JP2015105205A - Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material - Google Patents

Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material Download PDF

Info

Publication number
JP2015105205A
JP2015105205A JP2013248428A JP2013248428A JP2015105205A JP 2015105205 A JP2015105205 A JP 2015105205A JP 2013248428 A JP2013248428 A JP 2013248428A JP 2013248428 A JP2013248428 A JP 2013248428A JP 2015105205 A JP2015105205 A JP 2015105205A
Authority
JP
Japan
Prior art keywords
carbon nanotube
cnt
treated
self
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013248428A
Other languages
Japanese (ja)
Inventor
明彦 吉原
Akihiko Yoshihara
明彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2013248428A priority Critical patent/JP2015105205A/en
Publication of JP2015105205A publication Critical patent/JP2015105205A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treated carbon nanotube which has excellent dispersibility and can form a film with a very low volume resistance, and a dispersion liquid thereof.SOLUTION: A surface-treated carbon nanotube is obtained by bringing a carbon nanotube in which an average diameter (Av) and a diameter distribution (3σ) satisfy the relational expression: 0.20<(3σ/Av)<0.60 into contact with a supercritical fluid, a subcritical fluid, or a high-temperature high-pressure fluid, and a dispersion liquid comprises the surface-treated carbon nanotube.

Description

本発明は、表面処理カーボンナノチューブ及びその分散液、並びに表面処理カーボンナノチューブを用いた自立膜及び複合材料に関する。   The present invention relates to a surface-treated carbon nanotube and a dispersion thereof, and a free-standing film and a composite material using the surface-treated carbon nanotube.

カーボンナノチューブは高い導電性を有する材料であり、導電材料として注目されている。中でも、単層カーボンナノチューブは、高い導電性を示し、配合量が少量であっても複合材料の導電性や機械的特性を良好に向上させ得ることから、複合材料用のカーボン材料として期待が大きい。
一方、カーボンナノチューブの使用にあたっては、その特性を充分に発揮させる観点から、複合材料などのマトリクス中に均一に分散させる必要があるが、カーボンナノチューブは概して比表面積が大きく、互いに凝集して絡み合い易く、均一に分散させることは非常に困難である。
そこで、これまでに、カーボンナノチューブの分散性を向上させるべく、カーボンナノチューブの表面に、酸処理等の化学的処理を行なって表面改質したり、界面活性剤を物理的吸着させたりすることが検討されている。例えば、特許文献1には、超臨界流体などの酸化剤と接触させる、多層カーボンナノチューブの酸化方法が提案されている。
Carbon nanotubes are highly conductive materials and are attracting attention as conductive materials. Among them, single-walled carbon nanotubes show high electrical conductivity, and even if the blending amount is small, the electrical conductivity and mechanical properties of the composite material can be improved satisfactorily, so there is great expectation as a carbon material for composite materials. .
On the other hand, when using carbon nanotubes, it is necessary to uniformly disperse them in a matrix such as a composite material from the viewpoint of fully exhibiting their characteristics. However, carbon nanotubes generally have a large specific surface area, and are easily aggregated and entangled with each other. It is very difficult to disperse uniformly.
So far, in order to improve the dispersibility of the carbon nanotubes, the surface of the carbon nanotubes may be subjected to chemical treatment such as acid treatment to modify the surface or physically adsorb the surfactant. It is being considered. For example, Patent Document 1 proposes a method for oxidizing a multi-walled carbon nanotube that is brought into contact with an oxidizing agent such as a supercritical fluid.

特表2003−505332号公報Special table 2003-505332 gazette

ところで、カーボンナノチューブの製造方法に関し、化学気相成長法(CVD法)において、原料ガスと共に水などの触媒賦活物質を触媒に接触させることにより、触媒の活性及び寿命を著しく増大させる方法(スーパーグロース法)が近年開発されている。当該方法によれば、従来のカーボンナノチューブと比較して、比表面積とアスペクト比が非常に大きいカーボンナノチューブが得られるが、特許文献1に開示される方法を適用したところ、得られた処理後カーボンナノチューブは分散性に乏しく、また、それを用いて形成した膜の体積抵抗率は未だ充分に低いとは言えなかった。   By the way, with respect to a method for producing carbon nanotubes, in chemical vapor deposition (CVD), a catalyst activation material such as water is brought into contact with a catalyst together with a raw material gas to significantly increase the activity and life of the catalyst (super growth). Law) has been developed in recent years. According to this method, carbon nanotubes having a very large specific surface area and aspect ratio compared to conventional carbon nanotubes can be obtained. However, when the method disclosed in Patent Document 1 is applied, the obtained treated carbon nanotubes are obtained. Nanotubes have poor dispersibility, and the volume resistivity of a film formed using them has not been sufficiently low.

本発明の目的は、分散性に優れ、体積抵抗率が非常に低い膜を形成可能な表面処理カーボンナノチューブ及びその分散液を提供することにある。また、本発明の他の目的は、前記表面処理カーボンナノチューブからなる自立膜及び前記表面処理カーボンナノチューブと重合体とを含む複合材料を提供することにある。   An object of the present invention is to provide a surface-treated carbon nanotube capable of forming a film having excellent dispersibility and a very low volume resistivity, and a dispersion thereof. Another object of the present invention is to provide a self-supporting film made of the surface-treated carbon nanotube and a composite material containing the surface-treated carbon nanotube and a polymer.

本発明者は、上記課題を解決することを目的として鋭意検討を行った結果、所定のカーボンナノチューブを超臨界流体、亜臨界流体又は高温高圧流体と接触させることで、分散性に優れ、体積抵抗率が非常に低い膜を形成可能な表面処理カーボンナノチューブが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies aimed at solving the above problems, the present inventor has excellent dispersibility and volume resistance by bringing a predetermined carbon nanotube into contact with a supercritical fluid, a subcritical fluid, or a high-temperature high-pressure fluid. It has been found that surface-treated carbon nanotubes capable of forming a film with a very low rate can be obtained, and the present invention has been completed.

