JP2012226841A - Ultrafine copper particle dispersed paste and method of forming conductive film - Google Patents

Ultrafine copper particle dispersed paste and method of forming conductive film Download PDF

Info

Publication number
JP2012226841A
JP2012226841A JP2011090592A JP2011090592A JP2012226841A JP 2012226841 A JP2012226841 A JP 2012226841A JP 2011090592 A JP2011090592 A JP 2011090592A JP 2011090592 A JP2011090592 A JP 2011090592A JP 2012226841 A JP2012226841 A JP 2012226841A
Authority
JP
Japan
Prior art keywords
copper
mass
parts
paste
copper ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090592A
Other languages
Japanese (ja)
Other versions
JP5342597B2 (en
Inventor
Masayoshi Yoshitake
正義 吉武
Nobuyuki Ito
信行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2011090592A priority Critical patent/JP5342597B2/en
Publication of JP2012226841A publication Critical patent/JP2012226841A/en
Application granted granted Critical
Publication of JP5342597B2 publication Critical patent/JP5342597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrafine copper particle dispersed paste, with which a dense low-resistance fired film can be easily obtained even at a low temperature of 300°C or below by using a normal reducing atmospheric firing furnace, and a method of forming a conductive film.SOLUTION: An ultrafine copper particle dispersed paste for low-temperature firing is paste in which ultrafine copper particles are wet-coated with glycol. The ultrafine copper particle dispersed paste for low-temperature firing contains 3-30 parts by mass of fatty acid with respect to 100 parts by mass of the ultrafine copper particles. A dense low-resistance fired film can be formed by printing a wiring pattern with the paste on a resin substrate, followed by low-temperature firing.

Description

本発明は、銅超微粒子を分散した低温焼成用導電ペーストおよび銅導電膜による配線パターン形成の分野に関するものである。
詳しくは、銅超微粒子の分散ペーストを用いてスクリーン印刷などで耐熱性樹脂基板上に配線パターンを形成し、低温焼成雰囲気で緻密な低抵抗焼成導電膜を形成する銅超微粒子分散ペーストおよびそれを利用した微細な焼成配線パターン形成方法に関するものである。
The present invention relates to the field of low-temperature firing conductive paste in which ultrafine copper particles are dispersed and the formation of a wiring pattern using a copper conductive film.
Specifically, a copper ultrafine particle dispersed paste for forming a dense low resistance fired conductive film in a low temperature firing atmosphere by forming a wiring pattern on a heat resistant resin substrate by screen printing or the like using a dispersion paste of copper ultrafine particles and The present invention relates to a method for forming a fine fired wiring pattern.

電子機器関連分野において、基板上の配線パターンの微細化が進んでいる。その中で、金属超微粒子を利用した微細配線パターン形成方法がある。すでに、金超微粒子、銀超微粒子を分散したペーストを用いて極めて微細な配線パターン描画と、その後の焼成で金属に近い導電性能が得られている。金超微粒子は非常に高価であるため、銀超微粒子による実用化が進められている。   In the field of electronic equipment, miniaturization of a wiring pattern on a substrate is progressing. Among them, there is a method for forming a fine wiring pattern using metal ultrafine particles. Already, a conductive performance close to that of a metal has been obtained by drawing a very fine wiring pattern using a paste in which ultrafine gold particles and ultrafine silver particles are dispersed, and subsequent firing. Since gold ultrafine particles are very expensive, practical application of silver ultrafine particles is being promoted.

しかし、ファインパターン回路などで配線間スペースが狭くなると銀超微粒子の場合、エレクトロマイグレーション問題が浮上してきた。銅超微粒子はエレクトロマイグレーションも少なく、金や銀より素材が安価で、汎用性の高い材料として、近年注目されている。   However, when the inter-wiring space is narrowed by a fine pattern circuit or the like, the electromigration problem has emerged in the case of ultrafine silver particles. Copper ultrafine particles have little electromigration, are cheaper than gold and silver, and have recently attracted attention as highly versatile materials.

しかしながら、銅超微粒子は酸化し易く、焼成温度も300℃以上でないと焼成膜形成が難しく、樹脂の耐熱性の関係から樹脂基板への配線パターン形成ができなかった。そのため、低温で銅焼成膜を形成する方法として、種々の提案がなされている(例えば、特許文献1〜5)。   However, copper ultrafine particles are easily oxidized, and it is difficult to form a fired film unless the firing temperature is 300 ° C. or higher, and a wiring pattern cannot be formed on the resin substrate because of the heat resistance of the resin. Therefore, various proposals have been made as a method for forming a copper fired film at a low temperature (for example, Patent Documents 1 to 5).

