KR100955295B1 - Manufacturing method of shaped solid comprising nanocarbon - Google Patents

Manufacturing method of shaped solid comprising nanocarbon Download PDF

Info

Publication number
KR100955295B1
KR100955295B1 KR1020090033349A KR20090033349A KR100955295B1 KR 100955295 B1 KR100955295 B1 KR 100955295B1 KR 1020090033349 A KR1020090033349 A KR 1020090033349A KR 20090033349 A KR20090033349 A KR 20090033349A KR 100955295 B1 KR100955295 B1 KR 100955295B1
Authority
KR
South Korea
Prior art keywords
nanocarbon
resin
delete delete
solid
acid
Prior art date
Application number
KR1020090033349A
Other languages
Korean (ko)
Inventor
김상옥
Original Assignee
(주)월드튜브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)월드튜브 filed Critical (주)월드튜브
Priority to KR1020090033349A priority Critical patent/KR100955295B1/en
Priority to PCT/KR2010/002398 priority patent/WO2010120153A2/en
Application granted granted Critical
Publication of KR100955295B1 publication Critical patent/KR100955295B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents

Abstract

PURPOSE: A manufacturing method of a solid body including nano carbons is provided to efficiently manufacture a nano carbon solid body using nano carbons, metals, and resins. CONSTITUTION: A manufacturing method of a solid body contains nano carbons, metals including oxides and ions, and a resin. The apparent density of the solid body is 0.1-0.7g per cm^3. The metal is selected from the group consisting of Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, their alloys, or their compounds. The resin is selected from the group consisting of acryl, urethane, vinyl, fluorine, silicon, chlorofluorine, epoxy, phenol, cellulose, styrene, olefin, elastomer, paraffin resin, or their compounds. The manufacturing method of the solid body comprises the following steps: stirring a weak acid with a metal and removing sediment to obtain a supernatant; stirring the mixture after adding a resin and a nano carbon, and removing moisture to make a powder; and drying and molding the powder.

Description

나노카본을 포함한 고형체의 제조방법{Manufacturing method of shaped solid comprising nanocarbon}Manufacturing method of shaped solid comprising nanocarbon

본 발명은 나노카본 고형체, 나노카본 고형체의 제조방법 및 나노카본 고형체의 성형품에 관한 것이다. The present invention relates to nanocarbon solids, a method for producing nanocarbon solids, and molded articles of nanocarbon solids.

나노카본은 단일겹의 SWNT, 2-십수겹으로 구성되어 있는 MWNT등의 탄소나노튜브, 고깔형태가 꼽혀있는 탄소나노 혼, 탄소나노섬유(CNF), 흑연 나노 섬유, 탄소나노로드, SWNT가 펼쳐진 형태인 그라판등을 포함한다.Nano carbon is a single layer of SWNT, carbon nanotubes such as MWNT composed of two to ten layers, carbon nano horn, carbon nano fiber (CNF), graphite nano fiber, carbon nano rod, SWNT It includes grapan and the like.

기존의 소재들과 비교하여보면 나노카본은 매우 우수한 전기적 성질과 기계적 성질, 열적성질을 가지고 있어 전자, 전기제품, 고기능 복합체등에 많은 연구가 이루어져 일부는 상용화되어지고 있다.Compared with the existing materials, nanocarbon has very excellent electrical, mechanical and thermal properties, and many studies have been conducted on electronics, electrical appliances, and high-performance complexes, and some of them are commercially available.

그러나 많은 연구와 개발이 실행되고 있으나 낮은 겉보기밀도로 인한 인체유해성 문제와 분산의 어려움 때문에 아직까지 대량사용은 장벽으로 남아있는 실정이다.However, many researches and developments have been carried out, but mass use remains a barrier due to the harmfulness of human body due to low apparent density and difficulty of dispersion.

특히 낮은 겉보기밀도 때문에 날리는 것을 방지하기 위해 수처리, 계면활성제처리로 보완하고 있으나, 나노카본의 주용도인 우수한 전기적 성질을 발현하는 제품에 적용은 어려운 실정이다. In particular, it is supplemented with water treatment and surfactant treatment to prevent flying due to low apparent density, but it is difficult to apply to products expressing excellent electrical properties, which are the main uses of nanocarbon.

예컨데, 한국공개특허 제10-2008-0021002호에는 컴퍼지트의 매트릭스 수지와 분산성이 우수한 탄소나노튜브의 분산방법이 기재되어 있고, 한국공개특허 제2003-0016055호 및 한국등록특허 제10-0610888호에는 탄소나노튜브를 정제 및 액상 코팅물로 제조하여 매트릭스 수지에 분산시키는 방법이 기재되어 있으며, 한국등록특허 제10-0839173호에는 보강재(카본파이브,유리섬유,카본,흑연)를 넣어 분산하는 방법이 기재되어 있으며, 한국공개특허 제10-2006-0006002호에는 계면활성제와 수성라텍스(수용성전구체)를 처리하여 분산을 하는 방법등이 기재되어 있다. For example, Korean Patent Publication No. 10-2008-0021002 describes a method for dispersing composite resin and carbon nanotubes having excellent dispersibility, and Korean Patent Publication No. 2003-0016055 and Korean Patent Registration No. 10-0610888 No. describes a method for dispersing carbon nanotubes into tablets and liquid coatings and dispersing them in matrix resins. Korean Patent No. 10-0839173 discloses dispersing reinforcing materials (carbon fibres, glass fibers, carbon, graphite). The method is described, and Korean Patent Laid-Open Publication No. 10-2006-0006002 discloses a method of dispersing by treating a surfactant and an aqueous latex (water soluble precursor).

그러나 대다수의 방법들이 공정이 복잡하고 강산(질산, 황산,염산)과 강 환원제(과산화수소)처리로 비환경적·비경제적이며, 대부분 탄소나노튜브를 직접 공정에 이용하는 것이어서, 손쉽게 분산성과 용해성이 좋은 제품을 원하는 고객의 니즈를 충족시키지 못하고 있다. However, most of the methods are complex, non-environmental and economical due to the treatment of strong acid (nitric acid, sulfuric acid, hydrochloric acid) and strong reducing agent (hydrogen peroxide). Most of them use carbon nanotubes directly in the process, so they are easily dispersed and soluble. It does not meet the needs of customers who want products.

본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로 보관 및 취급이 용이하고, 분산성 및 전도성이 우수하며, 제조가 간단한 나노카본 고형체의 제조방법, 나노카본 고형체, 나노카본 고형체의 성형물의 제조방법을 제공하는 데 있다.The present invention has been made in order to solve the above problems, easy to store and handle, excellent dispersibility and conductivity, manufacturing method of nanocarbon solids simple, nanocarbon solids, molded product of nanocarbon solids It is to provide a method of manufacturing.