すなわち、本発明は、
〔1〕平均直径(Av)と直径分布(3σ)とが関係式:0.20<(3σ/Av)<0.60を満たすカーボンナノチューブを、超臨界流体、亜臨界流体、又は高温高圧流体と接触させてなる表面処理カーボンナノチューブ、
〔2〕前記カーボンナノチューブが単層カーボンナノチューブである前記〔1〕記載の表面処理カーボンナノチューブ、
〔3〕前記〔1〕又は〔2〕に記載のカーボンナノチューブを含む分散液、
〔4〕前記〔1〕又は〔2〕に記載のカーボンナノチューブからなる自立膜、
並びに
〔5〕前記〔1〕又は〔2〕に記載のカーボンナノチューブと重合体とを含む複合材料、
を、提供する。
That is, the present invention
[1] Carbon nanotubes satisfying the relational expression: 0.20 <(3σ / Av) <0.60 between the average diameter (Av) and the diameter distribution (3σ) are supercritical fluid, subcritical fluid, or high-temperature high-pressure fluid. Surface-treated carbon nanotubes made in contact with
[2] The surface-treated carbon nanotube according to [1], wherein the carbon nanotube is a single-walled carbon nanotube,
[3] A dispersion containing the carbon nanotube according to [1] or [2],
[4] A self-supporting film comprising the carbon nanotube according to [1] or [2],
And [5] a composite material comprising the carbon nanotube according to [1] or [2] and a polymer,
I will provide a.

本発明によれば、分散性に優れ、体積抵抗率が非常に低い膜を形成可能な表面処理カーボンナノチューブ、その分散液、前記表面処理カーボンナノチューブからなる自立膜、及び前記表面処理カーボンナノチューブと重合体とを含む複合材料が得られる。   According to the present invention, a surface-treated carbon nanotube capable of forming a film having excellent dispersibility and a very low volume resistivity, a dispersion thereof, a free-standing film comprising the surface-treated carbon nanotube, A composite material containing the coalescence is obtained.

以下、本発明を、表面処理カーボンナノチューブ、その分散液、自立膜及び複合材料に項分けして詳細に説明する。以下、カーボンナノチューブを「CNT」という場合がある。   Hereinafter, the present invention will be described in detail by classifying it into surface-treated carbon nanotubes, dispersions thereof, free-standing films and composite materials. Hereinafter, the carbon nanotube may be referred to as “CNT”.

(表面処理カーボンナノチューブ)
本発明の表面処理CNTは、平均直径(Av)と直径分布(3σ)とが関係式:0.20<(3σ/Av)<0.60を満たすカーボンナノチューブを、超臨界流体、亜臨界流体、又は高温高圧流体と接触させてなるものである。
(Surface treated carbon nanotube)
In the surface-treated CNT of the present invention, carbon nanotubes whose average diameter (Av) and diameter distribution (3σ) satisfy the relational expression: 0.20 <(3σ / Av) <0.60, supercritical fluid, subcritical fluid Or in contact with a high-temperature high-pressure fluid.

本発明においては、平均直径(Av)と直径分布(3σ)とが関係式:0.20<(3σ/Av)<0.60を満たすカーボンナノチューブを原料CNTとして用いる。本発明の表面処理CNTの分散性を向上させる観点から、(3σ/Av)の値としては、好ましくは0.50<(3σ/Av)<0.60である。ここで、直径とはCNTの外径を意味する。また、平均直径(Av)及び直径の標準偏差(σ)は、透過型電子顕微鏡での観察下に、無作為に選択されたカーボンナノチューブ100本の直径を測定した際の平均値及び標準偏差として求められる(後述する平均長さも、同様の方法で長さの測定を行い、その平均値として求められる。)。原料CNTとしては、そのようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。   In the present invention, carbon nanotubes satisfying the relational expression: 0.20 <(3σ / Av) <0.60 between the average diameter (Av) and the diameter distribution (3σ) are used as the raw material CNT. From the viewpoint of improving the dispersibility of the surface-treated CNT of the present invention, the value of (3σ / Av) is preferably 0.50 <(3σ / Av) <0.60. Here, the diameter means the outer diameter of the CNT. The average diameter (Av) and the standard deviation of diameter (σ) are the average value and standard deviation when measuring the diameter of 100 randomly selected carbon nanotubes under observation with a transmission electron microscope. (The average length described later is also obtained as an average value by measuring the length in the same manner.) As the raw material CNTs, those having a normal distribution when the diameter measured in this way is plotted on the horizontal axis and the frequency is plotted on the vertical axis and approximated by Gaussian are usually used.

原料CNTは、単層のものであっても、多層のものであってもよいが、得られる自立膜や複合材料の性能(例えば、導電性および機械的特性)を向上させる観点から、単層から5層のものが好ましく、単層のものがより好ましい。   The raw material CNT may be a single layer or a multilayer, but from the viewpoint of improving the performance (for example, conductivity and mechanical properties) of the obtained self-supporting film or composite material. To 5 layers are preferable, and a single layer is more preferable.

原料CNTの平均直径(Av)は、通常、0.5nm以上、15nm以下が好ましく、1nm以上、10nm以下がより好ましい。
また、原料CNTの平均長さは、好ましくは0.1μm〜1cm、より好ましくは0.1μm〜1mmである。原料CNTの平均長さが上記範囲内にあると、本発明の表面処理CNTの配向性が高まり自立膜の形成を容易に行うことができる。
The average diameter (Av) of the raw material CNT is usually preferably 0.5 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
Moreover, the average length of raw material CNT becomes like this. Preferably they are 0.1 micrometer-1 cm, More preferably, they are 0.1 micrometer-1 mm. When the average length of the raw material CNT is within the above range, the orientation of the surface-treated CNT of the present invention is enhanced, and a free-standing film can be easily formed.

原料CNTの比表面積としては、窒素ガス吸着によるBET比表面積が、通常、600m/g以上、好ましくは700m/g以上であり、その上限が、通常、2500m/gであり、かつ水蒸気吸着によるBET比表面積が、通常、0.01〜50m/g、好ましくは0.1〜30m/gである。また、窒素ガス吸着によるBET比表面積に対する水蒸気吸着によるBET比表面積の比(水蒸気吸着によるBET比表面積/窒素ガス吸着によるBET比表面積)が、通常、0.0001〜0.2、好ましくは0.0005〜0.15である。それらの比表面積は、例えば、「BELSORP(登録商標)−max」(日本ベル社製)を用いて測定することができる。
さらに、原料CNTの、昇温脱離法における150〜950℃での、一酸化炭素(CO)脱離量としては、通常、100〜10000μmol/gであり、かつ二酸化炭素(CO)脱離量としては、通常、1〜3000μmol/gである。COとCOの脱離量は、例えば、日本ベル社製の全自動昇温脱離スペクトル装置「TPD−1−ATw」により測定することができる。
原料CNTの比表面積及びCOとCOの脱離量が上記範囲内にあると、本発明の表面処理CNTの分散性が高まり好適である。
As the specific surface area of the raw material CNT, the BET specific surface area by nitrogen gas adsorption is usually 600 m 2 / g or more, preferably 700 m 2 / g or more, the upper limit is usually 2500 m 2 / g, and water vapor The BET specific surface area by adsorption is usually 0.01 to 50 m 2 / g, preferably 0.1 to 30 m 2 / g. The ratio of the BET specific surface area by water vapor adsorption to the BET specific surface area by nitrogen gas adsorption (BET specific surface area by water vapor adsorption / BET specific surface area by nitrogen gas adsorption) is usually 0.0001 to 0.2, preferably 0.00. 0005 to 0.15. Those specific surface areas can be measured using, for example, “BELSORP (registered trademark) -max” (manufactured by Nippon Bell Co., Ltd.).
Furthermore, the carbon monoxide (CO) desorption amount at 150 to 950 ° C. in the temperature programmed desorption method of the raw material CNT is usually 100 to 10,000 μmol / g, and carbon dioxide (CO 2 ) desorption. The amount is usually 1 to 3000 μmol / g. The desorption amount of CO and CO 2 can be measured by, for example, a fully automatic temperature-programmed desorption spectrometer “TPD-1-ATw” manufactured by Bell Japan.
When the specific surface area of the raw material CNT and the desorption amount of CO and CO 2 are within the above ranges, the dispersibility of the surface-treated CNT of the present invention is preferably increased.