特許文献1においては、塗膜をアルゴンやヘリウムなどのプラズマ励起雰囲気で還元処理する方法が記載されている。特許文献2においては、還元能を有するヒドロキシ基の有機化合物を分散したペーストを利用する方法が記載されている。特許文献3においては、パターン描画後、原子状水素により金属表面酸化膜を還元する方法が記載されている。特許文献4においては、配線パターン塗膜を、1.1気圧以上に加圧した水素ガス雰囲気で、150℃〜300℃に加熱して焼成する方法が記載されている。特許文献5においては、接触水素化反応機能を具える金属触媒粒子などを添加したペーストで、水素ガス雰囲気で焼成膜を形成する方法が記載されている。   Patent Document 1 describes a method of reducing a coating film in a plasma-excited atmosphere such as argon or helium. Patent Document 2 describes a method using a paste in which an organic compound having a hydroxy group having a reducing ability is dispersed. Patent Document 3 describes a method of reducing a metal surface oxide film with atomic hydrogen after pattern drawing. Patent Document 4 describes a method in which a wiring pattern coating film is heated and fired at 150 ° C. to 300 ° C. in a hydrogen gas atmosphere pressurized to 1.1 atm or more. Patent Document 5 describes a method of forming a fired film in a hydrogen gas atmosphere with a paste to which metal catalyst particles having a catalytic hydrogenation reaction function are added.

しかし、これらの方法はプラズマ発生装置、原子状水素発生装置や加圧チャンバーなどが必要であり、生産性やコストに多くの問題を有している。また、ペースト組成においても制約があり、通常の水素含有窒素ガス雰囲気で連続的に緻密な銅焼成膜が形成できるペーストや形成方法が望まれていた。   However, these methods require a plasma generator, an atomic hydrogen generator, a pressurized chamber, and the like, and have many problems in productivity and cost. In addition, the paste composition is also limited, and a paste and a forming method that can form a dense copper fired film continuously in a normal hydrogen-containing nitrogen gas atmosphere have been desired.

特許第4205393号公報Japanese Patent No. 4205393 特許第3939735号公報Japanese Patent No. 3939735 特許第3870273号公報Japanese Patent No. 3870273 特開2008−146991号公報JP 2008-146991 A 特開2008−146999号公報JP 2008-146999 A

以上に述べたように、銅超微粒子を分散した低温焼成用導電ペーストは、素材が安価で、微細な配線パターン形成が可能で、エレクトロマイグレーション問題も回避でき、電極やプリント配線基板の導体層への応用などが検討されている。   As described above, the conductive paste for low-temperature firing, in which ultrafine copper particles are dispersed, is inexpensive, can form fine wiring patterns, avoids electromigration problems, and can be applied to the conductive layers of electrodes and printed wiring boards. The application of is considered.

しかし、銅超微粒子は酸化しやすく、その表面酸化膜層を還元して、良好な導電性を有する焼結層を、連続的に安価に形成するのが困難であった。   However, the ultrafine copper particles are easily oxidized, and it has been difficult to reduce the surface oxide film layer and continuously form a sintered layer having good conductivity at a low cost.

本発明は、銅超微粒子を分散した塗膜の焼結過程を誠意研究した結果、完成したもので、通常の還元性雰囲気の焼成炉を用いて、300℃以下の低温でも容易に緻密な低抵抗の焼成膜が得られるペースト、および銅導電膜の形成方法を提供するものである。   The present invention has been completed as a result of sincere research on the sintering process of the coating film in which the ultrafine copper particles are dispersed, and it can be easily obtained at a low temperature of 300 ° C. or less using a normal reducing atmosphere firing furnace. The present invention provides a paste from which a fired film of resistance is obtained, and a method for forming a copper conductive film.

本発明は、銅超微粒子をグリコールで湿潤被覆したペーストであって、銅超微粒子100質量部に対して3〜30質量部の脂肪酸を含有する低温焼成用導電ペーストである。   The present invention is a paste obtained by wet-coating copper ultrafine particles with glycol and containing 3 to 30 parts by mass of a fatty acid with respect to 100 parts by mass of copper ultrafine particles.

銅超微粒子は平均粒子径が100nm以下であって、酸化膜が少なく、粗大凝集物のない超微粒子が好ましい。このような銅超微粒子は物理的気相法あるいは液相還元法で製造できる。   The copper ultrafine particles preferably have an average particle size of 100 nm or less, have a small oxide film, and are free from coarse aggregates. Such copper ultrafine particles can be produced by a physical vapor phase method or a liquid phase reduction method.

