JP2012114203A - 絶縁基板とその製造方法および電力半導体装置 - Google Patents

絶縁基板とその製造方法および電力半導体装置 Download PDF

Info

Publication number
JP2012114203A
JP2012114203A JP2010261162A JP2010261162A JP2012114203A JP 2012114203 A JP2012114203 A JP 2012114203A JP 2010261162 A JP2010261162 A JP 2010261162A JP 2010261162 A JP2010261162 A JP 2010261162A JP 2012114203 A JP2012114203 A JP 2012114203A
Authority
JP
Japan
Prior art keywords
back surface
surface pattern
insulating substrate
solder
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010261162A
Other languages
English (en)
Inventor
Hiroshi Nishibori
弘 西堀
Tatsuo Ota
達雄 太田
Masaaki Sato
正章 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010261162A priority Critical patent/JP2012114203A/ja
Publication of JP2012114203A publication Critical patent/JP2012114203A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】本発明は、ヒートサイクル試験の温度変化条件がより厳しい条件に移行しても、ヒートサイクルの信頼性寿命を維持可能な絶縁基板を用いた電力半導体装置を提供することを目的とする。
【解決手段】本発明にかかる絶縁基板は、セラミック基材202と、セラミック基材202の裏面に形成された裏面パターン203aと、裏面パターン203aと、接合部材としてのはんだ5を介して接合されたヒートシンク3とを備え、裏面パターン203aは、はんだ5と接する面において、ディンプル204を有する。
【選択図】図1