본 발명의 일측면에 따른 나노카본을 포함한 고형체는,
약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 제1조성물 제조단계;
상기 제1조성물에 수지 및 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 제2조성물 제조단계; 및
상기 제2조성물을 소정의 형상으로 성형한 후 건조하는 고형체 제조단계를 포함한다.
이 때, 상기 제1조성물 제조단계 및 상기 제2조성물 제조단계에서 상기 교반은 0.5 내지 4시간동안 이루어지는 것이 바람직하다.
이 때, 상기 제2조성물 제조단계에서 상기 교반 후 1 내지 24시간동안의 숙성과정을 포함하는 것이 바람직하다.
또한, 상기 고형체 제조단계에서 건조는 80 내지 250℃ 사이에서 이루어지는 것이 바람직하다.
또한, 상기 고형체 제조단계 후에 메트릭스 수지와 혼합하는 혼합단계를 더 포함할 수 있다.
이 때, 상기 메트릭스 수지는pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on ω-aminododecanoic acid or on laurolactam), pa6(polyamide based on ε-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate), mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류로 구성되는 군에서 선택되는 하나 이상이 포함되는 것이 바람직하다.
또한, 상기 제2조성물 제조단계에서 상기 제1조성물에 탄소섬유, 탄소나노섬유, 금속코팅섬유, 금속섬유, 금속분말, 팽창흑연, 및 열전도성 탄소로 구성되는 군에서 선택되는 적어도 하나 이상을 더 첨가될 수 있다.
이 때, 상기 제2조성물 제조단계에서 상기 파우더에 상용화제, 안정제, 킬레이트, 및 커플링제로 구성되는 군에서 선택되는 적어도 하나를 더 첨가하는 것이 바람직하다.
본 발명의 또 다른 측면에 따른 나노카본을 포함한 성형품의 제조방법은,
약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 제1조성물 제조단계;
상기 제1조성물에 수지 및 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 제2조성물 제조단계;
상기 제2조성물을 소정의 형상으로 성형한 후 건조하는 고형체 제조단계;
상기 고형체를 메트릭스 수지와 혼합하는 혼합단계; 및
상기 고형체를 성형기에 넣어 성형품을 제조하는 성형단계를 포함한다.
이 때, 상기 성형품은 자동차의 정전도장용 범퍼, 펜다, 연료필터, 연료탱크, 연료배관, 전자파차폐 대쉬 보드, 휴대폰, 노트북 케이스, 연료전지 바이폴라 플레이트, 환경기계 전극, 산-알칼리 전해액 전극, 반도체 칩 캐리어 필름, 운반용 트레이, 파레트, 대전방지 필름, 투명 ESD 필름, 투명 ESD 판, 포장용 발포재를 포함한다.
또한, 본 발명은 전술한 방법에 따라 제조된 나노카본을 포함한 고형체, 성형품 및 전술한 방법으로 제조된 나노카본 고형체가 분산된 액상혼합물을 포함한다.
Solid body comprising a nanocarbon according to an aspect of the present invention,
Preparing a first composition by adding a metal (including an oxide and ions) to the weak acid and stirring to remove the precipitate and obtaining a supernatant;
A second composition manufacturing step comprising a step of putting a resin and nanocarbon into the first composition and then stirring to remove the liquid component and pulverizing or crushing the powder into powder; And
And a solid body manufacturing step of forming the second composition into a predetermined shape and then drying the second composition.
At this time, the stirring in the first composition manufacturing step and the second composition manufacturing step is preferably made for 0.5 to 4 hours.
At this time, it is preferable to include a aging process for 1 to 24 hours after the stirring in the second composition manufacturing step.
In addition, the drying in the solid preparation step is preferably made between 80 to 250 ℃.
The method may further include a mixing step of mixing with the matrix resin after the solid body manufacturing step.
In this case, the matrix resin is pps (polyphenylenesulfide), peek (polyetheretherketone), psf (polysulfone), pc (polycarbonate), pp (polypropylene), tpo (thermoplasticolefine), pe (polyethylene), ps (polystyrene), pi (polyimide ), pa11 (polyamide based on 11-aminoundecanoic acid), pa12 (polyamide based on ω-aminododecanoic acid or on laurolactam), pa6 (polyamide based on ε-caprolactam), pa6t (polyamide based on hexamethylenediamine, and terephthalic acid), pa9t (polyamide 9t), pmma (poly methyl methacrylate), tpu (thermoplasticurethane), abs (acrylonitrile butadiene styrene), pom (poly acetal), ppo (polyphenyloxide), pes (polyethersulfone), pet (poly ethylene terephthalate), pbt (polybutylene terephthalate), mppe (modified polyphenylene ether), pa66 (polyamide based on hexamethylenediamine and adipic acid), pei (polyetherimide), pai (polyamideimide), lcp (liquid crystal polymer), par (polyacrylate), pvc (polyvinyl chloride), thermosetting Select from the group consisting of resins, elastomers and rubbers It is preferably included at least one.
In addition, at least one or more selected from the group consisting of carbon fibers, carbon nanofibers, metal coating fibers, metal fibers, metal powders, expanded graphite, and thermally conductive carbon may be added to the first composition in the second composition manufacturing step. Can be added.
At this time, it is preferable to further add at least one selected from the group consisting of a compatibilizer, a stabilizer, a chelate, and a coupling agent to the powder in the second composition manufacturing step.
According to another aspect of the present invention, a method for manufacturing a molded article including nanocarbon is provided.
Preparing a first composition by adding a metal (including an oxide and ions) to the weak acid and stirring to remove the precipitate and obtaining a supernatant;
A second composition manufacturing step comprising a step of putting a resin and nanocarbon into the first composition and then stirring to remove the liquid component and pulverizing or crushing the powder into powder;
Solid-state manufacturing step of molding the second composition into a predetermined shape and then drying;
Mixing the solid body with a matrix resin; And
And a molding step of manufacturing a molded article by putting the solid body into a molding machine.
In this case, the molded article is a bumper, a fender, a fuel filter, a fuel tank, a fuel pipe, an electromagnetic shielding dashboard, a mobile phone, a laptop case, a fuel cell bipolar plate, an environmental machine electrode, an acid-alkali electrolyte electrode, a semiconductor Chip carrier films, transport trays, pallets, antistatic films, transparent ESD films, transparent ESD plates, packaging foam materials.
The present invention also encompasses solids comprising nanocarbons prepared according to the methods described above, molded articles and liquid mixtures in which the nanocarbon solids prepared by the methods described above are dispersed.

본 발명에 따른 나노카본 고형체는 취급이 쉽고, 잘 날리지 않으며, 여러 메트릭스 수지와 자유로운 믹싱이 가능하며, 성형기 투입시 메트릭스 수지와 상분리가 일어 나지 않는 효과가 있다. Nanocarbon solids according to the present invention is easy to handle, does not fly well, can be mixed freely with several matrix resin, there is an effect that the phase separation with the matrix resin when the molding machine is introduced.

또한 본 발명에 따른 나노카본 고형체의 제조방법에 따르면 전술한 나노카본의 고형체를 효율적으로 제조하는 방법을 제공한다.In addition, according to the method for producing a nano-carbon solid according to the present invention provides a method for efficiently producing the solid of the nano-carbon described above.

또한 본 발명에 따른 나노카본 고형체를 이용한 성형품은 성형품의 용도에 맞게 다양한 형태로 제작될 수 있다.In addition, the molded article using the nano-carbon solids according to the present invention can be produced in various forms according to the use of the molded article.

본 발명의 일측면에 따른 나노카본 고형체의 제조방법은 제1조성물 제조단계, 제2조성물 제조단계, 고형체 제조단계를 포함한다.Method for producing a nano-carbon solid according to an aspect of the present invention includes a first composition manufacturing step, a second composition manufacturing step, a solid manufacturing step.

제1조성물 제조단계는 약산에 금속 또는 금속산화물을 넣어 물리적방법으로 0.5-4 시간 정도 처리 후 교반기로 서서히 저어 주면 상등액과 침전물로 분리되므로 상등액을 필터링으로 분리하는 단계이다.The first composition manufacturing step is a step of separating the supernatant by filtering the metal or metal oxide in the weak acid, and then stirred by a stirrer about 0.5-4 hours by physical method and then separated into a supernatant and a precipitate.