銅超微粒子を湿潤被覆するグリコールとは、多価アルコールの一種で1分子中に水酸基を2個もつアルコールで、エチレングリコール、プロピレングリコール、ジエチレングリコールなどがある。グリコールで銅超微粒子を湿潤被覆することで、銅表面の酸化膜生成を防止すると共に、焼成時の温度上昇過程で銅超微粒子の表面酸化膜を還元して焼結を促進する効果がある。グリコールはポリオールとも呼ばれ、金属酸化物を加熱還元する溶媒として良く知られている(例えば特開昭59−173206号公報)。また、グリコールは印刷形成した配線パターン形状を焼成膜形成温度まで保持する効果もある。   Glycol that wet coats copper ultrafine particles is an alcohol having two hydroxyl groups in one molecule, such as ethylene glycol, propylene glycol, and diethylene glycol. By wet-coating the copper ultrafine particles with glycol, it is possible to prevent the formation of an oxide film on the copper surface and to promote the sintering by reducing the surface oxide film of the copper ultrafine particles during the temperature rise process during firing. Glycol is also called a polyol, and is well known as a solvent for reducing metal oxides by heating (for example, JP-A-59-173206). Glycol also has the effect of maintaining the printed wiring pattern shape up to the firing film formation temperature.

湿潤被覆するグリコールは銅超微粒子100質量部に対して20〜200質量部添加する。20質量部未満であると銅超微粒子を均一に被覆することができず、グリコールによる還元促進効果が得られなくなり均一な焼成膜ができなく、好ましくは50質量部以上である。グリコール量は印刷方法に対応した銅超微粒子分散ペーストの粘度調整剤としてペーストに一定量以上加えれば良く、加える上限量についての制限はない。   The glycol for wet coating is added in an amount of 20 to 200 parts by mass with respect to 100 parts by mass of the copper ultrafine particles. If the amount is less than 20 parts by mass, the copper ultrafine particles cannot be uniformly coated, the reduction promoting effect by glycol cannot be obtained, and a uniform fired film cannot be formed, preferably 50 parts by mass or more. The amount of glycol should just be added to a paste more than a fixed quantity as a viscosity regulator of the copper ultrafine particle dispersion paste corresponding to a printing method, and there is no restriction | limiting about the upper limit amount to add.

しかし、グリコールを200質量部超えて加えるとペーストが極低粘度となり、印刷パターンの形状保持が難しくなり、好ましくない。さらに、ペースト中のグリコール量でペースト中の銅超微粒子含有量を調整して、目的とする銅焼成膜厚を調整する事も可能である。   However, when the glycol is added in an amount exceeding 200 parts by mass, the paste has an extremely low viscosity, which makes it difficult to maintain the shape of the printed pattern, which is not preferable. Furthermore, it is possible to adjust the target copper fired film thickness by adjusting the content of ultrafine copper particles in the paste with the amount of glycol in the paste.

本発明のペーストの主溶媒であるグリコールに脂肪酸を加えるのは緻密な銅焼成膜を形成するために最も重要である。脂肪酸は飽和脂肪酸のカプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸が良い。グリコールだけで銅超微粒子を湿潤したペーストはグリコールの還元促進作用により200℃の焼成温度でも還元され焼成膜が形成される。しかし、得られた焼成膜は銅超微粒子同士が焼結するときに生じる焼結収縮で膜に亀裂が多く発生し、凹凸の多いひび割れ膜となり、低抵抗焼成膜とならない。グリコールに脂肪酸を一定量以上加えることにより銅超微粒子が均一に焼結し、焼結収縮ワレの無い緻密な銅焼成膜が形成できる。また、脂肪酸添加は銅超微粒子を焼結過程で塗膜表面に並べる効果もあり、厚さの非常に薄い焼成膜でも緻密な低抵抗膜が得られる。   It is most important to add a fatty acid to glycol, which is the main solvent of the paste of the present invention, in order to form a dense copper fired film. The fatty acid is preferably a saturated fatty acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, or behenic acid. The paste in which copper ultrafine particles are wetted only with glycol is reduced even at a baking temperature of 200 ° C. due to the action of promoting the reduction of glycol to form a fired film. However, in the obtained fired film, many cracks are generated in the film due to sintering shrinkage that occurs when copper ultrafine particles are sintered together, and it becomes a cracked film with many irregularities and does not become a low resistance fired film. By adding a certain amount or more of fatty acid to glycol, the copper ultrafine particles are uniformly sintered, and a dense copper fired film without sintering shrinkage can be formed. The addition of fatty acid also has an effect of arranging copper ultrafine particles on the surface of the coating film during the sintering process, and a dense low-resistance film can be obtained even with a very thin fired film.

脂肪酸の効果は銅100質量に対して3質量部から効果がある。30質量部超えて加えるとペーストの流動特性を阻害し、焼成膜の平滑性や導電性も悪くなり好ましくない。好ましい添加量は銅超微粒子100質量部に対して5〜20質量部である。   The effect of fatty acid is effective from 3 parts by mass with respect to 100 parts by mass of copper. If added in excess of 30 parts by mass, the flow characteristics of the paste are hindered, and the smoothness and conductivity of the fired film are also deteriorated. A preferable addition amount is 5 to 20 parts by mass with respect to 100 parts by mass of the copper ultrafine particles.