Description

本発明は絶縁基板とその製造方法および電力半導体装置に関する。
従来の一般産業用の、絶縁基板を用いた電力半導体装置における、熱ストレスに対する信頼性評価として、例えば、電力半導体素子には通電せず周囲環境温度を変化させ、絶縁基板下のはんだの耐疲労特性などを確認するヒートサイクル試験がある。
このヒートサイクル試験では従来、温度変化条件が−40℃〜125℃に設定されていたが、近年の電力半導体装置の小型化や高耐熱素子採用に対応すべく、温度変化条件が−40℃〜125℃であったものから−40℃〜150℃へ移行しつつある。高温環境下に於いて使用される電力半導体装置では、電力半導体素子や絶縁基板のはんだ接合部に早期にクラックが発生し、要求される信頼性寿命を得ることを妨げてしまうという課題が生じていた。
従来、絶縁基板下のはんだ材の耐ヒートサイクル性の向上策としては、高温での強度維持に優れるはんだ合金組成の検討や、はんだに生じる歪量を低減してはんだクラックを抑制するためのはんだ厚の圧肉化、あるいは特許文献1に示されるような“セットパターン化”などの手法が採用されていた。しかしながら、高温環境下の使用に於いては、更なる耐ヒートサイクル性の向上が要求されていた。
特許第3953442号公報
従来の電力半導体装置は、例えば厚み0.3〜0.635mmのAlNからなるセラミック基材と、セラミック基材表面に形成された、例えば厚み0.2〜0.6mmのCuからなる表面パターンと、表面パターン上にはんだを介して配置された電力半導体素子とを備え、さらに、セラミック基材裏面に形成された、例えば厚み0.2〜0.6mmのCuからなる裏面パターンと、裏面パターンとはんだを介して接続された、例えば厚み4mmのCuからなるヒートシンクと、ヒートシンクと接着剤を介して接続された樹脂ケースと、樹脂ケース内に充填されたシリコーンゲル(エポキシ樹脂でもよい)とを備える。
ここで、セラミック基材、その表面に形成された表面パターン、その裏面に形成された裏面パターンを含めて、絶縁基板とする。
なお、セラミック基材と、表面パターンおよび裏面パターンとは、予めAg、Cu、Ti系の活性金属ろう材等で接合されている。
従来の電力半導体装置は以上のように構成されているので、電力半導体装置がヒートサイクル負荷を受けると、例えば絶縁基板の見かけの線膨張係数α=7ppmと、Cu材からなるヒートシンクの線膨張係数α=17ppmとのミスマッチにより、基板下のはんだに歪が生じる。繰り返しのヒートサイクル負荷の経過に伴い、基板下のはんだには微小クラックが発生する。このクラックの進展に伴い電力半導体素子の熱放散が阻害され、遂には素子破壊に至る。
また、絶縁基板についても、上述した高温の負荷条件の場合、たとえば、セラミック基材が窒化アルミ(AlN)の線膨張係数α=4.5ppmと、裏面パターンがCu材の線膨張係数α=17ppmとのアンマッチにより、接合端部に集中する応力がさらに増大し、接合端部のセラミック基材にクラックが生じ易くなる。
従来の電力半導体装置では、ヒートサイクル試験の温度変化条件設定を−40〜125℃とした信頼性保証寿命サイクルを満足するように、構造設計がなされていた。しかしながら上述のように、電力半導体装置の小型化や高耐熱素子採用に対応すべく、ヒートサイクル試験の温度変化条件が−40℃〜150℃と設定変更されてきた。
解析によると、従来の電力半導体装置では、この条件下での基板下のはんだ歪は約45%増大し、この歪の増大に伴い信頼性寿命が実評価に於いても約1/10以下に低下することが判明した。
以上のように、従来の絶縁基板を用いた電力半導体装置では、より高温の負荷条件で使用される場合は、装置の信頼性寿命が大幅に低下するという問題があった。
本発明は、上記のような問題を解消するためになされたものであり、ヒートサイクル試験の温度変化条件がより厳しい条件に移行しても、ヒートサイクルの信頼性寿命を維持可能な絶縁基板を用いた電力半導体装置を提供することを目的とする。
本発明にかかる絶縁基板は、セラミック基材と、前記セラミック基材の裏面に形成された裏面パターンと、前記裏面パターンと、接合部材を介して接合されたヒートシンクとを備え、前記裏面パターンは、前記接合部材と接する面において、ディンプルを有する。
また、本発明にかかる電力半導体装置は、上記の絶縁基板を備え、前記セラミック基材は、前記裏面パターンと対向する表面パターンをさらに備え、前記表面パターン上に搭載された、電力半導体素子をさらに備える。
また、本発明にかかる絶縁基板の第1の製造方法は、(a)セラミック基材の裏面に裏面パターンを形成する工程と、(b)接合部材を介して、前記裏面パターンとヒートシンクとを接合する工程とを備え、前記工程(a)は、前記裏面パターンの前記接合部材と接する面において、加圧プレス方式でディンプルを形成する工程を含む。
また、本発明にかかる絶縁基板の第2の製造方法は、(a)セラミック基材の裏面に裏面パターンを形成する工程と、(b)接合部材を介して、前記裏面パターンとヒートシンクとを接合する工程とを備え、前記工程(a)は、前記裏面パターンの前記接合部材と接する面においてレジストを形成し、エッチング後前記レジストを除去し、再度エッチングを行い面取りをすることでディンプルを形成する工程を含む。
本発明にかかる絶縁基板によれば、セラミック基材と、前記セラミック基材の裏面に形成された裏面パターンと、前記裏面パターンと、接合部材を介して接合されたヒートシンクとを備え、前記裏面パターンは、前記接合部材と接する面において、ディンプルを有することにより、ヒートサイクル等の熱履歴を受ける場合、基板下の接合部材におけるクラックの発生を抑制でき、また、クラックの伝播速度を遅延化させることにより信頼性、寿命の向上を実現することができる。
