JP2018098872A - 回転電機の制御装置、及び、回転電機システム - Google Patents

回転電機の制御装置、及び、回転電機システム Download PDF

Info

Publication number
JP2018098872A
JP2018098872A JP2016240131A JP2016240131A JP2018098872A JP 2018098872 A JP2018098872 A JP 2018098872A JP 2016240131 A JP2016240131 A JP 2016240131A JP 2016240131 A JP2016240131 A JP 2016240131A JP 2018098872 A JP2018098872 A JP 2018098872A
Authority
JP
Japan
Prior art keywords
rotating electrical
electrical machine
power
control
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2016240131A
Other languages
English (en)
Inventor
和敏 塩見
Kazutoshi Shiomi
和敏 塩見
洋 稲村
Hiroshi Inamura
洋 稲村
中山 英明
Hideaki Nakayama
英明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016240131A priority Critical patent/JP2018098872A/ja
Priority to PCT/JP2017/042121 priority patent/WO2018110242A1/ja
Publication of JP2018098872A publication Critical patent/JP2018098872A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】回転電機の力行動作時において直流電源から電力を供給される電気負荷の入力電圧の変動を抑制しつつ、電力変換効率の悪化を抑制することを主たる目的とする。
【解決手段】力行動作及び発電動作が可能な回転電機10の制御装置40であって、力行動作時において、バッテリ22から供給される直流電力を交流電力に変換し回転電機10に出力するとともに、発電動作時において、回転電機10から供給される交流電力を直流電力に変換し前記直流電源側に出力するインバータ回路INV1,INV2において、パルス幅変調制御を実施し、前記直流電源には、インバータ回路INV1,INV2及び回転電機10のそれぞれとは異なる電気負荷23が接続され、力行動作時におけるパルス幅変調制御のキャリア周波数を、発電動作時におけるキャリア周波数より高く設定する。
【選択図】 図1

