JP2011184664A - Carbon black dispersion - Google Patents

Carbon black dispersion Download PDF

Info

Publication number
JP2011184664A
JP2011184664A JP2010054665A JP2010054665A JP2011184664A JP 2011184664 A JP2011184664 A JP 2011184664A JP 2010054665 A JP2010054665 A JP 2010054665A JP 2010054665 A JP2010054665 A JP 2010054665A JP 2011184664 A JP2011184664 A JP 2011184664A
Authority
JP
Japan
Prior art keywords
carbon black
dispersion
electrode
manufactured
pyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010054665A
Other languages
Japanese (ja)
Other versions
JP5533057B2 (en
Inventor
Masahiro Terasawa
昌洋 寺澤
Masashi Itabashi
正志 板橋
Naohisa Hirota
尚久 廣田
Shinichiro Maki
伸一郎 真木
Ryosuke Gondo
亮介 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2010054665A priority Critical patent/JP5533057B2/en
Publication of JP2011184664A publication Critical patent/JP2011184664A/en
Application granted granted Critical
Publication of JP5533057B2 publication Critical patent/JP5533057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon black dispersion having excellent dispersibility and storage stability, and to provide an electrode for a battery or a cell, a lithium ion secondary battery, and an electrophotographic seamless belt obtained by using the dispersion. <P>SOLUTION: Carbon black is dispersed in N-methyl-2-pyrrolidone using a polyvinyl acetal resin as a dispersant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、分散性、貯蔵安定性に優れたカーボンブラック分散体に関する。また、該分散体を使用して電極合材層が形成された電池用電極、および正極および負極の少なくとも一方が該電極であるリチウムイオン二次電池に関する。さらに該分散体を使用して形成された電子写真用シームレスベルトに関する。   The present invention relates to a carbon black dispersion excellent in dispersibility and storage stability. The present invention also relates to a battery electrode in which an electrode mixture layer is formed using the dispersion, and a lithium ion secondary battery in which at least one of a positive electrode and a negative electrode is the electrode. Furthermore, the present invention relates to an electrophotographic seamless belt formed using the dispersion.

カーボンブラックは、着色顔料、遮光材料、導電材料として、印刷インキ、インクジェットインキ、筆記具用インキ、塗料、プラスチック形成材料などの幅広い分野で使用されており、一般的にこれらの用途への要求品質を満たすには、カーボンブラックを溶剤中に微分散することが重要となる。   Carbon black is used in a wide range of fields such as printing pigments, ink-jet inks, writing instrument inks, paints, and plastic forming materials as color pigments, light-shielding materials, and conductive materials. Generally, the quality required for these applications is reduced. In order to satisfy this, it is important to finely disperse carbon black in a solvent.

一方で近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用などの大型二次電池においても、従来の鉛蓄電池に代えて、大型の非水電解質二次電池の実現が望まれている。   On the other hand, in recent years, small portable electronic devices such as digital cameras and mobile phones have been widely used. These electronic devices have always been required to minimize the volume and reduce the weight, and the batteries to be mounted are also required to be small, light, and have a large capacity. Also, in large-sized secondary batteries for automobiles and the like, it is desired to realize a large non-aqueous electrolyte secondary battery instead of a conventional lead-acid battery.

そのような要求に応えるため、リチウムイオン二次電池の開発が活発に行われている。リチウムイオン二次電池の電極としては、リチウムイオンを含む正極活物質と導電助剤と有機バインダーなどからなる電極合材を金属箔の集電体の表面に固着させた正極、及び、リチウムイオンの脱挿入可能な負極活物質と導電助剤と有機バインダーなどからなる電極合材に金属箔集電体の表面に固着させた負極が使用されている。   In order to meet such demands, lithium ion secondary batteries are being actively developed. As an electrode of a lithium ion secondary battery, a positive electrode in which an electrode mixture composed of a positive electrode active material containing lithium ions, a conductive additive, an organic binder, and the like is fixed to the surface of a current collector of metal foil, and a lithium ion A negative electrode is used in which an electrode mixture composed of a removable negative electrode active material, a conductive additive, an organic binder and the like is fixed to the surface of a metal foil current collector.

一般的に、正極活物質としては、コバルト酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物が用いられているが、これらは電子伝導性が低く、単独での使用では十分な電池性能が得られない。そこで、カーボンブラック(例えば、アセチレンブラック)等の炭素材料を導電助剤として添加することで導電性を改善し、電極の内部抵抗を低減することが試みられている。とりわけ電極の内部抵抗を低減することは、大電流での放電を可能とすることや、充放電の効率を向上させる上で非常に重要となっている。   In general, lithium transition metal composite oxides such as lithium cobaltate and lithium manganate are used as the positive electrode active material, but these have low electronic conductivity and have sufficient battery performance when used alone. I can't get it. Therefore, attempts have been made to improve the conductivity by reducing the internal resistance of the electrode by adding a carbon material such as carbon black (for example, acetylene black) as a conductive additive. In particular, reducing the internal resistance of the electrode is very important in enabling discharge with a large current and improving charge and discharge efficiency.

一方、負極活物質としては、通常グラファイト(黒鉛)が用いられている。黒鉛はそれ自身が導電性を有しているものの、黒鉛とともに導電助剤としてアセチレンブラック等のカーボンブラックを添加すると充放電特性が改善されることが知られている。これは、一般に用いられる黒鉛粒子は大きいために、黒鉛単独で使用すると電極層に充填された時の隙間が多くなってしまうが、導電助剤としてカーボンブラックを併用した場合は、微細なカーボンブラック粒子が黒鉛粒子間の隙間を埋めることで接触面積が増え、抵抗が下がるためではないかと思われる。しかしながら、この場合も導電助剤の分散が不十分であると、導電効果が低減する。この様に、とりわけ電極の内部抵抗を低減することは、大電流での放電を可能とすることや、充放電の効率を向上させる上で非常に重要な要素の一つとなっている。   On the other hand, graphite (graphite) is usually used as the negative electrode active material. Although graphite itself has conductivity, it is known that charge and discharge characteristics are improved by adding carbon black such as acetylene black as a conductive aid together with graphite. This is because the graphite particles generally used are large, so if graphite alone is used, the gap when filled in the electrode layer will increase. However, when carbon black is used as a conductive additive, fine carbon black is used. It seems that the contact area increases by filling the gaps between the graphite particles and the resistance decreases. However, in this case as well, the conductive effect is reduced if the dispersion of the conductive aid is insufficient. In this way, reducing the internal resistance of the electrode is one of the very important factors in enabling discharge with a large current and improving the efficiency of charge and discharge.