また、本発明にかかる電力半導体装置によれば、上記の絶縁基板を備え、前記セラミック基材は、前記裏面パターンと対向する表面パターンをさらに備え、前記表面パターン上に搭載された、電力半導体素子をさらに備えることにより、ヒートサイクル等の熱履歴を受ける場合、基板下の接合部材におけるクラックの発生を抑制でき、また、クラックの伝播速度を遅延化させることにより電力半導体装置の信頼性、寿命の向上を実現することができる。
また、本発明にかかる絶縁基板の第1の製造方法によれば、(a)セラミック基材の裏面に裏面パターンを形成する工程と、(b)接合部材を介して、前記裏面パターンとヒートシンクとを接合する工程とを備え、前記工程(a)は、前記裏面パターンの前記接合部材と接する面において、加圧プレス方式でディンプルを形成する工程を含むことにより、ディンプルの形成がパターン打ち抜きと同時に可能となり、量産性が極めて高い絶縁基板が提供できる。
また、本発明にかかる絶縁基板の第2の製造方法によれば、(a)セラミック基材の裏面に裏面パターンを形成する工程と、(b)接合部材を介して、前記裏面パターンとヒートシンクとを接合する工程とを備え、前記工程(a)は、前記裏面パターンの前記接合部材と接する面においてレジストを形成し、エッチング後前記レジストを除去し、再度エッチングを行い面取りをすることでディンプルを形成する工程を含むことにより、エッチング工程は通常フローであることから、エッチング装置の追加を必要とせず、厳しい温度変化条件に耐え得る絶縁基板を得ることができる。
実施の形態1にかかる絶縁基板の一部切欠き断面図である。 実施の形態1にかかる絶縁基板の平面図である。 実施の形態1にかかる絶縁基板の断面図および平面図である。 実施の形態1にかかる絶縁基板の断面図および平面図である。 実施の形態1にかかる絶縁基板の平面図である。 実施の形態1にかかる絶縁基板の断面図および平面図である。 実施の形態1にかかる絶縁基板の断面図および平面図である。 実施の形態1にかかるディンプルの数値限定を行う根拠となる関係を示す図である。 実施の形態1にかかる前提技術との比較図、比較グラフを示す図である。 実施の形態1にかかる絶縁基板を用いて構成された電力半導体装置の断面図である。 実施の形態1にかかる絶縁基板の平面図及び断面図である。 実施の形態1にかかる絶縁基板の化学エッチングに於ける製造フローチャートである。 実施の形態1にかかる絶縁基板の裏面パターンの加圧プレスによる製造を示す断面図である。 前提技術としての絶縁基板を用いて構成された電力半導体装置の断面図である。 前提技術としての絶縁基板の平面図及び断面図である。
<A.実施の形態1>
図14に示すように前提技術としての電力半導体装置は、例えば厚み0.3〜0.635mmのAlNからなるセラミック基材202と、セラミック基材202表面に形成された表面パターン201a、表面パターン201b、表面パターン201cと、表面パターン201a上にはんだ4aを介して配置された電力半導体素子1aと、表面パターン201a上にはんだ4bを介して配置され、電力半導体素子1aとアルミワイヤ11bを介して接続された電力半導体素子1bと、表面パターン201b上にはんだ10を介して配置された電極端子7と、表面パターン201c上とアルミワイヤ11cを介して接続された信号端子8bと、電力半導体素子1aとアルミワイヤ11aを介して接続された信号端子8aとを備える。
さらに、セラミック基材202裏面に形成された、例えば厚み0.2〜0.6mmのCuからなる裏面パターン203と、裏面パターン203とはんだ5を介して接続された、例えば厚み4mmのCuからなるヒートシンク3と、ヒートシンク3と接着剤9を介して接続された樹脂ケース6と、樹脂ケース6内に充填されたシリコーンゲル12(エポキシ樹脂でもよい)とを備える。
ここで、セラミック基材202、その表面に形成された表面パターン201a、表面パターン201b、表面パターン201c、その裏面に形成された裏面パターン203を含めて、絶縁基板2とする。
なお、セラミック基材202と、表面パターン201a、表面パターン201b、表面パターン201cおよび裏面パターン203とは、予めAg、Cu、Ti系の活性金属ろう材等で接合されている。
また、本発明にかかる電力半導体装置を電気的に制御する電子部品を搭載した制御基板は、図14には図示していない。
図15は、前提技術としての絶縁基板の表面図(図15(a))、裏面図(図15(b))、断面図(図15(c))をそれぞれ示したものである。
セラミック基材202上に、表面パターン201a、表面パターン201bが図15(a)のように配置され、セラミック基材202下に、裏面パターン203が図15(b)のように配置されている。断面を見ると、図15(c)のような位置関係となり、全体として絶縁基板2が形成される。
前提技術としての電力半導体装置は以上のように構成されているので、電力半導体装置がヒートサイクル負荷を受けると、例えば絶縁基板2の見かけの線膨張係数α=7ppmと、Cu材からなるヒートシンク3の線膨張係数α=17ppmとのミスマッチにより、基板下のはんだ5に歪が生じる。繰り返しのヒートサイクル負荷の経過に伴い、基板下のはんだ5には微小クラックが発生する。このクラックの進展に伴い電力半導体素子1a、電力半導体素子1bの熱放散が阻害され、遂には素子破壊に至る。
また、絶縁基板2についても、上述した高温の負荷条件の場合、たとえば、セラミック基材202が窒化アルミ(AlN)の線膨張係数α=4.5ppmと、裏面パターン203がCu材の線膨張係数α=17ppmとのアンマッチにより、接合端部202aに集中する応力がさらに増大し、接合端部のセラミック基材202にクラックが生じ易くなる。