本発明の銅超微粒子分散ペーストを用いて、樹脂基板上にスクリーン印刷などの印刷方法で配線パターンを形成し、還元性雰囲気焼成炉で300℃以下の温度で焼成することで、緻密な低抵抗の銅焼成膜が形成できる。還元性雰囲気は汎用の窒素水素混合ガスが利用でき、水素含有量5〜50%が好ましい。焼成温度は樹脂基板の耐熱性にもよるが、200〜250℃で緻密な銅焼成膜が形成できる。表面改質した樹脂基板を用い、少量の有機ビヒクルをペーストに添加することで目的の塗膜物性にすることも可能である。この場合の有機ビヒクルとしてはエチルセルローズ、メチルセルローズ、アクリル樹脂、アルキッド樹脂、ブチラール樹脂、エポキシ樹脂、フェノール樹脂、ロジン、ワックスなどを挙げることができる。   By using the copper ultrafine particle dispersion paste of the present invention, a wiring pattern is formed on a resin substrate by a printing method such as screen printing, and firing is performed at a temperature of 300 ° C. or less in a reducing atmosphere firing furnace. A copper fired film can be formed. As the reducing atmosphere, a general-purpose nitrogen-hydrogen mixed gas can be used, and the hydrogen content is preferably 5 to 50%. Although the firing temperature depends on the heat resistance of the resin substrate, a dense copper fired film can be formed at 200 to 250 ° C. It is also possible to obtain the desired coating film properties by using a surface-modified resin substrate and adding a small amount of an organic vehicle to the paste. Examples of the organic vehicle in this case include ethyl cellulose, methyl cellulose, acrylic resin, alkyd resin, butyral resin, epoxy resin, phenol resin, rosin, and wax.

本発明の銅超微粒子分散ペーストは通常の還元性雰囲気の焼成炉で、緻密な銅焼成膜が低温で容易に得られ、樹脂基板への配線パターン形成が可能となり、高密度低温焼成型導電回路が連続的に安価に提供できるようになった。   The copper ultrafine particle-dispersed paste of the present invention allows a dense copper fired film to be easily obtained at a low temperature in a normal reducing atmosphere firing furnace, enables a wiring pattern to be formed on a resin substrate, and provides a high density and low temperature fired conductive circuit. Can be continuously provided at low cost.

本発明に係る銅超微粒子分散ペーストの焼成膜のレーザ顕微鏡写真。The laser microscope picture of the baking film | membrane of the copper ultrafine particle dispersion paste which concerns on this invention. 従来の銅超微粒子分散ペーストの焼成膜のレーザ顕微鏡写真。A laser micrograph of a fired film of a conventional copper ultrafine particle dispersed paste.

以下、本発明の実施の形態である実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに50質量部のエチレングリコールと3質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が9×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
Example 1
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 50 parts by mass of ethylene glycol and 3 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 9 × 10 −5 Ω · cm was obtained.

(実施例2)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに55質量部のエチレングリコールと5質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が6×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 2)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 55 parts by mass of ethylene glycol and 5 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 6 × 10 −5 Ω · cm was obtained.

(実施例3)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに60質量部のエチレングリコールと10質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が5×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 3)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 60 parts by mass of ethylene glycol and 10 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 5 × 10 −5 Ω · cm was obtained.

(実施例4)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに70質量部のエチレングリコールと15質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
Example 4
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 70 parts by mass of ethylene glycol and 15 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例5)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに80質量部のエチレングリコールと20質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が4×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 5)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 80 parts by mass of ethylene glycol and 20 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 4 × 10 −5 Ω · cm was obtained.

(実施例6)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに90質量部のエチレングリコールと30質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が7×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 6)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 90 parts by mass of ethylene glycol and 30 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 7 × 10 −5 Ω · cm was obtained.

(実施例7)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに60質量部のプロピレングリコールと3質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が9×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 7)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 60 parts by mass of propylene glycol and 3 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 9 × 10 −5 Ω · cm was obtained.

(実施例8)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに60質量部のプロピレングリコールと5質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気中焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が7×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 8)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 60 parts by mass of propylene glycol and 5 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 7 × 10 −5 Ω · cm was obtained.

(実施例9)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに65質量部のプロピレングリコールと10質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が5×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
Example 9
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 65 parts by mass of propylene glycol and 10 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 5 × 10 −5 Ω · cm was obtained.

(実施例10)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに70質量部のプロピレングリコールと15質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 10)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 70 parts by mass of propylene glycol and 15 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例11)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに80質量部のプロピレングリコールと20質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が4×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 11)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 80 parts by mass of propylene glycol and 20 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 4 × 10 −5 Ω · cm was obtained.