Description

力行動作及び発電動作が可能な回転電機を制御する回転電機の制御装置に関する。
特許文献1では、力行動作及び発電動作が可能な回転電機が開示されている。さらに、特許文献1では、回転電機の入出力電力を変換するインバータ回路において、発電動作時におけるパルス幅変調(PWM: Pulse Width Modulation)制御のキャリア周波数を変更し、発電される電力を抑制する構成が開示されている。
特開2010−233402号公報
力行動作及び発電動作が可能な回転電機の入出力電力を変換するインバータ回路において、PWM制御を実施すると、インバータ回路より直流電源側の電圧がキャリア周波数で脈動する。このため、回転電機及びインバータ回路それぞれとは異なる直流電源から電力を供給されている電気負荷が存在する場合、当該電気負荷の入力電圧がキャリア周波数で脈動する。さらに、回転電機の力行動作時には、直流電源から回転電機及びインバータ回路に向かって電流が流れるため、直流電源の出力電圧が低下する。
回転電機の力行動作時において、インバータ回路のPWM制御に伴う直流電源の出力電圧の脈動と、直流電源から回転電機及びインバータ回路への放電による直流電源の電圧降下とが重畳する。その結果、電気負荷の入力電圧が変動し、電気負荷の動作が不安定になることが懸念される。電気負荷の入力電圧の脈動は、容量成分(例えば、平滑コンデンサ)によって低減することが可能な一方、脈動の周波数が低いほど大きい容量成分が必要となり、体格や部品点数の増加などの問題が生じる。つまり、回転電機の力行動作時には、PWM制御のキャリア周波数が高いことが望まれる。しかしながら、キャリア周波数を高くすると、インバータ回路においてスイッチング素子がオンオフされる回数が多くなり、その結果スイッチング損失が増加し、電力変換効率が悪化する。
本発明は、上記課題に鑑みてなされたものであり、回転電機の力行動作時において直流電源から電力を供給される電気負荷の入力電圧の変動を抑制しつつ、電力変換効率の悪化を抑制することを主たる目的とする。
第1の構成は、力行動作及び発電動作が可能な回転電機(10)の制御装置(40)であって、前記力行動作時において、直流電源(22)から供給される直流電力を交流電力に変換し前記回転電機に出力するとともに、前記発電動作時において、前記回転電機から供給される交流電力を直流電力に変換し前記直流電源側に出力するインバータ回路(INV1,INV2)において、パルス幅変調制御を実施し、前記直流電源には、前記インバータ回路及び前記回転電機それぞれとは異なる電気負荷(23)が接続され、前記力行動作時における前記パルス幅変調制御のキャリア周波数を、前記発電動作時における前記キャリア周波数より高く設定する。
回転電機の発電動作時には、回転電機及びインバータ回路から直流電源に向かって電流が流れるため、直流電源の出力電圧が上昇する。このため、PWM制御によって電気負荷の入力電圧がキャリア周波数で脈動したとしても、電気負荷の入力電圧の変動による影響は小さい。そこで、本構成では、回転電機の力行動作時におけるキャリア周波数を、回転電機の発電動作時におけるキャリア周波数より高く設定する。当該構成により、回転電機の力行動作時において、電気負荷の容量成分が比較的小さい場合であっても、電気負荷に供給される電圧が安定化し、直流電源から電力を供給される電気負荷の入力電圧の変動を抑制できる。また、回転電機の発電動作時において、キャリア周波数が高いことに起因する電力変換効率の悪化を抑制することができる。
第2の構成は、第1の構成において、前記回転電機は、前記力行動作と比べて前記発電動作が長い期間実施される。
キャリア周波数を高くすると、キャリア周波数の高調波成分が高周波数側に変化し、エミッション特性(伝導妨害特性や、放射妨害特性など)が悪化する。本構成の回転電機は、力行動作と比べて発電動作が長い期間実施される。そして、発電動作時におけるキャリア周波数が、力行動作時と比較して低く設定されているため、エミッション特性が悪化する期間を短くすることができる。
第3の構成は、第2の構成において、前記回転電機は、アイドリングストップ制御が実施される車両に適用されるものであって、アイドリングストップによるエンジン(20)の自動停止後の前記エンジンの再始動時、又は前記エンジンの出力を補助するアシスト動作時に前記力行動作を実施し、前記電気負荷への電力供給時、又は前記直流電源としての二次電池の充電時に前記発電動作を実施する。
回転電機は、アイドリングストップによるエンジンの自動停止後のエンジンの再始動時、又はエンジンの出力を補助するアシスト動作時に力行動作を実施し、電気負荷への電力供給時、又は直流電源としての二次電池の充電時に発電動作を実施する。アイドリングストップ再始動時に実施される力行動作は、発電動作と比較して極めて短い時間実施される。つまり、アイドリングストップ制御が実施される車両に適用される回転電機は、力行動作と比べて発電動作が長い期間実施されるものであり、当該回転電機において、発電動作時におけるキャリア周波数を、力行動作時と比較して低く設定することで、エミッション特性が悪化する期間を短くすることができる。また、力行動作の実施期間より長い発電動作の実施期間において、電力変換効率の悪化を抑制することができ、全体的な電力変換効率の悪化を抑制することができる。
第4の構成は、第1乃至第3の構成のいずれかにおいて、前記力行動作時及び前記発電動作時の少なくとも一方における前記パルス幅変調制御において、所定周波数領域でスペクトル拡散を実施する。
PWM制御において、スペクトル拡散を実施することで、エミッション特性の悪化を抑制することができる。
第5の構成は、第1乃至第4の構成のいずれかにおいて、前記回転電機は、界磁巻線(11)を備える巻線界磁型回転電機であって、前記界磁巻線に電力を供給する界磁回路(36)のスイッチング周波数と、前記キャリア周波数とを異なる値に設定する。
界磁回路のスイッチング周波数とPWM制御のキャリア周波数とを異なる値にする。これにより、界磁回路のスイッチングによる伝導妨害や放射妨害と、インバータ回路のスイッチングによる伝導妨害や放射妨害とが重畳することを抑制することができ、エミッション特性が悪化することを抑制することができる。
第6の構成は、第5の構成において、前記発電動作時における前記キャリア周波数を前記界磁回路のスイッチング周波数より高く設定する。
一般的に、界磁巻線を含む回路は、回転電機(電機子巻線)を含む回路と比較して、時定数が大きく、スイッチング周波数を低周波数化しても電流変動が小さい。そこで、界磁回路のスイッチング周波数をキャリア周波数と異なる値に設定する構成において、キャリア周波数を界磁回路のスイッチング周波数より高く設定する。当該設定により、電機子巻線における電流変動を抑制することで、回転電機の出力トルクの変動を抑制しつつ、エミッション特性が悪化することを抑制することができる。
第7の構成は、第5又は第6の構成において、前記力行動作時における前記パルス幅変調制御において、第1周波数領域でスペクトル拡散を実施し、前記発電動作時における前記パルス幅変調制御において、第2周波数領域でスペクトル拡散を実施し、前記界磁回路のスイッチング周波数を前記第1周波数領域及び前記第2周波数領域とは異なる値に設定する。
PWM制御において、スペクトル拡散を実施し、さらに、スペクトル拡散を実施する周波数領域である第1周波数領域及び第2周波数領域と界磁回路のスイッチング周波数とを異ならせる。これにより、界磁回路のスイッチングによる伝導妨害や放射妨害と、インバータ回路のスイッチングによる伝導妨害や放射妨害とが重畳することを抑制することができ、エミッション特性が悪化することを抑制することができる。
第8の構成は、第1乃至第7の構成のいずれかにおいて、前記回転電機の発電時において、前記回転電機の回転速度が所定の第1閾値以上になった場合に、前記インバータ回路において前記パルス幅変調制御に代えて矩形波制御を実施する。
矩形波制御は、PWM制御と比較して、電気角1周期当たりのスイッチング回数が少ない。このため、回転速度が第2閾値以上の領域において矩形波制御を実施することで、PWM制御と比較して、エミッション特性が悪化することを抑制することができる。
第9の構成は、第8の構成において、前記回転電機の発電時において、前記回転速度が前記第1閾値より低い領域において、前記回転電機から出力される発電電流が所定の第2閾値未満の場合、前記パルス幅変調制御に代えて前記矩形波制御を実施する。
矩形波制御は、PWM制御と比較して、出力可能な電流量が小さい一方で、エミッション特性の悪化を抑制することができる。そこで、回転速度が第2閾値以上の領域に加え、発電電流が所定の閾値以下の領域においても、PWM制御に代えて矩形波制御を実施することで、エミッション特性の悪化を抑制することができる。
第10の構成は、第1乃至第9の構成のいずれかにおいて、前記回転電機の発電時において、前記回転電機の回転速度が所定の第3閾値以上になった場合に、前記インバータ回路において前記パルス幅変調制御に代えて過変調パルス幅変調制御を実施する。
過変調制御は、PWM制御と比較して、電気角1周期当たりのスイッチング回数が少ない。このため、回転速度が所定の閾値以上の領域において過変調制御を実施することで、PWM制御と比較して、エミッション特性が悪化することを抑制することができる。
第11の構成は、第1乃至第10の構成のいずれかにおいて、前記回転電機は、ステータ(13)に巻回された複数の巻線群(10a,10b)を有する多重巻線回転電機であって、前記インバータ回路は、スイッチ(SUp1〜SWn1,SUp2〜SWn2)を有して、かつ、前記複数の巻線群それぞれに対応して個別に設けられ、前記スイッチのスイッチング操作により対応する前記巻線群との間で電力伝達を行い、前記回転電機の1電気角周期あたりの前記スイッチのスイッチング回数を複数の前記インバータ回路で互いに相違させるように、複数の前記インバータ回路を構成する前記スイッチの操作態様を設定し、その設定された操作態様に基づいて、前記インバータ回路をそれぞれ構成する前記スイッチを操作する。
上記構成では、スイッチを有してかつ複数の巻線群それぞれに対応して個別に設けられたインバータ回路を備えている。各インバータ回路は、スイッチのスイッチング操作により、自身に対応する巻線群との間で電力伝達を行う。そして第1の発明では、回転電機の1電気角周期あたりのスイッチのスイッチング回数を各インバータ回路で互いに相違させるように、各インバータ回路を構成するスイッチの操作態様が設定される。そして設定された操作態様に基づいて、各電力変換器を構成するスイッチが操作される。各インバータ回路のスイッチング回数を相違させることにより、スイッチングに伴い発生するノイズのスペクトルを分散できる。これにより、スイッチング操作に伴い発生するノイズを低減することができる。
第12の構成は、第1乃至第11の構成のいずれかに記載の前記回転電機の制御装置、前記回転電機、及び、前記インバータ回路を備える回転電機システムである。第1乃至第10のいずれかに記載の回転電機の制御装置は、具体的には、回転電機及びインバータ回路を備える回転電機システムに適用される。
本実施形態の電気的構成図。 フルブリッジ型の界磁回路を表す回路図。 ハーフブリッジ型の界磁回路を表す回路図。 トルク及び回転速度に応じた回転電機の制御を表す図。 力行時におけるPWM制御を表すタイミングチャート。 発電時におけるPWM制御を表すタイミングチャート。 界磁回路におけるスイッチング制御を表すタイミングチャート。 各制御における周波数設定を表す図。 矩形波制御を表すタイミングチャート。 キャリア周波数を変化させた場合の伝導妨害特性を表す図。 PWM制御及び矩形波制御のそれぞれにおける伝導妨害特性を表す図。 第2実施形態の制御装置の処理を示すブロック図。 電圧ベクトルを示す図。 キャリア信号及びPWM信号の推移を示すタイムチャート。 ノイズ低減効果を示す図。 過変調制御を表すタイミングチャート。
(第1実施形態)
以下、エンジンを備える車両に対し、「回転電機の制御装置」及び「回転電機システム」を適用した第1実施形態について、図面を参照しつつ説明する。
図1に示すように、回転電機10は、多相多重巻線を有する巻線界磁型回転電機であり、具体的には、3相2重巻線を有する巻線界磁型同期回転電機(6相回転電機)である。本実施形態では、回転電機10として、スタータ及びオルタネータ(発電機)の機能を統合したISG(Integrated Starter Generator)を想定している。
