JP2016510893A - 一貫性のあるセンサ表面積を有する化学センサ - Google Patents

一貫性のあるセンサ表面積を有する化学センサ Download PDF

Info

Publication number
JP2016510893A
JP2016510893A JP2016500682A JP2016500682A JP2016510893A JP 2016510893 A JP2016510893 A JP 2016510893A JP 2016500682 A JP2016500682 A JP 2016500682A JP 2016500682 A JP2016500682 A JP 2016500682A JP 2016510893 A JP2016510893 A JP 2016510893A
Authority
JP
Japan
Prior art keywords
insulator
conductive element
chemical sensor
chemical
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016500682A
Other languages
English (en)
Other versions
JP6581074B2 (ja
Inventor
ファイフ,キース
オーウェンス,ジョーダン
リ,シフェン
バスティロ,ジェームズ
Original Assignee
ライフ テクノロジーズ コーポレーション
ライフ テクノロジーズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライフ テクノロジーズ コーポレーション, ライフ テクノロジーズ コーポレーション filed Critical ライフ テクノロジーズ コーポレーション
Publication of JP2016510893A publication Critical patent/JP2016510893A/ja
Application granted granted Critical
Publication of JP6581074B2 publication Critical patent/JP6581074B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Abstract

一実施形態において、化学センサが記載される。本化学センサは、上面を有する浮遊ゲート導体を含む化学感応性電界効果トランジスタを含む。材料が、浮遊ゲート導体の上面にまで延伸する開口部を画定する。該材料は、第2の絶縁体の下にある第1の絶縁体を備える。伝導性素子が、浮遊ゲート導体の上面に接触し、かつ開口部の側壁に沿ってある距離を延伸し、該距離は第1の絶縁体の厚さによって画定される。