이 때 사용되는 금속(산화물)의 형태는 분말, 조각 또는 용액일 수 있고, 분말일 경우 30-325메쉬의 크기인 것이 바람직하며, 금속은 후술할 약산과 반응한 후에는 통상 이온상태로 존재하는 것으로 예상된다. In this case, the form of the metal (oxide) used may be a powder, a flake or a solution, and in the case of powder, the size of the metal is preferably 30-325 mesh. It is expected.

이 때 사용될 수 있는 약산은 사과산, 구연산, 타닌산, 살릭산, 식초산, 말릭산, 무수말레익산, 젖산, 빙초산, 수산, 엽산, 호박산, 옥살산, 개미산이 포함된다. 또한, 물리적 방법은 고분산 믹서, 비드밀, 바스켓밀, 초음파 조사가 바람직하게 사용된다. The weak acid that can be used at this time includes malic acid, citric acid, tannic acid, salic acid, vinegar acid, malic acid, maleic anhydride, lactic acid, glacial acetic acid, fish acid, folic acid, succinic acid, oxalic acid, formic acid. In addition, the physical method is preferably a high dispersion mixer, bead mill, basket mill, ultrasonic irradiation.

이 때, 물리적 방법으로 처리한 후 첨가제를 넣을 수 있으며, 이 때의 첨가제로는 촉매나 안정제, 환원제가 사용될 수 있다. At this time, an additive may be added after the treatment by a physical method, and as the additive, a catalyst, a stabilizer, or a reducing agent may be used.

제2조성물 제조단계는 전술한 제1조성물에 수지를 넣어 물리적 방법으로 완전히 분 산한 후 나노카본을 넣고, 0.5 내지 4시간동안 교반하고, 1 내지 24시간 숙성 후 액상을 필터링한 다음 필터프레스, 고액분리기, 원심분리기, 탈수기등을 사용하여 액체를 제거하여 제2조성물을 제조하고, 제2조성물을 분쇄하거나 파쇄하여 파우더로 만드는 단계이다. In the second composition manufacturing step, the resin is added to the first composition as described above, completely dispersed in a physical method, and then nanocarbon is added, stirred for 0.5 to 4 hours, aged for 1 to 24 hours, and then filtered through a liquid filter. The second composition is prepared by removing the liquid using a separator, a centrifuge, or a dehydrator, and then grinding or crushing the second composition into a powder.

이 때, 수지는 개질한 수지가 바람직한데, 개질한 수지란 수지에 필러(filler)를 분산제와 같이 넣어 믹싱한 수지로서, 아크릴, 우레탄, 비닐, 불소화, 실리콘화, 염소불소화, 에폭시, 페놀, 셀롤로우스, 스티렌, 올레핀, 엘라스토머, 파라핀 수지가 사용될 수 있다. In this case, the modified resin is preferably a modified resin. A modified resin is a resin obtained by mixing a filler with a dispersant, such as acrylic, urethane, vinyl, fluorinated, siliconized, chlorine fluorinated, epoxy, phenol, Cellulose, styrene, olefins, elastomers, paraffin resins can be used.

필러는 나노 클레이, 탄산 칼슘등이 사용될 수 있으며, 분산제로는 DEG(Diethylene Glycol), MEG(monoethylene Glycol), 계면활성제, 가소제가 사용될 수 있다. Nano filler, calcium carbonate, etc. may be used as the filler, DEG (Diethylene Glycol), MEG (monoethylene Glycol), surfactant, a plasticizer may be used as a dispersant.

한편, 고형체가 나노카본 복합체의 충진제로 사용될 경우에는 메트릭스 수지와의 상용성을 극대화하기 위해서 제2조성물 파우더에 상용화제 및 캐리어 수지를 더 포함할 수 있다. 이 경우, 상용화제 및 캐리어 수지는 1 내지 300㎛의 크기로 만들어 믹싱한다. 믹싱할 경우, 슈퍼 믹서, 헨셀 믹서, 리본 브랜다, 반죽기, 또는 더블 혼합기를 사용할 수 있다. On the other hand, when the solid body is used as a filler of the nanocarbon composite may further comprise a compatibilizer and a carrier resin in the second composition powder in order to maximize compatibility with the matrix resin. In this case, the compatibilizer and the carrier resin are mixed to make the size of 1 to 300㎛. When mixing, a super mixer, Henschel mixer, ribbon branda, kneader, or double mixer can be used.

상용화제로는 SEBS(스티렌-에틸렌-부틸렌-스티렌), PP-G-MA(폴리프로필렌 그라프트 무수말레익산), PE-G-MA(폴리에틸렌 그라프트 무수말레익산), PVDF(폴리비닐리덴 플로라이드 : Polyvinylidene fluoride)가 사용될 수 있으며, 메트릭스 수지와의 분산을 안정화하기 위한 안정제(케리어 수지)로서 메트릭스 수지의 파우더와 에틸렌 또는 아마이드 류의 파우더가 사용될 수 있다.Compatibilizers include SEBS (styrene-ethylene-butylene-styrene), PP-G-MA (polypropylene graft maleic anhydride), PE-G-MA (polyethylene graft maleic anhydride), PVDF (polyvinylidene fluor Ride: Polyvinylidene fluoride) may be used, and powder of matrix resin and powder of ethylene or amide may be used as a stabilizer (carrier resin) to stabilize dispersion with matrix resin.

이 경우, 제2조성물 파우더과 상용화제 및 안정제의 혼합비율에는 제한이 없으며, 킬레이트제, 커플링제가 용도에 맞게 추가 믹싱하여 고형체의 제조를 보다 용이하게 할 수 있다.In this case, the mixing ratio of the second composition powder, the compatibilizer and the stabilizer is not limited, and the chelating agent and the coupling agent may be further mixed to suit the purpose, thereby making it easier to manufacture the solid.

한편, 연료전지, 환경기계나 산-알카리 전해액용 전극이나 발열체, 금속대체 부품, 고열전도성 부품 등 고형체가 사용될 용도에 따라 제2조성물 제조시에 탄소섬유, 탄소나노섬유, 금속코팅섬유, 금속섬유, 금속분말, 팽창흑연, 열전도성 카본등을 나노카본과 함께 첨가할 수 있다. On the other hand, carbon fibers, carbon nanofibers, metal-coated fibers, metals in the production of the second composition, depending on the use of solid materials such as fuel cells, environmental machines or electrodes for acid-alkaline electrolytes, heating elements, metal replacement parts, and high thermal conductivity parts. Fiber, metal powder, expanded graphite, thermally conductive carbon and the like can be added together with the nanocarbon.

고형체 제조단계는 제2조성물 파우더를 몰드등에 넣어 소정 형체로 만들어 캐비넷 건조기, 로타리 퀼런 건조기, 열풍 건조기, 콘베어식 열풍 건조기, 진공 건조기와 원적외선 건조기등의 건조기에 넣어 80-250℃ 사이에서 건조하여 고형체를 제조하는 단계이다. In the solid body manufacturing step, the second composition powder is put into a mold to form a predetermined shape and dried in a cabinet dryer, rotary quill dryer, hot air dryer, conveyor hot air dryer, vacuum dryer and far infrared dryer, and dried between 80-250 ° C. It is a step of preparing a solid.