(実施例12)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに90質量部のプロピレングリコールと30質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が8×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 12)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 90 parts by mass of propylene glycol and 30 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 8 × 10 −5 Ω · cm was obtained.

(実施例13)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに40質量部のジエチレングリコールと15質量部のカプリル酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が4×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 13)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 40 parts by mass of diethylene glycol and 15 parts by mass of caprylic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 4 × 10 −5 Ω · cm was obtained.

(実施例14)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに60質量部のジエチレングリコールと15質量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 14)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 60 parts by mass of diethylene glycol and 15 parts by mass of capric acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例15)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに70質量部のジエチレングリコールと15質量部のラウリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 15)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. A paste was prepared by immediately adding 70 parts by mass of diethylene glycol and 15 parts by mass of lauric acid to 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例16)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに70質量部のジエチレングリコールと15質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 16)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 70 parts by mass of diethylene glycol and 15 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例17)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに80質量部のジエチレングリコールと15質量部のパルミチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 17)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 80 parts by mass of diethylene glycol and 15 parts by mass of palmitic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例18)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに80質量部のジエチレングリコールと15質量部のステアリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が5×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 18)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 80 parts by mass of diethylene glycol and 15 parts by mass of stearic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 5 × 10 −5 Ω · cm was obtained.

(実施例19)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに80質量部のジエチレングリコールと15質量部のべヘン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.2L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、220℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が5×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 19)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 80 parts by mass of diethylene glycol and 15 parts by mass of behenic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 220 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.2 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 5 × 10 −5 Ω · cm was obtained.

(実施例20)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに40質量部のエチレングリコールと30質量部のプロピレングリコールを加え混練加工した。その後、10質量部のミリスチン酸と5重量部のカプリン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 20)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 40 parts by mass of ethylene glycol and 30 parts by mass of propylene glycol were immediately added and kneaded. Thereafter, 10 parts by mass of myristic acid and 5 parts by weight of capric acid were added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was carried out on the epoxy resin substrate, and the copper fired film was formed by heating and firing at 200 ° C. for 90 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例21)
化学還元法で製造した平均粒子径54nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに50質量部のエチレングリコールと15質量部のミリスチン酸を加えペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、250℃で60分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が3×10−5Ω・cmの緻密で平滑な低抵抗の導電性焼成膜が得られた。
(Example 21)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 54 nm manufactured by a chemical reduction method are used. To 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature, 50 parts by mass of ethylene glycol and 15 parts by mass of myristic acid were immediately added to prepare a paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. Screen printing was performed on an epoxy resin substrate, and a copper fired film was formed by heating and firing at 250 ° C. for 60 minutes in a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. As a result, a dense and smooth low-resistance conductive fired film having a specific resistance of 3 × 10 −5 Ω · cm was obtained.

(実施例22)
化学還元法で製造した平均粒子径13nmのメタノールに湿潤した銅超微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅超微粒子100質量部に対して、直ちに200質量部のプロピレングリコールと15質量部のカプリン酸を加え低粘度ペーストを作製した。このようにして作製した本発明の銅超微粒子分散ペーストの性能評価を以下の方法で行った。エポキシ樹脂基板上にスピンコート印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成し銅焼成膜を形成した。その結果、比抵抗が6×10−5Ω・cmの緻密で平滑な極薄導電性焼成膜が得られた。
(Example 22)
Copper ultrafine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted with methanol having an average particle diameter of 13 nm produced by a chemical reduction method are used. 200 parts by mass of propylene glycol and 15 parts by mass of capric acid were immediately added to 100 parts by mass of copper ultrafine particles obtained by evaporating methanol at room temperature to prepare a low-viscosity paste. The performance evaluation of the copper ultrafine particle-dispersed paste of the present invention thus produced was performed by the following method. It spin-printed on the epoxy resin board | substrate, and it heat-baked at 200 degreeC for 90 minute (s) in the baking furnace of the mixed gas atmosphere of hydrogen 0.5L / min + nitrogen 1L / min, and formed the copper baking film | membrane. As a result, a dense and smooth ultrathin conductive fired film having a specific resistance of 6 × 10 −5 Ω · cm was obtained.

(比較例1)
実施例1と同じ方法で作製した銅超微粒子100質量部に対して、50質量部のエチレングリコールを加えペーストを作製し、実施例1と同じ焼成条件にて、200℃で焼成膜を形成した。その結果、銅超微粒子同士が焼結により粗大粒子化し、焼成膜には多くの亀裂が認められ、比抵抗も5×10−4Ω・cmと悪いものであった。
(Comparative Example 1)
A paste was prepared by adding 50 parts by mass of ethylene glycol to 100 parts by mass of copper ultrafine particles produced by the same method as in Example 1, and a fired film was formed at 200 ° C. under the same firing conditions as in Example 1. . As a result, the copper ultrafine particles became coarse particles by sintering, and many cracks were observed in the fired film, and the specific resistance was also bad at 5 × 10 −4 Ω · cm.