Description

関連出願の相互参照
本出願は、2013年8月22日出願の米国仮特許出願第61/868,739号、及び2013年3月15日出願の同第61/790,866号に対する優先権を主張するものであり、その内容全体は参照によりそれらの全体が本明細書に組み込まれる。
本開示は、化学分析のためのセンサ、及びそのようなセンサの製造方法に関する。
様々な種類の化学センサが化学プロセスの検出に使用されてきた。1つの種類は、化学感応性電界効果トランジスタ(chemFET)である。chemFETは、チャネル領域によって分離されるソース及びドレイン、ならびにチャネル領域に連結される化学感応性区域を含む。chemFETの操作は、近くで発生する化学反応に起因する感応性区域における電荷の変化によって引き起こされる、チャネルコンダクタンスの変調に基づく。チャネルコンダクタンスの変調は、chemFETの閾値電圧を変化させ、この閾値電圧を測定して、化学反応の特徴を検出及び/または決定することができる。閾値電圧は、例えば、適切なバイアス電圧をソース及びドレインに印加すること、及びchemFETを通って流れる結果として生じる電流を測定することによって、測定され得る。別の例として、閾値電圧は、既知の電流をchemFETに流すこと、及びソースまたはドレインで結果として生じる電圧を測定することによって、測定され得る。
イオン感応性電界効果トランジスタ(ISFET)は、感応性区域にイオン感応性層を含むchemFETの種類である。検体溶液中のイオンの存在は、検体溶液中に存在するイオンによって引き起こされる表面荷電基のプロトン化及び脱プロトン化に起因して、イオン感応性層と検体溶液との間の界面で表面電位を変更する。ISFETの感応性区域における表面電位の変化は、装置の閾値電圧に影響を与え、この閾値電圧を測定して、溶液内のイオンの存在及び/または濃度を示すことができる。
ISFETのアレイは、DNA配列反応などの化学反応を監視するために、反応中に存在する、生成される、または使用されるイオンの検出に基づいて使用され得る。例えば、参照により本明細書に組み込まれる、Rothbergらに対する米国特許第7,948,015号を参照。より一般的には、chemFETの大きいアレイまたは他の種類の化学センサを利用して、様々なプロセスにおける様々な検体(例えば、水素イオン、他のイオン、化合物等)の静的及び/もしくは動的な量または濃度を検出及び測定してもよい。プロセスは、例えば、生物学的もしくは化学的反応、細胞もしくは組織培養、または神経活動、核酸配列を監視すること等であってもよい。
大規模化学センサアレイの操作において生じる問題は、ノイズに対するセンサ出力信号の感受性である。具体的には、ノイズは、センサによって検知されている化学的及び/または生物学的プロセスの特徴を決定するために使用される下流信号処理の精度に影響を与える。加えて、アレイにわたる化学センサの性能ばらつきは、センサ出力信号における望ましくない違いをもたらし、この違いが下流信号処理をさらに複雑にする。
そのため、低ノイズ化学センサを含む装置、及びそのような装置の製造方法を提供することが望ましい。
一実施形態において、化学センサが記載される。本化学センサは、上面を有する浮遊ゲート導体を含む化学感応性電界効果トランジスタを含む。材料が、浮遊ゲート導体の上面にまで延伸する開口部を画定し、該材料は、第2の絶縁体の下にある第1の絶縁体を備える。伝導性素子は、浮遊ゲート導体の上面に接触し、かつ開口部の側壁に沿ってある距離を延伸し、該距離は第1の絶縁体の厚さによって画定される。
別の実施形態において、化学センサの製造方法が記載される。本方法は、上面を有する浮遊ゲート導体を含む化学感応性電界効果トランジスタを形成することを含む。本方法は、浮遊ゲート導体の上面にまで延伸する開口部を画定する材料を形成することをさらに含み、該材料は第2の絶縁体の下にある第1の絶縁体を備える。本方法は、浮遊ゲート導体の上面に接触し、かつ開口部の側壁に沿ってある距離を延伸する伝導性素子を形成することをさらに含み、該距離は絶縁体の厚さによって画定される。
本明細書に記載される本主題のもう1つの実施形態の特定の態様が、以下の図面及び説明において提供される。本主題の他の特徴、態様、及び利点は、説明、図面、及び特許請求の範囲から明らかとなる。
例示的な実施形態に従う核酸配列のためのシステムの構成要素のブロック図を例証する。 例示的な実施形態に従う集積回路装置及びフローセルの一部分の横断面図を例証する。 第1の実施形態に従う2つの代表的な化学センサ及びそれらの対応する反応領域の横断面図を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第2の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第2の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第3の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第3の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第3の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。 第3の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。
上に重なる、動作的に関連付けられた反応領域内で化学反応を検出するための、化学感応性電界効果トランジスタ(chemFET)などの低ノイズ化学センサを含む化学検出装置が、記載される。
個々の化学センサ及び上に重なる反応領域の平面または上面積(または設置面積)を低減することが、より密度の高い装置を可能にする。しかしながら、化学センサの寸法が低減されると、出願者らは、センサの検知表面積の対応する低減が性能に著しい影響を与え得ることを発見している。
例えば、反応領域の底部で画定される検知表面を有する化学センサでは、反応領域の平面寸法(例えば、幅または直径)を低減することは、検知表面積において同様の低減をもたらす。出願者らは、検知表面積が技術限界まで低減されると、検知表面上の電荷の無作為変動に起因する流体ノイズが、検知表面電位おける全変動の割合増加に寄与することを発見している。これにより、センサによって検知されている化学的及び/または生物学的プロセスの特徴を決定するために使用される下流信号処理の精度に影響を与える、センサ出力信号の信号対ノイズ比(SNR)を著しく低減することができる。
本明細書に記載される化学センサは、反応領域の底部で2次元面積に制限されない検知表面積を有する。本明細書に記載される実施形態において、化学センサの検知表面は、反応領域の底面に沿って略水平の部分、ならびに反応領域を含む開口部の側壁に沿って略垂直の部分を含む。
略垂直の部分が側壁に沿って延伸する距離は、開口部の下部を形成する絶縁体材料の厚さによって画定される。絶縁体材料を、アレイにわたって極めて小さな厚さ変動をもたらすプロセス(例えば、薄膜堆積)を使用して堆積することができる。そうすることで、化学センサのセンサ表面積を非常に良好に制御することができ、アレイにわたって均一な化学センサ性能をもたらし、従って下流信号処理を簡略化する。
略垂直の方向に検知表面を延伸することによって、化学センサは小さい設置面積を有しながら、同時に、小さい検知表面に関連するノイズ問題を回避するのに十分に大きい検知表面を有することもできる。化学センサの設置面積は、上に重なる反応領域の幅(例えば、直径)によって部分的に決定され、小さく作製することにより、高密度アレイを可能にすることができる。加えて、検知表面は制御された距離を側壁上方へ延伸するため、検知表面積は比較的大きくなり得る。結果として、低ノイズ化学センサを、反応の特徴を正確に検出することができるように、高密度アレイで提供することができる。
図1は、例示的な実施形態に従う核酸配列のためのシステムの構成要素のブロック図を例証する。本構成要素は、集積回路装置100上のフローセル101、基準電極108、シーケンシングのための複数の試薬114、弁ブロック116、洗浄溶液110、弁112、フルイディクス制御器118、ライン120/122/126、通路104/109/111、廃棄物容器106、アレイ制御器124、及びユーザインターフェース128を含む。集積回路装置100は、本明細書に記載されるような化学センサを含むセンサアレイの上に重なるマイクロウェルアレイ107を含む。フローセル101は、入口102、出口103、及びマイクロウェルアレイ107にわたる試薬114のための流路を画定するフローチャンバ105を含む。
基準電極108は、通路111の内腔に挿入される流体通路またはワイヤを有する同心円筒をはじめとする、任意の好適な種類または形状であり得る。試薬114は、ポンプ、ガス圧力、または他の好適な方法によって流体経路、弁、及びフローセル101に流され得、フローセル101の出口103を出た後、廃棄物容器106内に廃棄され得る。フルイディクス制御器118は、好適なソフトウェアを用いて、試薬114のための駆動力、ならびに弁112及び弁ブロック116の操作を制御し得る。
マイクロウェルアレイ107は、本明細書内ではマイクロウェルとも称される反応領域を含み、それは、センサアレイ内の対応する化学センサと動作的に関連付けられる。例えば、各反応領域は、検体またはその反応領域内の目的の反応特性を検知するために好適な化学センサに連結され得る。マイクロウェルアレイ107は、マイクロウェルアレイ107及びセンサアレイが単一の装置またはチップの一部であるように、集積回路装置100内に統合され得る。
フローセル101は、マイクロウェルアレイ107にわたる試薬114の通路及び流量を制御するための様々な構成を有し得る。アレイ制御器124は、センサアレイの化学センサを読み込むために、バイアス電圧ならびにタイミング及び制御信号を集積回路装置100に提供する。アレイ制御器124はまた、基準バイアス電圧を基準電極108に提供して、マイクロウェルアレイ107にわたって流れる試薬114を付勢する。
実験中、アレイ制御器124は、バス127を介してセンサアレイの化学センサから集積回路装置100上の出力ポートまで出力信号を収集し、かつ処理する。アレイ制御器124は、コンピュータ、または他のコンピューティング手段であり得る。アレイ制御器124は、データ及びソフトウェアアプリケーションの記憶のためのメモリ、データにアクセスし、アプリケーションを実行するためのプロセッサ、ならびに図1内のシステムの様々な構成要素との通信を促進する構成要素を含み得る。
例証される実施形態において、アレイ制御器124は、集積回路装置100の外部にある。いくつかの代替的な実施形態において、アレイ制御器124によって実施される機能のいくつかまたはすべては、集積回路装置100上の制御器または他のデータプロセッサによって実行される。
化学センサからの出力信号の値は、マイクロウェルアレイ107内の対応する反応領域で起こる1つ以上の反応の物理的及び/または化学的パラメータを示す。例えば、例示的な実施形態において、出力信号の値は、それぞれが参照により本明細書に組み込まれる、2010年12月30日出願の米国仮特許出願第61/428,743号、及び2011年1月3日出願の同第61/429,328号に基づく2011年12月29日出願のRearickらの米国特許出願第13/339,846号、ならびに2010年12月29日出願の米国仮特許出願第61/428,097号に基づく2011年12月29日出願のHubbellの米国特許出願第13/339,753号に開示される技術を使用して処理され得る。
ユーザインターフェース128は、フローセル101、及び集積回路装置100上のセンサアレイ内の化学センサから受信される出力信号に関する情報を表示し得る。ユーザインターフェース128はまた、機器の設定及び制御も表示し、ユーザが機器の設定及び制御を入力または設定することを可能にする。
フルイディクス制御器118は、個々の試薬114を規定の順序、規定の期間、規定の流量でフローセル101及び集積回路装置100へ送達することを制御し得る。次いでアレイ制御器124は、試薬114の送達に応答して発生する化学反応を示す化学センサの出力信号を収集及び分析することができる。
実験中、システムはまた、反応が起こり、既知の規定の温度で測定が行われるように、集積回路装置100の温度を監視及び制御し得る。
システムは、操作中、多段階反応全体にわたって単一の流体または試薬を基準電極108に接触させるように構成され得る。弁112は、試薬114が流れている際にいかなる洗浄溶液110も通路109に流れ込むことを防ぐために閉鎖され得る。洗浄溶液の流動は止められ得るが、基準電極108と、通路109と、マイクロウェルアレイ107との間の絶え間ない流体、及び電気通信は依然として存在し得る。基準電極108と通路109及び111の合流点との間の距離は、通路109内を流れる、及びおそらくは通路111内に拡散する試薬のわずかな量が基準電極108に達する、または全く達しないように、選択され得る。例示的な実施形態において、洗浄溶液110は、基準電極108と連続的に接触しているように選択され得、それは頻繁な洗浄工程を使用した多段階反応に特に有用である。
図2は、集積回路装置100及びフローセル101の一部分の横断及び拡大図を例証する。集積回路装置100は、センサアレイ205と動作的に関連付けられた反応領域のマイクロウェルアレイ107を含む。操作中、フローセル101のフローチャンバ105は、マイクロウェルアレイ107内の反応領域の開口端を横切って送達された試薬の試薬流動208を閉じ込める。反応領域の量、形状、横縦比(底幅対ウェル深さ比など)、及び他の寸法特徴は、起こる反応の性質、ならびに試薬、副産物、または(もしあれば)利用される標識技術に基づいて選択され得る。
センサアレイ205の化学センサは、マイクロウェルアレイ107における関連付けられる反応領域内の化学反応に応答して(及び化学反応に関する出力信号を生成して)、検体または目的の反応特性を検出する。センサアレイ205の化学センサは、例えば、イオン感応性電界効果トランジスタ(ISFET)などの化学感応性電界効果トランジスタ(chemFET)であり得る。実施形態において使用され得る化学センサ及びアレイ構成の例は、それぞれが参照により本明細書に組み込まれる、米国特許出願第2010/0300559号、同第2010/0197507号、同第2010/0301398号、同第2010/0300895号、同第2010/0137143号、及び同第2009/0026082号、ならびに米国特許第7,575,865号に記載される。
図3は、第1の実施形態に従う2つの代表的な化学センサ及びそれらの対応する反応領域の横断面図を例証する。図3では、数百万の化学センサを含むことができるセンサアレイのほんの一部分を表す2つの化学センサ350、351が示される。
化学センサ350は、対応する反応領域301に連結され、化学センサ351は、対応する反応領域302に連結される。化学センサ350は、センサアレイ内の化学センサの代表である。例証される実施形態において、化学センサ350は、化学感応性電界効果トランジスタ(chemFET)、より具体的には、本実施例ではイオン感応性電界効果トランジスタ(ISFET)である。
化学センサ350は、導電性素子370によって反応領域301に連結されるセンサプレート320を有する浮遊ゲート構造体318を含む。図3に見られるように、センサプレート320は、浮遊ゲート構造体318内の一番上の浮遊ゲート導体である。例証される実施形態において、浮遊ゲート構造体318は、絶縁体材料319の層内に伝導性材料の複数のパターン層を含む。
化学センサ350はまた、半導体基板354内にソース領域321及びドレイン領域322も含む。ソース領域321及びドレイン領域322は、基板354の導電型とは異なる導電型を有するドープ半導体材料を備える。例えば、ソース領域321及びドレイン領域322は、ドープP型半導体材料を備え得、基板は、ドープN型半導体材料を備え得る。
チャネル領域323は、ソース領域321とドレイン領域322とを分離する。浮遊ゲート構造体318は、チャネル領域323の上に重なり、ゲート絶縁体352によって基板354から分離される。ゲート絶縁体352は、例えば、二酸化ケイ素であり得る。代替的に、他の絶縁体がゲート絶縁体352に使用され得る。
図3に示されるように、反応領域301は、絶縁体材料310、308を通ってセンサプレート320の上面にまで延伸する側壁303を有する開口部内にある。絶縁体材料310、308のそれぞれは、二酸化ケイ素または窒化ケイ素などの材料の1つ以上の層を備え得る。
開口部は、絶縁体材料308内にあり、かつセンサプレート320に近接する下部314を含む。開口部はまた、絶縁体材料310内にあり、かつ下部314から絶縁体材料310の上面に延伸する上部315も含む。例証される実施形態において、開口部の上部315の幅は、開口部の下部314の幅よりも大きい。
開口部は、例えば、円形断面を有してもよい。代替的に、開口部は非円形であってもよい。例えば、断面は、正方形、長方形、六角形、または不規則な形であってもよい。開口部の寸法及びそれらの傾斜は、実施形態に応じて様々であってもよい。いくつかの実施形態において、開口部は、平面断面面積(A)をPiで除算した数の4倍の平方根(例えば、sqrt(4×A/π))として定義される、特徴的な直径を有することができ、それは3.5マイクロメートル以下、2.0マイクロメートル以下、1.6マイクロメートル以下、1.0マイクロメートル以下、0.8マイクロメートル以下、0.6マイクロメートル以下、0.4マイクロメートル以下、0.2マイクロメートル以下、またはさらに0.1マイクロメートル以下などの、5マイクロメートル以下である。
開口部の下部314は、絶縁体材料308の側壁303上に導電性素子370を含む。例証される実施形態において、導電性素子370の内面371は、反応領域301の下方部分を画定する。つまり、導電性素子370の内面371と化学センサ350のための反応領域301との間に介在して堆積される材料層は存在しない。この構造体の結果として、導電性素子370の内面371は、カップ状であり、化学センサ350のための検知表面として働く。
導電性素子370は、導電性素子370がセンサプレート320の上面を横切って延伸するような、開口部の下部314内の材料の共形(conformal)層である。例証される実施形態において、導電性素子370は、開口部の下部314から突き出て絶縁体材料308の上面の上へ出る。