なお、パターン材質がAlの場合、絶縁基板2の下のはんだ5に発生するはんだ歪は、パターン材質がCuの場合と大差ないが、接合端部202aに集中する応力は、パターン材質がCuの場合に比べて半減し、セラミック基材202のクラック発生の心配は無い。
前提技術としての電力半導体装置では、ヒートサイクル試験の温度変化条件設定を−40〜125℃とした信頼性保証寿命サイクルを満足するように、構造設計がなされていた。しかしながら、電力半導体装置の小型化や高耐熱素子採用に対応すべく、ヒートサイクル試験の温度変化条件が−40℃〜150℃と設定変更されてきた。
解析によると、前提技術としての電力半導体装置では、この条件下での基板下のはんだ歪は約45%増大し、この歪の増大に伴い信頼性寿命が実評価に於いても約1/10以下に低下することが判明した。
以上のように、前提技術としての絶縁基板を用いた電力半導体装置では、より高温の負荷条件で使用される場合は、装置の信頼性寿命が大幅に低下するという問題があった。
以下に示す実施の形態1では、上記のような問題を解消する絶縁基板および電力半導体装置を示し、ヒートサイクル試験の温度変化条件がより厳しい条件に移行しても、ヒートサイクルの信頼性寿命を維持可能な絶縁基板および電力半導体装置を提供することを目的とする。
<A−1.構成>
図1に示すように、本発明にかかる絶縁基板を用いた電力半導体装置は、例えばAlN、またはAl23、またはSi34からなるセラミック基材202と、セラミック基材202表面に形成された、例えばCu、Alからなる表面パターン201とを備える。パターンの表面処理については、図1においては省略する。ここで、セラミック基材202の厚みは、例えば0.25〜1.0mmが望ましい。
さらに、セラミック基材202裏面に形成された、例えばCuまたはAlからなる裏面パターン203aと、裏面パターン203aと接合部材としてのはんだ5を介して接続されたヒートシンク3とを備える。はんだ5は、鉛フリーあるいは鉛入りのはんだを用いることができる。
ここで、セラミック基材202、その表面に形成された表面パターン201、その裏面に形成された裏面パターン203aを含めて、絶縁基板2aとする。
なお、セラミック基材202と、表面パターン201および裏面パターン203aとは、予めAg、Cu、Ti系の活性金属ろう材等で接合されている。
裏面パターン203aのはんだ5との接する面には、半径rの曲面204dを呈するディンプル204が形成されている。ここで、ディンプル204は、裏面パターン厚をt (mm)とするとき、例えば、
直径φD=(3/5)t〜(4/5)t (mm)、
半径r≧(3/10)t〜(4/10)t (mm)、
であり、
深さh=(3/5)t〜(4/5)t (mm)、
を理想とする。これは、図8に示す解析結果、「ディンプルのh/rとクラック進展難易度」に示すはんだクラックの進展し難さからの規制と、ディンプル204の谷間がセラミック基材202まで達しないようにする規制とによる。
図8に示すように、ディンプルのh/r(横軸)が大きくなるほど、クラック進展難易度(縦軸)が難化し、クラックの発生を抑制できることが分かる。ただし、ディンプル204の谷間がセラミック基材202まで達すれば、その谷間にははんだ5が接合されず、密着不良となり信頼性が低下する要因となる。
図2(a)(b)は、ディンプル204が裏面パターン203aの4つのコーナ部に集中的に配設された場合のセラミック基材202を裏面側から示すものである。図2(b)における、1つのコーナ部を拡大した図が図2(a)である。
図3、4は、図2において示したディンプル204が裏面パターン203aの4つのコーナ部に集中的に配設された場合の、ディンプル204の形成態様について示した図である。図3(a)、図4(a)はその場合の断面図、図3(b)、図4(b)はその場合の平面図である。図3に示すように、各コーナ部におけるディンプル204は、裏面パターン203a外周に沿って1列となって形成されていてもよいし、図4に示すように、各コーナ部におけるディンプル204は、裏面パターン203a外周に沿って複数列となって形成されていてもよい。
図5(a)(b)は、ディンプル204が裏面パターン203aの4つのコーナ部に集中的に配設され、さらに、裏面パターン203aの外周部全体にもディンプル204が配設された場合のセラミック基材202を裏面側から示すものである。図5(b)における、1つのコーナ部を拡大した図が図5(a)である。
図6、7は、図5において示したディンプル204が裏面パターン203aの4つのコーナ部に集中的に配設され、さらに、裏面パターン203aの外周部全体にもディンプル204が配設された場合の、ディンプル204の形成態様について示した図である。図6(a)、図7(a)はその場合の断面図、図6(b)、図7(b)はその場合の平面図である。図6に示すように、ディンプル204は裏面パターン203a外周に沿って1列となって形成されていてもよいし、図7に示すようにディンプル204は、裏面パターン203a外周に沿って複数列となって形成されていてもよい。
<A−2.動作>
図9は、前提技術としての電力半導体装置と本発明にかかる電力半導体装置との、基板下のはんだ歪とクラック伝播経路の比較(解析結果)を示す図である。
図9(a)において、セラミック基材202の表面に形成された表面パターン201と、裏面に形成された裏面パターン203と、裏面パターン203とはんだ5を介して接続されたヒートシンク3とが示されている。