また、電子写真装置においては様々な用途でシームレスベルトが部材として用いられている。特に近年のフルカラー電子写真装置においては、イエロー、マゼンタ、シアン、ブラックの4色の現像画像を、一旦中間転写媒体上に色重ねし、その後一括して紙などの転写媒体に転写する中間転写ベルト方式が用いられている。中間転写ベルトには、画像を転写するという機能を有するためその電気特性が重要な品質となっており、適切な電気特性を付与するためにカーボンブラックなどが用いられている。   In electrophotographic apparatuses, seamless belts are used as members for various purposes. Particularly in recent full-color electrophotographic apparatuses, an intermediate transfer belt that temporarily superimposes developed images of four colors of yellow, magenta, cyan, and black on an intermediate transfer medium and then collectively transfers them onto a transfer medium such as paper. The method is used. Since the intermediate transfer belt has a function of transferring an image, its electrical characteristics are an important quality, and carbon black or the like is used to impart appropriate electrical characteristics.

カーボンブラックの分散については、各種添加剤、例えば界面活性剤などの分散剤や顔料分散樹脂を用いて分散する方法がある。しかしながら界面活性剤による分散は、電離した極性官能基同士の静電反発を利用して分散安定化を図る為、水系での分散には有利であるが、水に比べ誘電率の低い有機溶剤中での分散には不向きとされ、特許文献1、特許文献2にあるように、通常、有機溶剤中での分散においては、顔料分散樹脂を用いる方法が採られてきた。これはカーボンブラック粒子表面に分散樹脂を吸着させ、吸着樹脂同士の立体反発を利用して分散の安定化を図るというものである。但しこの場合でも、カーボンブラック表面と分散樹脂との相互作用が不十分であると樹脂の脱着が起こり、容易に再凝集してしまう。また、一般的なカーボンブラックは樹脂と相互作用する表面官能基の量が少ないことや非常に粒径が細かく比表面積が大きなものが多い為、安定化に必要な分散樹脂量が大量となること、また、分散樹脂量が多くなってしまうと、インキや塗料適性を付与する為に加える樹脂や添加剤の使用できる量に制限が生じたり、更に分散樹脂とそれら添加剤との相溶性が悪い場合は、シンニングショックによる凝集や、インキ、塗料の経時安定性が低下するという問題がある。   Regarding the dispersion of carbon black, there is a method of dispersing using various additives, for example, a dispersant such as a surfactant or a pigment dispersion resin. However, dispersion with a surfactant is advantageous for dispersion in an aqueous system because it uses electrostatic repulsion between ionized polar functional groups to stabilize the dispersion, but in an organic solvent having a dielectric constant lower than that of water. In the dispersion in an organic solvent, a method using a pigment dispersion resin has been generally employed as disclosed in Patent Document 1 and Patent Document 2. In this method, the dispersion resin is adsorbed on the surface of the carbon black particles, and the dispersion is stabilized by utilizing the steric repulsion between the adsorption resins. However, even in this case, if the interaction between the carbon black surface and the dispersion resin is insufficient, the resin is desorbed and easily re-aggregates. In addition, general carbon black has a small amount of surface functional groups that interact with the resin, and many particles have a very small particle size and a large specific surface area, so that a large amount of dispersed resin is required for stabilization. In addition, if the amount of the dispersed resin increases, the amount of the resin or additive that can be added to impart ink or paint suitability is limited, or the compatibility between the dispersed resin and these additives is poor. In such a case, there is a problem that aggregation due to a thinning shock and stability with time of the ink and paint are lowered.

そこで分散性改善を目的に、カーボンブラックを気相または液相で酸化処理し粒子表面に酸性官能基を導入する方法が検討されている。しかしながら、プラズマやオゾン処理の様な気相酸化では処理効率の低さや処理装置が高価である等の問題があり、液相処理では、硝酸や過酸化水素等の強酸を使用する為、作業安全性等に問題がある。特に硝酸処理によって酸化されたカーボンブラックについては変異原生の問題も指摘されている。   Therefore, for the purpose of improving dispersibility, a method of introducing an acidic functional group onto the particle surface by oxidizing carbon black in a gas phase or a liquid phase has been studied. However, gas phase oxidation such as plasma and ozone treatment has problems such as low processing efficiency and expensive processing equipment, and liquid phase processing uses strong acids such as nitric acid and hydrogen peroxide. There is a problem with sex. Especially for carbon black oxidized by nitric acid treatment, the problem of mutagenesis has been pointed out.

一方、リチウムイオン二次電池に導電助剤として使用されるカーボンブラックは、ストラクチャーや比表面積が大きいため凝集力が強く、電極合材形成用スラリー中に均一混合・分散することが困難である。そして、導電助剤であるカーボンブラックの分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成さないために電極の内部抵抗の低減が図れず、その結果、活物質であるリチウム遷移金属複合酸化物やグラファイトなどの性能を十分に引き出せないという問題が生じている。また、電極合材中の導電助剤の分散が不十分であると、部分的凝集に起因して電極板上に抵抗分布が生じ、電池として使用した際に電流が集中し、部分的な発熱および劣化が促進される等の不具合が生ずることがある。   On the other hand, carbon black used as a conductive additive in a lithium ion secondary battery has a large structure and specific surface area and thus has a strong cohesive force, and is difficult to uniformly mix and disperse in the slurry for forming an electrode mixture. If the dispersibility and particle size of carbon black, which is a conductive auxiliary agent, are not sufficiently controlled, a uniform conductive network is not formed, so that the internal resistance of the electrode cannot be reduced. There has been a problem that the performance of transition metal composite oxides and graphite cannot be sufficiently extracted. In addition, if the dispersion of the conductive additive in the electrode mixture is insufficient, resistance distribution occurs on the electrode plate due to partial aggregation, current concentrates when used as a battery, and partial heat generation occurs. In addition, problems such as accelerated deterioration may occur.