図3に示されるように、導電性素子370は、開口部の上部315にまで延伸しない。むしろ、導電性素子370は、開口部の上部315によって絶縁体材料310の上面311から離間される。結果として、絶縁体材料310の内面は、反応領域301の上方部分を画定する。伝導性素子370は、例えば、側壁303の少なくとも5%、側壁303の少なくとも10%、少なくとも25%、少なくとも50%、少なくとも75%、またはさらに少なくとも85%に沿って延伸し得る。
導電性素子370のカップ状内面371は、化学センサ350が小さい平面面積を有する一方で、小さい検知表面に関連したノイズ問題を回避するために十分に大きい表面積を有することも可能にする。化学センサ350の平面面積を、反応領域301の幅(または直径)によって部分的に決定し、小さく作製することができ、高密度アレイを可能にする。加えて、検知表面は側壁303上方へ延伸するため、検知表面積は、この延伸の距離及び反応領域301の円周次第であり、比較的大きくてもよい。結果として、低ノイズ化学センサ350、351を、反応の特徴を正確に検出することができるように、高密度アレイで提供することができる。
本装置の製造及び/または操作中、導電性素子370の材料の薄酸化物が成長し得、それは化学センサ350のための検知材料(例えば、イオン感応性検知材料)として働く。酸化物が形成されるかどうかは、伝導性材料、実施される製造プロセス、及び装置が操作される条件次第である。例えば、一実施形態において、導電性素子370は窒化チタンであり得、酸化チタンまたは酸窒化チタンは、製造中及び/または使用中の溶液への曝露中に伝導性素子370の内面371上で成長し得る。
例証される実施形態において、導電性素子370は、材料の単一層として示される。より一般的には、導電性素子370は、実施形態に応じて、金属またはセラミックスなどの様々な導電性材料の1つ以上の層を備え得る。伝導性材料は、例えば、金属材料もしくはその合金であってもよく、またはセラミック材料、あるいはその組み合わせであってもよい。例示的な金属材料は、アルミニウム、銅、ニッケル、チタン、銀、金、プラチナ、ハフニウム、ランタン、タンタル、タングステン、リジウム、ジルコニウム、パラジウム、またはそれらの組み合わせのうちの1つを含む。例示的なセラミック材料は、窒化チタン、窒化チタンアルミニウム、酸窒化チタン、窒化タンタル、またはそれらの組み合わせのうちの1つを含む。
いくつかの代替的な実施形態において、追加の共形検知材料(示されていない)が、伝導性素子370上及び開口部内に堆積される。検知材料は、特定のイオンに対する感応性を促進するために様々な異なる材料のうちの1つ以上を備え得る。例えば、窒化ケイ素または酸窒化ケイ素、ならびに酸化ケイ素、アルミニウムまたは酸化タンタルなどの酸化金属が、一般的に、水素イオンに対する感応性を提供する一方、バリノマイシンを含有するポリ塩化ビニルを含有する検知材料は、カリウムイオンに対する感応性を提供する。ナトリウム、銀、鉄、臭素、ヨウ素、カルシウム、及び硝酸塩などの他のイオンに対して感応する材料もまた、実施形態に応じて使用され得る。
操作中、反応物、洗浄溶液、及び他の試薬は、拡散機構340によって、反応領域301内を、及びそこから外へ移動し得る。化学センサ350は、伝導性素子370に近接する電荷324の量に応答する(及び伝導性素子の量に関する出力信号を生成する)。検体溶液中の電荷324の存在は、反応領域301内の伝導性素子370と検体溶液との間の界面で表面電位を変更する。電荷324の変化は、浮遊ゲート構造体318上の電圧の変化を引き起こし、それが今度はトランジスタの閾値電圧を変化させる。閾値電圧におけるこの変化は、ソース領域321とドレイン領域322との間のチャネル領域323内の電流を測定することによって測定することができる。結果として、化学センサ350を直接使用して、ソース領域321もしくはドレイン領域322に連結されるアレイライン上に電流ベースの出力信号を提供するか、または非直接的に追加の電気回路構成を用いて電圧ベースの出力信号を提供することができる。
電荷324は、反応領域301の底部近くでより高濃度であるため、伝導性素子370が開口部の側壁303の上方に延伸する距離は、電荷324に応答して検出される所望の信号の振幅と、伝導性素子370と検体溶液との間の電荷の無作為変動に起因する流体ノイズとの間のトレードオフである。伝導性素子370が側壁303の上方に延伸する距離が増加すると、化学センサ350のための流体界面積が増加し、それが流体ノイズを低減するように働く。しかしながら、反応領域310からの電荷324の拡散が原因で、電荷324の濃度は、反応領域301の底部からの距離とともに減少する。結果として、伝導性素子370の上方側壁部分は、より低い電荷濃度を有する区域からの信号の部分を検出し、それによってセンサ350によって検出される所望の信号の全体の振幅を低減することができる。反対に、伝導性素子370が側壁303の上方に延伸する距離が減少すると、検知表面積は減少し、従って流体ノイズは増加するが、センサ350によって検出される所望の信号の全体の振幅も増加する。
非常に小さい検知表面積では、出願者らは、流体ノイズが、所望の信号の振幅とは異なって、検知表面積の関数として変化することを発見している。センサ出力信号のSNRはこれら2つの数量の比であるため、伝導性素子370が、SNRが最大である側壁303に沿って延伸する最適距離が存在する。
最適距離は、伝導性素子370及び絶縁体材料310の材料特徴、反応領域の量、形状、横縦比(底幅対ウェル深さ比など)、及び他の寸法特徴、起こる反応の性質、ならびに試薬、副産物、または(もしあれば)利用される標識技術に応じて、実施形態によって様々であり得る。最適距離は、例えば、経験的に決定され得る。
図4〜9に関して下記により詳細に記載されるように、伝導性素子370が側壁303に沿って延伸する距離は、開口部の下部314を形成する絶縁体材料308の厚さ309によって画定される。絶縁体材料308を、アレイにわたって厚さ309の極めて小さな変動をもたらすプロセス(例えば、薄膜堆積)を使用して堆積することができる。そうすることで、化学センサの表面積を非常に良好に制御することができ、アレイにわたって均一な化学センサ性能をもたらし、下流信号処理を簡略化する。
ある実施形態において、反応領域301内で実行される反応は、目的の検体の特徴または特性を識別または決定するための分析反応であり得る。そのような反応は、導電性素子370に隣接する電荷の量に影響を与える副産物を直接または間接的に生成することができる。そのような副産物が少量で産生されるか、または急速に崩壊する、もしくは他の構成物質と反応する場合、生成される出力信号を増加させるために、同じ検体の複数の複製が、反応領域301内で同時に分析され得る。ある実施形態において、検体の複数の複製は、反応領域301内への堆積前または後のいずれかに、固相支持体312に結合され得る。固相支持体312は、ミクロ粒子、ナノ粒子、ビーズ、固体もしくは多孔質ゲル等であり得る。単純かつ容易な説明のため、固相支持体312は、本明細書内では粒子とも称される。核酸検体では、複数の、接続された複製が、ローリングサークル増幅(RCA)、急激なRCA、リコンビナーゼポリメラーゼ増幅(RPA)、ポリメラーゼ連鎖反応増幅(PCR)、エマルジョンPCR増幅、または同様の技術によって作製され、固体支持体を必要とせずにアンプリコンを産生し得る。
様々な例示的な実施形態において、本明細書に記載される方法、システム、及びコンピュータ可読媒体を有利に使用して、電子もしくは電荷ベースの核酸シーケンシングから獲得されるデータもしくは信号を処理及び/または分析してもよい。電子または電荷ベースのシーケンシング(pHベースのシーケンシングなど)において、ヌクレオチド取り込み事象は、ポリメラーゼ触媒ヌクレオチド伸長反応の自然の副産物として生成されるイオン(例えば、水素イオン)を検出することによって決定され得る。これは、試料またはテンプレート核酸をシーケンスするために使用され得、この試料またはテンプレート核酸は、目的の核酸配列の断片であり得、例えば、クローン集団として粒子、ミクロ粒子、ビーズ等などの固体支持体に直接的または非直接的に結合され得る。試料またはテンプレート核酸は、プライマー及びポリメラーゼに作動的に関連付けられ得、デオキシヌクレオシド三リン酸(「dNTP」)付加の繰り返される循環または「流動」(本明細書内ではヌクレオチド取り込みが生じ得る「ヌクレオチド流動」と称され得る)、及び洗浄に供され得る。プライマーは、テンプレート内の次の塩基を補足するdNTPが添加されるたびに、プライマーの3’末端をポリメラーゼによって延伸することができるように、試料またはテンプレートに焼鈍され得る。次いで、ヌクレオチド流動の既知の配列、及び各ヌクレオチド流動中のイオン濃度を示す化学センサの測定された出力信号に基づき、化学センサに連結される反応領域内に存在する試料核酸と関連付けられるヌクレオチド(複数可)の種類の同一性、配列、及び数を決定することができる。
図4〜10は、第1の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。
図4は、第1の段階で形成される構造体400を例証する。構造体400は、化学センサ350、351のための浮遊ゲート構造体(例えば、浮遊ゲート構造体318)を含む。
構造体400は、ゲート絶縁体材料の層を半導体基板354上に堆積すること、及びポリシリコンの層(または他の導電性材料)をゲート絶縁体材料の層の上に堆積することによって形成することができる。次いで、ポリシリコンの層及び層ゲート絶縁体材料を、エッチマスクを使用してエッチングし、ゲート絶縁体素子(例えば、ゲート絶縁体352)、及び浮遊ゲート構造体の一番下の伝導性材料素子を形成することができる。イオン注入マスクの形成に続き、次いでイオン注入を実施し、化学センサのソース及びドレイン領域(例えば、ソース領域321及びドレイン領域322)を形成することができる。
次いで絶縁体材料319の第1の層を、一番下の伝導性材料素子の上に堆積することができる。次いで伝導性プラグを絶縁体材料319の第1の層内でエッチングされるビア内に形成し、浮遊ゲート構造体の一番下の伝導性材料素子に接触させることができる。次いで伝導性材料の層を絶縁体材料319の第1の層の上に堆積し、かつパターン形成して、伝導性プラグに電気的に接続される第2の伝導性材料素子を形成することができる。次いでこのプロセスを複数回繰り返し、図4に示される完全な浮遊ゲート構造体318を形成することができる。代替的に、他の及び/または追加の技術を実施して本構造体を形成してもよい。
図4内の構造体400を形成することはまた、本明細書に記載される化学センサが実装される装置及びアレイ構成に応じて、化学センサを操作するために使用される、化学センサにアクセスするためのアレイライン(例えば、行ライン、列ライン等)、基板354内の追加のドープ領域、及び他の電気回路構成(例えば、スイッチを選択する、電気回路構成にアクセスする、電気回路構成を付勢する等)などの追加の素子を形成することを含むこともできる。いくつかの実施形態において、本構造体の素子は、例えば、上記参照により組み込まれた、米国特許出願第2010/0300559号、同第2010/0197507号、同第2010/0301398号、同第2010/0300895号、同第2010/0137143号、及び同第2009/0026082号、ならびに米国特許第7,575,865号に記載される技術を使用して製造され得る。
次に、厚さ309を有する絶縁体材料308を、図4に例証される構造体400の上に堆積し、図5に例証される構造体をもたらす。絶縁体材料308は、絶縁体の1つ以上の絶縁体層を備える。絶縁体材料308は、アレイにわたって厚さ309の極めて小さな変動をもたらすプロセスを使用して堆積され得る。例えば、絶縁体材料308は、酸化ケイ素を含み得、かつ高密度プラズマ(HDP)堆積を使用して堆積され得る。
次に、図5内の構造体の絶縁体材料308をエッチングし、化学センサ350、351の浮遊ゲート構造体の上面にまで延伸する空洞600、602を形成し、図6に例証される構造体をもたらす。
空洞600、602は、例えば、絶縁体材料308上にフォトレジストの層をパターン形成して、空洞600、602の位置を画定し、次いでパターン形成されたフォトレジストを使用して絶縁体材料308を異方性エッチングする、石版プロセスを使用して形成され得る。絶縁体材料308の異方性エッチングは、例えば、フッ素ベースの反応性イオンエッチング(RIE)プロセスなど、ドライエッチングであり得る。
次に、伝導性材料700の共形層を図6に例証される構造体上に堆積し、図7に例証される構造体をもたらす。伝導性材料700は、導電性材料の1つ以上の層を備える。例えば、伝導性材料700は、窒化チタンの層、またはチタンの層であり得る。代替的に、伝導性素子370に関して上に記載されるようなものなど、他の及び/または追加の伝導性材料を使用してもよい。加えて、伝導性材料の1つを超える層を堆積してもよい。
伝導性材料700は、スパッタリング、反応性スパッタリング、原子層堆積(ALD)、低圧化学気相堆積(LPCVD)、プラズマ増強化学気相堆積(PECVD)、金属有機化学気相堆積(MOCVD)等などの、様々な技術を使用して堆積され得る。
次に、伝導性材料700をエッチングして、伝導性素子370、800を形成し、図8に例証される構造体をもたらす。例証される実施形態において、伝導性素子370、800は、空洞600、602から突き出て、絶縁体材料308の上面の上へ出る。
伝導性素子370、800は、例えば、空洞600、602内にマスク素子を最初に形成することによって形成され得る。マスク素子は、マスク素子が絶縁体材料308の上面の一部分にわたって延伸するように、空洞600、602の幅よりも大きい幅を有することができる。マスク素子は、例えば、石版プロセスを使用してフォトレジストの層をパターン形成することによって形成され得る。代替的に、他の材料及びプロセスを使用してマスク素子を形成してもよい。
次いで、エッチマスクとしてマスク素子を使用して伝導性材料700をエッチングすることができる。このエッチングは、絶縁体材料308の上面から曝露した伝導性材料700を取り除き、伝導性素子370、800を形成する材料はそのままにしておく。次いで、例えば、フォトレジストストリッピングプロセスを使用して、マスク素子を取り除くことができる。
次に、絶縁体材料310を図8に例証される構造体上に形成し、図9に例証される構造体をもたらす。絶縁体材料310は、二酸化ケイ素または窒化ケイ素など、堆積された絶縁体材料の1つ以上の層を備え得る。
次に、絶縁体材料310をエッチングして、伝導性素子370、800にまで延伸する反応領域301、302を画定する開口部を形成し、図10に例証される構造体をもたらす。
図11〜12は、第2の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。
図11は、図10の構造体の絶縁体材料310上にハードマスク材料層1100を形成する第1の段階を例証する。ハードマスク材料層1100は、絶縁体材料310の材料とは異なる材料を含み得る。例えば、ハードマスク材料層1100及び絶縁体材料310は、相互に関連して選択的にエッチングされることができる材料を含み得る。例えば、ハードマスク材料層1100は、窒化ケイ素を含み得、絶縁体材料310は、二酸化ケイ素を含み得る。
次に、ハードマスク材料層1100をエッチングして、絶縁体材料310上にハードマスク材料素子1102、1104、1106を形成することができる。次いで、絶縁体材料310を、ハードマスク材料素子1102、1104、1106を使用してエッチングし、伝導性素子370、800にまで延伸する反応領域301、302を画定する開口部を形成することができ、図12に例証される構造体をもたらす。
図13〜14は、第3の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。
図13は、図10の構造体の絶縁体308の頂面から伝導性材料700を取り除くための平面化プロセスを実施する第1の段階を例証する。図8のエッチングプロセスと対照的に、図13の平面化プロセスは、絶縁体308の上面にまで延伸する伝導性素子1300、1310を形成する。つまり、平面化プロセスは、絶縁体308の頂面から伝導性材料700を完全に取り除き、空洞600、602内の伝導性材料はそのままにして伝導性素子1300、1310を形成する。平面化プロセスは、例えば、化学的機械的研磨(CMP)であってもよい。
次に、絶縁体材料310を図13に例証される構造体上に形成する。次いで絶縁体材料310をエッチングし、伝導性素子1300、1310にまで延伸する反応領域301、302を画定する開口部を形成し、図14に例証される構造体をもたらす。
図15〜16は、第4の実施形態に従う化学センサ及び対応する反応領域のアレイを形成するための製造プロセスにおける段階を例証する。
図15は、図7に例証される構造体の空洞600、602を犠牲材料1500で満たす第1の段階を例証する。空洞600、602を満たすことは、図7に例証される構造体上に犠牲材料1500を堆積すること、及び空洞600、602の間に延伸する伝導性材料700を曝露するために平面化プロセスを実施することによって実施することができる。
次いで隣接する空洞600、602の間の伝導性材料700の少なくとも一部分をエッチングして、伝導性素子370、800を形成する。図8に関して上に記載される技術を使用して、伝導性材料700をエッチングすることができる。このエッチングは、空洞600、602内の犠牲材料1500を取り除かない。結果として、犠牲材料は、伝導性素子370、800のための保護マスクとして働く。
次いで絶縁体材料310を堆積し、かつエッチングして、犠牲材料1500にまで延伸する開口部の上部を形成し、図16に例証される構造体をもたらす。絶縁体材料310及び犠牲材料はそれぞれ、相互に関連して選択的エッチングされることができる材料を含み得る。そのような場合、犠牲材料1500は、絶縁体材料310のエッチング中にエッチング停止として働く。
次いで第2のエッチングプロセスを実施して、犠牲材料1500を選択的に取り除き、かつ伝導性素子370、800を曝露することができ、図10に例証される構造体をもたらす。第2のエッチングプロセスは、例えば、絶縁体材料または伝導性素子370、800を著しくエッチングせずに犠牲材料を取り除くウェットエッチングプロセスであってもよい。
本発明は、上に詳述される好ましい実施形態及び実施例を参照して開示されるが、これらの実施例は、制限する意味ではなく例証する意味で意図されることを理解されたい。変形及び組み合わせが当業者には容易に想到されることが企図され、その変形及び組み合わせは、本発明の趣旨及び以下の特許請求の範囲の範囲内であるものとする。