図9(a)に示すように、前提技術としての絶縁基板を用いた電力半導体装置の場合は、ヒートサイクルの熱履歴が作用すれば、裏面パターン203のパターンエッジ部202b近傍のはんだ5に、はんだ歪が集中的に発生する。よって、ヒートサイクルの繰り返しにより当該箇所にはんだクラックが発生し、裏面パターン203近傍に沿って、はんだクラックがほぼ直線的に進展し易くなる。なお、点線で示すのがクラックの伝播経路である。
一方、図9(b)に示す本発明の絶縁基板を用いた電力半導体装置の場合は、ディンプル204による裏面パターン203aにおける曲面と、端部におけるマス量の低減と、はんだ厚の部分的増大とから、裏面パターン203a近傍のはんだ5に発生するはんだ歪が緩和される。なお、点線で示すのがクラックの伝播経路である。図9(b)においては、クラックの伝播経路が形成される領域にディンプル204が形成されている。
よって図9(c)において、前提技術の場合を実線で、本発明の場合を2点鎖線で示すように、はんだ歪のピークが半減し、はんだ寿命が約4倍に長寿命化する。
また、はんだクラックはディンプル204の凹凸に沿って伝播することから、クラックの伝播速度が遅延化し、例えば、裏面パターン203aのコーナ部から電力半導体素子の投影部に至るまでの寿命が延びることになる。
絶縁基板2がヒートシンク3に対して1枚使いの場合は、絶縁基板2の裏面パターン203のコーナ部のはんだ5に、はんだ歪が集中的に発生し易いが、絶縁基板2がヒートシンク3に対して複数枚使いの場合には、ヒートサイクルの繰り返しによるヒートシンク3の反りの影響から、絶縁基板2が隣り合う辺の基板下のはんだ5のはんだ歪が集中的に増大することがある。この場合は、図5に示すように、ディンプル204が裏面パターン203aの4つのコーナ部に集中的に配設され、さらに、裏面パターン203aの外周部全体にもディンプル204が配設されるのが望ましい。
図10は、本発明にかかる絶縁基板を用いた電力半導体装置の全体図である。図10においては、裏面パターン203aの4つのコーナ部に形成した場合を示しているが、外周全体に渡って形成される場合であってもよい。
図10に示す電力半導体装置は、絶縁基板2aが、ディンプル204が形成された裏面パターン203aを有すること以外は、上述した図14の電力半導体装置と同一構造、同一構成であることから、詳細な説明を省略する。なお、表面パターン201a、表面パターン201b、表面パターン201c、ディンプル204が形成された裏面パターン203aの材質は、Cu材でもAl材でも同様に構成され、基板下のはんだ5のクラック抑制、クラックの伝播速度の遅延化の効果は同様に得られる。
図11は、本発明にかかる絶縁基板を用いた電力半導体装置の表面図(図11(a))、裏面図(図11(b))、断面図(図11(c))をそれぞれ示したものである。
セラミック基材202上に、表面パターン201a、表面パターン201bが図11(a)のように配置され、セラミック基材202下に、裏面パターン203aが図11(b)のように配置されている。断面を見ると、図11(c)のような位置関係となり、全体として絶縁基板2aが形成される。図15に示す場合と異なるのは、裏面パターン203aにディンプル204が形成されていることである。
<A−3.製造方法>
図12は、本発明にかかる電力半導体装置における、ディンプル204を絶縁基板の裏面パターンに形成する、化学エッチング方式を説明するフローチャートである。
図12(a)では、まず、セラミック基材202の表面に表面パターン201、裏面に裏面パターン203をそれぞれ形成する。
図12(b)では、表面パターン201、裏面パターン203それぞれの所定範囲に、レジスト13を形成する。レジスト13のうち、ディンプル204を形成する部分には予めレジスト開口孔13aを付与しておく。
図12(c)では、前述のレジスト13で覆った状態で、エッチング処理を行う。
図12(d)では、前述のレジスト13を除去し曲面204cを露出させ、化学研磨を行う。
図12(e)では、裏面パターンが形成された側を選択し、ソフトエッチングを行うことにより、面取り(全周縁取り)を行う。曲面204dが形成される。
図1に示したディンプル204の直径φDは、製造時のレジスト開口孔13aでほぼ決まるが、曲面204dの半径r及び深さhは、化学エッチングの条件により調整される。
エッジ部の面取り後、表面処理として2〜4μmの無電解Ni−Pめっきが施工される(図示せず)。なお、表面パターン201、裏面パターン203aの材質がCuの場合には、はんだ接合雰囲気を不活性化し、且つ、減圧化することにより、Cu材とはんだ材との接合性が保たれることから、敢えて無電解Ni−Pめっき施工は必要としない。
図13は、裏面パターン203aに形成するディンプル204を、プレス加工にて形成する1例を示している。図13においては、ディンプル204の曲面204dの形状を有するパンチ14、ダイ15、裏面パターン203aが示されている。
セラミック基材202の裏面に裏面パターンを形成し、パンチ14、ダイ15を用いてプレス加工を行う。この加工によりディンプル204を形成し、はんだ5を介して、さらに裏面パターンとヒートシンク3とを接合する(図示せず)。
<A−4.効果>