(比較例2)
実施例7と同じ方法で作製した銅超微粒子100質量部に対して、60質量部のプロピレングリコールを加えペーストを作製し、実施例7と同じ焼成条件にて、200℃で焼成膜を形成した。その結果、銅超微粒子同士が焼結により粗大粒子化し、焼成膜には多くの亀裂が認められ、比抵抗も6×10−4Ω・cmと悪いものであった。
(Comparative Example 2)
60 parts by mass of propylene glycol was added to 100 parts by mass of copper ultrafine particles produced by the same method as in Example 7, and a fired film was formed at 200 ° C. under the same firing conditions as in Example 7. . As a result, copper ultrafine particles became coarse particles by sintering, and many cracks were observed in the fired film, and the specific resistance was also as bad as 6 × 10 −4 Ω · cm.

(比較例3)
実施例13と同じ方法で作製した銅超微粒子100質量部に対して、50質量部のジエチレングリコールを加えペーストを作製し、実施例13と同じ焼成条件にて、220℃で焼成膜を形成した。その結果、焼成温度が高いので銅超微粒子同士の焼結が進み、焼成膜には多くの亀裂が認められ、しかも亀裂幅も200℃より大きく、比抵抗も7×10−4Ω・cmと悪いものであった。
(Comparative Example 3)
A paste was prepared by adding 50 parts by mass of diethylene glycol to 100 parts by mass of copper ultrafine particles produced by the same method as in Example 13, and a fired film was formed at 220 ° C. under the same firing conditions as in Example 13. As a result, since the firing temperature is high, the sintering of the copper ultrafine particles proceeds, and many cracks are observed in the fired film, the crack width is larger than 200 ° C., and the specific resistance is 7 × 10 −4 Ω · cm. It was bad.

(比較例4)
化学還元法で製造した平均粒子径0.5μmのメタノールに湿潤した銅微粒子(福田金属箔粉工業(株)製)を利用する。メタノールを室温で蒸発した銅微粒子100質量部に対して、直ちに25質量部のエチレングリコールと15質量部のミリスチン酸を加えペーストを作製した。このようにして作製した銅微粒子分散ペーストを、エポキシ樹脂基板上にスクリーン印刷し、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、300℃で60分間加熱焼成した結果、導電性を有する焼成膜が得られなかった。
(Comparative Example 4)
Copper fine particles (manufactured by Fukuda Metal Foil Powder Co., Ltd.) wetted in methanol with an average particle size of 0.5 μm produced by a chemical reduction method are used. 25 parts by mass of ethylene glycol and 15 parts by mass of myristic acid were immediately added to 100 parts by mass of copper fine particles obtained by evaporating methanol at room temperature to prepare a paste. The copper fine particle dispersion paste thus produced was screen printed on an epoxy resin substrate, and baked at 300 ° C. for 60 minutes in a baking furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. A conductive fired film could not be obtained.

(比較例5)
実施例1と同じ方法で作製した銅超微粒子100質量部に対して、50質量部のエチレングリコールと1質量部のミリスチン酸を加えペーストを作製し、実施例1と同じ焼成条件にて、200℃で焼成膜を形成した。その結果、銅超微粒子同士が焼結により粗大粒子化し、焼成膜には多くの亀裂が認められ、比抵抗も5×10−4Ω・cmと悪いものであった。
(Comparative Example 5)
A paste was prepared by adding 50 parts by mass of ethylene glycol and 1 part by mass of myristic acid to 100 parts by mass of the ultrafine copper particles produced by the same method as in Example 1, and under the same firing conditions as in Example 1, 200 A fired film was formed at ° C. As a result, the copper ultrafine particles became coarse particles by sintering, and many cracks were observed in the fired film, and the specific resistance was also bad at 5 × 10 −4 Ω · cm.

(比較例6)
実施例22と同じ方法で作製した銅超微粒子100質量部に対して、300質量部のプロピレングリコールと15質量部のカプリン酸を加え極低粘度ペーストを作製した。このようにして作製した銅超微粒子分散ペーストをエポキシ樹脂基板上にスピンコート印刷した結果、銅含有量が極めて少ない薄膜となり、水素0.5L/min+窒素1L/minの混合ガス雰囲気の焼成炉にて、200℃で90分間加熱焼成しても、比抵抗が測定できる銅焼成膜が形成できなかった。
(Comparative Example 6)
To 100 parts by mass of copper ultrafine particles produced by the same method as in Example 22, 300 parts by mass of propylene glycol and 15 parts by mass of capric acid were added to produce an extremely low viscosity paste. As a result of spin coating printing the copper ultrafine particle dispersion paste thus prepared on an epoxy resin substrate, it becomes a thin film with extremely low copper content, and is applied to a firing furnace in a mixed gas atmosphere of hydrogen 0.5 L / min + nitrogen 1 L / min. Thus, a copper fired film capable of measuring the specific resistance could not be formed even when heated and fired at 200 ° C. for 90 minutes.

