請求項1に記載の内燃機関の排気浄化装置。
  3. 前記制御装置は、前記第1劣化度合い推定制御において、前記目標空燃比をリッチ空燃比に切り替えてからリーン空燃比に切り替えるまでの前記排気浄化触媒に流入する排気ガスの空燃比がリッチ空燃比である期間のうち、目標空燃比の切り替え時期から離れた中央の期間における前記NOxセンサの出力に基づいて前記排気浄化触媒の回復不能な劣化の度合いを推定する、請求項1又は2に記載の内燃機関の排気浄化装置。
  4. 前記制御装置は、前記NOxセンサの出力によらずに、前記回復不能な劣化と前記排気浄化触媒の硫黄被毒による回復可能な劣化とを含む前記排気浄化触媒の総劣化度合いを推定する第2劣化度合い推定制御を実行し、
    前記制御装置は、前記第2劣化度合い推定制御によって推定された総劣化度合いと、前記第1劣化度合い推定制御によって推定された回復不能な劣化の度合いとに基づいて、前記排気浄化触媒の回復可能な劣化の度合いを推定する、請求項1〜3のいずれか1項に記載の内燃機関の排気浄化装置。
  5. 前記制御装置は、前記NOxセンサの出力によらずに、前記回復不能な劣化と前記排気浄化触媒の硫黄被毒による回復可能な劣化とを含む前記排気浄化触媒の総劣化度合いを推定する第2劣化度合い推定制御を実行し、
    前記制御装置は、前記第1劣化度合い推定制御によって推定された回復不能な劣化の度合いに基づいて前記回復不能な劣化の度合いが大きくなるほど大きくなるように被毒基準値を設定し、前記第2劣化度合い推定制御によって推定された総劣化度合いが前記被毒基準値以上になると前記排気浄化触媒が硫黄被毒していると判定する、請求項3に記載の内燃機関の排気浄化装置。
  6. 前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた空燃比センサを更に具備し、
    前記制御装置は、前記第2劣化度合い推定制御において、前記空燃比センサの出力空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下の状態から理論空燃比よりもリーンなリーン判定空燃比以上になるまでに前記排気浄化触媒に吸蔵された酸素量又は該酸素量に応じて変化するパラメータの値、又は前記空燃比センサの出力空燃比がリーン判定空燃比以上の状態からリッチ判定空燃比以下になるまでに前記排気浄化触媒から放出された酸素量又は該酸素量に応じて変化するパラメータの値に基づいて、前記排気浄化触媒の総劣化度合いを推定する、請求項4又は5に記載の内燃機関の排気浄化装置。
  7. 前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた空燃比センサを更に具備し、
    前記制御装置は、前記目標空燃比のリッチ空燃比からリーン空燃比への切替を前記空燃比センサによって検出された排気ガスの空燃比が理論空燃比よりもリッチなリッチ判定空燃比以下になったときに行い、
    前記制御装置は、前記第2劣化度合い推定制御において、前記目標空燃比がリッチ空燃比からリーン空燃比へ切り替えられた後に前記空燃比センサの出力空燃比が理論空燃比に到達するまでの前記空燃比センサの出力空燃比の少なくとも一部の挙動に基づいて、前記排気浄化触媒の総劣化度合いを推定する、請求項4又は5に記載の内燃機関の排気浄化装置。
  8. 前記制御装置は、時間又は吸入空気量の積算値の変化に対する前記排気浄化触媒の回復可能な劣化の度合いの推移に基づいて、前記内燃機関に供給されている燃料の硫黄含有率を推定する含有率推定制御を実行する、請求項4に記載の内燃機関の排気浄化装置。
  9. 前記制御装置は、前記排気浄化触媒に吸蔵されている硫黄成分を離脱させる硫黄離脱処理を実行し、
    前記含有率推定制御は、前記硫黄離脱処理の完了後に開始される、請求項8に記載の内燃機関の排気浄化装置。
JP2017196290A 2017-03-31 2017-10-06 内燃機関の排気浄化装置 Expired - Fee Related JP6614223B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/937,623 US10598063B2 (en) 2017-03-31 2018-03-27 Exhaust purification system of internal combustion engine
DE102018107664.9A DE102018107664A1 (de) 2017-03-31 2018-03-29 Abgasreinigungssystem eines Verbrennungsmotors
CN201810278352.1A CN108691612B (zh) 2017-03-31 2018-03-30 内燃机的排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072305 2017-03-31
JP2017072305 2017-03-31