Claims (20)

  1. 化学センサであって、
    上面を有する浮遊ゲート導体を含む化学感応性電界効果トランジスタと、
    前記浮遊ゲート導体の前記上面にまで延伸する開口部を画定する材料であって、第2の絶縁体の下にある第1の絶縁体を備える材料と、
    前記浮遊ゲート導体の前記上面に接触し、かつ前記開口部の側壁に沿ってある距離を延伸する伝導性素子であって、前記距離が前記第1の絶縁体の厚さによって画定される、伝導性素子と、を備える、前記化学センサ。
  2. 前記開口部が、前記第1の絶縁体内に下部、及び前記第2の絶縁体内に上部を含む、請求項1に記載の前記化学センサ。
  3. 前記伝導性素子が前記第1の絶縁体の上面にわたって延伸するように、前記開口部の前記下部の幅が前記上部の幅よりも小さい、請求項2に記載の前記化学センサ。
  4. 前記上部が、前記第2の絶縁体の内面によって画定される、請求項2に記載の前記化学センサ。
  5. 前記伝導性素子が、前記第1の絶縁体の上面にまで延伸する、請求項1に記載の前記化学センサ。
  6. 前記伝導性素子が、前記化学センサの反応領域の下部を画定する内面を含み、前記第2の絶縁体が、前記開口部の上部を画定する内面を含む、請求項1に記載の前記化学センサ。
  7. 前記伝導性素子が、前記化学センサの反応領域の底面を画定するように、前記浮遊ゲート導体の前記上面を横切って延伸する、請求項1に記載の前記化学センサ。
  8. 前記伝導性素子が、導電性材料を備え、前記伝導性素子の内面が、前記導電性材料の酸化物を含む、請求項1に記載の前記化学センサ。
  9. 前記化学センサの検知表面が、前記伝導性素子の内面を含む、請求項1に記載の前記化学センサ。
  10. 前記化学感応性電界効果トランジスタが、前記伝導性素子に近接して発生する化学反応に応答してセンサ信号を生成する、請求項1に記載の前記化学センサ。
  11. 化学センサの製造方法であって、
    上面を有する浮遊ゲート導体を含む化学感応性電界効果トランジスタを形成することと、
    前記浮遊ゲート導体の前記上面にまで延伸する開口部を画定する材料を形成することであって、前記材料が第2の絶縁体の下にある第1の絶縁体を備える、形成することと、
    前記浮遊ゲート導体の前記上面に接触し、かつ前記開口部の側壁に沿ってある距離を延伸する伝導性素子であって、前記距離が前記第1の絶縁体の厚さによって画定される、伝導性素子を形成することと、を含む、前記方法。
  12. 前記材料を形成すること及び前記伝導性素子を形成することが、
    前記浮遊ゲート導体上に前記第1の絶縁体を形成することであって、前記第1の絶縁体が前記浮遊ゲート導体の前記上面にまで延伸する空洞を画定する、形成することと、
    前記空洞内に前記伝導性素子を形成することと、
    前記伝導性素子上に前記第2の絶縁体を形成することと、
    前記伝導性素子を曝露するために、前記第2の絶縁体をエッチングすることと、を含む、請求項11に記載の前記方法。
  13. 前記空洞内に前記伝導性素子を形成することが、
    伝導性材料を前記空洞内かつ前記第1の絶縁体の上面上に堆積することと、
    前記伝導性材料の少なくとも一部分を前記第1の絶縁体の前記上面から取り除くことと、を含む、請求項12に記載の前記方法。
  14. 前記伝導性材料の少なくとも前記一部分を取り除くことが、前記第1の絶縁体の前記上面を曝露するために平面化プロセスを実施すること含む、請求項13に記載の前記方法。
  15. 前記第2の絶縁体上にハードマスクを形成することをさらに含み、前記第2の絶縁体をエッチングすることが、エッチマスクとして前記ハードマスクを使用することを含む、請求項12に記載の前記方法。
  16. 前記開口部が、前記第1の絶縁体内に下部、及び前記第2の絶縁体内に上部を含む、請求項11に記載の前記方法。
  17. 前記伝導性素子が前記第1の絶縁体の上面にわたって延伸するように、前記開口部の下部の幅が上部の幅よりも小さい、請求項16に記載の前記方法。
  18. 前記上部が、前記第2の絶縁体の内面によって画定される、請求項16に記載の前記方法。
  19. 前記伝導性素子が、前記化学センサの反応領域の下部を画定する内面を含み、前記第2の絶縁体が、前記開口部の上部を画定する内面を含む、請求項11に記載の前記方法。
  20. 前記伝導性素子が、前記化学センサの反応領域の底面を画定するように、前記浮遊ゲート導体の前記上面を横切って延伸する、請求項11に記載の前記方法。
JP2016500682A 2013-03-15 2014-03-05 一貫性のあるセンサ表面積を有する化学センサ Active JP6581074B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361790866P 2013-03-15 2013-03-15
US61/790,866 2013-03-15
US201361868739P 2013-08-22 2013-08-22
US61/868,739 2013-08-22
PCT/US2014/020887 WO2014149778A1 (en) 2013-03-15 2014-03-05 Chemical sensors with consistent sensor surface areas

Publications (2)

Publication Number Publication Date
JP2016510893A true JP2016510893A (ja) 2016-04-11
JP6581074B2 JP6581074B2 (ja) 2019-09-25

Family

ID=50349934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016500682A Active JP6581074B2 (ja) 2013-03-15 2014-03-05 一貫性のあるセンサ表面積を有する化学センサ

Country Status (5)

Country Link
US (1) US9128044B2 (ja)
EP (1) EP2972279B1 (ja)
JP (1) JP6581074B2 (ja)
CN (1) CN105283758B (ja)
WO (1) WO2014149778A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140367748A1 (en) * 2013-06-14 2014-12-18 International Business Machines Corporation EXTENDED GATE SENSOR FOR pH SENSING
EP3042722B1 (en) * 2015-01-07 2019-11-27 Personal Genomics Inc. Oriented loading systems and method for orienting a particle loaded in a well
US20170059517A1 (en) * 2015-08-25 2017-03-02 Life Technologies Corporation Deep microwell designs and methods of making the same
US20170081712A1 (en) 2015-09-22 2017-03-23 Life Technologies Corporation Systems and methods for analysis of nucleic acids
US10386328B2 (en) * 2016-09-09 2019-08-20 Life Technologies Corporation Chemical sensor with air via
US20200348259A1 (en) * 2018-01-26 2020-11-05 Università Degli Studi Di Bari Aldo Moro A field effect transistor sensor and a corresponding array device
JP2022500634A (ja) 2018-09-13 2022-01-04 ライフ テクノロジーズ コーポレーション Chemfetセンサーアレイベースのシステムを用いた細胞分析
US10890554B1 (en) * 2019-06-20 2021-01-12 Globalfoundries Singapore Pte. Ltd. Sensors with a non-planar sensing structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506085A (ja) * 2003-09-19 2007-03-15 ケンブリッジ・エンタープライズ・リミテッド 電界効果トランジスタを用いる分子間相互作用の検知
US20080185616A1 (en) * 2004-06-28 2008-08-07 Nitronex Corporation Semiconductor device-based sensors and methods associated with the same
JP2010511885A (ja) * 2006-12-08 2010-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 半導体センサ装置を製造する方法及びこのような方法によって得られた半導体センサ装置
US20100301398A1 (en) * 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
JP2012013579A (ja) * 2010-07-01 2012-01-19 Seiko Epson Corp 半導体装置、並びに、センサ素子及び半導体装置の製造方法
JP2012506557A (ja) * 2008-10-22 2012-03-15 ライフ テクノロジーズ コーポレーション 生物学的および化学的分析のための集積センサアレイ