また、原料CNTは、複数の微小孔を有することが好ましい。中でも、孔径が2nmよりも小さいマイクロ孔を有するCNTが好ましく、その存在量は、下記の方法で求めたマイクロ孔容積で、好ましくは0.4mL/g以上、より好ましくは0.43mL/g以上、更に好ましくは0.45mL/g以上であり、上限としては、通常、0.65mL/g程度である。原料CNTが上記のようなマイクロ孔を有することは、得られる表面処理CNTの分散性を高める観点から好ましい。なお、マイクロ孔容積は、例えば、原料CNTの調製方法及び調製条件を適宜変更することで調整することができる。
ここで、「マイクロ孔容積(Vp)」は、原料CNTの液体窒素温度(77K)での窒素吸着等温線を測定し、相対圧P/P0=0.19における窒素吸着量をVとして、式(I):Vp=(V/22414)×(M/ρ)より、算出することができる。なお、Pは吸着平衡時の測定圧力、P0は測定時の液体窒素の飽和蒸気圧であり、 式(I)中、Mは吸着質(窒素)の分子量28.010、ρは吸着質(窒素)の77Kにおける密度0.808g/cmである。マイクロ孔容積は、例えば、「BELSORP(登録商標)−mini」(日本ベル社製)を使用して求めることができる。
The raw material CNT preferably has a plurality of micropores. Among them, CNTs having micropores having a pore size smaller than 2 nm are preferable, and the abundance thereof is a micropore volume determined by the following method, preferably 0.4 mL / g or more, more preferably 0.43 mL / g or more. More preferably, it is 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g. It is preferable that the raw material CNT have the above-described micropores from the viewpoint of improving the dispersibility of the obtained surface-treated CNT. In addition, a micropore volume can be adjusted by changing suitably the preparation method and preparation conditions of raw material CNT, for example.
Here, the “micropore volume (Vp)” is an equation in which the nitrogen adsorption isotherm at the liquid nitrogen temperature (77 K) of the raw material CNT is measured, and the nitrogen adsorption amount at relative pressure P / P0 = 0.19 is V. (I): Vp = (V / 22414) × (M / ρ). P is the measurement pressure at the time of adsorption equilibrium, P0 is the saturated vapor pressure of liquid nitrogen at the time of measurement, and in formula (I), M is the molecular weight of adsorbate (nitrogen) 28.010, and ρ is the adsorbate (nitrogen). ) At 77K with a density of 0.808 g / cm 3 . The micropore volume can be determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).

以上の特性を有する原料CNTとしては、以下のスーパーグロース法により得られるCNT(以下、「SGCNT」という場合がある。)を用いるのが好ましい。
SGCNTは、例えば、表面にカーボンナノチューブ製造用触媒層(以下、「CNT製造用触媒層」ということがある。)を有する基材(以下、「CNT製造用基材」ということがある。)上に、原料化合物及びキャリアガスを供給して、化学的気相成長法(CVD法)によりカーボンナノチューブを合成する際に、系内に微量の酸化剤を存在させることで、CNT製造用触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行い、原料ガスとしてアセチレンを主成分とするガス(例えば、アセチレンを50質量%以上含むガス)を用いることで、効率的に製造することができる。
As the raw material CNT having the above characteristics, it is preferable to use CNT obtained by the following super-growth method (hereinafter sometimes referred to as “SGCNT”).
SGCNT is, for example, on a substrate (hereinafter also referred to as “CNT production substrate”) having a carbon nanotube production catalyst layer (hereinafter also referred to as “CNT production catalyst layer”) on the surface. In addition, when a raw material compound and a carrier gas are supplied to synthesize carbon nanotubes by chemical vapor deposition (CVD), a small amount of oxidant is present in the system, so that the catalyst layer for CNT production In a method of dramatically improving catalyst activity (super growth method; see International Publication No. 2006/011655), a catalyst layer is formed on a substrate surface by a wet process, and acetylene as a main component is used as a raw material gas. It can manufacture efficiently by using gas (for example, gas containing 50 mass% or more of acetylene).

原料CNTと接触させる流体としては、例えば、水(臨界温度:647.3K、臨界圧力:22.12MPa)、メタノール(512.6K、8.1MPa)、エタノール(516.2K、6.1MPa)、アンモニア(405.6K、11.4MPa)及び二酸化炭素(304.15K、7.38MPa)が挙げられる。用いる流体としては、通常、水又は二酸化炭素が好適である。流体は、それぞれの臨界温度と臨界圧力を指標として、所望の温度圧力環境下に置くことで臨界状態又は亜臨界状態とできる。また、流体は、各流体の沸点(0.1MPa時)以上の温度で1気圧を超える圧力下に置くことで高温高圧状態とできる(但し、臨界状態又は亜臨界状態となる場合を除く。)。例えば、用いる流体が水の場合、温度200℃以上で0.2MPa以上の温度圧力環境下に置くことで高温高圧状態とできる。前記流体のうち、アンモニアや二酸化炭素などは、単独では酸化力が小さいため、高圧酸素などを混入して、酸化力を高めるのが望ましい。   Examples of the fluid to be brought into contact with the raw material CNT include water (critical temperature: 647.3K, critical pressure: 22.12 MPa), methanol (512.6K, 8.1 MPa), ethanol (516.2K, 6.1 MPa), Examples include ammonia (405.6K, 11.4 MPa) and carbon dioxide (304.15K, 7.38 MPa). As the fluid to be used, water or carbon dioxide is usually preferable. A fluid can be in a critical state or a subcritical state by placing the fluid in a desired temperature and pressure environment using the critical temperature and the critical pressure as indices. In addition, the fluid can be brought into a high-temperature and high-pressure state by placing it under a pressure exceeding 1 atm at a temperature equal to or higher than the boiling point of each fluid (at 0.1 MPa) (except when it becomes a critical state or a subcritical state). . For example, when the fluid to be used is water, a high temperature and high pressure state can be obtained by placing it in a temperature and pressure environment of a temperature of 200 ° C. or higher and 0.2 MPa or higher. Among the fluids, ammonia, carbon dioxide, and the like alone have low oxidizing power, so it is desirable to increase the oxidizing power by mixing high-pressure oxygen or the like.