本発明にかかる実施の形態1によれば、絶縁基板において、セラミック基材202と、セラミック基材202の裏面に形成された裏面パターン203aと、裏面パターン203aと、接合部材としてのはんだ5を介して接合されたヒートシンク3とを備え、裏面パターン203aは、はんだ5と接する面において、ディンプル204を有することで、ヒートサイクル等の熱履歴を受ける場合、基板下のはんだ5におけるクラックの発生を抑制でき、また、クラックの伝播速度を遅延化させることにより信頼性、寿命の向上を実現することができる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、裏面パターン203aは、厚みがt=0.2〜0.6mmであり、ディンプル204は、直径がφD=(3/5)t〜(4/5)tmm、深さがh=(3/5)t〜(4/5)tmmであり、かつ、エッジ部にr≧(3/10)t〜(4/10)tの曲面を有することで、基板下のはんだ5におけるクラックの発生をより抑制できる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、ディンプル204は、裏面パターン203aの各コーナ部に形成されることで、特に基板のコーナ部下のはんだ5に集中的に発生する歪を低減し、はんだクラック発生の抑制を図ることができる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、ディンプル204は、裏面パターン203aの外周部に形成されることで、基板のコーナ部下のはんだ5に発生する歪に加え、基板の外周部下のはんだ5に発生する歪も低減し、外周部からのはんだクラック発生の抑制を図ることができる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、裏面パターン203aは、CuまたはAlからなることで、ディンプル204の形成により、セラミック基材202に発生する応力が低減可能となり、セラミック基材202のクラック抑制効果が生じる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、裏面パターン203aは、接合部材としてのはんだ5と接する面がめっき加工されることで、はんだ5との接合性を高め、はんだクラックの発生を抑制させ、クラックの伝播速度を遅延させることができる。また、裏面パターン203aの材質がCuの場合は、はんだ接合雰囲気を不活性化し、且つ減圧化することにより、無電解Ni−P等のめっき施工は必ずしも必要ではない。
また、本発明にかかる実施の形態1によれば、絶縁基板において、セラミック基材202は、AlN、またはAl23、またはSi34からなることで、ヒートサイクル等の熱履歴を受ける場合、基板下のはんだ5におけるクラックの発生を抑制でき、また、クラックの伝播速度を遅延化させることにより信頼性、寿命の向上を実現することができる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、セラミック基材202は、厚みが0.25〜1.0mmであることで、ヒートサイクル等の熱履歴を受ける場合、基板下のはんだ5におけるクラックの発生を抑制でき、また、クラックの伝播速度を遅延化させることにより信頼性、寿命の向上を実現することができる。
また、本発明にかかる実施の形態1によれば、絶縁基板において、接合部材としてのはんだ5は、鉛フリーあるいは鉛入りのはんだ材であることで、基板下のはんだ5のクラック抑制、クラック伝播速度の遅延化により長寿命化が実現できる。
また、本発明にかかる実施の形態1によれば、電力半導体装置において、上記の絶縁基板を備え、セラミック基材202は、裏面パターン203aと対向する表面パターン201をさらに備え、表面パターン201上に搭載された、電力半導体素子1a、電力半導体素子1bをさらに備えることで、ヒートサイクル等の熱履歴を受ける場合、基板下のはんだ5におけるクラックの発生を抑制でき、また、クラックの伝播速度を遅延化させることにより電力半導体装置の信頼性、寿命の向上を実現することができる。
また、本発明にかかる実施の形態1によれば、絶縁基板の製造方法において、(a)セラミック基材202の裏面に裏面パターン203aを形成する工程と、(b)接合部材としてのはんだ5を介して、裏面パターン203aとヒートシンク3とを接合する工程とを備え、工程(a)は、裏面パターン203aのはんだ5と接する面において、加圧プレス方式でディンプル204を形成する工程を含むことで、ディンプル204の形成がパターン打ち抜きと同時に可能となり、量産性が極めて高い絶縁基板が提供できる。
また、本発明にかかる実施の形態1によれば、絶縁基板の製造方法において、(a)セラミック基材202の裏面に裏面パターン203aを形成する工程と、(b)接合部材としてのはんだ5を介して、裏面パターン203aとヒートシンク3とを接合する工程とを備え、工程(a)は、裏面パターン203aのはんだ5と接する面においてレジストを形成し、エッチング後レジストを除去し、再度エッチングを行い面取りをすることでディンプル204を形成する工程を含むことで、エッチング工程は通常フローであることから、エッチング装置の追加を必要とせず、厳しい温度変化条件に耐え得る絶縁基板を得ることができる。
本発明の実施の形態では、各構成要素の材質、材料、実施の条件等についても記載しているが、これらは例示であって記載したものに限られるものではない。
1a,1b 電力半導体素子、2,2a 絶縁基板、3 ヒートシンク、5 はんだ、6 樹脂ケース、7 電極端子、8a,8b 信号端子、9 接着剤、11a〜11c アルミワイヤ、12 シリコーンゲル、13 レジスト、13a レジスト開口孔、14 パンチ、15 ダイ、201,201a〜201c 表面パターン、202 セラミック基材、202a 接合端部、202b パターンエッジ部、203,203a 裏面パターン、204 ディンプル、204c,204d 曲面。

Claims (12)

  1. セラミック基材と、
    前記セラミック基材の裏面に形成された裏面パターンと、
    前記裏面パターンと、接合部材を介して接合されたヒートシンクとを備え、
    前記裏面パターンは、前記接合部材と接する面において、ディンプルを有する、
    絶縁基板。
  2. 前記裏面パターンは、厚みがt=0.2〜0.6mmであり、
    前記ディンプルは、直径がφD=(3/5)t〜(4/5)tmm、深さがh=(3/5)t〜(4/5)tmmであり、かつ、エッジ部にr≧(3/10)t〜(4/10)tの曲面を有する、
    請求項1に記載の絶縁基板。
  3. 前記ディンプルは、前記裏面パターンの各コーナ部に形成される、
    請求項1または2に記載の絶縁基板。
  4. 前記ディンプルは、前記裏面パターンの外周部に形成される、
    請求項1〜3のいずれかに記載の絶縁基板。
  5. 前記裏面パターンは、CuまたはAlからなる、
    請求項1〜4のいずれかに記載の絶縁基板。
  6. 前記裏面パターンは、前記接合部材と接する面がめっき加工される、
    請求項1〜5のいずれかに記載の絶縁基板。
  7. 前記セラミック基材は、AlN、またはAl23、またはSi34からなる、
    請求項1〜6のいずれかに記載の絶縁基板。
  8. 前記セラミック基材は、厚みが0.25〜1.0mmである、
    請求項1〜7のいずれかに記載の絶縁基板。
  9. 前記接合部材は、鉛フリーあるいは鉛入りのはんだ材である、
    請求項1〜8のいずれかに記載の絶縁基板。
  10. 請求項1〜9のいずれかに記載の絶縁基板を備え、
    前記セラミック基材は、前記裏面パターンと対向する表面パターンをさらに備え、
    前記表面パターン上に搭載された、電力半導体素子をさらに備える、
    電力半導体装置。
  11. (a)セラミック基材の裏面に裏面パターンを形成する工程と、
    (b)接合部材を介して、前記裏面パターンとヒートシンクとを接合する工程とを備え、
    前記工程(a)は、前記裏面パターンの前記接合部材と接する面において、加圧プレス方式でディンプルを形成する工程を含む、
    絶縁基板の製造方法。
  12. (a)セラミック基材の裏面に裏面パターンを形成する工程と、
    (b)接合部材を介して、前記裏面パターンとヒートシンクとを接合する工程とを備え、
    前記工程(a)は、前記裏面パターンの前記接合部材と接する面においてレジストを形成し、エッチング後前記レジストを除去し、再度エッチングを行い面取りをすることでディンプルを形成する工程を含む、
    絶縁基板の製造方法。
JP2010261162A 2010-11-24 2010-11-24 絶縁基板とその製造方法および電力半導体装置 Pending JP2012114203A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261162A JP2012114203A (ja) 2010-11-24 2010-11-24 絶縁基板とその製造方法および電力半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261162A JP2012114203A (ja) 2010-11-24 2010-11-24 絶縁基板とその製造方法および電力半導体装置