이 때, 파우더를 소정형상으로 만드는 몰드는 음각형 몰더, 제환기, 타정기, 세라믹 프레스기, 압출기(스크류식, 유압식, 공압식)등을 포함한다. 이 때, 만들어 지는 고형체의 형상은 칩, 펠렛, 알, 환약형태, 염주, 목걸이 형태등 매우 다양하게 제조될 수 있으며 그 형상에 제한되지 않는다. 도 1은 다양한 나노카본 고형체의 사진을 도시하고 있고, 도 2는 다양한 나노카본 고형체의 직경과 길이를 도시하는 설명도이다.At this time, the mold for making the powder into a predetermined shape includes an intaglio molder, a crusher, a tablet press, a ceramic press, an extruder (screw, hydraulic, pneumatic) and the like. At this time, the shape of the solid to be produced can be produced in a wide variety of chips, pellets, eggs, pills, beads, necklaces, and the like is not limited to the shape. 1 shows photographs of various nanocarbon solids, and FIG. 2 is an explanatory diagram showing diameters and lengths of various nanocarbon solids.

본 발명의 다른 측면에 따른 나노카본 고형체를 이용한 성형품의 제조방법은 성형단계를 포함한다.According to another aspect of the present invention, a method of manufacturing a molded article using a nanocarbon solid body includes a molding step.

성형단계는 성형기에 혼합된 고형체를 넣어 성형품을 제조하는 단계이다. 성형기로는 사출기, 압출기, 압축기등이 사용될 수 있으며, 사출품으로는 전극, 바이폴라 플레이트, 발열체, 트레이등이 제조될 수 있고, 압출품으로는 발포 PE, PS 폼, 성형용 시트, 필름등이 제조된다.The molding step is a step of manufacturing a molded product by putting the solid body mixed in the molding machine. As a molding machine, an injection machine, an extruder, a compressor, etc. may be used, and as an injection product, an electrode, a bipolar plate, a heating element, a tray, etc. may be manufactured. As an extruded product, a foamed PE, a PS foam, a molding sheet, a film, etc. may be used. Are manufactured.

이러한 방법으로 제조되는 성형품은 나노카본의 최대 단점인 성형작업시 생기는 스킨현상을 없앨 수 있으므로 소량으로 제품 작업이 가능하다.Molded products produced in this way can eliminate the skin phenomenon generated during the molding work, which is the biggest disadvantage of nanocarbon, it is possible to work in small quantities.

한편, 고형체는 메트릭스 수지와 혼합하여 성형품으로 제조될 수 있다. 이 경우, 성형단계 전에 혼합단계가 더 포함된다.On the other hand, the solid body may be mixed with the matrix resin to produce a molded article. In this case, the mixing step is further included before the forming step.

혼합단계는 전술한 고형체는 메트릭스 수지와 혼합하는 단계이다. 메트릭스 수지로는 pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on ω-aminododecanoic acid or on laurolactam), pa6(polyamide based on ε-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate) , mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류가 사용될 수 있다. 이 때, 고형체는 매트릭스 수지 100중량부에 대해서 0.1 내지 100중량부로 포함시킨다. The mixing step is a step in which the aforementioned solid body is mixed with the matrix resin. Matrix resins include pps (polyphenylenesulfide), peek (polyetheretherketone), psf (polysulfone), pc (polycarbonate), pp (polypropylene), tpo (thermoplasticolefine), pe (polyethylene), ps (polystyrene), pi (polyimide), pa11 (polyamide based on 11-aminoundecanoic acid), pa12 (polyamide based on ω-aminododecanoic acid or on laurolactam), pa6 (polyamide based on ε-caprolactam), pa6t (polyamide based on hexamethylenediamine, and terephthalic acid), pa9t (polyamide 9t ), pmma (poly methyl methacrylate), tpu (thermoplasticurethane), abs (acrylonitrile butadiene styrene), pom (poly acetal), ppo (polyphenyloxide), pes (polyethersulfone), pet (poly ethylene terephthalate), pbt (polybutylene terephthalate), modified polyphenylene ether (mppe), polyamide based on hexamethylenediamine and adipic acid (pa66), pei (polyetherimide), pai (polyamideimide), liquid crystal polymer (LCP), par (polyacrylate), PVC (polyvinyl chloride), thermosetting resin, elastomer And rubbers can be used. At this time, the solid is contained in an amount of 0.1 to 100 parts by weight based on 100 parts by weight of the matrix resin.

고형체와 메트릭스 수지는 믹서, 브랜다, 덤블러 등의 혼합기로 상분리가 일어나지 않을 정도로 충분히 혼합하고, 이 후 전술한 성형단계와 동일하게 성형품으로 제조될 수 있다. 혼합단계에서 고형체는 매트릭스 수지에 컴파운딩 되거나 단순히 혼합될 수 있다. The solid body and the matrix resin may be sufficiently mixed so that phase separation does not occur with a mixer such as a mixer, a blender, or a dumbler, and then may be manufactured into a molded article in the same manner as in the above-described forming step. In the mixing step, the solid may be compounded into the matrix resin or simply mixed.

본 발명의 또 다른 측면인 나노카본 고형체는 금속(산화물), 수지, 나노카본을 포함한다. 본 명세서에서 나노카본 고형체는 나노카본으로 일정한 고체성 형상을 갖춘 것을 말하는 것으로서, 그 형상에는 제한되지 않으며 펠렛, 칩등 다양한 이름으로 불려질 수 있다.Another aspect of the present invention, nanocarbon solids includes metals (oxides), resins, and nanocarbons. As used herein, the nanocarbon solids refers to nanocarbons having a certain solid shape, and are not limited thereto, and may be called various names such as pellets and chips.

금속은 Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, 그 합금, 및 혼합물로 구성되는 군에서 선택되는 적어도 하나가 사용된다. 또한, 금속산화물은 전술한 금속들 및 그 합금, 혼합물의 산화물이 사용된다.Metals are Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, At least one selected from the group consisting of the alloy, and the mixture is used. In addition, as the metal oxide, oxides of the above-described metals and alloys and mixtures thereof are used.

수지는 아크릴, 우레탄, 비닐, 불소화, 실리콘화, 염소불소화, 에폭시, 페놀, 셀롤로우스, 스티렌, 올레핀, 파라핀 수지, 및 그 혼합물로 구성된 군에서 선택되는 적어도 하나의 수지가 사용될 수 있다.The resin may be at least one resin selected from the group consisting of acrylic, urethane, vinyl, fluorinated, siliconized, chlorine fluorinated, epoxy, phenol, cellulose, styrene, olefin, paraffin resins, and mixtures thereof.

나노카본은 Single-walled nanotube, Doubled-walled nanotube, Multi-walled nanotube, Rope carbon nanotube, nano carbon horn, nano carbonfiber, 그라펜등 모든 종류의 사용이 가능하며 제한되지 않는다.Nanocarbon can be used in all kinds of single-walled nanotube, doubled-walled nanotube, multi-walled nanotube, Rope carbon nanotube, nano carbon horn, nano carbonfiber, graphene, etc.

또한, 본 발명에 따른 고형체 조성물은 상용화제, 케리어수지, 또는 첨가제를 더 포함할 수 있다.In addition, the solid composition according to the present invention may further include a compatibilizer, a carrier resin, or an additive.

상용화제 및 케리어 수지는 메트릭스 수지와의 상용성을 높이기 위해 포함된다. Compatibilizers and carrier resins are included to enhance compatibility with the matrix resin.

상용화제는 SEBS(스티렌-에틸렌-부틸렌-스티렌), PP-G-MA(폴리프로필렌 그라프트 무수말레익산), PE-G-MA(폴리에틸렌 그라프트 무수말레익산), PVDF(폴리비닐리덴 플로라이드 : Polyvinylidene fluoride)로 구성되는 군에서 선택되는 적어도 하나가 선택될 수 있다. Compatibilizers include SEBS (styrene-ethylene-butylene-styrene), PP-G-MA (polypropylene graft maleic anhydride), PE-G-MA (polyethylene graft maleic anhydride), PVDF (polyvinylidene floe) Ride: at least one selected from the group consisting of Polyvinylidene fluoride) may be selected.