(比較例7)
実施例6と同じ方法で作製した銅超微粒子100質量部に対して、100質量部のエチレングリコールと40質量部のミリスチン酸を加えペーストを作製した。このようにして作製した銅超微粒子分散ペーストは粘度が安定せず粘度が増加し、エチレングリコール量を調整しても安定した印刷膜を得ることが難しかった。また、実施例6と同じ焼成条件にて、焼成膜を形成した結果、凹凸の多い焼成膜となり、比抵抗も5×10−4Ω・cmと悪いものであった。
(Comparative Example 7)
A paste was prepared by adding 100 parts by mass of ethylene glycol and 40 parts by mass of myristic acid to 100 parts by mass of the ultrafine copper particles produced by the same method as in Example 6. The copper ultrafine particle-dispersed paste produced in this way has a viscosity that is not stable and increases in viscosity, and even if the amount of ethylene glycol is adjusted, it is difficult to obtain a stable printed film. Moreover, as a result of forming a fired film under the same firing conditions as in Example 6, the fired film had many irregularities, and the specific resistance was poor at 5 × 10 −4 Ω · cm.

本発明の銅超微粒子分散ペーストの焼成膜が緻密で平滑な状態であることを、レーザ顕微鏡で撮影した焼成膜外観写真(三次元観察)として図1に示す。図2の従来の脂肪酸を加えない銅超微粒子分散ペーストの焼成膜と比較して、本発明による焼成膜は均一で平滑であることが判る。従来のペーストの焼成膜は大きな割れが膜表面にある。   FIG. 1 shows an appearance photograph (three-dimensional observation) of the fired film taken with a laser microscope that the fired film of the copper ultrafine particle-dispersed paste of the present invention is in a dense and smooth state. It can be seen that the fired film according to the present invention is uniform and smooth as compared with the fired film of the copper ultrafine particle dispersed paste of FIG. The conventional paste fired film has large cracks on the film surface.

本発明の銅超微粒子分散ペーストは緻密な焼成膜が容易に得られ、しかも従来の焼成炉で連続生産が可能となった。本発明を応用した微細配線パターンは銅箔をエッチングして形成される厚膜回路より精細な回路導体の形成ができ、製造プロセスの簡素化によるコストダウンと共に、印刷技術を用いた多層厚膜回路形成も可能になってきた。   The copper ultrafine particle-dispersed paste of the present invention can easily obtain a dense fired film and can be continuously produced in a conventional firing furnace. A fine wiring pattern to which the present invention is applied can form a finer circuit conductor than a thick film circuit formed by etching a copper foil, and a multilayer thick film circuit using a printing technique as well as a cost reduction by simplifying a manufacturing process. Formation has also become possible.

Claims (5)

銅超微粒子がグリコールで湿潤被覆したペーストであって、銅超微粒子100質量部に対して脂肪酸が3〜30重量部含有することを特徴とする低温焼成用銅超微粒子分散ペースト。   A paste in which copper ultrafine particles are wet-coated with glycol, and contains 3 to 30 parts by weight of fatty acid per 100 parts by mass of copper ultrafine particles. 銅超微粒子の平均粒子径が100nm以下であることを特徴とする請求項1記載の低温焼成用銅超微粒子分散ペースト。   The copper ultrafine particle dispersion paste for low-temperature firing according to claim 1, wherein the average particle diameter of the copper ultrafine particles is 100 nm or less. グリコールがエチレングリコール、プロピレングリコール、ジエチレングリコールより選ばれた1種以上であり、銅超微粒子100質量部に対して20〜200質量部含有することを特徴とする請求項1又は2記載の低温焼成用銅超微粒子分散ペースト。   The glycol is one or more selected from ethylene glycol, propylene glycol, and diethylene glycol, and is contained in an amount of 20 to 200 parts by mass with respect to 100 parts by mass of copper ultrafine particles. Copper ultrafine particle dispersion paste. 脂肪酸が飽和脂肪酸のカプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸より選ばれた1種以上であることを特徴とする請求項1、2又は3記載の低温焼成用銅超微粒子分散ペースト。   The low-temperature baking according to claim 1, 2 or 3, wherein the fatty acid is one or more selected from saturated fatty acids of caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid. Copper ultrafine particle dispersion paste. 請求項1記載の低温焼成用銅超微粒子分散ペーストを用いて配線パターンを基板上に印刷し、その後、水素含有窒素雰囲気で300℃以下の温度で加熱焼成して、基板上に銅導電膜を形成する方法。   A wiring pattern is printed on a substrate using the copper ultrafine particle dispersion paste for low-temperature firing according to claim 1, and then heated and fired at a temperature of 300 ° C. or less in a hydrogen-containing nitrogen atmosphere to form a copper conductive film on the substrate. How to form.
JP2011090592A 2011-04-15 2011-04-15 Copper ultrafine particle dispersed paste and method for forming conductive film Active JP5342597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090592A JP5342597B2 (en) 2011-04-15 2011-04-15 Copper ultrafine particle dispersed paste and method for forming conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090592A JP5342597B2 (en) 2011-04-15 2011-04-15 Copper ultrafine particle dispersed paste and method for forming conductive film