また、金属箔などの電極集電体上に電極合材層を形成する場合、多数回充放電を繰り返すと、集電体と電極合材層の界面や、電極合材内部における活物質と導電助剤界面の密着性が悪化し、電池性能が低下する問題がある。これは、充放電におけるリチウムイオンのドープ、脱ドープにより活物質および電極合材層が膨張、収縮を繰り返すために、電極合材層と集電体界面および、活物質と導電助剤界面に局部的なせん断応力が発生し界面の密着性が悪化するためと考えられている。そしてこの場合も、導電助剤の分散が不十分であると、密着低下が著しくなる。これは、粗大な凝集粒子が存在すると、応力が緩和されにくくなるためであると思われる。   In addition, when an electrode mixture layer is formed on an electrode current collector such as a metal foil, repeated charging and discharging a large number of times causes the interface between the current collector and the electrode mixture layer, and the active material and the conductive material inside the electrode mixture. There is a problem in that the adhesion at the auxiliary agent interface is deteriorated and the battery performance is lowered. This is because the active material and the electrode mixture layer are repeatedly expanded and contracted by doping and dedoping of lithium ions during charge and discharge, so that the electrode mixture layer and the current collector interface and the active material and the conductive auxiliary agent interface are localized. This is thought to be due to the generation of shear stress and the deterioration of interfacial adhesion. In this case as well, if the dispersion of the conductive additive is insufficient, the adhesion reduction becomes significant. This is considered to be because when coarse agglomerated particles are present, the stress is hardly relaxed.

リチウムイオン二次電池製造工程において、カーボンブラックを溶剤に分散する際に、分散剤として界面活性剤を用いる例が特許文献3に記載されている。しかしながら、前述のように界面活性剤は有機溶剤中での分散には不向きであり、かつカーボンブラック表面への吸着力が弱いため、良好な分散安定性を得るには界面活性剤の添加量を多くしなければならない。この結果、含有可能な活物質の量が少なくなり、電池容量が低下してしまう。また、界面活性剤のカーボンブラックへの吸着が不十分であると、カーボンブラックが凝集してしまう。   Patent Document 3 describes an example in which a surfactant is used as a dispersant when carbon black is dispersed in a solvent in a lithium ion secondary battery manufacturing process. However, as described above, the surfactant is not suitable for dispersion in an organic solvent and has a weak adsorptive power to the carbon black surface. I have to do more. As a result, the amount of active material that can be contained decreases, and the battery capacity decreases. Further, if the surfactant is not sufficiently adsorbed on the carbon black, the carbon black will aggregate.

また、特許文献4には、カーボンブラックを溶剤に分散する際に、ビニルピロリドン系樹脂を添加することでカーボンブラック分散液の分散状態を改善し、該分散液と、活物質とを混合して、電極用合材を作製する方法が開示されている。しかしながら、この方法ではカーボンブラックの分散性は向上するものの、ビニルピロリドン系樹脂の吸湿性により電極合材形成用スラリー中や電極塗膜に水分が混入しやすく、活物質の劣化を招く場合がある。   Patent Document 4 discloses that when carbon black is dispersed in a solvent, a vinyl pyrrolidone-based resin is added to improve the dispersion state of the carbon black dispersion, and the dispersion and the active material are mixed. A method for producing an electrode mixture is disclosed. However, although this method improves the dispersibility of carbon black, the hygroscopicity of the vinylpyrrolidone-based resin tends to cause moisture to be mixed into the electrode mixture forming slurry and the electrode coating film, leading to deterioration of the active material. .

中間転写ベルトにおける好ましい電気抵抗としては、表面抵抗で10〜1012Ω/□、体積抵抗で、10〜1010Ω・cmが求められている。上記電気抵抗の領域では、場所によるばらつきや電圧依存性が大きくなりやすい。そのため、カーボンブラックなどの抵抗制御材料の分散の均一性が求められている。 Preferred electrical resistance in the intermediate transfer belt is required to be 10 8 to 10 12 Ω / □ in surface resistance and 10 5 to 10 10 Ω · cm in volume resistance. In the region of the electrical resistance, variation depending on location and voltage dependency tend to increase. Therefore, the uniformity of dispersion of the resistance control material such as carbon black is required.

以上のような問題に鑑み、本発明は分散性、貯蔵安定性に優れたカーボンブラック分散体、およびこれを用いて得られる電池用電極、リチウムイオン二次電池、電子写真用シームレスベルトを提供することを目的とする。
特開平7−268268号公報 特開2001−192595号公報 特開平8−190912号公報 特開2003−157846号公報
In view of the above problems, the present invention provides a carbon black dispersion excellent in dispersibility and storage stability, and a battery electrode, a lithium ion secondary battery, and an electrophotographic seamless belt obtained by using the carbon black dispersion. For the purpose.
JP 7-268268 A JP 2001-192595 A JP-A-8-190912 Japanese Patent Laid-Open No. 2003-157846

本発明者らは、鋭意検討の結果、ポリビニルアセタール樹脂を分散剤としてカーボンブラックをN−メチル−2−ピロリドンに分散することで、分散性、貯蔵安定性に優れたカーボンブラック分散体を調製できることを見いだし、本発明に至った。   As a result of intensive studies, the present inventors can prepare a carbon black dispersion excellent in dispersibility and storage stability by dispersing carbon black in N-methyl-2-pyrrolidone using polyvinyl acetal resin as a dispersant. As a result, the present invention has been achieved.

即ち本発明は、カーボンブラックと、分散剤としてのポリビニルアセタール樹脂と、N−メチル−2−ピロリドンとを含む、カーボンブラック分散体に関する。
また本発明は、カーボンブラックの分散粒径(D50)が0.1〜2μmである上記のカーボンブラック分散体に関する。
That is, the present invention relates to a carbon black dispersion containing carbon black, a polyvinyl acetal resin as a dispersant, and N-methyl-2-pyrrolidone.
The present invention also relates to the above carbon black dispersion in which the carbon black has a dispersed particle size (D 50 ) of 0.1 to 2 μm.

さらに本発明は、上記の分散体を使用して電極合材層が形成された電池用電極に関する。
さらに本発明は、集電体上に正極合材層を有する正極と、集電体上に負極合材層を有する負極と、リチウムを含む電解質とを具備するリチウムイオン二次電池であって、正極および負極の少なくとも一方が、上記の電池用電極であるリチウムイオン二次電池に関する。
さらに本発明は、上記の分散体を使用して形成された電子写真用シームレスベルトに関する。
Furthermore, this invention relates to the battery electrode in which the electrode compound-material layer was formed using said dispersion.
Furthermore, the present invention is a lithium ion secondary battery comprising a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte containing lithium, At least one of a positive electrode and a negative electrode is related with the lithium ion secondary battery which is said battery electrode.
Furthermore, the present invention relates to an electrophotographic seamless belt formed using the above dispersion.

本発明により、分散性および保存安定性良好なカーボンブラック分散体が得られる。また、該分散体を用いて形成された電極やシームレスベルトでは、導電材であるカーボンブラックが十分に分散されており、かつ当該分野で一般的に使用される樹脂と良好に相溶しシンニングショックによる凝集が起こらないため、電気抵抗の場所によるばらつきが改善される。さらに、分散剤として使用するポリビニルアセタール樹脂が有する強度、接着性、架橋性などの性質により、強度や結着性を高めることができる。   According to the present invention, a carbon black dispersion having good dispersibility and storage stability can be obtained. In addition, in the electrodes and seamless belts formed using the dispersion, carbon black, which is a conductive material, is sufficiently dispersed, and is well compatible with resins commonly used in the field, and the thinning shock As a result, no variation occurs due to the location of electrical resistance. Furthermore, strength and binding properties can be increased by properties such as strength, adhesiveness and crosslinkability of the polyvinyl acetal resin used as the dispersant.

本発明におけるカーボンブラック分散体は、カーボンブラックと、分散剤としてのポリビニルアセタール樹脂と、N−メチル−2−ピロリドンとを含むことを特徴とするが、以下にその詳細を説明する。   The carbon black dispersion in the present invention is characterized by containing carbon black, a polyvinyl acetal resin as a dispersant, and N-methyl-2-pyrrolidone. The details will be described below.

<カーボンブラック>
本発明に用いるカーボンブラックとしては、市販のファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックなど各種のものを用いることができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボンブラックなども使用できる。
<Carbon black>
As the carbon black used in the present invention, various types such as commercially available furnace black, channel black, thermal black, acetylene black, ketjen black and the like can be used. Further, carbon black subjected to oxidation treatment or hollow carbon black, which is usually performed, can also be used.

カーボンブラックの酸化処理は、カーボンブラックを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンブラックの分散性を向上させるために一般的に行われている。官能基の導入量が多くなる程カーボンブラックの導電性が低下することが一般的であるため、高抵抗での安定性が要求される電子写真用シームレスベルトに好適に用いられる。逆に高導電性を求められる電池用電極には中性カーボンブラックが好適に用いられる。   The oxidation treatment of carbon black is performed by treating the carbon black at a high temperature in the air or by treating it with nitric acid, nitrogen dioxide, ozone, etc., for example, phenol group, quinone group, carboxyl group, carbonyl group. This is a treatment for directly introducing (covalently bonding) such an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon black. Since the conductivity of carbon black generally decreases as the amount of functional group introduced increases, it is suitably used for an electrophotographic seamless belt that requires stability at high resistance. Conversely, neutral carbon black is suitably used for battery electrodes that require high conductivity.

また、カーボンブラックの粒径としては、通常のインキや塗料に用いるカーボンブラックの粒径範囲と同様に0.01〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう粒径とは電子顕微鏡などで測定された平均一次粒子径を示し、この物性値は一般にカーボンブラックの物理的特性を表すのに用いられている。   The particle size of carbon black is preferably 0.01 to 1 μm, and particularly preferably 0.01 to 0.2 μm, as in the particle size range of carbon black used in ordinary inks and paints. However, the particle size referred to here indicates an average primary particle size measured with an electron microscope or the like, and the physical property values are generally used to represent the physical characteristics of carbon black.

<ポリビニルアセタール樹脂>
本発明には分散剤としてポリビニルアセタール樹脂を用いる。ポリビニルアセタール樹脂はアセタール基、アセチル基、水酸基を有するそれぞれ3種の繰り返し単位からなる高分子化合物である。
<Polyvinyl acetal resin>
In the present invention, a polyvinyl acetal resin is used as a dispersant. The polyvinyl acetal resin is a polymer compound composed of three types of repeating units each having an acetal group, an acetyl group, and a hydroxyl group.

本発明に用いるポリビニルアセタール樹脂としては、特に限定されるものではなく、各種の市販品、合成品を単独で、もしくは2種類以上併せて使用することができる。また、水酸基をアシル化、ウレタン化反応などの化学修飾法により調整したものも使用することもできる。   The polyvinyl acetal resin used in the present invention is not particularly limited, and various commercially available products and synthetic products can be used alone or in combination of two or more. Moreover, what adjusted the hydroxyl group with chemical modification methods, such as acylation and a urethanation reaction, can also be used.

アセタール基の種類は特に限定されるものではなく、公知の方法で合成された各種ポリビニルアセタール樹脂を使用することができる。中でもブチラール基を有するものが最も一般的で入手しやすく、N−メチル−2−ピロリドンへの溶解性も良好なため好ましい。   The kind of acetal group is not particularly limited, and various polyvinyl acetal resins synthesized by a known method can be used. Among them, those having a butyral group are most preferable because they are the most common and readily available and have good solubility in N-methyl-2-pyrrolidone.