케리어 수지는 매트릭스수지의 파우더 또는 에틸렌 또는 아마이드류의 파우더를 사용할 수 있으며, 용도에 맞추어 킬레이트제 또는 커플링제등을 더 포함할 수 있다. The carrier resin may use a powder of a matrix resin or a powder of ethylene or amides, and may further include a chelating agent or a coupling agent, depending on the purpose.

또한, 첨가제는 고형체 조성물의 용도에 따라 그 특성을 향상시키기 위해 포함되는 것으로서, 탄소섬유, 탄소나노섬유, 금속코팅 섬유, 금속섬유, 금속 분말, 팽창흑연, 열전도성 탄소, 및 그 혼합물로 구성되는 군에서 선택되는 적어도 하나 이상이 포함될 수 있다. In addition, the additive is included to improve the properties according to the use of the solid composition, composed of carbon fibers, carbon nanofibers, metal coated fibers, metal fibers, metal powder, expanded graphite, thermally conductive carbon, and mixtures thereof. At least one selected from the group which may be included.

전술한 나노카본은 나노카본 고형체 전체중량의 0.1중량% 내지 98중량%로 포함되는 것이 바람직하다. 0.1중량%미만인 경우 나노카본의 성질을 발현하기 어렵고, 98중량%를 초과하는 경우 고형체로의 제조가 어렵기 때문이다. It is preferable that the above-described nanocarbon is contained in an amount of 0.1 wt% to 98 wt% of the total weight of the nanocarbon solid. If less than 0.1% by weight it is difficult to express the properties of the nanocarbon, and if it exceeds 98% by weight is difficult to manufacture a solid.

본 발명의 또 다른 측면인 나노카본 고형체가 분산된 액상 혼합물이다. 전술한 나노카본 고형체는 통상적인 나노카본 분말과 마찬가지로 다른 액상물질에 분산되어 액상으로 존재할 수 있다. Another aspect of the invention is a liquid mixture in which nanocarbon solids are dispersed. The nanocarbon solids described above may be dispersed in other liquid materials and exist in the liquid phase like conventional nanocarbon powders.

[실시예1]Example 1

금속(Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi)과 전술한 금속의 산화물류 100중량부에 대해서 약산(빙초산, 젖산, 사과산, 구연산, 살릭산, 무수말레익산, 개미산, 식초산, 타닌산, 호박산, 옥살산, 수산, 엽산)을 20-100중량부, 알콜 및 물을 1-500중량부, 촉매 1-20중량부에 넣어 물리적방법(고분산믹서, 비드밀, 초음파)으로 온도 50-200℃를 유지하며 0.5 내지 4시간 처리한 후 1 내지 24시간 정도 숙성시킨 후 진공 필터링하여 제1조성물의 활성액을 분리한다. Metals (Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi) 20-100 parts by weight of weak acid (glacial acetic acid, lactic acid, malic acid, citric acid, salic acid, maleic anhydride, formic acid, vinegar acid, tannic acid, succinic acid, oxalic acid, fish acid, folic acid) with respect to 100 parts by weight of the above-described metal oxides. , 1-500 parts by weight of alcohol and water and 1-20 parts by weight of catalyst are maintained at a temperature of 50-200 ° C. by physical method (high dispersion mixer, bead mill, ultrasonic wave) and treated for 0.5 to 4 hours, then 1 to 24 hours. After aging for about an hour, the active liquid of the first composition is separated by vacuum filtering.

제1조성물을 넣은 용기에 개질한 수지를 넣어 물리적방법으로 완전히 분산 후 나노카본을 넣어 제2조성물을 만든다. 혼합물을 초음파 베쓰(Bath)에 넣어 교반한다. 교반 후 액상을 필터링으로 제거한 후, 다져저 있는 제2조성물을 분쇄나 파쇄하여 파우더로 만든다.The modified resin is placed in a container in which the first composition is added and completely dispersed in a physical method. Then, nanocarbon is added to form a second composition. The mixture is stirred in an ultrasonic bath. After stirring, the liquid phase is removed by filtration, and the compacted second composition is pulverized or crushed into powder.

파우더를 칩 형태가 음각된 몰더에 다져 넣어 120℃로 30분 건조 후 틀에서 털어낸 후 다시 100-250℃에서 완전히 건조 시키면 칩이 제조된다. 이 때, 소정 형태의 칩형상이 음각된 몰더 대신 제환기, 타정기, 세라믹 프레스, 압출기,압축기등을 사용하여 고형체를 제조할 수 있으며, 80 내지 250℃로 건조기에서 1 내지 24시간 건조시키면 여러 형상의 펠렛, 알약등이 제조된다. The powder is chopped into a chip-shaped molder, dried at 120 ° C. for 30 minutes, shaken off from the mold, and then completely dried at 100-250 ° C. to prepare chips. In this case, a solid body may be manufactured using a depilator, a tableting machine, a ceramic press, an extruder, a compressor, etc. instead of a mold in which a predetermined shape of the chip is engraved, and when dried in a drier at 80 to 250 ° C. for 1 to 24 hours, Shaped pellets, pills and the like are produced.

[실시예 2][Example 2]

실시예 2는 제2조성물 제조시에 고형체가 사용될 용도에 따라 금속입자, 금속섬유, 탄소 또는 흑연입자, 유리 또는 탄소섬유등의 첨가제를 나노카본 100중량부를 기준으로 1-100중량부 더 포함한다는 점에서 실시예 1과 구별된다. Example 2 further comprises 1-100 parts by weight of additives, such as metal particles, metal fibers, carbon or graphite particles, glass or carbon fibers, based on 100 parts by weight of nanocarbon, according to the use of the solid body in the preparation of the second composition. It differs from Example 1 in that it is.

[실시예3]Example 3

실시예 3은 제2조성물 파우더 제조시에 상용화제, 캐리어 수지를 1-300um크기의 입자를 나노카본 100중량부를 기준으로 1-100중량부 더 포함한다는 점에서 실시예 1과 구별된다. Example 3 is distinguished from Example 1 in that 1-100 parts by weight of the compatibilizing agent and the carrier resin in the preparation of the second composition powder further include 1-300 μm of particles based on 100 parts by weight of the nanocarbon.

[실시예4]Example 4

실시예 4는 제2조성물 제조시에 고형체가 사용될 용도에 따라 금속입자, 금속섬유, 탄소 또는 흑연입자, 유리 또는 탄소섬유등의 첨가제를 카본나노튜브 100 중량부를 기준으로 1-100중량부 더 포함하고, 제2조성물 파우더 제조시에 상용화제, 캐리어 수지를 1-300um크기의 입자크기로 1-100중량부를 더 포함한다는 점에서 실시예 1과 구별된다. Example 4 1-100 parts by weight of additives, such as metal particles, metal fibers, carbon or graphite particles, glass or carbon fibers, based on 100 parts by weight of carbon nanotubes, depending on the use of the solid body in the preparation of the second composition It includes, and is distinguished from Example 1 in that it comprises 1-100 parts by weight of the compatibilizer, the carrier resin in the particle size of 1-300um in the preparation of the second composition powder.

[실험예 1]Experimental Example 1

본 발명에 따른 나노카본 고형체를 도 3와 같이 여러가지 치수별로 제조하여, 치수별 겉보기 밀도, 파괴하중, 파괴강도를 실험하여 표 1과 같이 정리하였다.The nanocarbon solids according to the present invention were prepared by various dimensions as shown in FIG. 3, and the results were summarized as shown in Table 1 by experimenting with the apparent density, fracture load, and fracture strength.