原料CNTと流体との接触は、バッチ式で行っても、又は連続式で行ってもよい。原料CNTと流体との接触は、例えば、原料CNTと流体とを反応器の中に入れて密封し、窒素ガスなどの不活性ガス雰囲気下で反応器内の温度が所望の温度以上になるまで加熱し、所望の内圧を保持したまま、5〜300分程度維持することにより行うことができる。内容物の昇温速度や降温速度は特に限定されないが、昇温時は、用いる流体を迅速に所望の状態とできるよう、一方、降温時は、反応系を迅速に常温常圧に戻せるよう、適宜調整するのが好ましい。原料CNT1質量部に対し流体の接触量は、通常、10〜1000質量部である。
原料CNTと流体との接触処理終了後の反応器内は非常に高温高圧であるため、室温まで冷却すると共に大気圧に戻す。次いで、流体を、所望により、例えば、デカンテーションにより除去し、得られた表面処理CNTを、例えば、水で洗浄する。当該洗浄は、通常、洗浄排水が中性になるまで行う。いずれにしても原料CNTと流体とを反応器内で接触させた後、高温高圧状態から脱して流体を反応器内から排除することにより、流体と表面処理CNTとを容易に分離できる。流体の密度は、温度と圧力を制御して連続的に変化させることができ、従って、連続的に反応性を変化させることも出来る。
The contact between the raw material CNT and the fluid may be performed in a batch system or a continuous system. The contact between the raw material CNT and the fluid is performed, for example, by putting the raw material CNT and the fluid in a reactor and sealing them until the temperature in the reactor becomes equal to or higher than a desired temperature in an inert gas atmosphere such as nitrogen gas. It can be performed by heating and maintaining for about 5 to 300 minutes while maintaining the desired internal pressure. The temperature rise rate and temperature drop rate of the contents are not particularly limited, but when raising the temperature, the fluid to be used can be quickly brought into a desired state, while at the time of temperature drop, the reaction system can be quickly returned to normal temperature and normal pressure. It is preferable to adjust appropriately. The amount of fluid contact with respect to 1 part by mass of the raw material CNT is usually 10 to 1000 parts by mass.
Since the inside of the reactor after the contact treatment between the raw material CNT and the fluid is very high temperature and pressure, it is cooled to room temperature and returned to atmospheric pressure. Next, the fluid is removed, for example, by decantation, if desired, and the obtained surface-treated CNT is washed with, for example, water. The washing is usually performed until the washing wastewater becomes neutral. In any case, after bringing the raw material CNT and the fluid into contact with each other in the reactor, the fluid and the surface-treated CNT can be easily separated by removing the fluid from the reactor by removing from the high temperature and high pressure state. The density of the fluid can be continuously changed by controlling temperature and pressure, and therefore the reactivity can be continuously changed.

以上により、本発明の表面処理CNTが得られる。表面処理CNTは、通常、流体と分離後、適宜乾燥することで乾燥紛体として用いられる。   Thus, the surface-treated CNT of the present invention is obtained. The surface-treated CNT is usually used as a dry powder by separating it from the fluid and drying it as appropriate.

(分散液)
本発明の分散液は、本発明の表面処理CNTを含んでなる。本発明の表面処理CNTは、溶媒への分散性に優れたものであることから、その分散液を製造するにあたり、分散剤を必要としない。従って、当該分散液は、通常、本発明の表面処理CNTと溶媒とからなる。
(Dispersion)
The dispersion of the present invention comprises the surface-treated CNT of the present invention. Since the surface-treated CNTs of the present invention are excellent in dispersibility in a solvent, no dispersant is required in producing the dispersion. Therefore, the dispersion liquid usually comprises the surface-treated CNT of the present invention and a solvent.

分散液の調製に用いる溶媒としては、水;メタノール、エタノール、プロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2イミダゾリジノン等のアミド類;ジメチルスルホキシド、スルホラン等の含イオウ系溶媒;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。   Solvents used for preparing the dispersion include water; alcohols such as methanol, ethanol and propanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; N, N-dimethylformamide, N, N -Amides such as dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; and the like. These solvents can be used alone or in combination of two or more.

なお、本発明の分散液には、所望により、結着剤、導電助剤、分散剤、界面活性剤等を含有させてもよい。これらは公知のものを適宜使用すればよい。   In addition, you may make the dispersion liquid of this invention contain a binder, a conductive support agent, a dispersing agent, surfactant, etc. if desired. These may be appropriately known ones.

本発明の分散液は、例えば、本発明の表面処理CNTを溶媒中で混合し、該CNTを分散させることで得ることができる。
混合処理や分散処理は、例えば、ナノマイザー、アルティマイザー、超音波分散機、ボールミル、サンドグラインダー、ダイノミル、スパイクミル、DCPミル、バスケットミル、ペイントコンディショナー、高速攪拌装置等を用いる方法を利用すればよい。
The dispersion of the present invention can be obtained, for example, by mixing the surface-treated CNTs of the present invention in a solvent and dispersing the CNTs.
For the mixing process and dispersion process, for example, a method using a nanomizer, an optimizer, an ultrasonic disperser, a ball mill, a sand grinder, a dyno mill, a spike mill, a DCP mill, a basket mill, a paint conditioner, a high-speed stirring device, or the like may be used. .

本発明の分散液中、本発明の表面処理CNTの含有量は、特に限定されないが、好ましくは0.001〜10質量%である。
本発明の分散液は、CNTが均一に分散しており、CNTの自立膜や複合材料の製造に好適に用いられる。
In the dispersion of the present invention, the content of the surface-treated CNT of the present invention is not particularly limited, but is preferably 0.001 to 10% by mass.
The dispersion of the present invention has CNTs uniformly dispersed therein, and is suitably used for the production of CNT free-standing films and composite materials.