本実施形態の回転電機10は、所定の自動停止条件が成立する場合にエンジン20を自動停止させ、その後、所定の再始動条件が成立する場合にエンジン20を自動的に再始動させるアイドリングストップ機能を実行する場合にも、スタータとして機能する。なお、回転電機10は、エンジン20の初回の始動時にスタータとして機能するものであってもよい。
回転電機10を構成するロータ12(回転子)は、界磁巻線11を備え、また、エンジン20のクランク軸20aと動力伝達が可能とされている。本実施形態において、ロータ12は、ベルト21を介してクランク軸20aに連結(より具体的には直結)されている。
回転電機10のステータ13(固定子)には、2つの電機子巻線群(以下、第1巻線群10a、第2巻線群10b)が巻回されている。巻線群10a,10bに対して、ロータ12が共通とされている。第1巻線群10a及び第2巻線群10bのそれぞれは、異なる中性点を有する3相巻線からなる。なお、本実施形態では、第1巻線群10aを構成する巻線のそれぞれのターン数N1と、第2巻線群10bを構成する巻線のターン数N2とを等しく設定している。
回転電機10には、第1巻線群10a及び第2巻線群10bのそれぞれに対応した2つのインバータ(以下、第1インバータ回路INV1、第2インバータ回路INV2)が電気的に接続されている。具体的には、第1巻線群10aには、第1インバータ回路INV1が接続され、第2巻線群10bには、第2インバータ回路INV2が接続されている。第1インバータ回路INV1及び第2インバータ回路INV2のそれぞれは、共通の直流電源であるバッテリ22に対して並列接続されている。インバータ回路INV1,INV2は、バッテリ22から供給される直流電力を交流電力に変換し回転電機10に出力する。また、インバータ回路INV1,INV2は、回転電機10から供給される交流電力を直流電力に変換しバッテリ22側に出力する。
バッテリ22には、インバータ回路INV1,INV2とは異なる電気負荷23が接続されている。また、バッテリ22には、平滑コンデンサ24が並列接続されている。バッテリ22は、例えば、鉛二次電池やリチウムイオン二次電池である。なお、「直流電源」としてのバッテリ22は、例えば、DCDCコンバータであってもよい。
第1インバータ回路INV1は、第1のU,V,W相高電位側スイッチSUp1,SVp1,SWp1と、第1のU,V,W相低電位側スイッチSUn1,SVn1,SWn1との直列接続体を3組備えている。U,V,W相における上記直列接続体の接続点は、第1巻線群10aのU,V,W相の端子に接続されている。本実施形態では、各スイッチSUp1〜SWn1として、NチャネルMOSFETを用いている。そして、各スイッチSUp1〜SWn1にはそれぞれ、ダイオードDUp1〜DWn1が逆並列に接続されている。なお、各ダイオードDUp1〜DWn1は、各スイッチSUp1〜SWn1のボディダイオードであってもよい。また、各スイッチSUp1〜SWn1は、NチャネルMOSFETに限らず、例えば、サイリスタやIGBTであってもよいし、半導体スイッチング素子とは異なるスイッチング素子、例えば、機械式のリレースイッチであってもよい。
第2インバータ回路INV2は、第1インバータ回路INV1と同様に、第2のU,V,W相高電位側スイッチSUp2,SVp2,SWp2と、第2のU,V,W相低電位側スイッチSUn2,SVn2,SWn2との直列接続体を3組備えている。U,V,W相における上記直列接続体の接続点は、第2巻線群10bのU,V,W相の端子に接続されている。本実施形態では、各スイッチSUp2〜SWn2として、NチャネルMOSFETを用いている。そして、各スイッチSUp2〜SWn2にはそれぞれ、ダイオードDUp2〜DWn2が逆並列に接続されている。なお、各ダイオードDUp2〜DWn2は、各スイッチSUp2〜SWn2のボディダイオードであってもよい。また、各スイッチSUp2〜SWn2は、NチャネルMOSFETに限らず、例えば、サイリスタやIGBTであってもよいし、半導体スイッチング素子とは異なるスイッチング素子、例えば、機械式のリレースイッチであってもよい。
インバータ回路INV1,INV2の高電位側の端子(各高電位側スイッチのドレイン側の端子)には、バッテリ22の正極端子が接続されている。低電位側の端子(各低電位側スイッチのソース側の端子)には、バッテリ22の負極端子が接続されている。
界磁巻線11には、界磁回路36によって直流電圧が印加可能とされている。界磁回路36は、界磁巻線11に印加する直流電圧を調整することにより、界磁巻線11に流れる界磁電流Ifを制御する。
本実施形態は、回転角検出部30、電圧検出部31、界磁電流検出部32、及び相電流検出部33を備えている。回転角検出部30は、回転電機10の回転角(電気角θ)を検出する回転角検出手段である。電圧検出部31は、インバータ回路INV1,INV2の電源電圧を検出する。界磁電流検出部32は、界磁巻線11に流れる界磁電流Ifを検出する。相電流検出部33は、第1巻線群10aの各相電流と、第2巻線群10bの各相電流を検出する。
回転角検出部30としては、例えばレゾルバを用いることができる。また、回転角検出部30として、回転に伴い周囲の磁界が変化する磁気発生部(例えば、永久磁石)をロータ12に設け、磁気検出素子(例えば、ホール素子)によりその磁界の変化を検出することで、回転電機10の回転角を検出するものであってもよい。また、界磁電流検出部32及び相電流検出部33として、例えば、カレントトランスや、抵抗器を備えるものや、ホール素子などを用いることができる。
上記各種検出部の検出値は、制御装置40に取り込まれる。制御装置40は、中央処理装置(CPU)やメモリを備え、メモリに格納されたプログラムをCPUにて実行するソフトウェア処理手段である。制御装置40は、回転電機10の制御量をその指令値に制御すべく、これら各種センサの検出値に基づき、第1インバータ回路INV1及び第2インバータ回路INV2を操作する操作信号を生成して出力する。また、制御装置40は、界磁回路36を操作する操作信号を生成して出力する。なお、インバータ回路INV1,INV2及び界磁回路36は、それぞれ異なる制御装置によって操作されるものであってもよい。
制御装置40は、回転電機10を発電動作させる場合、電圧検出部31により検出される電源電圧VDCを目標電圧Vtgtに制御すべく、インバータ回路INV1,INV2をそれぞれ操作する。詳しくは、制御装置40は、ロータ12の回転に伴って巻線群10a,10bそれぞれから出力された交流電圧を直流電圧に変換してバッテリ22及び電気負荷23に供給すべく、各検出部30〜33の検出値に基づいて、第1操作信号gUp1,gUn1,gVp1,gVn1,gWp1,gWn1と、第2操作信号gUp2,gUn2,gVp2,gVn2,gWp2,gWn2とを生成する。
また、制御装置40は、回転電機10を力行動作させる場合、回転電機10の出力トルクを目標トルクに制御すべく、インバータ回路INV1,INV2をそれぞれ操作する。なお、回転電機10の出力トルクは、回転角検出部30により検出される電気角θから算出することができる。詳しくは、制御装置40は、バッテリ22から出力される直流電圧を交流電圧に変換して、巻線群10a,10bのそれぞれに供給すべく、各検出部30〜33の検出値に基づいて、第1操作信号gUp1,gUn1,gVp1,gVn1,gWp1,gWn1と、第2操作信号gUp2,gUn2,gVp2,gVn2,gWp2,gWn2とを生成する。
本実施形態の制御装置40は、回転電機10の発電動作時及び力行動作時のそれぞれにおいて、第1操作信号gUp1,gUn1,gVp1,gVn1,gWp1,gWn1のそれぞれと、第2操作信号gUp2,gUn2,gVp2,gVn2,gWp2,gWn2のそれぞれと、を同一のものとする。
なお、本実施形態において、各操作信号は、H,Lのいずれかをとる2値信号である。本実施形態では、Hによって上アームスイッチのオン操作を指示して、かつ、下アームスイッチのオフ操作を指示する。また、Lによって上アームスイッチのオフ操作を指示して、かつ、下アームスイッチのオン操作を指示する。
本実施形態の「回転電機システム」は、回転電機10、制御装置40、及び、インバータ回路INV1,INV2を含むものである。
図2に界磁回路36の電気的構成を示す。界磁回路36は、フルブリッジ型(Hブリッジ型)であり、4つのスイッチSW1〜SW4を備えている。スイッチSW1〜SW4はそれぞれNチャネルMOSFETである。なお、スイッチSW1〜SW4はIGBTであってもよい。スイッチSW1,SW3のドレインはそれぞれ電源電圧VCCに接続されており、スイッチSW1,SW3のソースはそれぞれスイッチSW2,SW4のドレインに接続されている。スイッチSW2,SW4のソースはそれぞれ接地電圧に接続されている。
スイッチSW1〜SW4には、それぞれボディダイオードD1〜D4が逆並列に接続されている。具体的には、ダイオードD1及びダイオードD3のカソードは、それぞれ電源電圧VCCに接続されており、ダイオードD1及びダイオードD3のアノードは、それぞれ界磁巻線11に接続されている。ダイオードD2のカソードは、ダイオードD1のアノードに接続されており、ダイオードD4のカソードは、ダイオードD3のアノードに接続されている。ダイオードD2,D4のアノードはそれぞれ接地電圧に接続されている。
界磁巻線11は、スイッチSW1とスイッチSW2との接続点と、スイッチSW3とスイッチSW4との接続点との間に接続されている。制御装置40は、スイッチSW1〜SW4のオンオフ状態を操作することで界磁巻線11に対して電流を流し、界磁巻線11に磁力を生じさせる。なお、スイッチSW1〜SW4は、NチャネルMOSFETに代えて、例えば、サイリスタやIGBTであってもよいし、半導体スイッチング素子とは異なるスイッチング素子、例えば、機械式のリレースイッチであってもよい。スイッチSW1とスイッチSW2との接続点から界磁巻線11を介してスイッチSW3とスイッチSW4との接続点に向かう方向を正方向とし、正方向と逆の方向を負方向とする。以下、制御装置40が界磁巻線11に対して正方向に電流を流して磁界を発生させるものとして説明を行うが、界磁巻線11に対して負方向に電流を流して磁界を発生させるものであってもよい。
制御装置40は、スイッチSW1,SW4をオン状態、スイッチSW2,SW3をオフ状態にすることで、界磁巻線11に正方向の電圧を印加し、界磁巻線11に流れる正方向の電流を大きくし、磁力を強める。また、制御装置40は、スイッチSW1,SW4をオン状態、スイッチSW2,SW3をオフ状態にすることで、界磁巻線11に負方向の電圧を印加し、界磁巻線11に流れる正方向の電流を小さくし、磁力を弱める。
また、制御装置40は、スイッチSW1,SW3をオン状態、スイッチSW2,SW4をオフ状態にすることで、界磁巻線11、スイッチSW3、スイッチSW1の順に界磁電流Ifを還流させて磁力を保持する。また、制御装置40は、スイッチSW2,SW4をオン状態、スイッチSW1,SW3をオフ状態にすることで、界磁巻線11、スイッチSW4、スイッチSW2の順に界磁電流Ifを還流させて磁力を保持する。
また、「界磁回路」として、図3に示すようなハーフブリッジ型の界磁回路36Aを用いてもよい。界磁回路36Aは、2つのスイッチSW1A,SW2Aを備えている。スイッチSW1A,SW2Aは、それぞれNチャネルMOSFETである。スイッチSW1A,SW2Aには、それぞれボディダイオードD1A,D2Aが逆並列に接続されている。なお、スイッチSW1A,SW2Aは、NチャネルMOSFETに代えて、例えば、サイリスタやIGBTであってもよいし、半導体スイッチング素子とは異なるスイッチング素子、例えば、機械式のリレースイッチであってもよい。スイッチSW1Aのドレインは、電源電圧VCCに接続されており、スイッチSW1AのソースはスイッチSW2Aのドレインに接続されている。スイッチSW2Aのソースは接地電圧に接続されている。
界磁巻線11は、スイッチSW1AとスイッチSW2Aの接続点と、接地電圧との間に接続されている。制御装置40は、スイッチSW1A,SW2Aのオンオフ状態を操作することで界磁巻線11に対して電流を流し、界磁巻線11に磁力を生じさせる。なお、スイッチSW1A,SW2AとしてNチャネルMOSFETに代えて、例えば、IGBTを用いてもよい。スイッチSW1AとスイッチSW2Aとの接続点から界磁巻線11を介して接地電圧に向かう方向を正方向とする。