Family Cites Families (343)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530312B2 (ja) 1975-01-16 1980-08-09
GB2096824A (en) 1981-04-09 1982-10-20 Sibbald Alastair Chemically sensitive field effect transistor
EP0065202B1 (de) 1981-05-15 1986-03-12 Licentia Patent-Verwaltungs-GmbH Verfahren zur Messung von Ionenkonzentrationen
JPS5870155U (ja) 1981-11-06 1983-05-12 ヤマハ株式会社 電子機器用収納家具
US4411741A (en) 1982-01-12 1983-10-25 University Of Utah Apparatus and method for measuring the concentration of components in fluids
NL8302964A (nl) 1983-08-24 1985-03-18 Cordis Europ Inrichting voor het bepalen van de aktiviteit van een ion (pion) in een vloeistof.
NL8303792A (nl) 1983-11-03 1985-06-03 Cordis Europ Inrichting voorzien van een op een isfet gebaseerd meetcircuit; voor toepassing in het meetcircuit geschikte isfet en werkwijze ter vervaardiging van een in het meetcircuit toe te passen isfet.
JPS60128345A (ja) 1983-12-15 1985-07-09 Olympus Optical Co Ltd イオン濃度測定装置
US4660063A (en) 1985-03-18 1987-04-21 General Electric Company Immersion type ISFET
DE3513168A1 (de) 1985-04-12 1986-10-16 Thomas 8000 München Dandekar Biosensor bestehend aus einem halbleiter auf silizium oder kohlenstoffbasis (elektronischer teil) und nukleinbasen (od. anderen biol. monomeren)
US4743954A (en) 1985-06-07 1988-05-10 University Of Utah Integrated circuit for a chemical-selective sensor with voltage output
US4863849A (en) 1985-07-18 1989-09-05 New York Medical College Automatable process for sequencing nucleotide
EP0213825A3 (en) 1985-08-22 1989-04-26 Molecular Devices Corporation Multiple chemically modulated capacitance
GB8522785D0 (en) 1985-09-14 1985-10-16 Emi Plc Thorn Chemical-sensitive semiconductor device
US4822566A (en) 1985-11-19 1989-04-18 The Johns Hopkins University Optimized capacitive sensor for chemical analysis and measurement
US4864229A (en) 1986-05-03 1989-09-05 Integrated Ionics, Inc. Method and apparatus for testing chemical and ionic sensors
US4722830A (en) 1986-05-05 1988-02-02 General Electric Company Automated multiple stream analysis system
US5113870A (en) 1987-05-01 1992-05-19 Rossenfeld Joel P Method and apparatus for the analysis, display and classification of event related potentials by interpretation of P3 responses
EP0400042B1 (en) 1988-02-08 1997-01-08 I-Stat Corporation Metal oxide electrodes
US4971903A (en) 1988-03-25 1990-11-20 Edward Hyman Pyrophosphate-based method and apparatus for sequencing nucleic acids
US4874499A (en) 1988-05-23 1989-10-17 Massachusetts Institute Of Technology Electrochemical microsensors and method of making such sensors
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US4990974A (en) 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
DE68925897T2 (de) 1989-04-28 1996-10-02 Ibm Gate-Array-Zelle, bestehend aus FET's von verschiedener und optimierter Grösse
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US6919211B1 (en) 1989-06-07 2005-07-19 Affymetrix, Inc. Polypeptide arrays
JP3001104B2 (ja) 1989-10-04 2000-01-24 オリンパス光学工業株式会社 センサー構造体及びその製造法
US5110441A (en) 1989-12-14 1992-05-05 Monsanto Company Solid state ph sensor
US5317407A (en) 1991-03-11 1994-05-31 General Electric Company Fixed-pattern noise correction circuitry for solid-state imager
KR940010562B1 (ko) 1991-09-06 1994-10-24 손병기 Ta_2O_5수소이온 감지막을 갖는 감이온 전계효과 트랜지스터의 제조방법
AU2907092A (en) 1991-10-21 1993-05-21 James W. Holm-Kennedy Method and device for biochemical sensing
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5637469A (en) 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5284566A (en) 1993-01-04 1994-02-08 Bacharach, Inc. Electrochemical gas sensor with wraparound reference electrode
US5436149A (en) 1993-02-19 1995-07-25 Barnes; Wayne M. Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension
WO1994026029A1 (en) 1993-04-26 1994-11-10 Unifet Incorporated Method and apparatus for multiplexing devices having long thermal time constants
JP3413664B2 (ja) 1993-08-12 2003-06-03 ソニー株式会社 電荷転送装置
US5965452A (en) 1996-07-09 1999-10-12 Nanogen, Inc. Multiplexed active biologic array
US5414284A (en) 1994-01-19 1995-05-09 Baxter; Ronald D. ESD Protection of ISFET sensors
JP3351088B2 (ja) 1994-03-28 2002-11-25 松下電工株式会社 電源装置
US5439839A (en) 1994-07-13 1995-08-08 Winbond Electronics Corporation Self-aligned source/drain MOS process
DE4430811C1 (de) * 1994-08-30 1995-09-07 Fraunhofer Ges Forschung Verfahren zum Herstellen eines integrierten ionensensitiven Feldeffekttransistors in CMOS-Silizium-Planartechnologie
US6654505B2 (en) 1994-10-13 2003-11-25 Lynx Therapeutics, Inc. System and apparatus for sequential processing of analytes
WO1998053300A2 (en) 1997-05-23 1998-11-26 Lynx Therapeutics, Inc. System and apparaus for sequential processing of analytes
US5631704A (en) 1994-10-14 1997-05-20 Lucent Technologies, Inc. Active pixel sensor and imaging system having differential mode
US5490971A (en) 1994-10-25 1996-02-13 Sippican, Inc. Chemical detector
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
DE19512117A1 (de) 1995-04-04 1996-10-10 Itt Ind Gmbh Deutsche Meßeinrichtung
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5702964A (en) 1995-10-17 1997-12-30 Lg Semicon, Co., Ltd. Method for forming a semiconductor device having a floating gate
GB9620209D0 (en) 1996-09-27 1996-11-13 Cemu Bioteknik Ab Method of sequencing DNA
US5958703A (en) 1996-12-03 1999-09-28 Glaxo Group Limited Use of modified tethers in screening compound libraries
ATE290205T1 (de) 1996-12-12 2005-03-15 Prolume Ltd Vorrichtung und verfahren zum nachweis und identifizieren von infektiösen wirkstoffen
US6605428B2 (en) 1996-12-20 2003-08-12 Roche Diagnostics Gmbh Method for the direct, exponential amplification and sequencing of DNA molecules and its application
DE19653439A1 (de) 1996-12-20 1998-07-02 Svante Dr Paeaebo Verfahren zur direkten, exponentiellen Amplifikation und Sequenzierung von DNA Molekülen und dessen Anwendung
US20030215857A1 (en) 1996-12-20 2003-11-20 Roche Diagnostics Gmbh Method for the direct, exponential amplification and sequencing of DNA molecules and its application
US5912560A (en) 1997-02-25 1999-06-15 Waferscale Integration Inc. Charge pump circuit for voltage boosting in integrated semiconductor circuits
US5793230A (en) 1997-02-26 1998-08-11 Sandia Corporation Sensor readout detector circuit
US6197557B1 (en) 1997-03-05 2001-03-06 The Regents Of The University Of Michigan Compositions and methods for analysis of nucleic acids
US6327410B1 (en) 1997-03-14 2001-12-04 The Trustees Of Tufts College Target analyte sensors utilizing Microspheres
US7622294B2 (en) 1997-03-14 2009-11-24 Trustees Of Tufts College Methods for detecting target analytes and enzymatic reactions
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6872527B2 (en) 1997-04-16 2005-03-29 Xtrana, Inc. Nucleic acid archiving
WO1998046797A1 (en) 1997-04-16 1998-10-22 Immunological Associates Of Denver Nucleic acid archiving
US5911873A (en) 1997-05-02 1999-06-15 Rosemount Analytical Inc. Apparatus and method for operating an ISFET at multiple drain currents and gate-source voltages allowing for diagnostics and control of isopotential points
US7220550B2 (en) 1997-05-14 2007-05-22 Keensense, Inc. Molecular wire injection sensors
US6969488B2 (en) 1998-05-22 2005-11-29 Solexa, Inc. System and apparatus for sequential processing of analytes
US6002299A (en) 1997-06-10 1999-12-14 Cirrus Logic, Inc. High-order multipath operational amplifier with dynamic offset reduction, controlled saturation current limiting, and current feedback for enhanced conditional stability
FR2764702B1 (fr) 1997-06-11 1999-09-03 Lyon Ecole Centrale Procede d'identification et/ou de dosage de substances biologiques, presentes dans un liquide conducteur, dispositif et capteur d'affinite utiles pour la mise en oeuvre de ce procede
US5923421A (en) 1997-07-24 1999-07-13 Lockheed Martin Energy Research Corporation Chemical detection using calorimetric spectroscopy
US6465178B2 (en) 1997-09-30 2002-10-15 Surmodics, Inc. Target molecule attachment to surfaces
US6511803B1 (en) 1997-10-10 2003-01-28 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
US6485944B1 (en) 1997-10-10 2002-11-26 President And Fellows Of Harvard College Replica amplification of nucleic acid arrays
CA2305449A1 (en) 1997-10-10 1999-04-22 President & Fellows Of Harvard College Replica amplification of nucleic acid arrays
KR100251528B1 (ko) 1997-10-22 2000-04-15 김덕중 복수개의 센스 소오스 패드를 구비한 센스 전계효과 트랜지스터
US6369737B1 (en) 1997-10-30 2002-04-09 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for converting a low dynamic range analog signal to a large dynamic range floating-point digital representation
US7090975B2 (en) 1998-03-13 2006-08-15 Promega Corporation Pyrophosphorolysis and incorporation of nucleotide method for nucleic acid detection
US6627154B1 (en) 1998-04-09 2003-09-30 Cyrano Sciences Inc. Electronic techniques for analyte detection
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
WO1999057321A1 (en) 1998-05-01 1999-11-11 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and dna molecules
EP2045334A1 (en) 1998-06-24 2009-04-08 Illumina, Inc. Decoding of array sensors with microspheres
US6195585B1 (en) 1998-06-26 2001-02-27 Advanced Bionics Corporation Remote monitoring of implantable cochlear stimulator
JP4137239B2 (ja) 1998-08-03 2008-08-20 株式会社堀場製作所 Isfetアレイ
US6191444B1 (en) 1998-09-03 2001-02-20 Micron Technology, Inc. Mini flash process and circuit
JP2002532717A (ja) 1998-12-11 2002-10-02 サイミックス テクノロジーズ、インク 迅速な物質特性評価のためのセンサ配列に基づくシステム及びその方法
DE69930310T3 (de) 1998-12-14 2009-12-17 Pacific Biosciences of California, Inc. (n. d. Ges. d. Staates Delaware), Menlo Park Kit und methode zur nukleinsäuresequenzierung einzelner moleküle durch polymerase synthese
DE19857953C2 (de) 1998-12-16 2001-02-15 Conducta Endress & Hauser Vorrichtung zum Messen der Konzentration von Ionen in einer Meßflüssigkeit
US6429027B1 (en) 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
US6361671B1 (en) 1999-01-11 2002-03-26 The Regents Of The University Of California Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels
GB9901475D0 (en) 1999-01-22 1999-03-17 Pyrosequencing Ab A method of DNA sequencing
US20020150909A1 (en) 1999-02-09 2002-10-17 Stuelpnagel John R. Automated information processing in randomly ordered arrays
EP1157431A1 (en) 1999-02-22 2001-11-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem A hybrid electrical device with biological components
ATE508200T1 (de) 1999-02-23 2011-05-15 Caliper Life Sciences Inc Sequenzierung durch inkorporation
US20050191698A1 (en) 1999-04-20 2005-09-01 Illumina, Inc. Nucleic acid sequencing using microsphere arrays
US20030108867A1 (en) 1999-04-20 2003-06-12 Chee Mark S Nucleic acid sequencing using microsphere arrays
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
US7097973B1 (en) 1999-06-14 2006-08-29 Alpha Mos Method for monitoring molecular species within a medium
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
EP1204859B1 (en) 1999-07-16 2006-11-22 The Board Of Regents, The University Of Texas System Method and apparatus for the delivery of samples to a chemical sensor array
US6459398B1 (en) 1999-07-20 2002-10-01 D.S.P.C. Technologies Ltd. Pulse modulated digital to analog converter (DAC)
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
US6423536B1 (en) 1999-08-02 2002-07-23 Molecular Dynamics, Inc. Low volume chemical and biochemical reaction system
US7211390B2 (en) 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6274320B1 (en) 1999-09-16 2001-08-14 Curagen Corporation Method of sequencing a nucleic acid
US7244559B2 (en) 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7124221B1 (en) 1999-10-19 2006-10-17 Rambus Inc. Low latency multi-level communication interface
GB9926956D0 (en) 1999-11-13 2000-01-12 Koninkl Philips Electronics Nv Amplifier
US6518024B2 (en) 1999-12-13 2003-02-11 Motorola, Inc. Electrochemical detection of single base extension
JP2001175340A (ja) 1999-12-14 2001-06-29 Matsushita Electric Ind Co Ltd 電位発生回路
DE60107363T2 (de) 2000-02-14 2005-12-22 Koninklijke Philips Electronics N.V. Strom-spannungsumwandler mit steuerbarer verstärkung und signalverarbeitender schaltkreis mit einem solchen umwandler
EP1198596A1 (en) 2000-02-15 2002-04-24 Lynx Therapeutics, Inc. Data analysis and display system for ligation-based dna sequencing
US7285384B2 (en) 2000-02-16 2007-10-23 Illuminia, Inc. Parallel genotyping of multiple patient samples
US6649416B1 (en) 2000-02-18 2003-11-18 Trustees Of Tufts College Intelligent electro-optical sensor array and method for analyte detection
FR2805826B1 (fr) 2000-03-01 2002-09-20 Nucleica Nouvelles puces a adn
JP3442338B2 (ja) 2000-03-17 2003-09-02 株式会社日立製作所 Dna分析装置、dna塩基配列決定装置、dna塩基配列決定方法、および反応モジュール
US6856161B2 (en) 2000-03-30 2005-02-15 Infineon Technologies Ag Sensor array and method for detecting the condition of a transistor in a sensor array
US7001792B2 (en) 2000-04-24 2006-02-21 Eagle Research & Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
AU2001259128A1 (en) 2000-04-24 2001-11-07 Eagle Research And Development, Llc An ultra-fast nucleic acid sequencing device and a method for making and using the same