(自立膜)
本発明の自立膜は、本発明の表面処理CNTからなる。ここで、自立膜とは、他の支持体が存在していなくとも膜としての形状を保つことができる膜をいう。自立膜の厚さは、通常、5nm〜100μmの範囲である。自立膜は、長尺の連続シートであってもよい。自立膜の比重としては、通常、0.3〜3.0g/cmが好適である。
(Self-supporting membrane)
The self-supporting film of the present invention is composed of the surface-treated CNT of the present invention. Here, the self-supporting membrane refers to a membrane that can maintain its shape as a membrane even when no other support is present. The thickness of the self-supporting film is usually in the range of 5 nm to 100 μm. The self-supporting film may be a long continuous sheet. The specific gravity of the self-supporting film is usually preferably from 0.3 to 3.0 g / cm 3 .

本発明の自立膜は、例えば、本発明の分散液を任意の支持体上に塗布し、得られた塗膜を乾燥し、支持体を除去することで得ることができる。また、支持体が多孔性である場合、本発明の分散液を、該支持体を介して濾過し、得られた濾過物を乾燥し、支持体を除去することで得ることができる。なお、本発明の自立膜は、支持体を付けた状態で支持体付自立膜として得てもよい。   The self-supporting film of the present invention can be obtained, for example, by applying the dispersion of the present invention on an arbitrary support, drying the obtained coating film, and removing the support. Moreover, when a support body is porous, it can obtain by filtering the dispersion liquid of this invention through this support body, drying the obtained filtrate, and removing a support body. In addition, you may obtain the self-supporting film | membrane of this invention as a self-supporting film | membrane with a support body in the state which attached the support body.

前記支持体としては、自立膜の製造中、自立膜を十分に固定することができ、かつ、自立膜形成後、容易に除去できるものであれば特に制限されない。例えば、PTFE(ポリテトラフルオロエチレン)シート、PET(ポリエチレンテレフタレート)シート等の合成樹脂シートや、セルロース、ニトロセルロース、ろ紙、アルミナ等の多孔性シートが挙げられる。   The support is not particularly limited as long as it can sufficiently fix the self-supporting film during the production of the self-supporting film and can be easily removed after the formation of the self-supporting film. Examples thereof include synthetic resin sheets such as PTFE (polytetrafluoroethylene) sheets and PET (polyethylene terephthalate) sheets, and porous sheets such as cellulose, nitrocellulose, filter paper, and alumina.

支持体上に分散液を塗布する際は、公知の塗布方法を採用できる。塗布方法としては、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等が挙げられる。   When applying the dispersion on the support, a known application method can be employed. Examples of the coating method include a dipping method, a roll coating method, a gravure coating method, a knife coating method, an air knife coating method, a roll knife coating method, a die coating method, a screen printing method, a spray coating method, and a gravure offset method.

得られた塗膜又は濾過物を乾燥させる際は、公知の乾燥方法を採用できる。乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等が挙げられる。乾燥温度は特に限定されないが、通常、室温〜200℃、乾燥時間は特に限定されないが、通常、0.1〜150分である。乾燥雰囲気下は、空気中、窒素やアルゴンなど不活性ガス中、真空中など適時選択してよい。   When drying the obtained coating film or filtration thing, a well-known drying method is employable. Examples of the drying method include a hot air drying method, a hot roll drying method, and an infrared irradiation method. The drying temperature is not particularly limited, but is usually room temperature to 200 ° C., and the drying time is not particularly limited, but is usually 0.1 to 150 minutes. The dry atmosphere may be selected as appropriate, such as in air, in an inert gas such as nitrogen or argon, or in a vacuum.

本発明の自立膜を本発明の分散液により形成すると、当該自立膜は分散剤を含まないものとして得ることができる。従って、導電性を高めるために分散剤の除去を行う必要がなく、本発明の自立膜はそのまま導電性に優れたものとなる。   When the self-supporting film of the present invention is formed from the dispersion liquid of the present invention, the self-supporting film can be obtained as containing no dispersant. Therefore, it is not necessary to remove the dispersant in order to increase the conductivity, and the self-supporting film of the present invention is excellent in conductivity as it is.

本発明の自立膜は、特に、前記SGCNTを用いてなるものが好ましい。上述のように、SGCNTの平均直径(Av)は、好ましくは0.5nm以上、15nm以下である。また、その平均長さは、好ましくは0.1μm〜1cmである。本発明の自立膜を、このような形状的特徴を有するSGCNTを用いて形成すると、カーボンナノチューブが互いに交差して網目状構造を形成した構造を有する自立膜が容易に得られる。   In particular, the self-supporting film of the present invention is preferably made of SGCNT. As described above, the average diameter (Av) of SGCNT is preferably 0.5 nm or more and 15 nm or less. Moreover, the average length becomes like this. Preferably they are 0.1 micrometer-1 cm. When the self-supporting film of the present invention is formed using SGCNT having such shape characteristics, a self-supporting film having a structure in which carbon nanotubes cross each other to form a network structure can be easily obtained.

本発明の自立膜は、タッチパネル、太陽電池、燃料電池等の電子機器の電極材料等の電極の導電層や触媒層の形成に好適に用いられる。例えば、前記支持体付自立膜を、所定の基材等を用意し、この基材等に、ホットプレス等で圧着させた後、支持体を剥離することで、当該基材等の表面に本発明の自立膜からなる導電層又は触媒層を形成することができる。また、支持体として、所定の基材等を用い、その上に本発明の分散液を塗布し、得られた塗膜を乾燥することで、当該基材等の表面に本発明の自立膜からなる導電層又は触媒層を形成してもよい。   The self-supporting film of the present invention is suitably used for forming a conductive layer or a catalyst layer of an electrode such as an electrode material of an electronic device such as a touch panel, a solar cell, or a fuel cell. For example, the self-supporting film with a support is prepared on a surface of the base material by preparing a predetermined base material and bonding the base material with a hot press or the like and then peeling the support. A conductive layer or a catalyst layer made of the self-supporting film of the invention can be formed. Further, as a support, a predetermined base material or the like is used, the dispersion liquid of the present invention is applied thereon, and the obtained coating film is dried, so that the surface of the base material or the like can be applied from the self-supporting film of the present invention. A conductive layer or a catalyst layer may be formed.