1번 시편Psalm 1 2번 시편Psalm 2 3번 시편Psalm 3 4번 시편Psalm 4 5번 시편Psalm 5 6번 시편Psalm 6 7번 시편Psalm 7 높이(cm)Height (cm) 0.390.39 1.661.66 2.702.70 3.113.11 1.981.98 2.702.70 1.061.06 직경(cm)Diameter (cm) 0.350.35 0.390.39 0.410.41 0.460.46 0.360.36 0.380.38 0.4350.435 부피(cm)Volume (cm) 0.0380.038 0.1980.198 0.3560.356 0.5160.516 0.2740.274 0.2740.274 0.1570.157 질량(g)Mass (g) 0.0070.007 0.100.10 0.190.19 0.320.32 0.060.06 0.090.09 0.050.05 밀도(g/cm)Density (g / cm) 0.1840.184 0.5050.505 0.5330.533 0.6200.620 0.2190.219 0.3280.328 0.3180.318 파괴하중(kgf)Breaking load (kgf) 0.270.27 2.302.30 2.502.50 3.203.20 0.450.45 0.400.40 0.200.20 파괴강도(Mpa)Fracture Strength (Mpa) 0.300.30 1.921.92 1.821.82 1.941.94 0.440.44 0.340.34 0.150.15

이에 따르면 본 발명의 실시예에 따른 나노카본 고형체는 매우 다양한 크기 및 강도로 제조될 수 있고, 파괴하중이 매우 낮아 고형체를 쉽게 분산시켜 사용할 수 있음을 확인할 수 있다. 이에 고형체의 겉보기 밀도는 0.1 내지 1.5g/cm3로 구성되고, 고형체의 파괴하중은 0.05 내지 5 kgf로 구성되며, 파괴강도는 0.05 내지 3 MPa로 구성될 수 있다. 한편, 파괴하중 및 파괴강도는 전술한 범위 외에서는 고형체로 제조되지 않거나, 너무 단단해져서 다시 파쇄하는 단계를 거쳐야 사용할 수 있기 때문이다. According to this, the nanocarbon solids according to the embodiment of the present invention can be produced in a wide variety of sizes and strengths, it can be seen that the breakdown load is very low can be used to easily disperse the solids. The apparent density of the solid is composed of 0.1 to 1.5g / cm3, the breaking load of the solid is composed of 0.05 to 5 kgf, the breaking strength may be composed of 0.05 to 3 MPa. On the other hand, the breaking load and the breaking strength are not manufactured as a solid outside the above-described range, or because they are too hard to be used again after the step of crushing.

[실험예 2]Experimental Example 2

본 발명의 일실시예에 따른 나노카본 고형체를 만들기 위한 제1조성물의 활성도를 측정하기 위해 FT-IR(Fourier Transform Infrared Spectroscopy)을 조사하였다. 도 4에 따르면 제1조성물에는 -OH, C=O, C-H등의 활성기가 포함되어 분산이 쉽고 좋은 나노카본 고형체를 만들 수 있음을 확인할 수 있다. 한편, 도 4의 (a) KBr법에 의한 측정결과이고, 도 4의 (b)는 액상상태에서의 측정결과이다. Fourier Transform Infrared Spectroscopy (FT-IR) was investigated to measure the activity of the first composition to make nanocarbon solids according to one embodiment of the present invention. According to Figure 4 it can be seen that the first composition includes -OH, C = O, C-H and other active groups can be made easy to disperse good nano-carbon solids. On the other hand, (a) of FIG. 4 is a measurement result by KBr method, and FIG. 4 (b) is a measurement result in a liquid state.

[실험예 3][Experimental Example 3]

본 발명의 일실시예에 따른 나노카본 고형체의 칩 제조 후 분산하기 쉬운 상태 인지를 측정하기 위해 RAMAN spectrum을 측정하였고, 결과는 도 5와 같다. The RAMAN spectrum was measured to determine whether the nanocarbon solids were easily dispersed after manufacturing the chip according to the embodiment of the present invention, and the results are shown in FIG. 5.

도 5는 본 발명에 따른 나노카본 고형체는 결점(defect)과 흑연피크를 가지는 것이 확인되었으며 이로써 높은 분산도를 가지고 있음을 알 수 있다. 즉, 이러한 결점과 흑연피크를 가짐에도 본 발명에 따른 고형체는 종래에 산처리를 통하여 결점을 생성하는 방법이 나노카본의 손상(즉, 종횡비가 낮아짐)을 가져오는 것과 비교할 때 나노카본의 손상없이 결점을 만든다는 점에서 매우 유리하다.5 shows that the nanocarbon solids according to the present invention have defects and graphite peaks, and thus have a high degree of dispersion. That is, even with such defects and graphite peaks, the solids according to the present invention are damaged by nanocarbons compared to the conventional methods of producing defects through acid treatment that result in nanocarbon damage (ie, lower aspect ratio). It is very advantageous in that it creates defects without.

[실험예 4][Experimental Example 4]

본 발명의 일실시예에 따른 나노카본 고형체의 표면상태를 측정하기 위해 SEM을 측정하였고, 결과는 도 6와 같다. SEM was measured to measure the surface state of the nano-carbon solids according to an embodiment of the present invention, the results are shown in FIG.

도 6은 본 발명의 나노카본은 고형체로 제조되었음에도 종래에 나노카본의 분산향상을 위한 방법으로 사용되었던 화학개질법, 물리흡착법(파이-파이결합으로 비공유래핑), 혼산(강산)처리 방법, 또는 중합공정을 거친 나노카본과 거의 동일한 표면 상태를 보여준다.6 is a chemical modification method, a physical adsorption method (non-covalent lapping with a pi-pi bond), a mixed acid (strong acid) treatment method, or polymerization, which was conventionally used as a method for improving the dispersion of nanocarbon, although the nanocarbon of the present invention was manufactured as a solid. It shows almost the same surface conditions as the nanocarbons that have been processed.

[실험예 5]Experimental Example 5

본 발명의 일실시예에 따른 나노카본 고형체의 나노카본의 양을 측정하기 위해 TGA(Thermogravimetric analysis)을 수행하였고, 결과는 도 7과 같다. In order to measure the amount of nanocarbon of the nanocarbon solids according to an embodiment of the present invention, TGA (Thermogravimetric analysis) was performed, and the results are shown in FIG. 7.

도 7에 따르면 나노카본이 거의 98%로서 약 2%의 수지 및 금속(산화물, 이온)등이 포함되어 있음을 알 수 있다. According to FIG. 7, the nanocarbon is almost 98%, which contains about 2% of resin and metals (oxides, ions), and the like.

도 7(a)는 폴리카보네이트에 컴파운딩한 결과이고, 도 7(b)는 폴리에틸렌(PE)에 컴파운딩한 결과이다. FIG. 7 (a) shows the result of compounding in polycarbonate, and FIG. 7 (b) shows the result of compounding in polyethylene (PE).

[실험예 6]Experimental Example 6

본 발명의 일실시예에 따른 나노카본 고형체와 폴리카보네이트(PC)를 컴파운딩한 후 RAMAN spectrum을 측정하였고, 결과는 도 8와 같다.After compounding the nanocarbon solids and polycarbonate (PC) according to an embodiment of the present invention, the RAMAN spectrum was measured, and the results are shown in FIG. 8.

도 8에 따르면 본 발명의 나노카본 고형체는 분산이 쉽게 처리되어 결점이 사라지고, 폴리카보네이트 수지와 완전히 계면접착한 상태를 확인할 수 있다. According to FIG. 8, the nanocarbon solids of the present invention can be easily processed to disperse and disappear defects, and can be completely interfacial with the polycarbonate resin.