US20020042388A1 (en) 2001-05-01 2002-04-11 Cooper Mark J. Lyophilizable and enhanced compacted nucleic acids
US20020168678A1 (en) 2000-06-07 2002-11-14 Li-Cor, Inc. Flowcell system for nucleic acid sequencing
US6482639B2 (en) 2000-06-23 2002-11-19 The United States Of America As Represented By The Secretary Of The Navy Microelectronic device and method for label-free detection and quantification of biological and chemical molecules
US6611037B1 (en) 2000-08-28 2003-08-26 Micron Technology, Inc. Multi-trench region for accumulation of photo-generated charge in a CMOS imager
US6939451B2 (en) 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
EP1330306A2 (en) 2000-10-10 2003-07-30 BioTrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US6537881B1 (en) 2000-10-16 2003-03-25 Advanced Micro Devices, Inc. Process for fabricating a non-volatile memory device
US6558626B1 (en) 2000-10-17 2003-05-06 Nomadics, Inc. Vapor sensing instrument for ultra trace chemical detection
WO2002047266A2 (en) 2000-10-20 2002-06-13 The Board Of Trustees Of The Leland Stanford Junior University Transient electrical signal based methods and devices for characterizing molecular interaction and/or motion in a sample
US6770472B2 (en) 2000-11-17 2004-08-03 The Board Of Trustees Of The Leland Stanford Junior University Direct DNA sequencing with a transcription protein and a nanometer scale electrometer
KR20030055346A (ko) 2000-12-11 2003-07-02 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서
GB2370410A (en) 2000-12-22 2002-06-26 Seiko Epson Corp Thin film transistor sensor
US6958216B2 (en) 2001-01-10 2005-10-25 The Trustees Of Boston College DNA-bridged carbon nanotube arrays
JP4809983B2 (ja) 2001-02-14 2011-11-09 明彦 谷岡 生体高分子とリガンドとの相互作用を検出する装置及びその方法
EP1236804A1 (en) 2001-03-02 2002-09-04 Boehringer Mannheim Gmbh A method for determination of a nucleic acid using a control
GB0105831D0 (en) 2001-03-09 2001-04-25 Toumaz Technology Ltd Method for dna sequencing utilising enzyme linked field effect transistors
US8114591B2 (en) 2001-03-09 2012-02-14 Dna Electronics Ltd. Sensing apparatus and method
DE10111458B4 (de) 2001-03-09 2008-09-11 Siemens Ag Analyseeinrichtung
EP1368497A4 (en) 2001-03-12 2007-08-15 California Inst Of Techn METHOD AND DEVICE FOR ANALYZING POLYNUCLEOTIDE SEQUENCES BY ASYNCHRONOUS BASE EXTENSION
JP2002272463A (ja) 2001-03-22 2002-09-24 Olympus Optical Co Ltd 一塩基多型の型を判定する方法
US20050058990A1 (en) 2001-03-24 2005-03-17 Antonio Guia Biochip devices for ion transport measurement, methods of manufacture, and methods of use
US6418968B1 (en) 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
KR100455283B1 (ko) 2001-04-23 2004-11-08 삼성전자주식회사 물질 유로의 측벽에 형성된 mosfet으로 이루어진물질 검출용 칩, 이를 포함하는 물질 검출 장치, 이의제조 방법 및 물질 검출 장치를 이용한 물질 검출 방법
ATE419387T1 (de) 2001-04-23 2009-01-15 Samsung Electronics Co Ltd Verfahren zur herstellung eines chips zum molekularen nachweis
KR100442838B1 (ko) 2001-12-11 2004-08-02 삼성전자주식회사 프로브의 고정화 검출방법 및 상기 프로브와 표적시료의결합정도 검출방법
US6571189B2 (en) 2001-05-14 2003-05-27 Hewlett-Packard Company System and method for scanner calibration
US20040023253A1 (en) 2001-06-11 2004-02-05 Sandeep Kunwar Device structure for closely spaced electrodes
US20050009022A1 (en) 2001-07-06 2005-01-13 Weiner Michael P. Method for isolation of independent, parallel chemical micro-reactions using a porous filter
DE10133363A1 (de) 2001-07-10 2003-01-30 Infineon Technologies Ag Messzelle und Messfeld mit solchen Messzellen sowie Verwendung einer Messzelle und Verwendung eines Messfeldes
US7485443B2 (en) 2001-07-17 2009-02-03 Northwestern University Solid-phase reactions
JP2003032908A (ja) 2001-07-19 2003-01-31 Nisshinbo Ind Inc キャパシタ組電池、その制御方法、その制御装置及び自動車用蓄電システム
EP2135943A1 (en) 2001-07-30 2009-12-23 Meso Scale Technologies, LLC. Assay electrode having immobilized lipid/protein layers, methods of making the same and methods of using the same for luminescence test measurements
US6490220B1 (en) 2001-08-13 2002-12-03 Micron Technology, Inc. Method for reliably shutting off oscillator pulses to a charge-pump
US6929944B2 (en) 2001-08-31 2005-08-16 Beckman Coulter, Inc. Analysis using a distributed sample
US20030054396A1 (en) 2001-09-07 2003-03-20 Weiner Michael P. Enzymatic light amplification
DE10151020A1 (de) 2001-10-16 2003-04-30 Infineon Technologies Ag Schaltkreis-Anordnung, Sensor-Array und Biosensor-Array
DE10151021A1 (de) 2001-10-16 2003-04-30 Infineon Technologies Ag Sensor-Anordnung
US6795117B2 (en) 2001-11-06 2004-09-21 Candela Microsystems, Inc. CMOS image sensor with noise cancellation
US20030124599A1 (en) 2001-11-14 2003-07-03 Shiping Chen Biochemical analysis system with combinatorial chemistry applications
WO2003042683A1 (en) 2001-11-16 2003-05-22 Bio-X Inc. Fet type sensor, ion density detecting method comprising this sensor, and base sequence detecting method
CN1294260C (zh) 2001-12-19 2007-01-10 株式会社日立高新技术 电位滴定dna微阵列、其制造方法及核酸解析方法
US20050106587A1 (en) 2001-12-21 2005-05-19 Micronas Gmbh Method for determining of nucleic acid analytes
US6518146B1 (en) 2002-01-09 2003-02-11 Motorola, Inc. Semiconductor device structure and method for forming
US7772383B2 (en) 2002-01-25 2010-08-10 The Trustees Of Princeton University Chemical PCR: Compositions for enhancing polynucleotide amplification reactions
KR100403637B1 (ko) 2002-01-26 2003-10-30 삼성전자주식회사 출력 일그러짐을 최소화하는 파워 앰프 클리핑 회로
US6614301B2 (en) 2002-01-31 2003-09-02 Intel Corporation Differential amplifier offset adjustment
US7276749B2 (en) 2002-02-05 2007-10-02 E-Phocus, Inc. Image sensor with microcrystalline germanium photodiode layer
US6926865B2 (en) 2002-02-11 2005-08-09 Matsushita Electric Industrial Co., Ltd. Method and apparatus for detecting DNA hybridization
JP2003258128A (ja) 2002-02-27 2003-09-12 Nec Electronics Corp 不揮発性半導体記憶装置およびその製造方法ならびにその動作方法
US6953958B2 (en) 2002-03-19 2005-10-11 Cornell Research Foundation, Inc. Electronic gain cell based charge sensor
US6828685B2 (en) 2002-06-14 2004-12-07 Hewlett-Packard Development Company, L.P. Memory device having a semiconducting polymer film
US6894930B2 (en) 2002-06-19 2005-05-17 Sandisk Corporation Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND
US20040136866A1 (en) 2002-06-27 2004-07-15 Nanosys, Inc. Planar nanowire based sensor elements, devices, systems and methods for using and making same
US7092757B2 (en) 2002-07-12 2006-08-15 Cardiac Pacemakers, Inc. Minute ventilation sensor with dynamically adjusted excitation current
US6885827B2 (en) 2002-07-30 2005-04-26 Amplification Technologies, Inc. High sensitivity, high resolution detection of signals
EP1525470A2 (de) 2002-07-31 2005-04-27 Infineon Technologies AG Sensor-anordnung
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
DE60234540D1 (de) 2002-08-12 2010-01-07 Hitachi High Tech Corp Verfahren zum nachweis von nukleinsäure mittels dna-mikroarrays und vorrichtung zum nukleinsäurenachweis
US7267751B2 (en) 2002-08-20 2007-09-11 Nanogen, Inc. Programmable multiplexed active biologic array
GB0219541D0 (en) 2002-08-22 2002-10-02 Secr Defence Method and apparatus for stand-off chemical detection
US8449824B2 (en) 2002-09-09 2013-05-28 Yizhong Sun Sensor instrument system including method for detecting analytes in fluids
US7595883B1 (en) 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
SE0202867D0 (sv) 2002-09-27 2002-09-27 Pyrosequencing Ab New sequencing method
CN1500887A (zh) 2002-10-01 2004-06-02 松下电器产业株式会社 引物伸长反应检测方法、碱基种类判别方法及其装置
WO2004034025A2 (en) 2002-10-10 2004-04-22 Nanosys, Inc. Nano-chem-fet based biosensors
DE10247889A1 (de) 2002-10-14 2004-04-22 Infineon Technologies Ag Sensor-Anordnung und Verfahren zum Betreiben einer Sensor-Anordnung
US20040079636A1 (en) 2002-10-25 2004-04-29 Chin Hsia Biomedical ion sensitive semiconductor sensor and sensor array
AU2003285092A1 (en) 2002-10-29 2004-05-25 Cornell Research Foundation, Inc. Chemical-sensitive floating gate field effect transistor
US6700814B1 (en) 2002-10-30 2004-03-02 Motorola, Inc. Sense amplifier bias circuit for a memory having at least two distinct resistance states
EP2228401A1 (en) 2002-11-01 2010-09-15 Georgia Tech Research Corporation Sacrificial compositions, methods of use thereof, and methods of decomposition thereof
DE10251757B4 (de) 2002-11-05 2006-03-09 Micronas Holding Gmbh Vorrichtung zur Bestimmung der Konzentration von in einer zu untersuchenden Probe enthaltenen Liganden
US7022288B1 (en) 2002-11-13 2006-04-04 The United States Of America As Represented By The Secretary Of The Navy Chemical detection sensor system
DE10255755B4 (de) 2002-11-28 2006-07-13 Schneider, Christian, Dr. Integrierte elektronische Schaltung mit Feldeffekt-Sensoren zum Nachweis von Biomolekülen
US20040197803A1 (en) 2002-12-06 2004-10-07 Hidenobu Yaku Method, primer and kit for determining base type
US7575865B2 (en) 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
DE602004024034D1 (de) 2003-01-29 2009-12-24 454 Corp Nukleinsäureamplifikation auf basis von kügelchenemulsion
US20050006234A1 (en) 2003-02-13 2005-01-13 Arjang Hassibi Semiconductor electrochemical bio-sensor array
US7317484B2 (en) 2003-02-26 2008-01-08 Digital Imaging Systems Gmbh CMOS APS readout scheme that combines reset drain current and the source follower output
US20070262363A1 (en) 2003-02-28 2007-11-15 Board Of Regents, University Of Texas System Low temperature fabrication of discrete silicon-containing substrates and devices
TWI235236B (en) 2003-05-09 2005-07-01 Univ Chung Yuan Christian Ion-sensitive circuit
WO2004106891A2 (en) 2003-05-22 2004-12-09 University Of Hawaii Ultrasensitive biochemical sensor
WO2005015156A2 (en) 2003-08-04 2005-02-17 Idaho Research Foundation, Inc. Molecular detector
JP2005077210A (ja) 2003-08-29 2005-03-24 National Institute For Materials Science 生体分子検出素子及びそれを用いた核酸解析方法
US7008550B2 (en) 2003-09-25 2006-03-07 Hitachi Global Storage Technologies Netherlands B.V. Method for forming a read transducer by ion milling and chemical mechanical polishing to eliminate nonuniformity near the MR sensor
GB0323224D0 (en) 2003-10-03 2003-11-05 Rolls Royce Plc A module for a fuel cell stack
US20070087401A1 (en) 2003-10-17 2007-04-19 Andy Neilson Analysis of metabolic activity in cells using extracellular flux rate measurements
US7317216B2 (en) 2003-10-31 2008-01-08 University Of Hawaii Ultrasensitive biochemical sensing platform
US7981362B2 (en) 2003-11-04 2011-07-19 Meso Scale Technologies, Llc Modular assay plates, reader systems and methods for test measurements
US7067886B2 (en) 2003-11-04 2006-06-27 International Business Machines Corporation Method of assessing potential for charging damage in SOI designs and structures for eliminating potential for damage
DE10352917A1 (de) 2003-11-11 2005-06-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Sensoranordnung mit mehreren potentiometrischen Sensoren
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US20060019264A1 (en) 2003-12-01 2006-01-26 Said Attiya Method for isolation of independent, parallel chemical micro-reactions using a porous filter
US7279588B2 (en) 2003-12-02 2007-10-09 Seoul National University Foundation Dinuclear metal complex and pyrophosphate assay using the same
WO2005062049A2 (en) 2003-12-22 2005-07-07 Interuniversitair Microelektronica Centrum (Imec) The use of microelectronic structures for patterned deposition of molecules onto surfaces
US7462512B2 (en) 2004-01-12 2008-12-09 Polytechnic University Floating gate field effect transistors for chemical and/or biological sensing
JP4065855B2 (ja) 2004-01-21 2008-03-26 株式会社日立製作所 生体および化学試料検査装置
EP1735458B1 (en) 2004-01-28 2013-07-24 454 Life Sciences Corporation Nucleic acid amplification with continuous flow emulsion
JP3903183B2 (ja) 2004-02-03 2007-04-11 独立行政法人物質・材料研究機構 遺伝子検出電界効果デバイスおよびこれを用いた遺伝子多型解析方法
CA2557841A1 (en) 2004-02-27 2005-09-09 President And Fellows Of Harvard College Polony fluorescent in situ sequencing beads
WO2005084367A2 (en) 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
US20060057604A1 (en) 2004-03-15 2006-03-16 Thinkfar Nanotechnology Corporation Method for electrically detecting oligo-nucleotides with nano-particles
JP4127679B2 (ja) 2004-03-18 2008-07-30 株式会社東芝 核酸検出カセット及び核酸検出装置
DE102004014537A1 (de) 2004-03-23 2005-10-13 Fujitsu Ltd., Kawasaki Chipintegrierter Detektor zum Analysieren von Flüssigkeiten
WO2005090961A1 (ja) 2004-03-24 2005-09-29 Japan Science And Technology Agency 生体分子に関する形態及び情報をis−fetを利用して検出する測定法およびシステム
US20050221473A1 (en) 2004-03-30 2005-10-06 Intel Corporation Sensor array integrated circuits
US8138496B2 (en) 2004-04-01 2012-03-20 Nanyang Technological University Addressable transistor chip for conducting assays
US7117605B2 (en) 2004-04-13 2006-10-10 Gyrodata, Incorporated System and method for using microgyros to measure the orientation of a survey tool within a borehole
US7544979B2 (en) 2004-04-16 2009-06-09 Technion Research & Development Foundation Ltd. Ion concentration transistor and dual-mode sensors
US7462452B2 (en) 2004-04-30 2008-12-09 Pacific Biosciences Of California, Inc. Field-switch sequencing
TWI261801B (en) 2004-05-24 2006-09-11 Rohm Co Ltd Organic EL drive circuit and organic EL display device using the same organic EL drive circuit