(複合材料)
本発明の複合材料は、本発明の表面処理CNTと重合体とを含んでなる。本発明の複合材料は、例えば、本発明の分散液に、目的に応じて重合体を配合することにより得ることができる。当該重合体に特に限定はなく、任意のゴムや樹脂が挙げられる。
(Composite material)
The composite material of the present invention comprises the surface-treated CNT of the present invention and a polymer. The composite material of the present invention can be obtained, for example, by blending a polymer according to the purpose into the dispersion of the present invention. There is no limitation in particular in the said polymer, Arbitrary rubber | gum and resin are mentioned.

本発明の複合材料中、本発明の表面処理CNTの含有量は、重合体100質量部に対して、0.01質量部以上とするのが好ましく、0.1質量部以上とするのがより好ましく、0.25質量部以上とするのが更に好ましく、また、10質量部以下とするのが好ましく、7質量部以下とするのがより好ましく、5質量部以下とするのが更に好ましい。重合体100質量部当たりのCNTの量を、0.01質量部以上とすれば、複合材料に充分な導電性や機械的特性を付与することができ、また、10質量部以下とすれば、CNTの損傷を防止しつつ、複合材料中でCNTを均一に分散させることができる。   In the composite material of the present invention, the content of the surface-treated CNT of the present invention is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of the polymer. Preferably, the amount is 0.25 parts by mass or more, more preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and still more preferably 5 parts by mass or less. If the amount of CNT per 100 parts by mass of the polymer is 0.01 parts by mass or more, sufficient electrical conductivity and mechanical properties can be imparted to the composite material, and if it is 10 parts by mass or less, CNT can be uniformly dispersed in the composite material while preventing damage to the CNT.

本発明の分散液への重合体の配合は、ゴム又は樹脂のラテックスを用いて行うのが好適である。   The blending of the polymer into the dispersion of the present invention is preferably performed using rubber or resin latex.

ゴムのラテックスとしては、特に限定されることなく、天然ゴムラテックス、合成ジエン系ゴムラテックス(ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、エチレン酢酸ビニルゴム、クロロプレンゴム、ビニルピリジンゴム、及びブチルゴムなどのラテックス)、及びフッ素ゴムラテックスなどが挙げられる。   The rubber latex is not particularly limited, and natural rubber latex, synthetic diene rubber latex (butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, ethylene vinyl acetate rubber, chloroprene rubber, vinyl pyridine rubber, butyl rubber, etc.) ), And fluororubber latex.

また、樹脂のラテックスとしては、特に限定されることなく、ポリエチレン樹脂、ポリプロピレン樹脂、スチレン系樹脂、アクリル系樹脂、メタクリル系樹脂、有機酸ビニルエステル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、オレフィン系樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル系樹脂、及びシリコーン樹脂などのラテックスが挙げられる。   Further, the latex of the resin is not particularly limited, and is not limited to polyethylene resin, polypropylene resin, styrene resin, acrylic resin, methacrylic resin, organic acid vinyl ester resin, vinyl ether resin, halogen-containing resin, olefin resin. Examples thereof include latex such as resin, alicyclic olefin resin, polycarbonate resin, polyester resin, polyamide resin, thermoplastic polyurethane resin, polysulfone resin, polyphenylene ether resin, and silicone resin.

ラテックスの固形分濃度は、特に限定されないが、ラテックス中での均一分散性の点から、好ましくは20〜80質量%、より好ましくは20〜60質量%である。   The solid content concentration of the latex is not particularly limited, but is preferably 20 to 80% by mass, more preferably 20 to 60% by mass from the viewpoint of uniform dispersibility in the latex.

本発明の複合材料には公知の添加剤が含まれていてもよい。当該添加剤としては、特に限定されることなく、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、架橋剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、及び香料などを挙げることができる。   The composite material of the present invention may contain a known additive. The additive is not particularly limited, and is an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a crosslinking agent, a pigment, a colorant, a foaming agent, an antistatic agent, a flame retardant, a lubricant, a softening agent. Agents, tackifiers, plasticizers, mold release agents, deodorants, and fragrances.

本発明の複合材料は、例えば、本発明の分散液と、ラテックスと、任意に添加剤とを、公知の方法により混合することで、得ることができる。混合時間は、通常、10分間以上、24時間以下である。   The composite material of the present invention can be obtained, for example, by mixing the dispersion of the present invention, latex, and optionally an additive by a known method. The mixing time is usually 10 minutes or more and 24 hours or less.

本発明の分散液へのラテックスの配合後、得られた複合材料を、公知の方法に従ってさらに凝固させてもよい。複合材料の凝固は、公知のラテックスの凝固方法に準じて行うことができる。例えば、複合材料を水溶性の有機溶媒に加える方法、酸を複合材料に加える方法、塩を複合材料に加える方法が挙げられる。   After blending the latex into the dispersion of the present invention, the resulting composite material may be further coagulated according to a known method. The coagulation of the composite material can be performed according to a known latex coagulation method. For example, a method of adding the composite material to a water-soluble organic solvent, a method of adding an acid to the composite material, and a method of adding a salt to the composite material can be mentioned.

さらに、凝固した複合材料を、任意に乾燥させた後、複合材料成形体としてもよい。当該成形体は、上述した複合材料を、所望の成形品形状に応じた成形機、例えば、押出機、射出成形機、圧縮機、及びロール機等により成形して得ることができる。なお、複合材料成形体には、任意に架橋処理を施してもよい。   Furthermore, the solidified composite material may be optionally dried, and then formed into a composite material molded body. The said molded object can be obtained by shape | molding the composite material mentioned above with the shaping | molding machine according to a desired molded article shape, for example, an extruder, an injection molding machine, a compressor, a roll machine, etc. In addition, you may give a crosslinking process arbitrarily to a composite material molded object.

本発明の複合材料においては、本発明の表面処理CNTが均一に分散していることから、例えば、前記のようにして得られる複合材料成形体は優れた導電性や機械的特性を有する。本発明の複合材料は、特に限定されることなく、ホース、タイヤ、電磁波シールドの材料などとして好適に用いることができる。   In the composite material of the present invention, since the surface-treated CNTs of the present invention are uniformly dispersed, for example, the composite material molded body obtained as described above has excellent electrical conductivity and mechanical properties. The composite material of the present invention is not particularly limited and can be suitably used as a material for hoses, tires, electromagnetic wave shields, and the like.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、物性等の評価は、以下の方法により行った。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. The physical properties were evaluated by the following methods.

(1)分散性の評価
エタノール5mLに表面処理SGCNTを0.001g加え、超音波分散機で60分間分散させ、以下の評価基準に従って分散性を目視で評価した。
〔評価基準〕
○:目で見える凝集物が存在しない。
×:目で見える凝集物が存在する。
(2)体積抵抗率
自立膜を用い、導電率計(三菱アナリテック社製、製品名「ロレスタ(登録商標)GP」)により四端子法にて測定した。
(1) Evaluation of dispersibility 0.001 g of surface-treated SGCNT was added to 5 mL of ethanol and dispersed with an ultrasonic disperser for 60 minutes, and the dispersibility was visually evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: There is no visible aggregate.
×: Visible aggregates exist.
(2) Volume resistivity Using a self-supporting film, the volume resistivity was measured by a four-terminal method using a conductivity meter (product name “Loresta (registered trademark) GP” manufactured by Mitsubishi Analitech Co., Ltd.).

(原料CNTの調製)
原料CNTとして、国際公開第2006/011655号の記載に従って、スーパーグロース法によりSGCNTを調製した。
得られたSGCNTは、主に単層CNTから構成され、窒素ガス吸着によるBET比表面積が804m/g、水蒸気吸着によるBET比表面積が2.4m/g、それらの比表面積の比が0.003、CO脱離量が797μmol/g、CO脱離量が292μmol/g、マイクロ孔容積が0.44mL/gであった。また、平均直径(Av)が3.3nm、直径分布(3σ)が1.9nm、(3σ/Av)が0.58であり、平均長さが500μmであった。
(Preparation of raw material CNT)
SGCNT was prepared as a raw material CNT by the super-growth method in accordance with the description in International Publication No. 2006/011655.
The obtained SGCNT is mainly composed of single-walled CNT, has a BET specific surface area of 804 m 2 / g by nitrogen gas adsorption, a BET specific surface area of 2.4 m 2 / g by water vapor adsorption, and the ratio of these specific surface areas is 0. 0.003, the CO desorption amount was 797 μmol / g, the CO 2 desorption amount was 292 μmol / g, and the micropore volume was 0.44 mL / g. The average diameter (Av) was 3.3 nm, the diameter distribution (3σ) was 1.9 nm, (3σ / Av) was 0.58, and the average length was 500 μm.

(実施例1)
イオン交換水10gとSGCNT 0.01gとを、内径30mm、深さ80mm、容積56mLの小型圧力容器に入れて密封した。当該容器内に窒素を導入して、加圧・減圧を10回繰り返して、容器内を窒素で置換し、圧漏れがないことを確認した。この容器を加熱容器(電気炉)にセットし、内温が380℃になるまで速やかに昇温させ、内圧23.8MPaで10分間保持し、その後、室温まで冷却した。なお、容器内で水は超臨界状態であった。室温まで冷却した後、容器を取り出し、上澄みをデカンテーションし、さらにイオン交換水を加え、デカンテーションする作業を繰り返した。ウェットの状態で24.7gの表面処理SGCNTを得た。
次いで、イオン交換水10mLに、得られた表面処理SGCNTを0.01g(固形分換算)加え、超音波分散機で60分間分散させ、減圧濾過で濾過し、濾過物を濾紙ごと100℃で1時間乾燥させ、乾燥した濾過物を濾紙から剥がし、自立膜を得た。
以上の表面処理SGCNT及びその自立膜を用い、上記評価方法に従って評価した。結果を表1に示す。
Example 1
10 g of ion exchange water and 0.01 g of SGCNT were sealed in a small pressure vessel having an inner diameter of 30 mm, a depth of 80 mm and a volume of 56 mL. Nitrogen was introduced into the container, and pressurization and decompression were repeated 10 times to replace the interior of the container with nitrogen, and it was confirmed that there was no pressure leak. This container was set in a heating container (electric furnace), rapidly heated until the internal temperature reached 380 ° C., held at an internal pressure of 23.8 MPa for 10 minutes, and then cooled to room temperature. In the vessel, water was in a supercritical state. After cooling to room temperature, the container was taken out, the supernatant was decanted, and ion exchange water was further added, followed by decanting. In the wet state, 24.7 g of surface-treated SGCNT was obtained.
Next, 0.01 g (in terms of solid content) of the obtained surface-treated SGCNT is added to 10 mL of ion-exchanged water, dispersed with an ultrasonic disperser for 60 minutes, and filtered by vacuum filtration. After drying for a period of time, the dried filtrate was peeled from the filter paper to obtain a self-supporting membrane.
Using the above surface-treated SGCNT and its self-supporting film, evaluation was performed according to the above evaluation method. The results are shown in Table 1.

(実施例2)
小型圧力容器の内温が350℃になるまで速やかに昇温させ、内圧16.5MPaで保持したこと以外は実施例1と同様にして表面処理SGCNTをウェットの状態で25.2g得て、同様に評価した。結果を表1に示す。なお、容器内で水は亜臨界状態であった。
(Example 2)
25.2 g of surface-treated SGCNT was obtained in a wet state in the same manner as in Example 1 except that the temperature was quickly raised until the internal temperature of the small pressure vessel reached 350 ° C. and maintained at an internal pressure of 16.5 MPa. Evaluated. The results are shown in Table 1. In the vessel, water was in a subcritical state.

(実施例3)
小型圧力容器の内温が300℃になるまで速やかに昇温させ、内圧8.4MPaで保持したこと以外は実施例1と同様にして表面処理SGCNTをウェットの状態で25.2g得て、同様に評価した。結果を表1に示す。なお、容器内で水は高温高圧状態であった。
(Example 3)
25.2 g of surface-treated SGCNT was obtained in a wet state in the same manner as in Example 1 except that the temperature was rapidly raised until the internal temperature of the small pressure vessel reached 300 ° C. and maintained at an internal pressure of 8.4 MPa. Evaluated. The results are shown in Table 1. In the vessel, water was in a high temperature and high pressure state.

(比較例1)
上記のSGCNT(表面未処理)について、上記評価方法に従って分散性を評価し、また、体積抵抗率を測定した。結果を表1に示す。
(Comparative Example 1)
About said SGCNT (surface untreated), the dispersibility was evaluated according to the said evaluation method, and the volume resistivity was measured. The results are shown in Table 1.

Figure 2015105205
Figure 2015105205

表1より、実施例で得られた表面処理SGCNTはいずれも、比較例1の表面処理していないSGCNTそのものと比べ、分散性に優れ、さらに、かかる表面処理SGCNTを用いれば、体積抵抗率が低い自立膜が得られることが分かる。   From Table 1, all the surface-treated SGCNTs obtained in the examples are superior in dispersibility compared with the non-surface-treated SGCNTs of Comparative Example 1, and further, if such surface-treated SGCNTs are used, the volume resistivity is increased. It can be seen that a low free-standing film can be obtained.