Publications (2)

Publication Number Publication Date
JP2018173074A true JP2018173074A (ja) 2018-11-08
JP6614223B2 JP6614223B2 (ja) 2019-12-04

Family

ID=64106675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196290A Expired - Fee Related JP6614223B2 (ja) 2017-03-31 2017-10-06 内燃機関の排気浄化装置

Country Status (2)

Country Link
US (1) US10598063B2 (ja)
JP (1) JP6614223B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924409B (zh) * 2019-06-10 2023-10-27 康明斯排放处理公司 燃料分析***和方法
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
DE102021101244A1 (de) * 2021-01-21 2022-07-21 Volkswagen Aktiengesellschaft Brennkraftmaschine mit NH3-Sensor im Abgasstrang

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125937A (ja) * 1995-11-07 1997-05-13 Tokyo Gas Co Ltd 触媒劣化判定方法及び装置
JP2002138821A (ja) * 2000-11-02 2002-05-17 Mitsubishi Motors Corp 排気浄化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475531B2 (ja) 1994-12-06 2003-12-08 日産自動車株式会社 内燃機関における排気浄化触媒の性能回復装置
JP3684854B2 (ja) * 1998-07-02 2005-08-17 日産自動車株式会社 内燃機関の触媒劣化診断装置
JP2003148198A (ja) * 2001-11-13 2003-05-21 Toyota Motor Corp 内燃機関の排気浄化装置
JP4288942B2 (ja) * 2002-12-20 2009-07-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6128041B2 (ja) * 2014-03-31 2017-05-17 トヨタ自動車株式会社 内燃機関の制御システム
JP6144652B2 (ja) * 2014-07-23 2017-06-07 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6350444B2 (ja) * 2015-08-10 2018-07-04 トヨタ自動車株式会社 内燃機関の排気浄化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125937A (ja) * 1995-11-07 1997-05-13 Tokyo Gas Co Ltd 触媒劣化判定方法及び装置
JP2002138821A (ja) * 2000-11-02 2002-05-17 Mitsubishi Motors Corp 排気浄化装置

Also Published As

Publication number Publication date
JP6614223B2 (ja) 2019-12-04
US20190101033A1 (en) 2019-04-04
US10598063B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
JP6614223B2 (ja) 内燃機関の排気浄化装置
JP4737010B2 (ja) 触媒劣化診断装置
JP6572932B2 (ja) アンモニア検出装置の異常診断装置
JP4664882B2 (ja) 触媒劣化診断装置
JP6179371B2 (ja) 空燃比センサの異常診断装置
JP6287989B2 (ja) NOx吸蔵還元型触媒の異常診断装置
EP2772636A1 (en) Catalyst-degradation detection device
US20150192048A1 (en) Abnormality diagnosis device and exhaust gas purification device of internal combustion engine
US11492952B2 (en) Catalyst degradation detection apparatus
JP2009138604A (ja) 内燃機関の触媒劣化診断装置
JP2018204533A (ja) 内燃機関の排気浄化装置
JP6520977B2 (ja) 排気浄化装置の異常診断装置
CN108691612B (zh) 内燃机的排气净化装置
CN113847127B (zh) 排气净化催化剂的劣化诊断装置
EP3401522B1 (en) Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine
JP2019152167A (ja) 内燃機関の排気浄化装置
JP2009150282A (ja) NOx触媒の劣化診断装置
JP2018131991A (ja) 排気浄化装置の異常診断装置
JP2012031761A (ja) 触媒異常診断装置
US10519840B2 (en) Abnormality diagnosis system for exhaust gas purification apparatus
JP2012117406A (ja) 内燃機関の触媒異常判定方法
JP2017129037A (ja) NOx吸蔵還元型触媒の異常診断装置
JP2015004319A (ja) 内燃機関の排気浄化システム
JP2008038801A (ja) 内燃機関の触媒劣化検出装置
JP2005330848A (ja) 触媒劣化推定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6614223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees