JP5730562B2 - Cuprous oxide particle dispersion - Google Patents

Cuprous oxide particle dispersion Download PDF

Info

Publication number
JP5730562B2
JP5730562B2 JP2010284579A JP2010284579A JP5730562B2 JP 5730562 B2 JP5730562 B2 JP 5730562B2 JP 2010284579 A JP2010284579 A JP 2010284579A JP 2010284579 A JP2010284579 A JP 2010284579A JP 5730562 B2 JP5730562 B2 JP 5730562B2
Authority
JP
Japan
Prior art keywords
cuprous oxide
dispersion
particle dispersion
oxide particle
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010284579A
Other languages
Japanese (ja)
Other versions
JP2012134297A (en
Inventor
洋一 上郡山
洋一 上郡山
圭 穴井
圭 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010284579A priority Critical patent/JP5730562B2/en
Publication of JP2012134297A publication Critical patent/JP2012134297A/en
Application granted granted Critical
Publication of JP5730562B2 publication Critical patent/JP5730562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、亜酸化銅粒子の分散体に関する。本発明の亜酸化銅粒子分散体は、電気回路の配線の形成に用いられる。   The present invention relates to a dispersion of cuprous oxide particles. The cuprous oxide particle dispersion of the present invention is used for forming wiring of electric circuits.

基板上に導電膜を形成する方法としては、スパッタリング法や真空蒸着法等の真空薄膜形成法、電解めっき法や無電解めっき法等のめっき法などが知られている。これらの方法のうち、スパッタリング法や真空蒸着法等の真空薄膜形成法は、その実施に真空チャンバが必要となり、装置が複雑化するという不都合や、製造速度を高めにくいといった不都合がある。電解めっき法や無電解めっき法によれば、比較的大面積の基板に容易に薄膜を形成することが可能であるが、基板の表面に導電化処理を施す必要があるという不都合や、廃液の環境負荷が大きく、その処理に多大な経費が必要であるという不都合がある。   Known methods for forming a conductive film on a substrate include vacuum thin film forming methods such as sputtering and vacuum deposition, and plating methods such as electrolytic plating and electroless plating. Among these methods, vacuum thin film forming methods such as sputtering and vacuum vapor deposition require a vacuum chamber for their implementation, and have the disadvantage that the apparatus becomes complicated and the production speed is difficult to increase. According to the electroplating method and the electroless plating method, it is possible to easily form a thin film on a substrate having a relatively large area. There is an inconvenience that the environmental load is large and the processing requires a large expense.

このような状況のもと、金属粒子のインクやペースト等の導電性分散体の塗布によって導電膜を形成する方法が注目されている。この方法によれば、複雑な装置を用いることなく、比較的低コストで導電膜を高速生産することができる。導電膜を形成する対象となる基板としては、電子回路の種類に応じて、ガラス基板等のプリント基板や、ポリイミド等からなるフレキシブルプリント基板が知られている。例えば特許文献1には、ポリイミドフィルムの表面に、亜酸化銅粒子、ジエチレングリコール及びポリエチレングリコール200からなる分散液を塗布し、次いで含酸素雰囲気下に加熱して銅薄膜を形成することが提案されている。   Under such circumstances, a method of forming a conductive film by applying a conductive dispersion such as an ink or paste of metal particles has attracted attention. According to this method, the conductive film can be produced at high speed at a relatively low cost without using a complicated apparatus. As a substrate on which a conductive film is to be formed, a printed substrate such as a glass substrate or a flexible printed substrate made of polyimide or the like is known depending on the type of electronic circuit. For example, Patent Document 1 proposes that a dispersion made of cuprous oxide particles, diethylene glycol and polyethylene glycol 200 is applied to the surface of a polyimide film and then heated in an oxygen-containing atmosphere to form a copper thin film. Yes.

特開2008−257935号公報JP 2008-257935 A

ポリイミドは安定な樹脂であるため、表面の活性が低く、そのことに起因して他の材料との密着性を十分に高くすることが容易ではない。前記の特許文献1においては、亜酸化銅粒子の分散液から形成されたポリイミドフィルム上の塗膜を加熱処理して得られた銅薄膜に、ピンホール等の欠陥が生じていないことを確認しているが、該銅薄膜とポリイミドフィルムとの密着性については何ら考慮されていない。   Since polyimide is a stable resin, its surface activity is low, and it is not easy to sufficiently increase the adhesion to other materials. In the above-mentioned Patent Document 1, it was confirmed that defects such as pinholes did not occur in the copper thin film obtained by heat-treating the coating film on the polyimide film formed from the dispersion of cuprous oxide particles. However, no consideration is given to the adhesion between the copper thin film and the polyimide film.

本発明の課題は、前述した従来技術が有する欠点を解消し得ることにあり、具体的には基板との密着性が高い銅薄膜を形成し得る亜酸化銅粒子分散体を提供することにある。   An object of the present invention is to eliminate the disadvantages of the prior art described above, and specifically to provide a cuprous oxide particle dispersion capable of forming a copper thin film having high adhesion to a substrate. .

前記の課題を解決すべく、本発明者らは鋭意検討した結果、特定の化合物を特定の配合量で含む亜酸化銅粒子の分散体によって前記の目的が達成されることを知見した。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have found that the above object can be achieved by a dispersion of cuprous oxide particles containing a specific compound in a specific amount.

本発明は前記の知見に基づきなされたものであり、亜酸化銅粒子と、亜酸化銅粒子に対して1030重量%のグリセリンと、亜酸化銅粒子に対して2080重量%の数平均分子量が300〜600のポリエチレングリコールを含む、電気回路の配線形成用の亜酸化銅粒子分散体であって、
更にプロピレングリコールを前記分散体に対して10〜80重量%含む、亜酸化銅粒子分散体を提供することにより前記の課題を解決したものである。
The present invention has been made on the basis of the above findings, and cuprous oxide particles, 10 to 30 % by weight of glycerol with respect to the cuprous oxide particles, and numbers of 20 to 80 % by weight with respect to the cuprous oxide particles. A cuprous oxide particle dispersion for forming wiring of an electric circuit, comprising polyethylene glycol having an average molecular weight of 300 to 600 ,
Furthermore, the above- mentioned problems are solved by providing a cuprous oxide particle dispersion containing 10 to 80% by weight of propylene glycol with respect to the dispersion .

また本発明は、前記の亜酸化銅粒子分散体を用い、印刷によってポリイミドのフレキシブル基板に電気回路の配線を形成する配線形成方法を提供するものである。   Moreover, this invention provides the wiring formation method which forms the wiring of an electric circuit on the flexible substrate of a polyimide by printing using the said cuprous oxide particle dispersion.

本発明の亜酸化銅粒子分散体を用いて形成される銅配線は、基板への密着性が高いものである。したがって本発明の亜酸化銅粒子分散体は、特にフレキシブル基板に配線を形成するために好適なものであり、とりわけポリイミドからなるフレキシブル基板に配線を形成するために好適なものである。   The copper wiring formed using the cuprous oxide particle dispersion of the present invention has high adhesion to the substrate. Therefore, the cuprous oxide particle dispersion of the present invention is particularly suitable for forming wiring on a flexible substrate, and particularly suitable for forming wiring on a flexible substrate made of polyimide.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の亜酸化銅粒子分散体は、これを基板の表面に塗布して、電気回路の配線を形成するために用いられるものである。塗布の対象となる基板としては、例えば無機物及び有機物のいずれを用いることができる。無機物の基板としては、例えばガラス、シリコンやゲルマニウム等の半導体、ガリウム−ヒ素やインジウム−アンチモン等の化合物半導体などからなる基板が挙げられる。有機物の基板としては、ポリイミド、ポリエステル、アラミド、エポキシ樹脂、フッ素樹脂などからなる基板が挙げられる。特に、後述するように、本発明の分散体を用いて形成される配線は、基板との密着性が高いものなので、フレキシブル基板を塗布の対象とすることで、本発明の効果が顕著なものとなる。とりわけ、これまで密着性を高めることが困難とされてきた材料であるポリイミドからなるフレキシブル基板を塗布の対象とした場合であっても、本発明の分散体を用いれば密着性を十分に高めることができる。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The cuprous oxide particle dispersion of the present invention is applied to the surface of a substrate to form wiring of an electric circuit. As the substrate to be coated, for example, either an inorganic material or an organic material can be used. Examples of the inorganic substrate include a substrate made of a semiconductor such as glass, silicon or germanium, or a compound semiconductor such as gallium-arsenic or indium-antimony. Examples of the organic substrate include a substrate made of polyimide, polyester, aramid, epoxy resin, fluorine resin, or the like. In particular, as will be described later, since the wiring formed using the dispersion of the present invention has high adhesion to the substrate, the effect of the present invention is remarkable by applying a flexible substrate to the coating. It becomes. In particular, even when a flexible substrate made of polyimide, which is a material that has been difficult to improve the adhesion, has been applied, the adhesion of the present invention can be sufficiently enhanced. Can do.

本発明は、亜酸化銅粒子分散体に含まれる各成分の配合比を特定の範囲に設定することで、該分散体から形成される配線と基板との密着性を高めている点に特徴の一つを有する。本発明の分散体は、固形分としての亜酸化銅粒子を含んでいる。また液体分として、グリセリン及びポリエチレングリコールを含んでいる。以下、これらの成分についてそれぞれ説明する。   The present invention is characterized in that the adhesiveness between the wiring formed from the dispersion and the substrate is enhanced by setting the compounding ratio of each component contained in the cuprous oxide particle dispersion in a specific range. Have one. The dispersion of the present invention contains cuprous oxide particles as a solid content. Moreover, glycerin and polyethylene glycol are contained as a liquid component. Hereinafter, each of these components will be described.

固形分である亜酸化銅粒子は、分散体に対して好ましくは5〜35重量%、更に好ましくは10〜30重量%の配合比で配合される。亜酸化銅粒子の配合比を5重量%以上とすることで、分散体中の亜酸化銅粒子の濃度を十分なものとすることができ、膜厚の銅配線を得ることができる。一方、亜酸化銅粒子の配合比を35重量%以下とすることで、分散体の粘度の過度の増加が防止でき、分散体の流動性の過度の低下を防止できる。   The cuprous oxide particles as a solid content are preferably blended at a blending ratio of 5 to 35% by weight, more preferably 10 to 30% by weight with respect to the dispersion. By making the compounding ratio of the cuprous oxide particles 5% by weight or more, the concentration of the cuprous oxide particles in the dispersion can be made sufficient, and a copper wiring having a film thickness can be obtained. On the other hand, when the blending ratio of the cuprous oxide particles is 35% by weight or less, an excessive increase in the viscosity of the dispersion can be prevented, and an excessive decrease in the fluidity of the dispersion can be prevented.