カーボンブラックの分散安定性は、ポリビニルアセタール樹脂中の水酸基を含む繰り返し単位の含有量に影響される傾向が見出された。水酸基を含む繰り返し単位の含有量は12〜30重量%が好ましく、15〜25重量%がさらに好ましい。また、アセチル基を含む繰り返し単位は10重量%以下が好ましく、5重量%以下がさらに好ましい。   It has been found that the dispersion stability of carbon black tends to be influenced by the content of repeating units containing a hydroxyl group in the polyvinyl acetal resin. The content of the repeating unit containing a hydroxyl group is preferably 12 to 30% by weight, and more preferably 15 to 25% by weight. The repeating unit containing an acetyl group is preferably 10% by weight or less, and more preferably 5% by weight or less.

また、ポリビニルアセタール樹脂のN−メチル−2−ピロリドンに対する溶解性は平均分子量もしくは平均重合度に影響される傾向が見出された。重量平均分子量が10万以下の上記樹脂であれば、本発明における添加量として十分な量がN−メチル−2−ピロリドンに溶解するため好ましく、5万以下であれば溶解速度が大きいためさらに好ましい。また、平均重合度が2000以下の上記樹脂であれば、本発明における添加量として十分な量がN−メチル−2−ピロリドンに溶解するため好ましく、800以下であれば溶解速度が大きいためさらに好ましい。   Further, it was found that the solubility of the polyvinyl acetal resin in N-methyl-2-pyrrolidone tends to be influenced by the average molecular weight or the average degree of polymerization. The above resin having a weight average molecular weight of 100,000 or less is preferable because an amount sufficient as an addition amount in the present invention is dissolved in N-methyl-2-pyrrolidone, and if it is 50,000 or less, the dissolution rate is high, and further preferable. . In addition, the above resin having an average degree of polymerization of 2000 or less is preferable because an amount sufficient as an addition amount in the present invention is dissolved in N-methyl-2-pyrrolidone. .

市販のポリビニルアセタール樹脂としては、例えば、エスレックBL−1、BL−10、BM−1、BH−3(積水化学工業社製ポリビニルブチラール樹脂)、エスレックBX−1、BX−L、KS−10(同社製ポリビニルアセタール樹脂)、デンカブチラール#3000−1、#3000−K、#4000−2(電気化学工業社製ポリビニルブチラール樹脂)、モビタールLPB16H、B20H、B30T、B30H、B30HH、B45M(クラレ社製ポリビニルブチラール樹脂)等が挙げられるが、これらに限定されるものではない。   Examples of commercially available polyvinyl acetal resins include, for example, ESREC BL-1, BL-10, BM-1, BH-3 (polyvinyl butyral resin manufactured by Sekisui Chemical Co., Ltd.), ESREC BX-1, BX-L, KS-10 ( Polyvinyl acetal resin), Denkabutyral # 3000-1, # 3000-K, # 4000-2 (polyvinyl butyral resin made by Denki Kagaku Kogyo), Mobital LPB16H, B20H, B30T, B30H, B30HH, B45M (manufactured by Kuraray Co., Ltd.) Polyvinyl butyral resin) and the like, but is not limited thereto.

<N−メチル−2−ピロリドン>
本発明にはN−メチル−2−ピロリドンが好適に用いられる。N−メチル−2−ピロリドンはラクタム構造を含む5員環の構造を持つ有機化合物で、ジメチルホルムアミドやジメチルアセトアミド、ジメチルスルホキシド等と同じく非プロトン性極性溶媒に属する。高い溶解性を持つため、特に高分子化学の分野を中心に様々な物質に対する溶媒として用いられる。また各種繊維やレジン樹脂、金属皮膜プラスチックの表面処理時の溶媒や、ペンキはがし剤としても用いられる。
<N-methyl-2-pyrrolidone>
In the present invention, N-methyl-2-pyrrolidone is preferably used. N-methyl-2-pyrrolidone is an organic compound having a 5-membered ring structure including a lactam structure, and belongs to an aprotic polar solvent like dimethylformamide, dimethylacetamide, dimethylsulfoxide and the like. Since it has high solubility, it is used as a solvent for various substances, particularly in the field of polymer chemistry. It is also used as a solvent and paint remover for the surface treatment of various fibers, resin resins, and metal film plastics.

リチウムイオン二次電池の電極製造や、電子写真用シームレスベルト製造に一般的に用いられているのもN−メチル−2−ピロリドンである。前述のようにジメチルホルムアミドやジメチルアセトアミドなども類似の性質を示すため、これらもカーボンブラックの分散に使用することが可能である。しかしながら、本発明の想定する用途から、N−メチル−2−ピロリドンを用いるのが好ましい。   N-methyl-2-pyrrolidone is also commonly used for producing electrodes for lithium ion secondary batteries and seamless belts for electrophotography. As described above, dimethylformamide, dimethylacetamide, and the like also show similar properties, and thus can be used for dispersion of carbon black. However, it is preferable to use N-methyl-2-pyrrolidone from the intended use of the present invention.

<カーボンブラック分散体の製造方法>
本発明の分散体は、分散剤としてポリビニルアセタール樹脂を用いてカーボンブラックをN−メチル−2−ピロリドンに分散するものである。この場合、ポリビニルアセタール樹脂を、N−メチル−2−ピロリドン中に完全ないしは一部溶解させ、その溶液中にカーボンブラックを添加、混合することで上記樹脂をカーボンブラックに作用(例えば吸着)させつつ分散する。
<Method for producing carbon black dispersion>
The dispersion of the present invention is a dispersion of carbon black in N-methyl-2-pyrrolidone using a polyvinyl acetal resin as a dispersant. In this case, the polyvinyl acetal resin is completely or partially dissolved in N-methyl-2-pyrrolidone, and carbon black is added and mixed in the solution to cause the resin to act on carbon black (for example, adsorption). scatter.