[실험예 7]Experimental Example 7

본 발명의 일실시예에 따른 나노카본 고형체와 폴리카보네이트(PC)를 컴파운딩한 후 SEM을 촬영하였고, 결과는 도 9와 같다.SEM was photographed after compounding the nanocarbon solids and the polycarbonate (PC) according to an embodiment of the present invention, and the results are shown in FIG. 9.

통상적으로 나노카본은 매우 높은 소수성으로 인하여 나노카본 주위로 구멍이 발생하나 도 9의 본발명에 따른 나노카본 고형체에서는 폴리카보네이트와 완전결합으로서 나노카본 주위로 구멍이 발생하지 않음을 확인할 수 있다. Typically, nanocarbons have pores around nanocarbons due to their very high hydrophobicity, but in the nanocarbon solids according to the present invention of FIG. 9, it can be seen that pores do not occur around nanocarbons as a complete bond with polycarbonate.

[실험예 8]Experimental Example 8

본 발명의 일실시예에 따른 나노카본 고형체를 PPS(polyphenylenesulfide), TPU(thermoplasticurethane), PEEK(polyetheretherketone), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene)에 믹싱 후 컴파운딩 없이 제조된 사출제품의 저항치를 측정하였고, 결과는 도 10과 같다. Nanocarbon solids according to an embodiment of the present invention after mixing the polyphenylenesulfide (PPS), TPU (thermoplasticurethane), PEEK (polyetheretherketone), PC (polycarbonate) / ABS (acrylonitrile butadiene styrene) of the injection product manufactured without compounding The resistance value was measured, and the result is shown in FIG. 10.

도 10의 결과는 PPS(poly phenylene sulfide), TPU(thermoplasticurethane), PEEK(polyetheretherketone), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene)별와 같이 높은 성형온도를 가져 컴파운딩이 어려운 매트릭스 수지에서도 도의 컴파운딩 없이 단순히 혼합만으로 사출성형하여 사출품의 제조가 가능함을 보여준다.The result of FIG. 10 shows that compounding of a figure is difficult even in a matrix resin having a high molding temperature such as PPS (poly phenylene sulfide), TPU (thermoplasticurethane), PEEK (polyetheretherketone), PC (polycarbonate) / ABS (acrylonitrile butadiene styrene) It shows that it is possible to manufacture injection molded products by simply injection molding without mixing.

[실험예 9]Experimental Example 9

본 발명의 일실시예에 따른 나노카본 고형체를 PC(polycarbonate), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene), PET(poly ethylene terephthalate), PE(polyethylene), PP(polypropylene), PA66(polyamide based on hexamethylenediamine and adipic acid)에 믹싱 후 컴파운딩 없이 제조된 압출제품의 저항치를 측정하였고, 결과는 도 11과 같다.Nanocarbon solid according to an embodiment of the present invention is a PC (polycarbonate), PC (polycarbonate) / ABS (acrylonitrile butadiene styrene), PET (polyethylene terephthalate), PE (polyethylene), PP (polypropylene), PA66 (polyamide) based on hexamethylenediamine and adipic acid) and measured the resistance of the extruded product prepared without compounding after mixing, the results are shown in FIG.

도 11의 결과는 PPS(polyphenylenesulfide), TPU(thermoplasticurethane), PEEK(polyetheretherketone), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene)와 같이 높은 성형온도를 가져 컴파운딩이 어려운 매트릭스 수지에서도 별도의 컴파운딩 없이 단순히 혼합만으로 압출성형하여 압출품의 제조가 가능함을 보여준다.11 shows that PPS (polyphenylenesulfide), TPU (thermoplasticurethane), PEEK (polyetheretherketone), PC (polycarbonate) / PC (polycarbonate) / ABS (acrylonitrile butadiene styrene) has a high molding temperature, such as compounding difficult to compound without compounding It is shown that the extrusion can be manufactured by simply extruding by mixing alone.

전술한 바와 같이 발명은 상기 실시예들을 기준으로 주로 설명되어졌으나, 발명의 요지와 범위를 벗어나지 않고 많은 다른 가능한 수정과 변형이 이루어질 수 있다. 전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다. While the invention has been described primarily with reference to the above embodiments, many other possible modifications and variations can be made without departing from the spirit and scope of the invention. The scope of the above-described invention is defined in the following claims, not bound by the description in the text of the specification, all modifications and variations belonging to the equivalent scope of the claims will fall within the scope of the invention.

도 1은 본 발명의 일실시예에 따른 나노카본 고형체의 사진. 1 is a photograph of a nanocarbon solids according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따라 제조된 여러 가지 직경과 길이의 나노카본 고형체 도면.Figure 2 is a view of the nanocarbon solids of various diameters and lengths prepared according to one embodiment of the present invention.

도 3은 본 발명의 일실시예에 따라 제조된 여러 가지 치수의 나노카본 고형체의 사진. Figure 3 is a photograph of nanocarbon solids of various dimensions prepared in accordance with one embodiment of the present invention.

도 4는 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 FT-IR을 도시한도면. Figure 4 is a view showing the FT-IR nanocarbon solids prepared in accordance with an embodiment of the present invention.

도 5는 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 RAMAN spectrum을 도시한 도면. 5 is a view showing a RAMAN spectrum of the nanocarbon solids prepared according to one embodiment of the present invention.

도 6은 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 SEM 사진.Figure 6 is a SEM photograph of the nanocarbon solids prepared according to one embodiment of the present invention.

도 7은 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 TGA 도면.7 is a TGA diagram of nanocarbon solids prepared according to one embodiment of the present invention.

도 8은 본 발명의 일실시예에 따라 제조된 나노카본 고형체를 폴리카보네이트에 컴파운딩한 후 측정한 RAMAN spectrum을 도시한 도면. 8 is a view showing a RAMAN spectrum measured after compounding a nanocarbon solid prepared in accordance with an embodiment of the present invention in polycarbonate.

도 9는 본 발명의 일실시예에 따라 제조된 나노카본 고형체를 폴리카보네이트에 컴파운딩한 후의 SEM 사진을 도시한 도면.9 is a SEM photograph after compounding a nanocarbon solid prepared in accordance with an embodiment of the present invention in polycarbonate.

도 10은 본 발명의 일실시예에 따라 제조된 나노카본 고형체와 PPS(polyphenylenesulfide), TPU(thermoplasticurethane), PEEK(polycarbonate), PC(polycarbonate)/ABS(acrylonitrile butadiene stylene)에 컴파운딩 없이 믹싱 후 사출 제품의 저항치을 도시한 도면.10 is a nanocarbon solid prepared according to an embodiment of the present invention and after mixing without compounding in PPS (polyphenylenesulfide), TPU (thermoplasticurethane), PEEK (polycarbonate), PC (polycarbonate) / ABS (acrylonitrile butadiene stylene) The figure which shows the resistance value of an injection product.

도 11은 본 발명의 일실시예에 따라 제조된 나노카본 고형체와 PC(polycarbonate), PC(polycarbonate)/ABS(acrylonitrile butadiene stylene), PET(poly ethylene terephthalate), PE(poly ethylene), PP(poly propylene), PA66(poly amide based on hexamethylene diamine)의 압출 제품 저항치을 도시한 도면.11 is a view showing nanocarbon solids prepared according to an embodiment of the present invention and PC (polycarbonate), PC (polycarbonate) / ABS (acrylonitrile butadiene stylene), PET (polyethylene terephthalate), PE (polyethylene), PP ( The figure shows the resistance value of extruded products of poly propylene) and PA66 (poly amide based on hexamethylene diamine).