Publications (2)

Publication Number Publication Date
JP2012226841A true JP2012226841A (en) 2012-11-15
JP5342597B2 JP5342597B2 (en) 2013-11-13

Family

ID=47276826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090592A Active JP5342597B2 (en) 2011-04-15 2011-04-15 Copper ultrafine particle dispersed paste and method for forming conductive film

Country Status (1)

Country Link
JP (1) JP5342597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052275A1 (en) * 2014-10-01 2016-04-07 協立化学産業株式会社 Coated copper particles and production method therefor
CN108161027A (en) * 2014-05-30 2018-06-15 协立化学产业株式会社 It is coated copper particle
CN110202137A (en) * 2019-05-29 2019-09-06 深圳第三代半导体研究院 A kind of low-temperature sintering copper cream and its sintering process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016360A (en) * 2006-07-07 2008-01-24 Nippon Shokubai Co Ltd Manufacturing method of conductive metal coating
JP2010080438A (en) * 2008-08-28 2010-04-08 Mitsuboshi Belting Ltd Conductive substrate, and precursor thereof and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016360A (en) * 2006-07-07 2008-01-24 Nippon Shokubai Co Ltd Manufacturing method of conductive metal coating
JP2010080438A (en) * 2008-08-28 2010-04-08 Mitsuboshi Belting Ltd Conductive substrate, and precursor thereof and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108161027A (en) * 2014-05-30 2018-06-15 协立化学产业株式会社 It is coated copper particle
CN108161027B (en) * 2014-05-30 2019-01-08 协立化学产业株式会社 Coating copper particle
WO2016052275A1 (en) * 2014-10-01 2016-04-07 協立化学産業株式会社 Coated copper particles and production method therefor
JP2016069716A (en) * 2014-10-01 2016-05-09 協立化学産業株式会社 Coated copper particle and method for producing the same
TWI648111B (en) * 2014-10-01 2019-01-21 日商協立化學產業股份有限公司 Coated copper particles, a method for producing the same, and a conductive composition and circuit formation
CN110202137A (en) * 2019-05-29 2019-09-06 深圳第三代半导体研究院 A kind of low-temperature sintering copper cream and its sintering process
CN110202137B (en) * 2019-05-29 2021-07-20 深圳第三代半导体研究院 Low-temperature sintering copper paste and sintering process thereof

Also Published As

Publication number Publication date
JP5342597B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
TWI568523B (en) Copper powder, copper paste, conductive film manufacturing method and conductive coating
JP6211245B2 (en) Conductive material and method for producing the same
JP6314728B2 (en) Method for producing conductive paste and conductive paste obtained thereby
JP5766336B1 (en) Copper paste firing method
JP5993812B2 (en) Manufacturing method of conductive film
KR20060021310A (en) Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
JP2006152439A (en) Surface treatment method of nickel nanoparticle
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP5342597B2 (en) Copper ultrafine particle dispersed paste and method for forming conductive film
Kawaguchi et al. Cu-based composite inks of a self-reductive Cu complex with Cu flakes for the production of conductive Cu films on cellulose paper
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP5446097B2 (en) Conductive substrate and method for manufacturing the same
JP2006009120A (en) Metal particulate-dispersed body
JP5327442B2 (en) Nickel-rhenium alloy powder and conductor paste containing the same
JP5342603B2 (en) Method for forming copper fine particles for copper paste and copper fired film
JP5730562B2 (en) Cuprous oxide particle dispersion
JP5439995B2 (en) Method for producing surface-modified copper particles, composition for forming conductor, method for producing conductor film and article
JP2008235035A (en) Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP2014122368A (en) Nickel ultrafine powder, conductive paste and method of producing nickel ultrafine powder
TWI656180B (en) Conductive ink
JP2017025393A (en) Copper powder and manufacturing method thereof
JP2007095525A (en) Conductive paste
CN101522929B (en) Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP2013145699A (en) Metal powder, production method therefor, conductive paste, and electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250