US7264934B2 (en) 2004-06-10 2007-09-04 Ge Healthcare Bio-Sciences Corp. Rapid parallel nucleic acid analysis
US20060024711A1 (en) 2004-07-02 2006-02-02 Helicos Biosciences Corporation Methods for nucleic acid amplification and sequence determination
GB2416210B (en) 2004-07-13 2008-02-20 Christofer Toumazou Ion sensitive field effect transistors
JP3874772B2 (ja) 2004-07-21 2007-01-31 株式会社日立製作所 生体関連物質測定装置及び測定方法
JP4455215B2 (ja) 2004-08-06 2010-04-21 キヤノン株式会社 撮像装置
US7276453B2 (en) 2004-08-10 2007-10-02 E.I. Du Pont De Nemours And Company Methods for forming an undercut region and electronic devices incorporating the same
US7190026B2 (en) 2004-08-23 2007-03-13 Enpirion, Inc. Integrated circuit employable with a power converter
US7888013B2 (en) 2004-08-27 2011-02-15 National Institute For Materials Science Method of analyzing DNA sequence using field-effect device, and base sequence analyzer
US20070212681A1 (en) 2004-08-30 2007-09-13 Benjamin Shapiro Cell canaries for biochemical pathogen detection
US7609303B1 (en) 2004-10-12 2009-10-27 Melexis Tessenderlo Nv Low noise active pixel image sensor using a modified reset value
JP2006138846A (ja) 2004-10-14 2006-06-01 Toshiba Corp 核酸検出センサ、核酸検出チップ及び核酸検出装置
US7534097B2 (en) 2004-10-15 2009-05-19 Nanyang Technological University Method and apparatus for controlling multi-fluid flow in a micro channel
US7381936B2 (en) 2004-10-29 2008-06-03 Ess Technology, Inc. Self-calibrating anti-blooming circuit for CMOS image sensor having a spillover protection performance in response to a spillover condition
US7785785B2 (en) 2004-11-12 2010-08-31 The Board Of Trustees Of The Leland Stanford Junior University Charge perturbation detection system for DNA and other molecules
EP1812772A4 (en) 2004-11-18 2011-04-27 Morgan Res Corp MINIATURE SPECTROPHOTOMETER WITH FOURIER TRANSFORMATION
WO2006056226A1 (de) * 2004-11-26 2006-06-01 Micronas Gmbh Elektrisches bauelement
KR100623177B1 (ko) 2005-01-25 2006-09-13 삼성전자주식회사 높은 유전율을 갖는 유전체 구조물, 이의 제조 방법, 이를포함하는 불휘발성 반도체 메모리 장치 및 그 제조 방법
AU2006211150A1 (en) 2005-01-31 2006-08-10 Pacific Biosciences Of California, Inc. Use of reversible extension terminator in nucleic acid sequencing
US20060199493A1 (en) 2005-02-04 2006-09-07 Hartmann Richard Jr Vent assembly
US9040237B2 (en) 2005-03-04 2015-05-26 Intel Corporation Sensor arrays and nucleic acid sequencing applications
KR101269508B1 (ko) 2005-03-11 2013-05-30 고꾸리쯔 다이가꾸 호우징 도요하시 기쥬쯔 가가꾸 다이가꾸 누적형 화학·물리현상 검출장치
AU2006235320A1 (en) 2005-04-05 2006-10-19 Protein Discovery, Inc. Improved methods and devices for concentration and fractionation of analytes for chemical analysis including Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry (MS)
US20060228721A1 (en) 2005-04-12 2006-10-12 Leamon John H Methods for determining sequence variants using ultra-deep sequencing
TWI287041B (en) 2005-04-27 2007-09-21 Jung-Tang Huang An ultra-rapid DNA sequencing method with nano-transistors array based devices
US20060269927A1 (en) 2005-05-25 2006-11-30 Lieber Charles M Nanoscale sensors
CN1881457A (zh) 2005-06-14 2006-12-20 松下电器产业株式会社 致动器控制方法和使用该方法的盘装置
DK1907571T3 (en) 2005-06-15 2017-08-21 Complete Genomics Inc NUCLEIC ACID ANALYSIS USING INCIDENTAL MIXTURES OF NON-OVERLAPPING FRAGMENTS
WO2007002204A2 (en) 2005-06-21 2007-01-04 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compostions
TW200701588A (en) 2005-06-29 2007-01-01 Leadtrend Tech Corp Dual loop voltage regulation circuit of power supply chip
US7890891B2 (en) 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
JP2007035726A (ja) 2005-07-22 2007-02-08 Rohm Co Ltd 半導体装置、モジュールおよび電子機器
EP1913372A1 (de) 2005-08-08 2008-04-23 MicroGaN GmbH Halbleitersensor mit grosser bandlücke und isolierender deckschicht
US7365597B2 (en) 2005-08-19 2008-04-29 Micron Technology, Inc. Switched capacitor amplifier with higher gain and improved closed-loop gain accuracy
SG130066A1 (en) 2005-08-26 2007-03-20 Micron Technology Inc Microelectronic device packages, stacked microelectronic device packages, and methods for manufacturing microelectronic devices
JP4353958B2 (ja) 2005-09-15 2009-10-28 株式会社日立製作所 Dna計測装置、及びdna計測方法
US7466258B1 (en) 2005-10-07 2008-12-16 Cornell Research Foundation, Inc. Asynchronous analog-to-digital converter and method
US7794584B2 (en) 2005-10-12 2010-09-14 The Research Foundation Of State University Of New York pH-change sensor and method
US7335526B2 (en) 2005-10-31 2008-02-26 Hewlett-Packard Development Company, L.P. Sensing system
TWI295729B (en) 2005-11-01 2008-04-11 Univ Nat Yunlin Sci & Tech Preparation of a ph sensor, the prepared ph sensor, systems comprising the same, and measurement using the systems
US7538827B2 (en) 2005-11-17 2009-05-26 Chunghwa Picture Tubes, Ltd. Pixel structure
US7576037B2 (en) 2005-11-18 2009-08-18 Mei Technologies, Inc. Process and apparatus for combinatorial synthesis
US7566913B2 (en) 2005-12-02 2009-07-28 Nitronex Corporation Gallium nitride material devices including conductive regions and methods associated with the same
GB2436619B (en) 2005-12-19 2010-10-06 Toumaz Technology Ltd Sensor circuits
KR100718144B1 (ko) 2006-01-09 2007-05-14 삼성전자주식회사 이온 물질 검출용 fet 기반 센서, 그를 포함하는 이온물질 검출 장치 및 그를 이용한 이온 물질 검출 방법
EP2570490B1 (en) 2006-03-17 2017-06-28 The Government of the United States of America, as represented by The Department of Health and Human Services Apparatus for microarray binding sensors having biological probe materials using carbon nanotube transistors
US20070233477A1 (en) 2006-03-30 2007-10-04 Infima Ltd. Lossless Data Compression Using Adaptive Context Modeling
US7923240B2 (en) 2006-03-31 2011-04-12 Intel Corporation Photo-activated field effect transistor for bioanalyte detection
WO2007123908A2 (en) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
KR100723426B1 (ko) 2006-04-26 2007-05-30 삼성전자주식회사 이온 물질 검출용 전계 효과 트랜지스터 및 그를 이용한이온 물질 검출 방법
EP2530168B1 (en) 2006-05-11 2015-09-16 Raindance Technologies, Inc. Microfluidic Devices
JP4211805B2 (ja) 2006-06-01 2009-01-21 エプソンイメージングデバイス株式会社 電気光学装置および電子機器
JP4883812B2 (ja) 2006-07-13 2012-02-22 国立大学法人名古屋大学 物質検出装置
KR100799577B1 (ko) 2006-08-31 2008-01-30 한국전자통신연구원 가스 및 생화학물질 감지용 센서 제조 방법과 그 센서를포함하는 집적회로 및 그 제조 방법
US7960776B2 (en) 2006-09-27 2011-06-14 Cornell Research Foundation, Inc. Transistor with floating gate and electret
US8231831B2 (en) 2006-10-06 2012-07-31 Sharp Laboratories Of America, Inc. Micro-pixelated fluid-assay structure
DE102006052863B4 (de) 2006-11-09 2018-03-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schutzstruktur für Halbleitersensoren und deren Verwendung
US20090111705A1 (en) 2006-11-09 2009-04-30 Complete Genomics, Inc. Selection of dna adaptor orientation by hybrid capture
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
CA2672315A1 (en) 2006-12-14 2008-06-26 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
US7972828B2 (en) 2006-12-19 2011-07-05 Sigma-Aldrich Co. Stabilized compositions of thermostable DNA polymerase and anionic or zwitterionic detergent
US7932034B2 (en) 2006-12-20 2011-04-26 The Board Of Trustees Of The Leland Stanford Junior University Heat and pH measurement for sequencing of DNA
WO2008089282A2 (en) 2007-01-16 2008-07-24 Silver James H Sensors for detecting subtances indicative of stroke, ischemia, infection or inflammation
JP4325684B2 (ja) 2007-02-20 2009-09-02 株式会社デンソー センサ制御装置、及び印加電圧特性の調整方法
US8031809B2 (en) 2007-02-28 2011-10-04 Seiko Epson Corporation Template pulse generating circuit, communication device, and communication method
EP2129792B1 (en) 2007-03-02 2010-09-01 DNA Electronics Ltd Qpcr using an ion-sensitive field effect transistor for ph sensing
EP1975246A1 (de) 2007-03-29 2008-10-01 Micronas Holding GmbH Markierungsfreie Sequenzierung auf einer Festphase mittels Feldeffekttransistoren
AU2008276308A1 (en) 2007-07-13 2009-01-22 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus using electric field for improved biological assays
EP2657869A3 (en) 2007-08-29 2015-06-03 Applied Biosystems, LLC Alternative nucleic acid sequencing methods
US20100285601A1 (en) 2007-09-28 2010-11-11 Agency For Science, Technology And Research Method of electrically detecting a nucleic acid molecule
KR100940415B1 (ko) 2007-12-03 2010-02-02 주식회사 동부하이텍 배면 드레인 구조 웨이퍼의 온저항 측정방법
US8124936B1 (en) 2007-12-13 2012-02-28 The United States Of America As Represented By The Secretary Of The Army Stand-off chemical detector
CN101896624A (zh) 2007-12-13 2010-11-24 Nxp股份有限公司 对生物微粒进行测序的生物传感器装置和方法
JP5273742B2 (ja) 2007-12-20 2013-08-28 国立大学法人豊橋技術科学大学 複合検出装置
US20090194416A1 (en) 2008-01-31 2009-08-06 Chung Yuan Christian University Potentiometric biosensor for detection of creatinine and forming method thereof
DE102008012899A1 (de) 2008-03-06 2009-09-10 Robert Bosch Gmbh Verfahren zum Betreiben eines Gassensors
US8067731B2 (en) 2008-03-08 2011-11-29 Scott Technologies, Inc. Chemical detection method and system
US7885490B2 (en) 2008-03-10 2011-02-08 Octrolix Bv Optical chemical detector and method
US7667501B2 (en) 2008-03-19 2010-02-23 Texas Instruments Incorporated Correlated double sampling technique
JP5259219B2 (ja) 2008-03-19 2013-08-07 株式会社三社電機製作所 電源装置
US7821806B2 (en) 2008-06-18 2010-10-26 Nscore Inc. Nonvolatile semiconductor memory circuit utilizing a MIS transistor as a memory cell
WO2010008480A2 (en) 2008-06-25 2010-01-21 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale fet arrays
GB2461127B (en) 2008-06-25 2010-07-14 Ion Torrent Systems Inc Methods and apparatus for measuring analytes using large scale FET arrays
JP2011525990A (ja) 2008-06-26 2011-09-29 ライフ テクノロジーズ コーポレーション Fetアレイを用いて分子相互作用を検出するための方法および装置
KR101026468B1 (ko) 2008-09-10 2011-04-01 한국전자통신연구원 생분자 검출 장치 및 검출 방법
US20100137143A1 (en) * 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8546128B2 (en) 2008-10-22 2013-10-01 Life Technologies Corporation Fluidics system for sequential delivery of reagents
US7898277B2 (en) 2008-12-24 2011-03-01 Agere Systems Inc. Hot-electronic injection testing of transistors on a wafer
US8101479B2 (en) 2009-03-27 2012-01-24 National Semiconductor Corporation Fabrication of asymmetric field-effect transistors using L-shaped spacers
US9309557B2 (en) 2010-12-17 2016-04-12 Life Technologies Corporation Nucleic acid amplification
US9334531B2 (en) 2010-12-17 2016-05-10 Life Technologies Corporation Nucleic acid amplification
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
US8673627B2 (en) 2009-05-29 2014-03-18 Life Technologies Corporation Apparatus and methods for performing electrochemical reactions
US20110037121A1 (en) 2009-08-16 2011-02-17 Tung-Hsing Lee Input/output electrostatic discharge device with reduced junction breakdown voltage
JP2011041205A (ja) 2009-08-18 2011-02-24 Panasonic Corp 電圧発生回路、デジタルアナログ変換器、ランプ波発生回路、アナログデジタル変換器、イメージセンサシステム及び電圧発生方法
SG188863A1 (en) 2009-09-11 2013-04-30 Agency Science Tech & Res Method of determining a sensitivity of a biosensor arrangement, and biosensor sensitivity determining system
US9018684B2 (en) 2009-11-23 2015-04-28 California Institute Of Technology Chemical sensing and/or measuring devices and methods
US8545248B2 (en) 2010-01-07 2013-10-01 Life Technologies Corporation System to control fluid flow based on a leak detected by a sensor
US9088208B2 (en) 2010-01-27 2015-07-21 Intersil Americas LLC System and method for high precision current sensing
EP2539471B1 (en) 2010-02-26 2014-08-06 Life Technologies Corporation Method for sequencing using a modified polymerase
US8878257B2 (en) 2010-06-04 2014-11-04 Freescale Semiconductor, Inc. Methods and apparatus for an ISFET
CN106449632B (zh) 2010-06-30 2019-09-20 生命科技公司 阵列列积分器
JP2013533482A (ja) 2010-06-30 2013-08-22 ライフ テクノロジーズ コーポレーション イオン感応性電荷蓄積回路および方法
CN106932456B (zh) 2010-06-30 2020-02-21 生命科技公司 用于测试isfet阵列的方法和装置
JP5876044B2 (ja) 2010-07-03 2016-03-02 ライフ テクノロジーズ コーポレーション 低濃度ドープドレインを有する化学的感応性センサ
JP5959516B2 (ja) * 2010-08-18 2016-08-02 ライフ テクノロジーズ コーポレーション 電気化学的検出装置のためのマイクロウェルの化学コーティング法
EP2617061B1 (en) 2010-09-15 2021-06-30 Life Technologies Corporation Methods and apparatus for measuring analytes
WO2012039812A1 (en) 2010-09-24 2012-03-29 Life Technologies Corporation Matched pair transistor circuits
WO2012092515A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Methods, systems, and computer readable media for nucleic acid sequencing
WO2012152308A1 (en) * 2011-05-06 2012-11-15 X-Fab Semiconductor Foundries Ag Ion sensitive field effect transistor
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8747748B2 (en) 2012-01-19 2014-06-10 Life Technologies Corporation Chemical sensor with conductive cup-shaped sensor surface
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506085A (ja) * 2003-09-19 2007-03-15 ケンブリッジ・エンタープライズ・リミテッド 電界効果トランジスタを用いる分子間相互作用の検知
US20080185616A1 (en) * 2004-06-28 2008-08-07 Nitronex Corporation Semiconductor device-based sensors and methods associated with the same
JP2010511885A (ja) * 2006-12-08 2010-04-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 半導体センサ装置を製造する方法及びこのような方法によって得られた半導体センサ装置
JP2012506557A (ja) * 2008-10-22 2012-03-15 ライフ テクノロジーズ コーポレーション 生物学的および化学的分析のための集積センサアレイ
US20100301398A1 (en) * 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
JP2012013579A (ja) * 2010-07-01 2012-01-19 Seiko Epson Corp 半導体装置、並びに、センサ素子及び半導体装置の製造方法