制御装置40は、スイッチSW1Aをオン状態にし、スイッチSW2Aをオフ状態にすることで、界磁巻線11に正方向の電圧を印加し、界磁巻線11に流れる電流を大きくし、磁力を強める。また、制御装置40は、スイッチSW2Aをオン状態にし、スイッチSW1Aをオフ状態にすることで、界磁電流Ifを還流させて磁力を保持する。
ここで、図4に示すように、一般的な回転電機の制御装置は、力行時と発電時、回転電機10のトルク及び回転速度に応じて、インバータ回路INV1,INV2において異なる制御を実施する。力行時、且つ、回転速度が第1回転速度F1未満の領域Aで、パルス幅変調制御(PWM制御)を実施する。また、一般的な回転電機の制御装置は、力行時、且つ、回転速度が第1回転速度F1以上の領域Bで、矩形波制御を実施する。第1回転速度F1は、トルクに応じて変化する値に設定されている。なお、第1回転速度F1は、トルクに依存しない固定値であってもよい。
力行時におけるPWM制御とは、インバータ回路を構成するスイッチの所定のキャリア周期に占めるオン期間の長さを変化させることで、具体的には、一定の入力電圧を正弦波状の交流電圧(目標電圧Vtgt)に変換して出力する正弦波制御である(後述する図5,6参照)。また、矩形波制御とは、回転電機の出力電圧の目標値である目標電圧Vtgtが正から負にゼロクロスするタイミングでオフ操作を行うとともに、当該目標電圧Vtgtが負から正にゼロクロスするタイミングでオン操作を行い、目標電圧Vtgtと同周期、且つ、同位相の矩形波電圧を出力する制御である(後述する図9参照)。
力行時において、PWM制御は、矩形波制御よりも回転電機の出力トルクを大きくできる一方で、回転電機の回転速度が上昇すると制御における負荷、及び、スイッチング損失が増加する。そこで、回転速度の低い領域AでPWM制御を実施し、回転速度の高い領域Bで矩形波制御を実施する。
また、一般的な回転電機の制御装置は、発電時、且つ、回転速度が第2回転速度未満の領域Cで、PWM制御を実施する。また、一般的な回転電機の制御装置は、発電時、且つ、回転速度が第2回転速度F2以上、第3回転速度F3未満であってトルクが所定のトルクT1以上の領域Dで、同期整流制御を実施する(F2<F3)。また、一般的な回転電機の制御装置は、発電時、且つ、回転速度が第2回転速度F2以上であってトルクがトルクT1未満、又は、回転速度が第3回転速度F3以上の領域Eで、ダイオード整流制御を実施する。第2回転速度F2及び第3回転速度F3は、それぞれトルクに依らない固定値である。なお、第2回転速度F2及び第3回転速度F3は、それぞれトルクに応じて変化する値に設定されていてもよい。
発電時におけるPWM制御とは、インバータ回路を構成するスイッチの所定のキャリア周期に占めるオン期間の長さを変化させることで、回転電機から供給される交流電圧を一定の直流電圧に変換して出力する制御である。同期整流制御とは、電機子巻線に生じる誘起電圧が電圧源の端子間電圧を上回り、電機子巻線から電圧源に対して電流が流れる期間において、インバータ回路を構成するスイッチをオン状態にする制御のことである。また、ダイオード整流制御とは、インバータ回路を構成するスイッチを全てオフ状態とし、インバータ回路を構成するスイッチに並列接続された還流ダイオードにより整流を行う制御である。
発電時において、PWM制御を実施すると、同期整流制御及びダイオード整流制御を実施した場合と比較して、発電電力を大きくできる一方で、回転電機の回転速度が上昇すると制御における負荷、及び、スイッチング損失が増加する。そこで、回転速度の低い領域CでPWM制御を実施する。また、発電電力の小さい領域では、同期整流制御におけるスイッチング損失がダイオード整流制御におけるダイオード損失よりも大きくなるため、発電電力、即ち、回転電機のトルクが大きい領域Dで同期整流制御を実施し、回転電機のトルクが小さい領域Eでダイオード整流制御を実施する。また、同期整流制御は、回転電機の回転速度が上昇すると制御における負荷が増加するため、回転電機の回転速度が高い領域Eにおいて、ダイオード整流制御を実施する。
本実施形態の制御装置40は、図4に示す領域A及び領域Cの一部(領域C1)において、上述した一般的な回転電機の制御装置と同様にPWM制御を実施する。ここで、回転電機10の入出力電力を変換するインバータ回路INV1,INV2において、PWM制御を実施すると、インバータ回路INV1,INV2よりバッテリ22側の電圧がキャリア周波数で脈動する。このため、電気負荷23の入力電圧がキャリア周波数で脈動する。さらに、回転電機10の力行動作時には、バッテリ22から回転電機10及びインバータ回路INV1,INV2に向かって電流が流れるため、バッテリ22の出力電圧が低下する。
回転電機10の力行動作時において、インバータ回路INV1,INV2のPWM制御に伴うバッテリ22の出力電圧の脈動と、バッテリ22から回転電機10及びインバータ回路INV1,INV2への放電によるバッテリ22の電圧降下と、が重畳する。その結果、電気負荷23が動作可能な最低動作電圧を電気負荷23の入力電圧が一時的に下回り、電気負荷23において電源失陥が生じることが懸念される。例えば、電気負荷23がCPUと、RAMなどの揮発性メモリとを備える装置(具体的には、制御装置や、カーナビゲーションシステム)を含む場合、電源失陥に伴って当該装置の動作が初期化される。
電気負荷23の入力電圧の脈動は、バッテリ22に設けられた平滑コンデンサ24や、電気負荷23に設けられた平滑コンデンサ(図示略)などの容量成分によって低減することが可能な一方、脈動の周波数が低いほど大きい容量成分が必要となり、体格や部品点数の増加などの問題が生じる。つまり、回転電機10の力行動作時には、PWM制御のキャリア周波数が高いことが望まれる。しかしながら、キャリア周波数が高く設定されると、インバータ回路INV1,INV2においてスイッチSUp1〜SWn1,SUp2〜SWn2がオンオフされる回数が多くなり、その結果スイッチング損失が増加し、電力変換効率が悪化する。
以下、脈動の周波数が低いほど大きい容量成分が必要となる理由について説明する。脈動の周波数が低いほど脈動の一周期は長くなり、脈動の一周期においてバッテリ22の端子間電圧が電気負荷23の最低動作電圧を下回り続ける期間が長くなる。電気負荷23の入力電圧を最低動作電圧以上に保つためには、バッテリ22の端子間電圧が電気負荷23の最低動作電圧を下回り続ける期間が長いほど、容量成分から電気負荷23に供給される電荷量を大きくする必要が生じる。このため、脈動の周波数が低いほど、バッテリ22の端子間電圧が電気負荷23の最低動作電圧以上の期間において、容量成分に大きな電荷量を蓄えておく必要がある。バッテリ22の端子間電圧が電気負荷23の最低動作電圧以上の期間において、容量成分に蓄えておく電荷量を大きくするために、大きな容量成分が必要となる。
そこで、図5,6に示すように、本実施形態の制御装置40は、力行動作時におけるPWM制御のキャリア周波数fc1を、発電動作時におけるPWM制御のキャリア周波数fc2より高く設定する。図5,6に示す操作信号gSUp1は、スイッチSUp1のオンオフ状態を切り替える信号であり、ハイ状態のときにスイッチSUp1がオン状態とされ、ロー状態のときにスイッチSUp1がオフ状態とされる。当該構成により、回転電機10の力行動作時において、電気負荷23の容量成分や平滑コンデンサ24の容量が比較的小さい場合であっても、電気負荷23に供給される電圧が安定化し、バッテリ22から電力を供給される電気負荷23の電源失陥を抑制できる。また、回転電機10の発電動作時において、キャリア周波数が高いことに起因する電力変換効率の悪化を抑制することができる。
なお、特許第3867270号公報には、回転電機の発電動作時にPWM制御のキャリア周波数を変化させる技術が開示されている。特許第3867270号公報に記載の技術は、PWMインバータ制御の動作周波数(インバータ周波数)が零点を通過する際のスイッチング素子の熱損失を最低限に抑え、停止するまで十分なブレーキ力を確保するに好適な電気車の制御装置を提供することを課題とするものである。よって、特許第3867270号公報に記載の技術は、回転電機の力行動作時において直流電源から電力を供給される電気負荷の入力電圧の変動を抑制しつつ、電力変換効率の悪化を抑制することを課題とする本願記載の構成とは課題が異なるものである。
さらに、特許第3867270号公報に記載の技術は、車両の制動動作(発電動作)中において、インバータ回路を構成するスイッチング素子動作時の熱損失が仕様限界を超過しないように、スイッチング素子を制御するPWM信号を生成するキャリア周波数を通常時の周波数に対して低減するものである。即ち、回転電機の力行動作時と発電動作時とでPWM制御のキャリア周波数を異なる値に設定する本願記載の技術とは異なるものである。
また、回転電機10は、アイドリングストップ制御が実施される車両に適用されるものであって、アイドリングストップによるエンジン20の自動停止後のエンジン20の再始動時、又はエンジン20の出力を補助するアシスト動作時に力行動作を実施し、電気負荷23への電力供給時、又は直流電源としてのバッテリ22の充電時に発電動作を実施する。アイドリングストップ再始動時における力行動作は、回生発電と比較して極めて短い時間実施される。つまり、アイドリングストップ制御が実施される車両に適用される回転電機10は、力行動作と比べて発電動作が長い期間実施されるものである。このため、回転電機10において、発電動作時におけるキャリア周波数fc2を、力行動作時のキャリア周波数fc1と比較して低く設定することで、エミッション特性が悪化する期間を短くすることができる。また、力行動作の実施期間より長い発電動作の実施期間において、電力変換効率の悪化を抑制することができ、全体的な電力変換効率の悪化を抑制することができる。
また、図7に示すように、制御装置40は、界磁回路36において、スイッチSW1〜SW4を所定のスイッチング周波数fc3でオンオフさせる。制御装置40は、スイッチング周期1/fc3中の所定の期間において、スイッチSW1〜SW4を所定の期間にわたってオン状態とすることで、界磁回路36から所定の目標電圧Vf*を出力する。そして、制御装置40は、界磁巻線11に流れる界磁電流Ifを所定の目標電流に調整する。
図7に示す操作信号gSW1は、スイッチSW1のオンオフ状態を切り替える信号であり、ハイ状態のときにスイッチSW1がオン状態とされ、ロー状態のときにスイッチSW1がオフ状態とされる。ここで、制御装置40は、界磁巻線11に電力を供給する界磁回路36のスイッチング周波数fc3と、PWM制御におけるキャリア周波数fc1,fc2とを異なる値に設定する。これにより、界磁回路36のスイッチングによる伝導妨害や放射妨害と、インバータ回路INV1,INV2のスイッチングによる伝導妨害や放射妨害とが重畳することを抑制することができ、エミッション特性が悪化することを抑制することができる。
一般的に、界磁巻線11を含む回路は、電機子巻線群10a,10bを含む回路と比較して、電気的な時定数が大きく、スイッチング周波数を低周波数化しても電流変動が小さい。そこで、界磁回路36のスイッチング周波数fc3をキャリア周波数fc1,fc2と異なる値に設定する構成において、制御装置40は、キャリア周波数fc1,fc2を、界磁回路36のスイッチング周波数fc3より高く設定する。当該設定により、電機子巻線群10a,10bにおける電流変動を抑制することで、回転電機10の出力トルクの変動を抑制しつつ、エミッション特性が悪化することを抑制することができる。
さらに、制御装置40は、図8に示すように、力行動作時及び発電動作時におけるPWM制御において、それぞれ所定周波数領域(第1周波数領域、及び、第2周波数領域)でスペクトル拡散を実施する。より具体的には、制御装置40は、力行動作時におけるPWM制御において、第1周波数領域でスペクトル拡散を実施し、発電動作時におけるPWM制御において、第2周波数領域でスペクトル拡散を実施する。ここで、スペクトル拡散とは、キャリア周波数fc1,fc2を所定の幅を有する周波数領域で変化させることである。制御装置40は、PWM制御においてスペクトル拡散を実施することで、エミッション特性の悪化を抑制することができる。また、制御装置40は、力行動作時におけるキャリア周波数fc1のスペクトル拡散領域である第1周波数領域と、発電動作時におけるキャリア周波数fc2のスペクトル拡散領域である第2周波数領域とが重複しないように設定する。