本発明で用いる亜酸化銅粒子の粒径に特に制限はなく、広い範囲から選択が可能である。本発明の分散体を微細な配線の形成に用いる場合には、亜酸化銅粒子として微粒のものを用いることが有利である。具体的には、粒径が20〜300nm、特に50〜150nmの微粒の亜酸化銅粒子を用いると、微細な配線を容易に形成することができる。ここで言う亜酸化銅粒子の粒径とは、該粒子の一次粒径のことであり、走査型電子顕微鏡(SEM)によって撮影された粒子の写真に基づき、個々の粒子のうち横断長が最も長い部分の長さを測定し、その平均値を算出することで求める。測定に用いられるサンプル数はN=30以上とする。   There is no restriction | limiting in particular in the particle size of the cuprous oxide particle used by this invention, It can select from a wide range. When the dispersion of the present invention is used for forming fine wiring, it is advantageous to use fine particles of cuprous oxide particles. Specifically, when fine cuprous oxide particles having a particle size of 20 to 300 nm, particularly 50 to 150 nm, are used, fine wiring can be easily formed. The particle size of the cuprous oxide particles referred to here is the primary particle size of the particles. Based on the photograph of the particles taken by a scanning electron microscope (SEM), the transverse length is the longest among the individual particles. It is obtained by measuring the length of the long part and calculating the average value. The number of samples used for measurement is N = 30 or more.

亜酸化銅粒子としては、市販品を用いてもよく、あるいは銅含有化合物を原料として生成させたものを用いてもよい。亜酸化銅粒子を生成させるには、例えば酢酸銅とメタノールと水とを混合・撹拌し、そこにヒドラジン等の還元剤を添加して酢酸銅を還元し、亜酸化銅粒子を生成させる方法を用いることができる。あるいはアセチルアセトナト銅錯体を、200℃程度のポリオール溶媒中で加熱する方法(例えばアンゲバンデケミインターナショナルエディション、40号、2巻、p359、2001を参照のこと。)を用いることもできる。亜酸化銅粒子の形状は、その製造方法に応じて例えば球状、多面体状、不定形等になるところ、本発明においてはいずれの形状のものも用いることができる。   As the cuprous oxide particles, commercially available products may be used, or those produced using a copper-containing compound as a raw material may be used. In order to produce cuprous oxide particles, for example, a method of mixing and stirring copper acetate, methanol, and water and adding a reducing agent such as hydrazine to reduce copper acetate to produce cuprous oxide particles. Can be used. Alternatively, a method in which the acetylacetonato copper complex is heated in a polyol solvent at about 200 ° C. (see, for example, Angebante Chemi International Edition, No. 40, Volume 2, p359, 2001) can also be used. The shape of the cuprous oxide particles is, for example, spherical, polyhedral, amorphous, or the like depending on the production method, and any shape can be used in the present invention.

グリセリンは、本発明の亜酸化銅粒子分散体から形成される配線と基板との密着性、及び形成される配線の導電性を高める目的で本発明の分散体に配合される。このようなグリセリンの効果が奏される理由について分明ではないが、グリセリンは還元性の高い物質であることから、亜酸化銅粒子から生じた銅微粒子によって基板へのアンカー効果が助長されると同時に、生じた銅微粒子どうしが面会合し易くなるので、本発明の亜酸化銅粒子分散体から形成される配線と基板との密着性、及び配線の導電性が高まると本発明者らは考えている。   Glycerin is blended in the dispersion of the present invention for the purpose of improving the adhesion between the wiring formed from the cuprous oxide particle dispersion of the present invention and the substrate and the conductivity of the formed wiring. Although it is not clear why the glycerin has such an effect, since the glycerin is a highly reducing substance, the copper fine particles generated from the cuprous oxide particles promote the anchor effect to the substrate. Therefore, the present inventors consider that the adhesion between the wiring formed from the cuprous oxide particle dispersion of the present invention and the substrate and the electrical conductivity of the wiring are increased because the resulting copper fine particles are likely to face each other. Yes.

グリセリンの配合比は、本発明の分散体中に含まれる亜酸化銅粒子に対して5〜50重量%とし、好ましくは8〜40重量%、更に好ましくは10〜30重量%とする。グリセリンの配合比が5重量%に満たない場合には、配線の導電性を十分に高めることができない。一方、グリセリンの配合比が50重量%を超える場合には、焼成後にグリセリンが残存し易くなり、十分な導電性が得られない。   The blending ratio of glycerin is 5 to 50% by weight, preferably 8 to 40% by weight, and more preferably 10 to 30% by weight with respect to the cuprous oxide particles contained in the dispersion of the present invention. When the blending ratio of glycerin is less than 5% by weight, the conductivity of the wiring cannot be sufficiently increased. On the other hand, when the blending ratio of glycerin exceeds 50% by weight, glycerin tends to remain after firing, and sufficient conductivity cannot be obtained.

ポリエチレングリコールは、主として、本発明の分散体から形成される配線の導電性を高める目的で、本発明の分散体に配合される。本発明者らは、亜酸化銅粒子から生成した銅微粒子が、ポリエチレングリコールの分子鎖によって網目状に保持されることで、配線が曲げに対して強靱なものになるのではないかと考えている。特に、銅はポリエチレングリコールに対して触媒作用を有しているので、この作用によってポリエチレングリコールが高分子量化し、そのことによってポリエチレングリコールの分子鎖による保持効果が一層高まるのではないか、と本発明者らは考えている。なお、ポリエチレングリコールは、先に述べた2価ポリオールと、分子量の点で明確に区別される物質である。   Polyethylene glycol is blended in the dispersion of the present invention mainly for the purpose of increasing the conductivity of the wiring formed from the dispersion of the present invention. The present inventors believe that the copper fine particles generated from the cuprous oxide particles are held in a network shape by the molecular chain of polyethylene glycol, so that the wiring becomes tough against bending. . In particular, since copper has a catalytic action on polyethylene glycol, this action increases the molecular weight of polyethylene glycol, which may further increase the retention effect of polyethylene glycol molecular chains. They are thinking. Polyethylene glycol is a substance that is clearly distinguished from the divalent polyol described above in terms of molecular weight.