Also Published As

Publication number Publication date
CN105283758B (zh) 2018-06-05
EP2972279B1 (en) 2021-10-06
US20140264470A1 (en) 2014-09-18
WO2014149778A1 (en) 2014-09-25
EP2972279A1 (en) 2016-01-20
CN105283758A (zh) 2016-01-27
US9128044B2 (en) 2015-09-08
JP6581074B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
US10422767B2 (en) Chemical sensor with consistent sensor surface areas
US8841217B1 (en) Chemical sensor with protruded sensor surface
US9995708B2 (en) Chemical sensor with sidewall spacer sensor surface
JP2020042034A6 (ja) 一貫性のあるセンサ表面積を有する化学センサ
US10816504B2 (en) Chemical sensor array having multiple sensors per well
JP6581074B2 (ja) 一貫性のあるセンサ表面積を有する化学センサ
JP6671274B2 (ja) 薄伝導性素子を有する化学装置
US10436742B2 (en) Methods for manufacturing well structures for low-noise chemical sensors
US9116117B2 (en) Chemical sensor with sidewall sensor surface
US20220196595A1 (en) Chemical sensor with air via
US9835585B2 (en) Chemical sensor with protruded sensor surface
US20140264465A1 (en) Chemical sensors with partially extended sensor surfaces
US20140273324A1 (en) Methods for manufacturing chemical sensors with extended sensor surfaces
TW201518721A (zh) 具有一致感測器表面區域之化學感測器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190829

R150 Certificate of patent or registration of utility model

Ref document number: 6581074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250