また、制御装置40は、図8に示すように、界磁回路36のスイッチング制御において所定周波数領域でスペクトル拡散を実施する。制御装置40は、スイッチング周波数fc3のスペクトル拡散領域と、キャリア周波数fc1,fc2のスペクトル拡散領域である第1周波数領域及び第2周波数領域と、が重複しないように設定する。
ここで、第1周波数領域は、回転電機10の力行動作時において、制御装置40がインバータ回路INV1,INV2においてPWM制御を実施した場合に、回転電機システムのエミッション特性の悪化を抑制しつつ、回転電機10の回転速度又は出力トルクの脈動の大きさやインバータ回路INV1,INV2の熱損失がそれぞれ所定値以下となるように設定されている。また、第2周波数領域は、回転電機10の発電動作時において、制御装置40がインバータ回路INV1,INV2においてPWM制御を実施した場合に、回転電機システムのエミッション特性の悪化を抑制しつつ、インバータ回路INV1,INV2から出力される直流電圧又は直流電流の脈動の大きさやインバータ回路INV1,INV2の熱損失がそれぞれ所定値以下となるように設定されている。
また、制御装置40は、図4に示すように、領域Cをさらに3つの領域C1,C2,C3に分割し、領域C1においてPWM制御を実施し、領域C2,C3において矩形波制御を実施する。詳しくは、制御装置40は、回転速度が第1閾値Th1より低く、回転電機10から出力される発電電流が所定の第2閾値Th2以上(回転電機10に作用する負のトルクの大きさが所定の閾値以上)の領域C1において、キャリア周波数を周波数fc2に設定してPWM制御を実施する。また、制御装置40は、回転電機10の回転速度が第1閾値Th1より低く、回転電機10から出力される発電電流が第2閾値Th2未満(回転電機10に作用する負のトルクの大きさが所定の閾値未満)の領域C2、及び、回転電機10の回転速度が第1閾値Th1以上となる領域C3において、PWM制御に代えて矩形波制御を実施する。
ここで、第1閾値Th1は、第2回転速度F2未満の値であり、回転電機10の回転速度が第1閾値Th1〜第2回転速度F2未満の領域C3において矩形波制御を実施した場合に、インバータ回路INV1,INV2において回転電機10から出力される発電電力を交流から直流に変換可能な値に設定されている。また、第2閾値Th2は、回転電機10の回転速度が第1閾値Th1より低く、回転電機10から出力される発電電流が第2閾値Th2未満の領域C2において矩形波制御を実施した場合に、インバータ回路INV1,INV2において回転電機10から出力される発電電力を交流から直流に変換可能な値に設定されている。また、回転電機10の発電電流と比較する第2閾値Th2(回転電機10に作用する負のトルクの大きさと比較する所定の閾値)は、回転電機10の回転速度に応じて設定されるものであり、回転速度が大きいほど大きく設定される。
図9に示すように、矩形波制御において、制御装置40は、スイッチSUp1〜SWn1,SUp2〜SWn2に対し、目標電圧Vtgtが正から負にゼロクロスするタイミングでオフ操作を行い、目標電圧Vtgtが負から正にゼロクロスするタイミングでオン操作を行う。矩形波制御を実施すると、電気角1周期当たりのスイッチング回数がオン操作及びオフ操作でそれぞれ1回だけであり、図5,6に示したPWM制御を実施した場合と比較して、電気角1周期当たりのスイッチング回数が少ない。このため、制御装置40は、回転電機10の回転速度が第1閾値Th1以上の領域C3において、PWM制御に代えて矩形波制御を実施することでスイッチング回数を低減し、エミッション特性の悪化を抑制することができる。
また、上述した通り、矩形波制御を実施した場合、PWM制御を実施した場合と比較して、出力可能な電流量が小さい一方で、エミッション特性の悪化を抑制することができる。そこで、制御装置40は、回転速度が第1閾値Th1以上の領域C3に加え、回転電機10に作用するトルクが所定の閾値Th2未満の領域C2においても、PWM制御に代えて矩形波制御を実施することで、エミッション特性の悪化を抑制することができる。
図10に、発電時において、PWM制御のキャリア周波数がfc1された場合、及び、fc2とされた場合の1MHz近傍の中波領域における伝導妨害の電界強度を示す。図10に示すように、制御装置40は、キャリア周波数をfc1からfc2に低下させることで、伝導エミッションの強度(伝導妨害の電界強度)を低減できる。このように、キャリア周波数をfc1からfc2に低下させることで、他の機器への伝導妨害の影響を抑制することが可能である。
図11に、発電時の領域C2(図4)において、PWM制御(キャリア周波数=fc1)が実施された場合、及び、矩形波制御が実施された場合の1MHz近傍の中波領域における伝導妨害の電界強度を示す。図11に示すように、制御装置40は、PWM制御に代えて、矩形波制御を実施することで、伝導エミッションの強度(伝導妨害の電界強度)を低減できる。このように、制御装置40は、PWM制御に代えて矩形波制御を実施することで、他の機器への伝導妨害の影響を抑制することが可能である。
(第2実施形態)
第1実施形態の制御装置40は、回転電機10の発電動作時及び力行動作時のそれぞれにおいて、第1インバータ回路INV1のスイッチを操作する第1操作信号gUp1,gUn1,gVp1,gVn1,gWp1,gWn1のそれぞれと、第2インバータ回路INV2のスイッチを操作する第2操作信号gUp2,gUn2,gVp2,gVn2,gWp2,gWn2のそれぞれと、を同一のものとする。
第2実施形態では、これを変更し、第1操作信号gUp1,gUn1,gVp1,gVn1,gWp1,gWn1を生成する際に用いる第1キャリア信号Sig1の周波数である第1キャリア周波数と、第2操作信号gUp2,gUn2,gVp2,gVn2,gWp2,gWn2を生成する際に用いる第2キャリア信号Sig2の周波数である第2キャリア周波数と、を異なる値に設定する。
詳しくは、第2実施形態の制御装置40は、第1インバータ回路INV1及び第2インバータ回路INV2のそれぞれにおいて、第1実施形態のキャリア周波数fc2に相当する発電時におけるキャリア周波数を異なった値(第1キャリア周波数fc2a,第2キャリア周波数fc2b)に設定する。また、制御装置40は、第1インバータ回路INV1及び第2インバータ回路INV2のそれぞれにおいて、第1実施形態のキャリア周波数fc1に相当する力行時におけるキャリア周波数を異なった値に設定してもよい。
図12を用いて、第2実施形態の制御装置40によって実行される回転電機10の発電制御について説明する。
電圧偏差算出部40aは、目標電圧Vtgtから電源電圧VDCを減算することにより、電圧偏差ΔVを算出する。なお、目標電圧Vtgtは、例えば、固定値に設定されてもよいし、可変設定されてもよい。ここで目標電圧Vtgtが可変設定される場合、例えば、回転電機10の目標出力電力Wtgtが大きいとき、目標出力電力Wtgtが小さいときよりも目標電圧Vtgtが高く設定されればよい。なお、目標出力電力Wtgtは、例えば、電気負荷23の駆動状況、及びバッテリ22の蓄電量により定まる。
速度算出部40bは、回転角検出部30により検出された電気角θに基づいて、回転電機10の電気角速度ω(回転速度)を算出する。
指令値算出部40cは、電圧偏差ΔVと、電気角速度ωとに基づいて、目標電圧Vtgtを実現するための各指令値を算出する。具体的には、指令値算出部40cは、第1巻線群10aに流す第1d,q軸指令電流Id1tgt,Iq1tgtと、第2巻線群10bに流す第2d,q軸指令電流Id2tgt,Iq2tgtと、界磁巻線11に流す目標界磁電流Iftgtとを算出する。ちなみに、各指令電流Id1tgt,Iq1tgt,Id2tgt,Iq2tgtは、例えば、電圧偏差ΔV及び電気角速度ωと関係づけられて各指令電流Id1tgt〜Iq2tgtが規定されたマップ情報を用いて算出されればよい。また、目標界磁電流Iftgtは、例えば、電圧偏差ΔV及び電気角速度ωと関係づけられて目標界磁電流Iftgtが規定されたマップ情報を用いて算出されればよい。
なお、第1d軸指令電流Id1tgtと第2d軸指令電流Id2tgtとは、同じ値に設定されてもよいし、異なる値に設定されてもよい。また、第1q軸指令電流Iq1tgtと第2q軸指令電流Iq2tgtとは、同じ値に設定されてもよいし、異なる値に設定されてもよい。
第1電流変換部41aは、相電流検出部33により検出された各相電流Iu1,Iv1,Iw1、及び電気角θに基づいて、回転電機10の3相固定座標系における各相電流Iu1,Iv1,Iw1を、2相回転座標系であるdq座標系における第1d,q軸電流Id1r,Iq1rに変換する。
第1電流偏差算出部41bは、第1d軸指令電流Id1tgtから第1d軸電流Id1rを減算することにより、第1d軸電流偏差ΔId1を算出する。第1電流偏差算出部41bは、第1q軸指令電流Iq1tgtから第1q軸電流Iq1rを減算することにより、第1q軸電流偏差ΔIq1を算出する。
第1指令電圧算出部41cは、第1d,q軸電流偏差ΔId1,ΔIq1に基づいて、第1d,q軸電流Id1r,Iq1rを第1d,q軸指令電流Id1tgt,Iq1tgtにフィードバック制御するために要求される第1巻線群10aに対応する第1d,q軸電圧Vd1,Vq1を算出する。第1d,q軸電圧Vd1,Vq1は、図13に示すように、第1電圧ベクトルVn1のd,q軸成分である。本実施形態では、回転電機10のdq座標系における正のd軸を基準として、反時計まわりに第1電圧ベクトルVn1が回転する場合の第1電圧位相δ1を正の値で定義する。ちなみに、第1d,q軸電圧Vd1,Vq1は、例えば、電圧偏差ΔVと関係付けられて第1d,q軸電圧Vd1,Vq1が規定されたマップ情報を用いて算出されればよい。なお、第1指令電圧算出部41cにおけるフィードバック制御としては、例えば比例積分制御を用いればよい。
第1変換部41dは、電気角θ及び電源電圧VDCに基づいて、第1d,q軸電圧Vd1,Vq1を、回転電機10の3相固定座標系における第1U,V,W相変調信号VU1,VV1,VW1に変換する。詳しくは、まず、第1変換部41dは、U,V,W相巻線UA,VA,WAから第1インバータ30Aへと出力するU,V,W相指令電圧VU*1,VV*1,VW*1を算出する。本実施形態において、第1U,V,W相指令電圧VU*1,VV*1,VW*1は、中央値が0であり、互いに位相が電気角で120°ずれた正弦波状の信号となる。第1変換部41dは、第1U,V,W相指令電圧VU*1,VV*1,VW*1を電源電圧VDCで規格化した信号「VU*1/VDC,VV*1/VDC,VW*1/VDC」として、第1U,V,W相変調信号VU1,VV1,VW1を算出する。このため、第1U,V,W相変調信号VU1,VV1,VW1は、中央値が0であり、互いに位相が電気角で120°ずれた正弦波状の信号となる。なお本実施形態において、変調信号が指令電圧の相関値に相当する。
第1PWM生成部41eは、第1U,V,W相変調信号VU1,VV1,VW1と第1キャリア信号Sig1との大小比較に基づくPWM処理により、第1操作信号gUp1,gUn1,gVp1,gVn1,gWp1,gWn1の元になる第1U,V,W相PWM信号GU1,GV1,GW1を生成して出力する。本実施形態では、第1キャリア信号Sig1として、中央値が0となる三角波信号を用いている。
第1PWM生成部41eは、例えばU相を例にして説明すると、図14(a),(b)に示すように、第1U相変調信号VU1が第1キャリア信号Sig1を上回る場合、第1U相PWM信号GU1をHとし、第1U相変調信号VU1が第1キャリア信号Sig1以下となる場合、第1U相PWM信号GU1をLとする。また本実施形態において、第1PWM生成部41eは、第1U,V,W相変調信号VU1,VV1,VW1が0以下となる期間に渡って、第1U,V,W相PWM信号GU1,GV1,GW1をLとする。