ポリビニルアセタール樹脂をカーボンブラックに作用(例えば吸着)させつつ、カーボンブラックをN−メチル−2−ピロリドンに分散するための装置としては、顔料分散等に通常用いられている分散機が使用できる。例えば、ディスパー、ホモミキサー、プラネタリーミキサー等のミキサー類、ホモジナイザー(エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」等)類、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル等のメディア型分散機、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、奈良機械社製「MICROS」等のメディアレス分散機、その他ロールミル等が挙げられるが、これらに限定されるものではない。   As an apparatus for dispersing the carbon black in N-methyl-2-pyrrolidone while allowing the polyvinyl acetal resin to act (for example, adsorb) on the carbon black, a disperser usually used for pigment dispersion or the like can be used. For example, mixers such as dispersers, homomixers, planetary mixers, homogenizers ("Claremix" manufactured by M Technique, PRIMIX "Fillmix", etc.), paint conditioners (manufactured by Red Devil), ball mills, sand mills ( Media type dispersers such as “Dynomill” manufactured by Shinmaru Enterprises, Inc.), Attritor, Pearl Mill (“DCP Mill” manufactured by Eirich), Coball Mill, etc., Wet Jet Mill (“Genus PY” manufactured by Genus, Sugino Machine Media-less dispersers such as “Starburst” manufactured by Nanomizer, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, and “MICROS” manufactured by Nara Machinery Co., other roll mills, etc. It is not limited to.

次に、カーボンブラックのポリビニルアセタール樹脂による表面処理について説明する。上記樹脂により表面処理されたカーボンブラックを得る方法としては、乾式処理による方法が挙げられる。   Next, the surface treatment of carbon black with a polyvinyl acetal resin will be described. Examples of a method for obtaining carbon black surface-treated with the resin include a dry treatment method.

本発明における乾式処理は、常温もしくは加熱下で乾式処理装置によりカーボンブラックおよびポリビニルアセタール樹脂の混合、粉砕等を行いながら、カーボンブラック表面に上記樹脂を作用(例えば吸着)させるものである。使用する装置としては特に限定されるものではく、ペイントコンディショナー(レッドデビル社製)、ボールミル、アトライター、振動ミル等のメディア型分散機、ニーダー、ローラーミル、石臼式ミル、プラネタリーミキサー、フェンシェルミキサー、ハイブリダイザー((株)奈良機械製作所)、メカノマイクロス((株)奈良機械製作所)、メカノフュージョンシステムAMS(ホソカワミクロン(株))等のメディアレス分散・混錬機が使用できるが、コンタミ等を考慮し、メディアレスの分散・混錬機を使用するのが好ましい。   In the dry treatment according to the present invention, the resin is allowed to act (for example, adsorb) on the surface of the carbon black while mixing or pulverizing the carbon black and the polyvinyl acetal resin with a dry treatment apparatus at room temperature or under heating. The equipment to be used is not particularly limited. Media type dispersers such as paint conditioner (manufactured by Red Devil), ball mill, attritor, vibration mill, kneader, roller mill, stone mill, planetary mixer, fen Medialess dispersion / kneading machines such as Shell Mixer, Hybridizer (Nara Machinery Co., Ltd.), Mechano Micros (Nara Machinery Co., Ltd.), Mechano Fusion System AMS (Hosokawa Micron Co., Ltd.) can be used. In consideration of contamination and the like, it is preferable to use a medialess dispersion / kneading machine.

また、このとき処理物がゲル状にならない範囲で有機溶剤を添加してもよい。溶剤の添加によるポリビニルアセタール樹脂の濡れ、または(一部)溶解、およびカーボンブラックの上記樹脂に対する濡れが向上することで、カーボンブラックと上記樹脂の相互作用(例えば吸着)促進の効果が期待される。このとき用いる溶剤は特に限定されるものではないが、N−メチル−2−ピロリドン以外を使用する場合は処理後に乾燥することが望ましい。また、有機溶剤の添加量は用いる材料により異なるが、上記樹脂の添加量に対して0.5〜100重量%である。さらに必要に応じて窒素ガスなどを流すことで、乾式処理装置内部を脱酸素雰囲気として処理を行っても良い。   Moreover, you may add an organic solvent in the range by which a processed material does not become a gel form at this time. The effect of promoting the interaction (for example, adsorption) between the carbon black and the resin is expected by improving the wetting or (partial) dissolution of the polyvinyl acetal resin by the addition of the solvent and the wetting of the carbon black to the resin. . The solvent used at this time is not particularly limited. However, when a solvent other than N-methyl-2-pyrrolidone is used, it is desirable to dry after the treatment. Moreover, although the addition amount of an organic solvent changes with materials to be used, it is 0.5 to 100 weight% with respect to the addition amount of the said resin. Further, the inside of the dry processing apparatus may be treated as a deoxygenated atmosphere by flowing nitrogen gas or the like as necessary.

処理時間は用いる装置によって、また希望とする混練度に応じて任意に設定できる。これら処理を行うことにより、粉状もしくは塊状の処理物を得ることができる。得られた処理物については、その後、更に乾燥、粉砕を行っても良い。   The treatment time can be arbitrarily set depending on the apparatus used and the desired degree of kneading. By performing these treatments, a powdery or lump-like treated product can be obtained. About the obtained processed material, you may further dry and grind | pulverize after that.

続いて、カーボンブラック分散体の組成について説明する。分散体中におけるカーボンブラックの濃度は、使用するカーボンブラックの比表面積や表面官能基量などのカーボンブラック固有の特性値等にもよるが、1重量%以上、50重量%以下が好ましく、更に好ましくは5重量%以上、35重量%以下である。カーボンブラックの濃度が低すぎると生産効率が悪くなり、カーボンブラックの濃度が高すぎると分散体の粘度が著しく高くなり、分散効率や分散体のハンドリング性が低下する場合がある。   Subsequently, the composition of the carbon black dispersion will be described. The concentration of carbon black in the dispersion is preferably 1% by weight or more and 50% by weight or less, although it depends on the characteristic values inherent to the carbon black such as the specific surface area of the carbon black used and the amount of surface functional groups. Is 5% by weight or more and 35% by weight or less. When the carbon black concentration is too low, the production efficiency is deteriorated, and when the carbon black concentration is too high, the viscosity of the dispersion is remarkably increased, and the dispersion efficiency and the handleability of the dispersion may be lowered.