ポリエチレングリコールとしては、広い範囲の分子量の中から塗布方法などに応じて適切な分子量のものを選択して用いることができる。一般的に言って、数平均分子量が200〜4000のものを用いることができる。この範囲の分子量のうち、本発明の亜酸化銅粒子分散体を例えばインクジェット印刷法やマイクロディスペンス印刷法によって塗布する場合には、数平均分子量が300〜600のポリエチレングリコールを用いることが好ましい。   As the polyethylene glycol, one having an appropriate molecular weight can be selected from a wide range of molecular weights according to the coating method. Generally speaking, those having a number average molecular weight of 200 to 4000 can be used. Among the molecular weights within this range, when the cuprous oxide particle dispersion of the present invention is applied by, for example, an ink jet printing method or a microdispense printing method, it is preferable to use polyethylene glycol having a number average molecular weight of 300 to 600.

ポリエチレングリコールの配合比は、本発明の分散体中に含まれる亜酸化銅粒子に対して10〜90重量%とし、好ましくは15〜90重量%、更に好ましくは20〜80重量%とする。ポリエチレングリコールの配合比が10重量%に満たない場合には、配線の導電性を十分に高めることができない。一方、ポリエチレングリコールの配合比が90重量%を超える場合には、配線の電気抵抗を十分に低くすることができない。   The blending ratio of polyethylene glycol is 10 to 90% by weight, preferably 15 to 90% by weight, and more preferably 20 to 80% by weight with respect to the cuprous oxide particles contained in the dispersion of the present invention. When the blending ratio of polyethylene glycol is less than 10% by weight, the conductivity of the wiring cannot be sufficiently increased. On the other hand, when the blending ratio of polyethylene glycol exceeds 90% by weight, the electrical resistance of the wiring cannot be made sufficiently low.

本発明において液体分として、上述したグリセリン及びポリエチレングリコールに加えて2価ポリオールを用いてもよい。2価ポリオールは、主として粒子の分散媒としての目的で、かつ分散体の流動性を確保する目的で本発明の分散体に配合される。2価ポリオールとしては、エチレングリコール、プロピレングルコール(1,2−プロパンジオール)、1,3−プロパンジオール、ジエチレングリコール等の、炭素数2〜6の2価ポリオールを用いることができる。これらの2価ポリオールは1種又は2種以上用いることができる。これらの2価ポリオールのうち、エチレングリコール、プロピレングルコール、ヘキシレングリコールを用いることが、粒子の高分散化かつ分散体の流動性確保点から好ましい。   In the present invention, a dihydric polyol may be used as a liquid component in addition to the above-described glycerin and polyethylene glycol. The dihydric polyol is blended in the dispersion of the present invention mainly for the purpose of dispersing the particles and for ensuring the fluidity of the dispersion. As the divalent polyol, a divalent polyol having 2 to 6 carbon atoms such as ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, diethylene glycol and the like can be used. These dihydric polyols can be used alone or in combination of two or more. Of these dihydric polyols, it is preferable to use ethylene glycol, propylene glycol, or hexylene glycol from the viewpoint of achieving high particle dispersion and ensuring fluidity of the dispersion.

2価ポリオールの配合比は、本発明の分散体に対して好ましくは16〜94.25重量%とし、更に好ましくは5〜80重量%、一層好ましくは10〜50重量%とする。2価ポリオールの配合比を16重量%以上とすることで、粒子の分散性の低下を防止でき、かつ分散体の流動性の低下も防止できる。一方、2価ポリオールの配合比を94.25重量%以下とすることで、分散体中の亜酸化銅粒子の濃度の過度の低下を防止でき、十分な膜厚の銅配線を得ることができる。   The blending ratio of the dihydric polyol is preferably 16 to 94.25% by weight, more preferably 5 to 80% by weight, and still more preferably 10 to 50% by weight with respect to the dispersion of the present invention. By setting the blending ratio of the dihydric polyol to 16% by weight or more, it is possible to prevent a decrease in the dispersibility of the particles and to prevent a decrease in the fluidity of the dispersion. On the other hand, when the blending ratio of the dihydric polyol is 94.25% by weight or less, an excessive decrease in the concentration of the cuprous oxide particles in the dispersion can be prevented, and a copper wiring having a sufficient film thickness can be obtained. .

本発明の亜酸化銅粒子分散体においては、以上の液体分に加えて、必要に応じて他の液体分、例えばアルコール類、ケトン類、エステル類等を配合してもよい。これらの液体分の配合比は、分散体に対して好ましくは1〜50重量%、更に好ましくは3〜30重量%とする。   In the cuprous oxide particle dispersion of the present invention, in addition to the above liquid components, other liquid components such as alcohols, ketones, esters and the like may be blended as necessary. The blending ratio of these liquid components is preferably 1 to 50% by weight, more preferably 3 to 30% by weight, based on the dispersion.

次に、本発明の亜酸化銅粒子分散液の好適な製造方法について説明する。本製造方法においては、例えば上述の方法を用い、酢酸銅の還元によって亜酸化銅粒子を生成させる。生成した亜酸化銅粒子は、メタノール及び水に分散した状態になっているので、2価ポリオールを用いた溶媒置換によって、2価ポリオールを分散媒とする分散液となす。この場合、溶媒置換を複数回繰り返すことで、水を実施的に含有せず、かつ2価ポリオールのみを分散媒とする分散液を得ることができる。完全に溶媒置換が完了したら、メディアミル等の分散装置を用いた分散処理を行い、また必要に応じ粗大粒子を濾過によって除去する。その後、液体分の配合比の調整の目的及び亜酸化銅粒子の濃度調整の目的で、所定量のグリセリン及びポリエチレングリコールを添加する。これによって、亜酸化銅粒子と、2価ポリオールと、グリセリンと、ポリエチレングリコールとの配合比が所望の値となった分散体となすことができる。   Next, the suitable manufacturing method of the cuprous oxide particle dispersion liquid of this invention is demonstrated. In this production method, for example, the above-described method is used to produce cuprous oxide particles by reduction of copper acetate. Since the produced cuprous oxide particles are in a state of being dispersed in methanol and water, a solvent dispersion using the divalent polyol makes a dispersion using the divalent polyol as a dispersion medium. In this case, by repeating the solvent substitution a plurality of times, it is possible to obtain a dispersion liquid that does not contain water practically and contains only a dihydric polyol as a dispersion medium. When the solvent replacement is completely completed, a dispersion treatment using a dispersion apparatus such as a media mill is performed, and if necessary, coarse particles are removed by filtration. Thereafter, predetermined amounts of glycerin and polyethylene glycol are added for the purpose of adjusting the blending ratio of the liquid component and the concentration of the cuprous oxide particles. Thereby, it can be set as the dispersion by which the compounding ratio of the cuprous oxide particles, the divalent polyol, glycerin, and polyethylene glycol became a desired value.

このようにして得られた本発明の亜酸化銅粒子分散体は、例えばインクジェット印刷用インク、マイクロディスペンサ用インク、グラビア印刷用インク、スクリーン印刷用インク及びその他の用途へのペースト等として好適に用いられる。   The cuprous oxide particle dispersion of the present invention thus obtained is suitably used as, for example, an ink for inkjet printing, an ink for microdispenser, an ink for gravure printing, an ink for screen printing, and a paste for other uses. It is done.

本発明の亜酸化銅粒子分散体は、例えば基板上に塗布されることで塗膜となり、該塗膜を熱処理することで、導電性を有する銅薄膜となる。本発明の亜酸化銅粒子分散体に含まれる亜酸化銅粒子が微粒である場合には、微細なパターンの銅薄膜を形成することができる。このような微細なパターンの銅薄膜は、電気回路の配線として好適なものである。   The cuprous oxide particle dispersion of the present invention becomes, for example, a coating film when applied on a substrate, and becomes a conductive copper thin film by heat-treating the coating film. When the cuprous oxide particles contained in the cuprous oxide particle dispersion of the present invention are fine particles, a copper thin film with a fine pattern can be formed. Such a finely patterned copper thin film is suitable as an electric circuit wiring.

本発明の亜酸化銅粒子分散体又はインクやペーストを塗布する方法は、これらの粘度や、亜酸化銅粒子の粒径に応じて適切な方法が選択される。そのような方法としては、例えばインクジェット印刷、マイクロディスペンサ法、グラビア印刷法、スクリーン印刷法、ディップコーティング法、スピンコーティング法、スプレー塗布法、バーコーティング法、ロールコーティング法が挙げられる。塗膜の厚みは、目的とする銅薄膜の具体的な用途に応じて好ましくは0.1〜100μm、更に好ましくは1〜30μmの範囲で適切に調整できる。   As a method of applying the cuprous oxide particle dispersion or ink or paste of the present invention, an appropriate method is selected according to the viscosity and the particle size of the cuprous oxide particles. Examples of such methods include ink jet printing, micro dispenser method, gravure printing method, screen printing method, dip coating method, spin coating method, spray coating method, bar coating method, and roll coating method. The thickness of the coating film can be suitably adjusted in the range of preferably 0.1 to 100 μm, more preferably 1 to 30 μm, depending on the specific use of the intended copper thin film.

塗膜の形成後には、亜酸化銅を金属銅に還元するのに十分な温度で熱処理する。熱処理は例えば非酸化性雰囲気下で行うことができる。非酸化性雰囲気は、水素や一酸化炭素等の還元雰囲気、及びアルゴン、ネオン、ヘリウム、窒素等の不活性雰囲気を包含する。特に還元雰囲気下で行うことが有利である。還元雰囲気及び不活性雰囲気のいずれの場合であっても、加熱に先立ち加熱炉内を一旦真空吸引して酸素を除去した後に、還元雰囲気又は不活性雰囲気とすることが好ましい。また不活性雰囲気下で一旦熱処理した後に、還元雰囲気下で熱処理すると、得られる銅薄膜が一層緻密になるので好ましい。   After the coating is formed, heat treatment is performed at a temperature sufficient to reduce cuprous oxide to metallic copper. The heat treatment can be performed, for example, in a non-oxidizing atmosphere. The non-oxidizing atmosphere includes a reducing atmosphere such as hydrogen and carbon monoxide, and an inert atmosphere such as argon, neon, helium, and nitrogen. It is particularly advantageous to carry out in a reducing atmosphere. In either case of a reducing atmosphere or an inert atmosphere, it is preferable to make a reducing atmosphere or an inert atmosphere after vacuuming the inside of the heating furnace to remove oxygen prior to heating. Further, it is preferable to heat-treat in a reducing atmosphere after heat-treating once in an inert atmosphere because the resulting copper thin film becomes denser.