第1操作信号生成部41fは、第1U,V,W相PWM信号GU1,GV1,GW1の論理反転信号を生成する。第1操作信号生成部41fは、第1U,V,W相PWM信号GU1,GV1,GW1のLからHへの切替タイミングをデッドタイムだけ遅延させることにより、上アーム側の第1操作信号gUp1,gVp1,gWp1を生成する。第1操作信号生成部41fは、論理反転信号のLからHへの切替タイミングをデッドタイムだけ遅延させることにより、下アーム側の第1操作信号gUn1,gVn1,gWn1を生成する。これにより、第1インバータ回路INV1を構成する各スイッチの操作態様が、指令電圧のピーク値が電源電圧VDC以下とされる場合における正弦波操作態様とされる。
第2電流変換部42aは、相電流検出部33により検出された各相電流Iu2,Iv2,Iw2、及び電気角θに基づいて、3相固定座標系における各相電流Iu2,Iv2,Iw2を、dq座標系における第2d,q軸電流Id2r,Iq2rに変換する。
第2電流偏差算出部42bは、第2d軸指令電流Id2tgtから第2d軸電流Id2rを減算することにより、第2d軸電流偏差ΔId2を算出する。第2電流偏差算出部42bは、第2q軸指令電流Iq2tgtから第2q軸電流Iq2rを減算することにより、第2q軸電流偏差ΔIq2を算出する。
第2指令電圧算出部42cは、第2d,q軸電流偏差ΔId2,ΔIq2に基づいて、第2d,q軸電流Id2r,Iq2rを第2d,q軸指令電流Id2tgt,Iq2tgtに制御するために要求される第2巻線群10bに対応する第2d,q軸電圧Vd2,Vq2を算出する。第2d,q軸電圧Vd2,Vq2は、第2電圧ベクトルVn2のd,q軸成分である。本実施形態では、第1電圧ベクトルVn1と同様に、回転電機10のdq座標系における正のd軸を基準として、反時計まわりに第2電圧ベクトルVn2が回転する場合の第2電圧位相δ2を正の値で定義する。ちなみに、第2d,q軸電圧Vd2,Vq2は、例えば、電圧偏差ΔVと関係付けられて第2d,q軸電圧Vd2,Vq2が規定されたマップ情報を用いて算出されればよい。なお、第2指令電圧算出部42cにおけるフィードバック制御としては、例えば比例積分制御を用いればよい。
第2変換部42dは、電気角θ及び電源電圧VDCに基づいて、第2d,q軸電圧Vd2,Vq2を、3相固定座標系における第2U,V,W相変調信号VU2,VV2,VW2に変換する。第2U,V,W相変調信号VU2,VV2,VW2は、中央値が0であり、互いに位相が電気角で120°ずれた正弦波状の信号となる。また本実施形態において、第2U,V,W相変調信号VU2,VV2,VW2は、その振幅,周波数が第1U,V,W相変調信号VU1,VV1,VW1の振幅,周波数と同一とされている。
第2PWM生成部42eは、第2U,V,W相変調信号VU2,VV2,VW2と第2キャリア信号Sig2との大小比較に基づくPWM処理により、第2操作信号gUp2,gUn2,gVp2,gVn2,gWp2,gWn2の元になる第2U,V,W相PWM信号GU2,GV2,GW2を生成して出力する。本実施形態では、第2キャリア信号Sig2として、中央値が0となる三角波信号を用いている。本実施形態において、第2キャリア信号Sig2の振幅と第1キャリア信号Sig1の振幅とは同一とされている。
第2PWM生成部42eは、例えばU相を例にして説明すると、図14(c),(d)に示すように、第2U相変調信号VU2が第2キャリア信号Sig2を上回る場合、第2U相PWM信号GU2をHとし、第2U相変調信号VU2が第2キャリア信号Sig2以下となる場合、第2U相PWM信号GU2をLとする。また本実施形態において、第2PWM生成部42eは、第2U,V,W相変調信号VU2,VV2,VW2が0以下となる期間に渡って、第2U,V,W相PWM信号GU2,GV2,GW2をLとする。
第2操作信号生成部42fは、第2U,V,W相PWM信号GU2,GV2,GW2の論理反転信号を生成する。第2操作信号生成部42fは、第2U,V,W相PWM信号GU2,GV2,GW2のLからHへの切替タイミングをデッドタイムだけ遅延させることにより、上アーム側の第2操作信号gUp2,gVp2,gWp2を生成する。第2操作信号生成部42fは、論理反転信号のLからHへの切替タイミングをデッドタイムだけ遅延させることにより、下アーム側の第2操作信号gUn2,gVn2,gWn2を生成する。これにより、第2インバータ回路INV2を構成する各スイッチの操作態様が正弦波操作態様とされる。
電流偏差算出部43aは、界磁電流検出部32により検出された界磁電流Ifrを目標界磁電流Iftgtから減算することにより、電流偏差ΔIfを算出する。
界磁算出部43bは、電流偏差ΔIfに基づいて、界磁巻線11に流れる界磁電流Ifrを目標界磁電流Iftgtに制御するための電圧Vfを界磁巻線11に印加する。
本実施形態では、図14に示すように、第1キャリア信号Sig1の周波数である第1キャリア周波数fc2aが、第2キャリア信号Sig2の周波数である第2キャリア周波数fc2bよりも高く設定されている。これにより、第1インバータ回路INV1の1電気角周期(360°)におけるスイッチング回数が、第2インバータ回路INV2の1電気角周期におけるスイッチング回数よりも多くなる。なお図14には、U相のみの各波形の推移を示す。また、インバータ回路における変調手法としては、図14に示す2相変調に限らず、3相変調であってもよい。
図15に示すように、キャリア周波数fcLの低い方が、キャリア周波数fcHの高い方よりも各周波数におけるノイズレベルが低くなる傾向になる。そこで、発電時におけるキャリア周波数fc2を力行時におけるキャリア周波数fc1よりも低くする構成において、さらに発電動作時における第1インバータ回路INV1の第1キャリア周波数fc2aと第2インバータ回路INV2の第2キャリア周波数fc2bとを相違させる。これにより、インバータ回路INV1,INV2それぞれを構成するスイッチのスイッチングに伴い発生するノイズのスペクトルを分散できる。ノイズは、放射ノイズ及び伝導ノイズを含むものである。スペクトルを分散できるため、スイッチング操作に伴い発生するノイズによる悪影響を低減できる。
また、本実施形態によれば、第1インバータ回路INV1におけるキャリア周波数と第2インバータ回路INV2におけるキャリア周波数を相違させるといった簡易な構成でノイズを低減することができる。
(他の実施形態)
・第1実施形態における制御装置40は、図4に示すように、領域Cをさらに3つの領域C1,C2,C3に分割し、領域C1においてPWM制御を実施し、領域C2,C3において矩形波制御を実施する。これを変更し、本変形例における制御装置40は、回転電機10の発電時、且つ、回転電機10の回転速度が第3閾値以上の領域(図4に示す領域C3に相当)において、インバータ回路INV1,INV2においてPWM制御に代えて過変調パルス幅変調制御(過変調PWM制御)を実施する。また、本変形例における制御装置40は、領域Cのうち領域C1,C2に相当する領域において通常のPWM制御を実施する。また、第3閾値は、第2回転速度F2未満の値であり、回転電機10の回転速度が第3閾値〜第2回転速度F2未満の領域において過変調PWM制御を実施した場合に、インバータ回路INV1,INV2において回転電機10から出力される発電電力を交流から直流に変換可能な値に設定されている。
過変調PWM制御とは、出力電圧の最大値が電源電圧の半分となる通常のPWM制御と異なり、出力電圧の最大値が電源電圧の2/π倍となるように複数のキャリア周期にわたってスイッチSUp1〜SWn1,SUp2〜SWn2をオンにし続ける制御のことである。図16に示すように、過変調PWM制御は、通常のPWM制御と比較して、電気角1周期当たりのスイッチング回数が少ない。このため、図4に示す領域C3に相当する領域において、過変調PWM制御を実施することで、通常のPWM制御と比較して、エミッション特性が悪化することを抑制することができる。
また、制御装置40は、図4に示す領域C2,C3に相当する領域において、過変調制御を実施するものであってもよい。また、制御装置40は、図4に示す領域C2に相当する領域において、過変調制御を実施し、図4に示す領域C3に相当する領域において、矩形波制御を実施するものであってもよい。また、制御装置40は、図4に示す領域C2に相当する領域において、矩形波制御を実施し、図4に示す領域C3に相当する領域において、過変調制御を実施するものであってもよい。また、制御装置40は、図4に示す領域C3のうち回転速度が第3閾値(>第1閾値)以上の領域において、過変調制御を実施し、回転速度が第3閾値未満の領域において、矩形波制御を実施するものであってもよい。
・第2実施形態において、制御装置40は、回転電機10の回転速度及びトルクが所定領域となる場合に、インバータ回路INV1,INV2の一方において、PWM制御(正弦波PWM制御)を実施し、他方において、過変調PWM制御を実施するものであってもよい。同様に、制御装置40は、回転電機10の回転速度及びトルクが所定領域となる場合に、インバータ回路INV1,INV2の一方において、PWM制御(正弦波PWM制御)を実施し、他方において、矩形波制御を実施するものであってもよい。
・上記実施形態の制御装置40は、回転電機10の力行動作時におけるPWM制御のキャリア周波数fc1を回転電機10の発電動作時におけるPWM制御のキャリア周波数fc2よりたかく設定する構成とした。これを変更し、制御装置40は、力行動作及び発電動作の一方の時におけるパルス幅変調制御のキャリア周波数と比べて、力行動作及び前記発電動作の他方の時におけるキャリア周波数を低く設定するものであってもよい。
概して、回転電機10における力行動作および発電動作の他方は一方と比べて1回の実施期間が長い。しかしながら力行動作および発電動作それぞれの実施期間の長短は車両制御に応じて変動する。そのため、上記した力行動作および発電動作の実施期間の長短関係が必ず成立するわけではない。しかしながら車両制御期間中における力行動作および発電動作それぞれの総実施期間で比較すると、力行動作および発電動作の他方は一方と比べて実施期間が長い、ということができる。
これに対して本変形例の制御装置40は、力行動作および発電動作の一方の時におけるPWM制御のキャリア周波数と比べて、力行動作および発電動作の他方の時におけるキャリア周波数を低く設定する。これにより、実施期間の長い動作時におけるキャリア周波数が低くなる。そのため、エミッション特性が悪化する期間が短くなる。
・図4に示す領域Cの全部において、PWM制御を実施する構成としてもよい。また、領域Cのうち領域C1,C2においてPWM制御を実施し、領域C3において矩形波制御を実施する構成としてもよい。
・界磁回路36において、界磁巻線11に対して並列接続される還流ダイオードを設ける構成としてもよい。当該還流ダイオードは、界磁回路36を構成するスイッチSW1〜SW4が全てオフ状態とされた場合に、界磁巻線11に流れる電流が当該還流ダイオードの順方向に流れるように設けるとよい。同様に、界磁回路36Aに対し、界磁巻線11に対して並列接続される還流ダイオードを設ける構成としてもよい。
・界磁回路36において、スイッチSW1〜SW4のいずれか一つをダイオードに代えてもよい。また、スイッチSW2及びスイッチSW3、又は、スイッチSW1及びスイッチSW4をダイオードに代えてもよい。スイッチSW1〜SW4のいずれかをダイオードに代える際、そのダイオードは、スイッチSW1〜SW4のボディダイオードD1〜D4(図2)のそれぞれと同じ方向に接続されるとよい。また、界磁回路36Aにおいて、スイッチSW2Aをダイオードに代えてもよい。
・界磁巻線11に代えて、永久磁石を用いてもよい。即ち、回転電機は、永久磁石型同期回転電機であってもよい。また、回転電機は、2重巻線に代えて、1重巻線を備えていてもよい。回転電機が1重巻線を備える構成の場合、2つのインバータ回路INV1,INV2のうち一方を省略するとよい。また、2重巻線に代えて、3重以上の巻線を備えていてもよい。また、3相巻線に代えて、2相巻線、又は、4相以上の巻線を備えていてもよい。
・制御装置40によるインバータ回路INV1,INV2におけるスペクトル拡散の少なくとも一方を省略する構成としてもよい。また、界磁回路36におけるスペクトル拡散を省略する構成としてもよい。
10…回転電機、22…バッテリ、23…電気負荷、40…制御装置、INV1…第1インバータ回路、INV2…第2インバータ回路。