本発明のCNTは、例えば、タッチパネル、太陽電池、燃料電池等の電子機器や電子部材に用いる電極の、導電層や触媒層の構成材料等として好適に用いられる。   The CNT of the present invention is suitably used as a constituent material of a conductive layer or a catalyst layer of an electrode used for an electronic device or an electronic member such as a touch panel, a solar cell, or a fuel cell.

Claims (5)

平均直径(Av)と直径分布(3σ)とが関係式:0.20<(3σ/Av)<0.60を満たすカーボンナノチューブを、超臨界流体、亜臨界流体、又は高温高圧流体と接触させてなる表面処理カーボンナノチューブ。   A carbon nanotube satisfying the relational expression: 0.20 <(3σ / Av) <0.60 between the average diameter (Av) and the diameter distribution (3σ) is brought into contact with a supercritical fluid, a subcritical fluid, or a high-temperature high-pressure fluid. Surface-treated carbon nanotube. 前記カーボンナノチューブが単層カーボンナノチューブである請求項1記載の表面処理カーボンナノチューブ。   The surface-treated carbon nanotube according to claim 1, wherein the carbon nanotube is a single-walled carbon nanotube. 請求項1又は2に記載の表面処理カーボンナノチューブを含む分散液。   A dispersion containing the surface-treated carbon nanotube according to claim 1. 請求項1又は2に記載の表面処理カーボンナノチューブからなる自立膜。   A self-supporting film comprising the surface-treated carbon nanotube according to claim 1 or 2. 請求項1又は2に記載の表面処理カーボンナノチューブと重合体とを含む複合材料。   A composite material comprising the surface-treated carbon nanotube according to claim 1 or 2 and a polymer.
JP2013248428A 2013-11-29 2013-11-29 Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material Pending JP2015105205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248428A JP2015105205A (en) 2013-11-29 2013-11-29 Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248428A JP2015105205A (en) 2013-11-29 2013-11-29 Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material

Publications (1)

Publication Number Publication Date
JP2015105205A true JP2015105205A (en) 2015-06-08

Family

ID=53435555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248428A Pending JP2015105205A (en) 2013-11-29 2013-11-29 Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material

Country Status (1)

Country Link
JP (1) JP2015105205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137232A (en) * 2016-02-01 2017-08-10 東洋インキScホールディングス株式会社 Production method of surface modified carbon nanotube and dispersion liquid of the same
WO2018168346A1 (en) * 2017-03-16 2018-09-20 日本ゼオン株式会社 Method for producing surface-treated carbon nano-structure
CN113493917A (en) * 2020-03-19 2021-10-12 株式会社东芝 Electrode catalyst layer for carbon dioxide electrolysis cell, electrolysis cell provided with same, and electrolysis device for carbon dioxide electrolysis
CN113493917B (en) * 2020-03-19 2024-04-23 株式会社东芝 Electrode catalyst layer for carbon dioxide electrolytic cell, electrolytic cell provided with same, and electrolytic device for carbon dioxide electrolysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137232A (en) * 2016-02-01 2017-08-10 東洋インキScホールディングス株式会社 Production method of surface modified carbon nanotube and dispersion liquid of the same
WO2018168346A1 (en) * 2017-03-16 2018-09-20 日本ゼオン株式会社 Method for producing surface-treated carbon nano-structure
CN110366536A (en) * 2017-03-16 2019-10-22 日本瑞翁株式会社 The manufacturing method for the carbon nano structure being surface-treated
JPWO2018168346A1 (en) * 2017-03-16 2020-01-16 日本ゼオン株式会社 Method for producing surface-treated carbon nanostructure
JP7131543B2 (en) 2017-03-16 2022-09-06 日本ゼオン株式会社 Method for producing surface-treated carbon nanostructure
CN110366536B (en) * 2017-03-16 2022-11-08 日本瑞翁株式会社 Method for producing surface-treated carbon nanostructure
CN113493917A (en) * 2020-03-19 2021-10-12 株式会社东芝 Electrode catalyst layer for carbon dioxide electrolysis cell, electrolysis cell provided with same, and electrolysis device for carbon dioxide electrolysis
CN113493917B (en) * 2020-03-19 2024-04-23 株式会社东芝 Electrode catalyst layer for carbon dioxide electrolytic cell, electrolytic cell provided with same, and electrolytic device for carbon dioxide electrolysis

Similar Documents

Publication Publication Date Title
JP2015105208A (en) Carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
Harito et al. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications
KR101963139B1 (en) Producing method of carbon aerogel and carbon aerogel made by the same
Mikhalchan et al. Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method
JP6484348B2 (en) Uniform dispersion of graphene nanoparticles in the host
WO2015045418A1 (en) Carbon nanotubes, dispersion liquid thereof, carbon nanotube-containing film and composition material
JP6652049B2 (en) Method for producing carbon nanotube dispersion liquid, method for producing carbon nanotube dispersion liquid, composition for composite material, method for producing composite material, and composite material and molded composite material
Dassios et al. Polymer–nanotube interaction in MWCNT/poly (vinyl alcohol) composite mats
CN102718983A (en) Preparation method of polymer-based conductive microporous foam composite material
JP2015030821A (en) Composite resin particles, and method of producing the same
US10821687B2 (en) Method for producing hollow carbon capsules
KR20190127709A (en) Method for producing surface treated carbon nanostructures
JP2015105213A (en) Carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
CN113527753A (en) Bio-based foam material prepared under normal pressure and preparation method and application thereof
KR101678817B1 (en) Manufacturing method of reduced graphene oxide, reduced graphene oxide, manufacturing method of barrier film using the reduced graphene oxide and barrier film
JP2015105212A (en) Carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
Zhang et al. Facile preparation of graphene film and sandwiched flexible poly (arylene ether nitrile)/graphene composite films with high EMI shielding efficiency
KR101195869B1 (en) Method for preparing porous fullerene using by catalytic combustion
JP2015105205A (en) Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
CN114773684A (en) Chemically crosslinked cellulose-based composite foam and preparation method and application thereof
JP6164067B2 (en) Carbon nanotubes and dispersions thereof, and free-standing films and composite materials
Sánchez-Silva et al. Tailor-made aerogels based on carbon nanofibers by freeze-drying
KR101611173B1 (en) Synthesis method of porous graphene and the porous graphene
JP2016056230A (en) Production method of carbon nanotube-containing resin composition, carbon nanotube-containing resin composition, and composite material
KR100955295B1 (en) Manufacturing method of shaped solid comprising nanocarbon