熱処理の温度は、基板の材質に応じて決定すればよい。例えば基板としてポリイミドのフレキシブル基板を用いる場合には、ポリイミドのガラス転移点以下の温度で熱処理を行う。熱処理の温度の上限値は270℃、特に230℃とすることが好ましい。熱処理の時間は10分〜3時間、特に30分〜1時間とすることが好ましい。ポリイミドとしては、各種の市販品、例えば東レ・デュポン株式会社のカプトン(登録商標)、宇部興産株式会社のユーピレックス(登録商標)、株式会社カネカのアピカル(登録商標)などを用いることができる。   What is necessary is just to determine the temperature of heat processing according to the material of a board | substrate. For example, when a polyimide flexible substrate is used as the substrate, heat treatment is performed at a temperature below the glass transition point of polyimide. The upper limit of the heat treatment temperature is preferably 270 ° C., particularly 230 ° C. The heat treatment time is preferably 10 minutes to 3 hours, particularly preferably 30 minutes to 1 hour. As the polyimide, various commercially available products such as Kapton (registered trademark) of Toray DuPont Co., Ltd., Upilex (registered trademark) of Ube Industries, Ltd., Apical (registered trademark) of Kaneka Co., Ltd., and the like can be used.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
2000mlビーカーに純水432g、酢酸銅一水和物(日本化学産業株式会社製)204g、メタノール(和光純薬工業株式会社製)185gを加え、スクリュー翼を用いて十分に攪拌した。次にヒドラジン一水和物(和光純薬工業株式会社製)19gを添加し、更に攪拌することで一次粒子径約100nmの亜酸化銅微粒子を得た。なお、一次粒子の平均粒径は、走査型顕微鏡によって撮影された粒子の写真を用い、個々の粒子のうち最も長い部分の長さを測定し、その平均値を算出することで求めた。測定に用いられるサンプル数はN=30以上とする。この粒子を十分に洗浄した後、プロピレングリコール(和光純薬工業株式会社製)へ溶媒置換し、亜酸化銅スラリーを得た。
[Example 1]
To a 2000 ml beaker, 432 g of pure water, 204 g of copper acetate monohydrate (manufactured by Nippon Kagaku Sangyo Co., Ltd.), and 185 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and sufficiently stirred using a screw blade. Next, 19 g of hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and further stirred to obtain cuprous oxide fine particles having a primary particle diameter of about 100 nm. The average particle size of the primary particles was determined by measuring the length of the longest portion of the individual particles using a photograph of the particles taken with a scanning microscope and calculating the average value. The number of samples used for measurement is N = 30 or more. After thoroughly washing the particles, the solvent was replaced with propylene glycol (Wako Pure Chemical Industries, Ltd.) to obtain a cuprous oxide slurry.

スラリーを湿式分散処理した後、抜き出し回収した。そして得られたスラリー中に含有される1μm以上の粒子をカートリッジ式フィルター(アドバンテック東洋株式会社製MCP−JX−E10S、平均孔径1μm)に通液濾過することで除去した。濾過後の亜酸化銅スラリーの濃度は40%であった。次に該スラリーを62.5g、プロピレングリコールを26.25g、ポリエチレングリコール300(和光純薬工業株式会社製、数平均分子量300)を7.5g、グリセリン(和光純薬工業株式会社製)を3.75g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。   The slurry was wet-dispersed and then extracted and collected. And 1 micrometer or more particle | grains contained in the obtained slurry were removed by carrying out liquid filtration through a cartridge type filter (Advantech Toyo Co., Ltd. MCP-JX-E10S, average pore diameter 1 micrometer). The concentration of the cuprous oxide slurry after filtration was 40%. Next, 62.5 g of the slurry, 26.25 g of propylene glycol, 7.5 g of polyethylene glycol 300 (manufactured by Wako Pure Chemical Industries, Ltd., number average molecular weight 300), and 3 of glycerin (manufactured by Wako Pure Chemical Industries, Ltd.) .75 g was added, stirred and mixed to obtain a cuprous oxide particle dispersion having a concentration of 25%. The composition of the dispersion is shown in Table 1 below.

得られた亜酸化銅粒子分散体のポリイミドに対する密着性と導電性を評価した。密着性については、ポリイミド(宇部興産株式会社製ユーピレックス25S)上にスピンコートにて該分散体を塗布し、塗布後に230℃の窒素雰囲気下で一時間の熱処理を行い、銅の膜を形成した。得られた膜についてセロハンテープにて剥離テストを行った。導電性については、密着性評価と同様の成膜、熱処理を行った後、得られた膜の比抵抗を、抵抗率計(三菱化学社製MCP−T600)にて表面抵抗測定を行った後、膜厚を換算して算出した。その結果を以下の表1に示す。   The adhesion and conductivity of the obtained cuprous oxide particle dispersion to polyimide were evaluated. For adhesion, the dispersion was applied by spin coating on polyimide (Ube Industries, Ltd. Upilex 25S), and after application, heat treatment was performed for one hour in a nitrogen atmosphere at 230 ° C. to form a copper film. . The obtained film was subjected to a peel test using a cellophane tape. For conductivity, after film formation and heat treatment similar to those for adhesion evaluation, the resistivity of the obtained film was measured for surface resistance with a resistivity meter (MCP-T600 manufactured by Mitsubishi Chemical Corporation). The film thickness was calculated by conversion. The results are shown in Table 1 below.

〔実施例2〕
実施例1で得られた通液濾過後の亜酸化銅スラリーを62.5g、プロピレングリコールを22.5g、ポリエチレングリコール300を7.5g、グリセリンを7.5g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。該亜酸化銅粒子分散体を実施例1と同様に成膜、焼成し、導電性と密着性の評価を行った。その結果を以下の表1に示す。
[Example 2]
Add 62.5 g of the cuprous oxide slurry obtained in Example 1 after filtration and 22.5 g of propylene glycol, 7.5 g of polyethylene glycol 300, and 7.5 g of glycerin, and stir and mix to adjust the concentration. A 25% cuprous oxide particle dispersion was obtained. The composition of the dispersion is shown in Table 1 below. The cuprous oxide particle dispersion was formed into a film and fired in the same manner as in Example 1, and the conductivity and adhesion were evaluated. The results are shown in Table 1 below.