Claims (12)

  1. 力行動作及び発電動作が可能な回転電機(10)の制御装置(40)であって、
    前記力行動作時において、直流電源(22)から供給される直流電力を交流電力に変換し前記回転電機に出力するとともに、前記発電動作時において、前記回転電機から供給される交流電力を直流電力に変換し前記直流電源側に出力するインバータ回路(INV1,INV2)において、パルス幅変調制御を実施し、
    前記直流電源には、前記インバータ回路及び前記回転電機それぞれとは異なる電気負荷(23)が接続され、
    前記力行動作時における前記パルス幅変調制御のキャリア周波数を、前記発電動作時における前記キャリア周波数より高く設定する回転電機の制御装置。
  2. 前記回転電機は、前記力行動作と比べて前記発電動作が長い期間実施される請求項1に記載の回転電機の制御装置。
  3. 前記回転電機は、アイドリングストップ制御が実施される車両に適用されるものであって、アイドリングストップによるエンジン(20)の自動停止後の前記エンジンの再始動時、又は前記エンジンの出力を補助するアシスト動作時に前記力行動作を実施し、前記電気負荷への電力供給時、又は前記直流電源としての二次電池の充電時に前記発電動作を実施する請求項2に記載の回転電機の制御装置。
  4. 前記力行動作時及び前記発電動作時の少なくとも一方における前記パルス幅変調制御において、所定周波数領域でスペクトル拡散を実施する請求項1乃至3のいずれか1項に記載の回転電機の制御装置。
  5. 前記回転電機は、界磁巻線(11)を備える巻線界磁型回転電機であって、
    前記界磁巻線に電力を供給する界磁回路(36)のスイッチング周波数と、前記キャリア周波数とを異なる値に設定する請求項1乃至4のいずれか1項に記載の回転電機の制御装置。
  6. 前記発電動作時における前記キャリア周波数を前記界磁回路のスイッチング周波数より高く設定する請求項5に記載の回転電機の制御装置。
  7. 前記力行動作時における前記パルス幅変調制御において、第1周波数領域でスペクトル拡散を実施し、前記発電動作時における前記パルス幅変調制御において、第2周波数領域でスペクトル拡散を実施し、前記界磁回路のスイッチング周波数を前記第1周波数領域及び前記第2周波数領域とは異なる値に設定する請求項5又は6に記載の回転電機の制御装置。
  8. 前記回転電機の発電時において、前記回転電機の回転速度が所定の第1閾値以上になった場合に、前記インバータ回路において前記パルス幅変調制御に代えて矩形波制御を実施する請求項1乃至7のいずれか1項に記載の回転電機の制御装置。
  9. 前記回転電機の発電時において、前記回転速度が前記第1閾値より低い領域において、前記回転電機から出力される発電電流が所定の第2閾値未満の場合、前記パルス幅変調制御に代えて前記矩形波制御を実施する請求項8に記載の回転電機の制御装置。
  10. 前記回転電機の発電時において、前記回転電機の回転速度が所定の第3閾値以上になった場合に、前記インバータ回路において前記パルス幅変調制御に代えて過変調パルス幅変調制御を実施する請求項1乃至9のいずれか1項に記載の回転電機の制御装置。
  11. 前記回転電機は、ステータ(13)に巻回された複数の巻線群(10a,10b)を有する多重巻線回転電機であって、
    前記インバータ回路は、スイッチ(SUp1〜SWn1,SUp2〜SWn2)を有して、かつ、前記複数の巻線群それぞれに対応して個別に設けられ、前記スイッチのスイッチング操作により対応する前記巻線群との間で電力伝達を行い、
    前記回転電機の1電気角周期あたりの前記スイッチのスイッチング回数を複数の前記インバータ回路で互いに相違させるように、複数の前記インバータ回路を構成する前記スイッチの操作態様を設定し、その設定された操作態様に基づいて、前記インバータ回路をそれぞれ構成する前記スイッチを操作する請求項1乃至10のいずれか1項に記載の回転電機の制御装置。
  12. 請求項1乃至11のいずれか1項に記載の前記回転電機の制御装置、前記回転電機、及び、前記インバータ回路を備える回転電機システム。
JP2016240131A 2016-12-12 2016-12-12 回転電機の制御装置、及び、回転電機システム Ceased JP2018098872A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016240131A JP2018098872A (ja) 2016-12-12 2016-12-12 回転電機の制御装置、及び、回転電機システム
PCT/JP2017/042121 WO2018110242A1 (ja) 2016-12-12 2017-11-23 回転電機の制御装置、及び、回転電機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240131A JP2018098872A (ja) 2016-12-12 2016-12-12 回転電機の制御装置、及び、回転電機システム