Claims (23)

나노카본;Nanocarbon; 금속(산화물 및 이온을 포함한다); 및Metals (including oxides and ions); And 수지를 포함하는 나노카본 고형체로서,As nanocarbon solids containing a resin, 상기 고형체의 겉보기 밀도는 0.1 내지 0.7g/cm3로 구성되는 나노카본 고형체.The apparent density of the solid is nanocarbon solids consisting of 0.1 to 0.7g / cm3. 제1항에 있어서,The method of claim 1, 상기 금속은 Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, 그 합금, 및 그 혼합물로 구성되는 군에서 선택되는 적어도 하나 이상의 금속을 포함하는 나노카본 고형체. The metal is Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi , At least one metal selected from the group consisting of alloys, and mixtures thereof. 제1항에 있어서,The method of claim 1, 상기 수지는 아크릴, 우레탄, 비닐, 불소화, 실리콘화, 염소불소화, 에폭시, 페놀, 셀롤로우스, 스티렌, 올레핀, 엘라스토머, 파라핀 수지 및 그 혼합물로 구성된 군에서 선택되는 적어도 하나의 수지로 구성되는 군에서 선택되는 적어도 하나 이상의 수지를 포함하는 나노카본 고형체. The resin is a group consisting of at least one resin selected from the group consisting of acrylic, urethane, vinyl, fluorinated, siliconized, chlorine fluorinated, epoxy, phenol, cellulose, styrene, olefin, elastomer, paraffin resin, and mixtures thereof. Nanocarbon solid comprising at least one resin selected from. 제1항에 있어서, The method of claim 1, 상기 수지는 필러(filler)를 분산제와 같이 넣어 상기 수지와 믹싱한 개질수지인 나노카본 고형체.The resin is a nano-carbon solid body of a modified resin mixed with the resin by putting a filler (filler) with a dispersant. 제1항에 있어서,The method of claim 1, 상기 나노카본은 상기 고형체의 전체중량의 95 내지 98중량%인 나노카본 고형체.The nanocarbon is a nanocarbon solids of 95 to 98% by weight of the total weight of the solid. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090033349A 2009-04-16 2009-04-16 Manufacturing method of shaped solid comprising nanocarbon KR100955295B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090033349A KR100955295B1 (en) 2009-04-16 2009-04-16 Manufacturing method of shaped solid comprising nanocarbon
PCT/KR2010/002398 WO2010120153A2 (en) 2009-04-16 2010-04-16 Composition of nanocarbon solution, composition of nanocarbon resin, nanocarbon solid product, nanocarbon resin product, and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090033349A KR100955295B1 (en) 2009-04-16 2009-04-16 Manufacturing method of shaped solid comprising nanocarbon

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020090130512A Division KR101084974B1 (en) 2009-04-16 2009-12-24 Manufacturing method of shaped solid comprising nanocarbon

Publications (1)

Publication Number Publication Date
KR100955295B1 true KR100955295B1 (en) 2010-04-30

Family

ID=42220465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090033349A KR100955295B1 (en) 2009-04-16 2009-04-16 Manufacturing method of shaped solid comprising nanocarbon

Country Status (1)

Country Link
KR (1) KR100955295B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9576706B2 (en) 2012-02-13 2017-02-21 Korea Kumho Petrochemical Co., Ltd. Method for preparing carbon nano material/polymer composites
US9837180B2 (en) 2012-02-13 2017-12-05 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
CN110841637A (en) * 2019-11-29 2020-02-28 东莞东阳光科研发有限公司 Fluorination catalyst precursor and method for producing fluorination catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036390A (en) * 2003-10-16 2005-04-20 한국전자통신연구원 Electromagnetic shielding materials manufactured by filling carbon tube and metallic powder as electrical conductor
KR20050051939A (en) * 2003-11-28 2005-06-02 한국화학연구원 Process for the preparation of nano-composite material
JP2005262391A (en) * 2004-03-18 2005-09-29 Misuzu Kogyo:Kk Composite material composed of nano carbon and carbonaceous second filler and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036390A (en) * 2003-10-16 2005-04-20 한국전자통신연구원 Electromagnetic shielding materials manufactured by filling carbon tube and metallic powder as electrical conductor
KR20050051939A (en) * 2003-11-28 2005-06-02 한국화학연구원 Process for the preparation of nano-composite material
JP2005262391A (en) * 2004-03-18 2005-09-29 Misuzu Kogyo:Kk Composite material composed of nano carbon and carbonaceous second filler and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chao Gao et al., Macromolecules, 2005, Vol. 38, pp. 8634-8648

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9576706B2 (en) 2012-02-13 2017-02-21 Korea Kumho Petrochemical Co., Ltd. Method for preparing carbon nano material/polymer composites
US9837180B2 (en) 2012-02-13 2017-12-05 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
CN110841637A (en) * 2019-11-29 2020-02-28 东莞东阳光科研发有限公司 Fluorination catalyst precursor and method for producing fluorination catalyst
CN110841637B (en) * 2019-11-29 2022-07-08 东莞东阳光科研发有限公司 Fluorination catalyst precursor and method for producing fluorination catalyst

Similar Documents

Publication Publication Date Title
KR101084977B1 (en) Nanocarbon liquid composition, nanocarbon resin composion, nanocarbon shaped solid body, nanocarbon resin body and manufacturing method of the sames
JP6484348B2 (en) Uniform dispersion of graphene nanoparticles in the host
KR101197288B1 (en) Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
JP6047569B2 (en) Nanotube and finely pulverized carbon fiber polymer composite composition and production method
KR20110115954A (en) Nanocarbon liquid composition, nanocarbon resin composion, nanocarbon molded body, nanocarbon resin body and manufacturing method of the sames
JP7170537B2 (en) Chemical-free fabrication of graphene-reinforced polymer matrix composites
KR101324707B1 (en) Composition for radiating heat and product for radiating heat using the same
KR101579522B1 (en) Resin composition having electro-magnetic wave absorption function with high thermal radiation, and molded article manufacture by using the same
KR101211134B1 (en) A method for preparing carbon nano material/polymer composites
Almuallim et al. Thermally conductive polymer nanocomposites for filament-based additive manufacturing
CN103087411A (en) High-dispersion alkylated graphene/polypropylene composite material and preparation method thereof
US11161742B2 (en) Nanostructured materials having intercalated carbon nanoparticles
KR100955295B1 (en) Manufacturing method of shaped solid comprising nanocarbon
He et al. A graphene oxide–polyvinylidene fluoride mixture as a precursor for fabricating thermally reduced graphene oxide–polyvinylidene fluoride composites
KR20130134446A (en) Functionalized graphene and polymer-functionalized graphene hybrid complex and the fabrication methods thereof
KR101084974B1 (en) Manufacturing method of shaped solid comprising nanocarbon
Ray et al. Processing of polymer-based nanocomposites
KR101654638B1 (en) Hybrid filler composite and preparing method of the same
EP3647343A1 (en) Composite resin particle production method, resin molded article, and composite resin particles
JP2015105205A (en) Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
KR20140073866A (en) Carbon nano-material solids and a method for solidifying the powder of carbon nano-material
Ray Processing of Polymer-based Nanocomposites: Processing-structure-property-performance Relationships
WO2010120153A2 (en) Composition of nanocarbon solution, composition of nanocarbon resin, nanocarbon solid product, nanocarbon resin product, and manufacturing methods thereof
JP2006097005A5 (en)
Kodali et al. Biocarbon Polymer Composites

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150210

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190225

Year of fee payment: 10