〔実施例3〕
実施例1で得られた通液濾過後の亜酸化銅スラリーを62.5g、プロピレングリコールを15g、ポリエチレングリコール300を15g、グリセリンを7.5g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。亜酸化銅粒子分散体を実施例1と同様に成膜、焼成し、導電性と密着性の評価を行った。その結果を以下の表1に示す。
Example 3
By adding 62.5 g of the cuprous oxide slurry obtained in Example 1 after filtration and 15 g of propylene glycol, 15 g of polyethylene glycol 300, and 7.5 g of glycerin, stirring and mixing, a 25% concentration A copper oxide particle dispersion was obtained. The composition of the dispersion is shown in Table 1 below. The cuprous oxide particle dispersion was formed and fired in the same manner as in Example 1, and the conductivity and adhesion were evaluated. The results are shown in Table 1 below.

〔比較例1〕
実施例1で得られた通液濾過後の亜酸化銅スラリーを62.5g、プロピレングリコールを37.5g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。該亜酸化銅粒子分散体を実施例1と同様に成膜、焼成し、導電性と密着性の評価を行った。その結果を以下の表1に示す。
[Comparative Example 1]
62.5 g of the cuprous oxide slurry after filtration through liquid obtained in Example 1 and 37.5 g of propylene glycol were added, and the mixture was stirred and mixed to obtain a cuprous oxide particle dispersion having a concentration of 25%. The composition of the dispersion is shown in Table 1 below. The cuprous oxide particle dispersion was formed into a film and fired in the same manner as in Example 1, and the conductivity and adhesion were evaluated. The results are shown in Table 1 below.

〔比較例2〕
実施例1で得られた通液濾過後の亜酸化銅スラリーを62.5g、ポリエチレングリコール300を25g、グリセリンを12.5g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。該亜酸化銅粒子分散体を実施例1と同様に成膜、焼成し、導電性と密着性の評価を行った。その結果を以下の表1に示す。
[Comparative Example 2]
62.5 g of the cuprous oxide slurry obtained after filtration through liquid obtained in Example 1, 25 g of polyethylene glycol 300, and 12.5 g of glycerin were added, stirred, and mixed to thereby obtain a 25% concentration cuprous oxide particle dispersion. Got. The composition of the dispersion is shown in Table 1 below. The cuprous oxide particle dispersion was formed into a film and fired in the same manner as in Example 1, and the conductivity and adhesion were evaluated. The results are shown in Table 1 below.

〔比較例3〕
実施例1で得られた通液濾過後の亜酸化銅スラリーを62.5g、ポリエチレングリコール300を30g、グリセリンを7.5g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。該亜酸化銅粒子分散体を実施例1と同様に成膜、焼成し、導電性と密着性の評価を行った。その結果を以下の表1に示す。
[Comparative Example 3]
62.5 g of the cuprous oxide slurry obtained after filtration through liquid obtained in Example 1, 30 g of polyethylene glycol 300, and 7.5 g of glycerin were added, stirred, and mixed to thereby obtain a 25% concentration cuprous oxide particle dispersion. Got. The composition of the dispersion is shown in Table 1 below. The cuprous oxide particle dispersion was formed into a film and fired in the same manner as in Example 1, and the conductivity and adhesion were evaluated. The results are shown in Table 1 below.

〔比較例4〕
実施例1で得られた通液濾過後の亜酸化銅スラリーを62.5g、プロピレングリコールを16.25g、ポリエチレングリコール300を7.5g、グリセリンを13.75g加え、攪拌、混合することで濃度25%の亜酸化銅粒子分散体を得た。分散体の組成を以下の表1に示す。該亜酸化銅粒子分散体を実施例1と同様に成膜、焼成し、導電性と密着性の評価を行った。その結果を以下の表1に示す。
[Comparative Example 4]
62.5 g of the cuprous oxide slurry obtained after filtration through liquid obtained in Example 1, 16.25 g of propylene glycol, 7.5 g of polyethylene glycol 300, and 13.75 g of glycerin were added, and the concentration was obtained by stirring and mixing. A 25% cuprous oxide particle dispersion was obtained. The composition of the dispersion is shown in Table 1 below. The cuprous oxide particle dispersion was formed into a film and fired in the same manner as in Example 1, and the conductivity and adhesion were evaluated. The results are shown in Table 1 below.

Figure 0005730562
Figure 0005730562

表1に示す結果から明らかなように、各実施例で得られた分散体を用いて形成された銅の膜は比抵抗が低く、かつポリイミドとの密着性が高いことが判る。これに対して、ポリエチレングリコール300及びグリセリンを添加しない分散液を用いた比較例1では、比抵抗は低いものの、ポリイミドとの密着性が低いことが判る。また、ポリエチレングリコール300を多量に添加した比較例2及び3では、ポリイミドとの密着性は高いものの、導電性を発現しないことが判る。更に、グリセリンを多量に添加した比較例4も、銅の膜とポリイミドとの密着性は高いものの、銅の膜は導電性を発現しないことが判る。   As is clear from the results shown in Table 1, it can be seen that the copper film formed using the dispersion obtained in each example has low specific resistance and high adhesion to polyimide. On the other hand, in Comparative Example 1 using a dispersion liquid to which polyethylene glycol 300 and glycerin are not added, the specific resistance is low, but it can be seen that the adhesion with polyimide is low. In Comparative Examples 2 and 3 to which a large amount of polyethylene glycol 300 is added, it can be seen that the adhesiveness with polyimide is high, but does not exhibit conductivity. Furthermore, it can be seen that Comparative Example 4 in which a large amount of glycerin was added also showed high conductivity between the copper film and the polyimide, but the copper film did not exhibit electrical conductivity.