Publications (1)

Publication Number Publication Date
JP2018098872A true JP2018098872A (ja) 2018-06-21

Family

ID=62558391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240131A Ceased JP2018098872A (ja) 2016-12-12 2016-12-12 回転電機の制御装置、及び、回転電機システム

Country Status (2)

Country Link
JP (1) JP2018098872A (ja)
WO (1) WO2018110242A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019130306A1 (de) * 2019-11-11 2021-05-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine
WO2021095109A1 (ja) * 2019-11-12 2021-05-20 三菱電機株式会社 交流回転機の制御装置
WO2021145270A1 (ja) * 2020-01-14 2021-07-22 株式会社デンソー 車両の駆動制御装置
JP2021136738A (ja) * 2020-02-25 2021-09-13 日産自動車株式会社 スイッチング装置制御方法、及びスイッチング装置制御システム
JP2022080946A (ja) * 2020-11-19 2022-05-31 三菱電機株式会社 交流回転機の制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167786B2 (ja) * 2019-03-15 2022-11-09 株式会社Ihi 発電システム
CN112398398A (zh) * 2020-12-03 2021-02-23 湖南大学 双三相永磁同步电机弱磁控制的方法及装置
CN113002366B (zh) * 2021-04-30 2022-05-03 重庆长安新能源汽车科技有限公司 一种电动汽车及其动力电池加热***和加热方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268822A (ja) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd エネルギー貯蔵装置
JP3867270B2 (ja) * 2002-06-28 2007-01-10 株式会社日立製作所 電気車の制御装置
JP2008307908A (ja) * 2007-06-12 2008-12-25 Toyota Motor Corp ハイブリッド電気自動車
JP2013059181A (ja) * 2011-09-07 2013-03-28 Denso Corp 電力変換装置
JP2015091186A (ja) * 2013-11-06 2015-05-11 パナソニックIpマネジメント株式会社 モータインバータ装置
JP2016082863A (ja) * 2014-10-21 2016-05-16 株式会社デンソー 回転電機の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268822A (ja) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd エネルギー貯蔵装置
JP3867270B2 (ja) * 2002-06-28 2007-01-10 株式会社日立製作所 電気車の制御装置
JP2008307908A (ja) * 2007-06-12 2008-12-25 Toyota Motor Corp ハイブリッド電気自動車
JP2013059181A (ja) * 2011-09-07 2013-03-28 Denso Corp 電力変換装置
JP2015091186A (ja) * 2013-11-06 2015-05-11 パナソニックIpマネジメント株式会社 モータインバータ装置
JP2016082863A (ja) * 2014-10-21 2016-05-16 株式会社デンソー 回転電機の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019130306A1 (de) * 2019-11-11 2021-05-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine
WO2021095109A1 (ja) * 2019-11-12 2021-05-20 三菱電機株式会社 交流回転機の制御装置
JPWO2021095109A1 (ja) * 2019-11-12 2021-05-20
JP7267448B2 (ja) 2019-11-12 2023-05-01 三菱電機株式会社 交流回転機の制御装置
WO2021145270A1 (ja) * 2020-01-14 2021-07-22 株式会社デンソー 車両の駆動制御装置
JP2021136738A (ja) * 2020-02-25 2021-09-13 日産自動車株式会社 スイッチング装置制御方法、及びスイッチング装置制御システム
JP7415651B2 (ja) 2020-02-25 2024-01-17 日産自動車株式会社 スイッチング装置制御方法、及びスイッチング装置制御システム
JP2022080946A (ja) * 2020-11-19 2022-05-31 三菱電機株式会社 交流回転機の制御装置
JP7191074B2 (ja) 2020-11-19 2022-12-16 三菱電機株式会社 交流回転機の制御装置

Also Published As

Publication number Publication date
WO2018110242A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2018110242A1 (ja) 回転電機の制御装置、及び、回転電機システム
US11258391B2 (en) Rotating electrical machine control device
US9083274B2 (en) Power stage precharging and dynamic braking apparatus for multilevel inverter
JP6087666B2 (ja) 電力変換装置
JP6477915B2 (ja) 電力変換装置
JP6893946B2 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
US10027271B2 (en) Rotating electrical machine control device
JP2010081786A (ja) パワースイッチング回路
US10903772B2 (en) Multigroup-multiphase rotating-electric-machine driving apparatus
WO2018055792A1 (ja) 電力変換装置
JP6423323B2 (ja) 電力変換装置
JP6669532B2 (ja) 電力変換装置
TW201909525A (zh) 用於逆變器的控制裝置
US11456686B2 (en) Rotating electrical machine control device
US20190379316A1 (en) Control for electric power steering
JP2008206329A (ja) 電動回転機の電源制御装置
JP2018019525A (ja) 回転電機の制御装置
JP2017192207A (ja) 回転電機システムおよび回転電機システムの制御方法
JP6590457B2 (ja) 車両駆動制御装置及び車両駆動制御方法
JP2003033042A (ja) 二相変調制御式インバータ装置
WO2023112220A1 (ja) 電力変換装置
JP7192258B2 (ja) 車両用回転電機
JP6908303B2 (ja) 電力変換装置
JP2006141175A (ja) 交流交流直接変換器の電動機制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20200128