Publications (1)

Publication Number Publication Date
JP2012114203A true JP2012114203A (ja) 2012-06-14

Family

ID=46498101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261162A Pending JP2012114203A (ja) 2010-11-24 2010-11-24 絶縁基板とその製造方法および電力半導体装置

Country Status (1)

Country Link
JP (1) JP2012114203A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146645A (ja) * 2013-01-28 2014-08-14 Mitsubishi Electric Corp 半導体装置
JP2015225948A (ja) * 2014-05-28 2015-12-14 Ngkエレクトロデバイス株式会社 パワーモジュール用基板
WO2019167509A1 (ja) * 2018-03-01 2019-09-06 富士電機株式会社 半導体装置
WO2020149023A1 (ja) * 2019-01-16 2020-07-23 富士電機株式会社 半導体装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146645A (ja) * 2013-01-28 2014-08-14 Mitsubishi Electric Corp 半導体装置
JP2015225948A (ja) * 2014-05-28 2015-12-14 Ngkエレクトロデバイス株式会社 パワーモジュール用基板
WO2019167509A1 (ja) * 2018-03-01 2019-09-06 富士電機株式会社 半導体装置
JPWO2019167509A1 (ja) * 2018-03-01 2020-12-03 富士電機株式会社 半導体装置
US11133271B2 (en) 2018-03-01 2021-09-28 Fuji Electric Co., Ltd. Semiconductor device
JP7047895B2 (ja) 2018-03-01 2022-04-05 富士電機株式会社 半導体装置
WO2020149023A1 (ja) * 2019-01-16 2020-07-23 富士電機株式会社 半導体装置
JPWO2020149023A1 (ja) * 2019-01-16 2021-09-09 富士電機株式会社 半導体装置
JP7052887B2 (ja) 2019-01-16 2022-04-12 富士電機株式会社 半導体装置
US11521941B2 (en) 2019-01-16 2022-12-06 Fuji Electric Co., Ltd. Semiconductor device with a substrate having depressions formed thereon

Similar Documents

Publication Publication Date Title
KR101244834B1 (ko) 전력 반도체장치
JP5326278B2 (ja) 回路基板及びこれを用いた半導体モジュール、回路基板の製造方法
JP4524716B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法、並びに、ヒートシンク付パワーモジュール、パワーモジュール用基板
JP4629016B2 (ja) ヒートシンク付パワーモジュール用基板およびヒートシンク付パワーモジュール用基板の製造方法並びにパワーモジュール
JP2007329362A (ja) パワーモジュール
JP2003273289A (ja) セラミックス回路基板およびパワーモジュール
JP2008227336A (ja) 半導体モジュール、これに用いられる回路基板
JP2013211546A (ja) セラミックス−銅接合体およびその製造方法
JP5691831B2 (ja) 半導体装置およびその製造方法
JP2012114203A (ja) 絶縁基板とその製造方法および電力半導体装置
JP5370460B2 (ja) 半導体モジュール
JP2008091959A (ja) 半導体装置の製造方法
JP6139329B2 (ja) セラミック回路基板及び電子デバイス
JP7211949B2 (ja) セラミックス回路基板
JP6129090B2 (ja) パワーモジュール及びパワーモジュールの製造方法
JP4104429B2 (ja) モジュール構造体とそれを用いたモジュール
JP6278516B2 (ja) パワーモジュール用基板
CN114026967B (zh) 陶瓷基板制造方法
JPH08250823A (ja) セラミックス回路基板
JP7299672B2 (ja) セラミックス回路基板及びその製造方法
TWI636719B (zh) 結合金屬與陶瓷基板的製造方法
JP2006286897A (ja) 金属−セラミックス接合基板
JPH08274423A (ja) セラミックス回路基板
JP6614256B2 (ja) 絶縁回路基板
JP6603098B2 (ja) 回路基板および電子装置