ポリビニルアセタール樹脂の添加量は用いるカーボンブラックの比表面積等により決定される。一般には、カーボンブラック100重量部に対して、0.5重量部以上、40重量部以下、好ましくは1重量部以上、20重量部以下、さらに好ましくは、2重量部以上、10重量部以下である。ポリビニルアセタール樹脂の量が少ないと十分な分散効果が得られず、過剰に添加しても顕著な分散向上効果は得られない。   The addition amount of the polyvinyl acetal resin is determined by the specific surface area of the carbon black used. Generally, it is 0.5 parts by weight or more and 40 parts by weight or less, preferably 1 part by weight or more and 20 parts by weight or less, more preferably 2 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of carbon black. is there. If the amount of the polyvinyl acetal resin is small, a sufficient dispersion effect cannot be obtained, and even if added excessively, a significant dispersion improvement effect cannot be obtained.

カーボンブラックの分散粒径は、0.03μm以上、2μm以下、好ましくは、0.05μm以上、1μm以下、更に好ましくは0.05μm以上、0.5μm以下に微細化することが望ましい。カーボンブラックの分散粒径が0.03μm未満の組成物は、その作製が難しい場合がある。また、カーボンブラックの分散粒径が2μmを超える組成物は、塗工した際に膜欠陥を生じたり、貯蔵安定性が悪い場合がある。ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。   The dispersed particle diameter of carbon black is desirably 0.03 μm or more and 2 μm or less, preferably 0.05 μm or more and 1 μm or less, more preferably 0.05 μm or more and 0.5 μm or less. A composition having a carbon black dispersed particle size of less than 0.03 μm may be difficult to produce. In addition, a composition having a carbon black dispersion particle size exceeding 2 μm may cause film defects when applied or may have poor storage stability. The dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution. A particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).

<カーボンブラック分散体の用途>
本発明のカーボンブラック分散体の利用分野としては、特に制限はないが、遮光性、導電性、耐久性、漆黒性等が要求される分野、例えば、グラビアインキ、オフセットインキ、磁気記録媒体用バックコート、静電トナー、インクジェット、自動車塗料、繊維・プラスチック形成材料、電池用電極、電子写真用シームレスベルトにおいて、安定かつ均一な組成物を提供し得るものである。中でも、N−メチル−2−ピロリドンを使用すること、ポリフッ化ビニリデンやポリイミド前駆体などと良好に相溶すること、および形成される塗膜や成型物の強度、柔軟性が良好なことから、リチウムイオン二次電池用電極、電子写真用シームレスベルトに好適に用いられる。
<Uses of carbon black dispersion>
The field of application of the carbon black dispersion of the present invention is not particularly limited, but is a field that requires light-shielding properties, electrical conductivity, durability, jetness, etc., for example, gravure ink, offset ink, magnetic recording medium back In coatings, electrostatic toners, ink jets, automobile paints, fiber / plastic forming materials, battery electrodes, and electrophotographic seamless belts, a stable and uniform composition can be provided. Among them, from using N-methyl-2-pyrrolidone, being well compatible with polyvinylidene fluoride, polyimide precursor, etc., and the strength and flexibility of the formed coating film and molded product, It is suitably used for electrodes for lithium ion secondary batteries and seamless belts for electrophotography.

本発明の電池用電極やリチウムイオン二次電池は、コバルト酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物などの正極活物質、導電材としての本発明のカーボンブラック分散体、及びポリフッ化ビニリデン、ポリテトラフルオロエチレン等のバインダーを成分として用いて公知の方法によって製造することができる。また、本発明の電子写真用シームレスベルトは、導電材としての本発明のカーボンブラック分散体、ポリイミド、ポリアミドイミド等およびその前駆体を成分として用いて公知の方法によって製造することができる。   The battery electrode or lithium ion secondary battery of the present invention includes a positive electrode active material such as lithium transition metal composite oxide such as lithium cobaltate and lithium manganate, the carbon black dispersion of the present invention as a conductive material, and polyfluoride. It can be produced by a known method using a binder such as vinylidene or polytetrafluoroethylene as a component. The seamless belt for electrophotography of the present invention can be produced by a known method using the carbon black dispersion, polyimide, polyamideimide, etc. of the present invention as a conductive material and its precursor as components.

以下、実施例に基づき本発明を詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。本実施例中、部は重量部を、%は重量%をそれぞれ表す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example, unless the summary is exceeded. In this example, “part” represents “part by weight” and “%” represents “% by weight”.

実施例及び比較例で使用したカーボンブラック、ポリビニルアセタール樹脂、分散剤、活物質、バインダー、ポリイミド前駆体溶液を以下に示す。   The carbon black, polyvinyl acetal resin, dispersant, active material, binder, and polyimide precursor solution used in the examples and comparative examples are shown below.

<カーボンブラック>
・#30(三菱化学社製):ファーネスブラック、一次粒子径30nm、比表面積74m2/g。
・MA77(三菱化学社製):酸化処理カーボンブラック、一次粒子径23nm、比表面積130m2/g。
・デンカブラック粒状品(電気化学工業社製):アセチレンブラック、一次粒子径35nm、比表面積68m2/g、以下粒状品と略記する。
・EC−300J(アクゾ社製):ケッチェンブラック、一次粒子径40nm、比表面積800m2/g。
<Carbon black>
# 30 (manufactured by Mitsubishi Chemical Corporation): furnace black, primary particle size 30 nm, specific surface area 74 m <2> / g.
MA77 (manufactured by Mitsubishi Chemical Corporation): oxidized carbon black, primary particle size 23 nm, specific surface area 130 m 2 / g.
Denka black granular product (manufactured by Denki Kagaku Kogyo Co., Ltd.): Acetylene black, primary particle size 35 nm, specific surface area 68 m 2 / g, hereinafter abbreviated as granular product.
EC-300J (manufactured by Akzo): Ketjen black, primary particle size 40 nm, specific surface area 800 m <2> / g.