Claims (5)

亜酸化銅粒子と、亜酸化銅粒子に対して1030重量%のグリセリンと、亜酸化銅粒子に対して2080重量%の数平均分子量が300〜600のポリエチレングリコールを含む、電気回路の配線形成用の亜酸化銅粒子分散体であって、
更にプロピレングリコールを前記分散体に対して10〜80重量%含む、亜酸化銅粒子分散体
An electric circuit comprising cuprous oxide particles, 10 to 30 % by weight of glycerol with respect to the cuprous oxide particles, and 20 to 80 % by weight of polyethylene glycol having a number average molecular weight of 300 to 600 % with respect to the cuprous oxide particles. a cuprous oxide particle dispersion for the wiring formation,
Furthermore, the cuprous oxide particle dispersion which contains 10 to 80 weight% of propylene glycol with respect to the said dispersion .
ポリイミドのフレキシブル基板への配線形成用である請求項1に記載の亜酸化銅粒子分散体。   The cuprous oxide particle dispersion according to claim 1, which is used for forming wiring on a flexible substrate of polyimide. 請求項1に記載の亜酸化銅粒子分散体を用い、印刷によってポリイミドのフレキシブル基板に電気回路の配線を形成する配線形成方法。   The wiring formation method which forms the wiring of an electric circuit on the flexible substrate of a polyimide by printing using the cuprous oxide particle dispersion of Claim 1. 印刷によって形成された塗膜を、ポリイミドのガラス転移点以下の温度で熱処理する請求項3に記載の配線形成方法。   The wiring formation method of Claim 3 which heat-processes the coating film formed by printing at the temperature below the glass transition point of a polyimide. 非酸化性雰囲気に熱処理を行う請求項4に記載の配線形成方法。
The wiring formation method according to claim 4, wherein heat treatment is performed in a non-oxidizing atmosphere.
JP2010284579A 2010-12-21 2010-12-21 Cuprous oxide particle dispersion Active JP5730562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284579A JP5730562B2 (en) 2010-12-21 2010-12-21 Cuprous oxide particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284579A JP5730562B2 (en) 2010-12-21 2010-12-21 Cuprous oxide particle dispersion

Publications (2)

Publication Number Publication Date
JP2012134297A JP2012134297A (en) 2012-07-12
JP5730562B2 true JP5730562B2 (en) 2015-06-10

Family

ID=46649560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284579A Active JP5730562B2 (en) 2010-12-21 2010-12-21 Cuprous oxide particle dispersion

Country Status (1)

Country Link
JP (1) JP5730562B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132606A1 (en) * 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP2014196384A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same
US20150291439A1 (en) * 2013-06-21 2015-10-15 Nisshin Engineering Inc. Method for producing cuprous oxide fine particles, cuprous oxide fine particles and method of producing conductor film
JP6053725B2 (en) * 2013-07-04 2016-12-27 国立大学法人京都大学 Copper-based nanoparticle dispersion, method for producing the same, and substrate on which a copper conductor film produced from the dispersion is formed

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395059C (en) * 2001-12-18 2008-06-18 旭化成株式会社 Metal oxide dispersion
JP2004277627A (en) * 2003-03-18 2004-10-07 Asahi Kasei Corp Ink for inkjet printing and method for forming metal-containing thin film by using the same
WO2004103043A1 (en) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
JP4606192B2 (en) * 2005-02-16 2011-01-05 旭化成イーマテリアルズ株式会社 Circuit board manufacturing method

Also Published As

Publication number Publication date
JP2012134297A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP4821396B2 (en) Conductive composition and method for forming conductive film
JP6491753B2 (en) Metal paste excellent in low-temperature sinterability and method for producing the metal paste
Li et al. Self-reducible copper inks composed of copper–amino complexes and preset submicron copper seeds for thick conductive patterns on a flexible substrate
JP5151476B2 (en) Ink composition and metallic material
WO2014080662A1 (en) Copper powder and method for producing same
JP6400503B2 (en) Printed wiring board substrate and printed wiring board
JP5730562B2 (en) Cuprous oxide particle dispersion
CA2574173A1 (en) Nickel coated copper powder and process for producing the same
WO2017057301A1 (en) Coating liquid for forming electroconductive layer, and method for manufacturing electroconductive layer
TW201227754A (en) Conductive paste and base with conductive film
JP4908257B2 (en) LAMINATE AND METHOD FOR PRODUCING LAMINATE
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP2011104815A (en) Laminate and method for producing laminate
JP2006009120A (en) Metal particulate-dispersed body
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2007087735A (en) Metal oxide dispersion
JP4761110B2 (en) Metal coating and method for forming the same
JPWO2012066957A1 (en) Conductive composition, conductive film, and method for forming conductive film
JP2005002418A (en) Metallic oxide particulate-dispersed body
JP5267487B2 (en) Printed wiring board substrate and method for manufacturing printed wiring board substrate
JP2019077926A (en) Composite copper particle, copper ink and method for producing composite copper particle
JP2006278936A (en) Manufacturing method of substrate formed with metallization layer
JP2015030869A (en) Copper composite particle, copper paste comprising the same and method of producing circuit board using the same
JP2009196249A (en) Laminate and manufacturing method of laminate
KR20140011696A (en) Conductive cupper paste composition and method for forming metal thin layer using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150408

R150 Certificate of patent or registration of utility model

Ref document number: 5730562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250