<ポリビニルアセタール樹脂>
・エスレックBL−1(積水化学工業社製):ポリビニルブチラール樹脂、水酸基を含む繰り返し単位:25%、計算分子量:19000、以下BL−1と略記する。
・エスレックBX−L(積水化学工業社製):ポリビニルアセタール樹脂、水酸基を含む繰り返し単位:30%、計算分子量20000、以下BX−Lと略記する。
・デンカブチラール#3000−1(電気化学工業社製):ポリビニルブチラール樹脂、水酸基を含む繰り返し単位:19%、平均重合度:600、以下BL−10と略記する。
・デンカブチラール#3000−K(電気化学工業社製):ポリビニルブチラール樹脂、水酸基を含む繰り返し単位:12%、平均重合度:800、以下#3000−Kと略記する。
・デンカブチラール#5000−A(電気化学工業社製):ポリビニルブチラール樹脂、水酸基を含む繰り返し単位:16%、平均重合度:2000、以下#5000−Aと略記する。
・モビタールLPB16H(クラレ社製):ポリビニルブチラール樹脂、水酸基を含む繰り返し単位:18%、平均分子量15000、以下B16Hと略記する。
<Polyvinyl acetal resin>
-ESREC BL-1 (manufactured by Sekisui Chemical Co., Ltd.): polyvinyl butyral resin, repeating unit containing a hydroxyl group: 25%, calculated molecular weight: 19000, hereinafter abbreviated as BL-1.
-ESREC BX-L (manufactured by Sekisui Chemical Co., Ltd.): polyvinyl acetal resin, repeating unit containing a hydroxyl group: 30%, calculated molecular weight 20000, hereinafter abbreviated as BX-L.
Denkabutyral # 3000-1 (manufactured by Denki Kagaku Kogyo Co., Ltd.): polyvinyl butyral resin, repeating unit containing a hydroxyl group: 19%, average degree of polymerization: 600, hereinafter abbreviated as BL-10.
Denka butyral # 3000-K (manufactured by Denki Kagaku Kogyo Co., Ltd.): polyvinyl butyral resin, repeating unit containing a hydroxyl group: 12%, average degree of polymerization: 800, hereinafter abbreviated as # 3000-K.
Denkabutyral # 5000-A (manufactured by Denki Kagaku Kogyo Co., Ltd.): polyvinyl butyral resin, repeating unit containing a hydroxyl group: 16%, average degree of polymerization: 2000, hereinafter abbreviated as # 5000-A.
Mobital LPB16H (manufactured by Kuraray Co., Ltd.): polyvinyl butyral resin, repeating unit containing a hydroxyl group: 18%, average molecular weight 15000, hereinafter abbreviated as B16H.

<分散剤>
[界面活性剤]
・エマルゲンA−60(花王社製):ノニオン性の界面活性剤(ポリオキシエチレン誘導体)、以下EmA−60と略記する。
・デモールN(花王社製):アニオン性の界面活性剤(β−ナフタレンスルホン酸−ホルマリン縮合物のナトリウム塩)、以下DemNと略記する。
<Dispersant>
[Surfactant]
Emulgen A-60 (manufactured by Kao Corporation): nonionic surfactant (polyoxyethylene derivative), hereinafter abbreviated as EmA-60.
Demol N (manufactured by Kao Corporation): an anionic surfactant (β-naphthalenesulfonic acid-formalin condensate sodium salt), hereinafter abbreviated as DemN.

[分散樹脂]
・アジスパーPB−821(味の素ファインテクノ社製):塩基性官能基含有共重合物、以下PB−821と略記する。
・ルビテックK30(BASF社製):ポリビニルピロリドン、平均分子量:50000、以下K30と略記する。
[Dispersion resin]
Azisper PB-821 (manufactured by Ajinomoto Fine Techno Co.): a basic functional group-containing copolymer, hereinafter abbreviated as PB-821.
Rubitec K30 (manufactured by BASF): polyvinylpyrrolidone, average molecular weight: 50000, hereinafter abbreviated as K30.

<活物質>
・HLC−22(本荘ケミカル社製):正極用活物質コバルト酸リチウム(LiCoO)、平均粒径6.6μm、比表面積0.62m/g、以下LCOと略記する。
・MCMB6−28(大阪ガスケミカル社製):負極用活物質メソフェーズカーボン(MFC)、平均粒径5〜7μm、比表面積4m/g、以下MFCと略記する。
<Active material>
HLC-22 (Honjo Chemical Co., Ltd.): positive electrode active material lithium cobaltate (LiCoO 2 ), average particle size 6.6 μm, specific surface area 0.62 m 2 / g, hereinafter abbreviated as LCO.
MCMB6-28 (manufactured by Osaka Gas Chemical Co.): active material for negative electrode mesophase carbon (MFC), average particle diameter of 5 to 7 μm, specific surface area of 4 m 2 / g, hereinafter abbreviated as MFC.

<バインダー>
・KFポリマーW1100(クレハ社製):ポリフッ化ビニリデン(PVDF)、以下PVDFと略記する。
<Binder>
KF polymer W1100 (manufactured by Kureha): polyvinylidene fluoride (PVDF), hereinafter abbreviated as PVDF.

<ポリイミド前駆体溶液>
・U−ワニス−A(宇部興産社製):ポリイミド前駆体N−メチル−2−ピロリドン溶液、20%、以下Uワニスと略記する。
<Polyimide precursor solution>
U-varnish-A (manufactured by Ube Industries): polyimide precursor N-methyl-2-pyrrolidone solution, 20%, hereinafter abbreviated as U varnish.

<表面処理カーボンブラックの調製>
粒状品を100部、BL−1を4部、N−メチル−2−ピロリドンを3部仕込み、プラネタリーミキサーにて30分間処理を行い、表面処理カーボンブラックAを得た。
<Preparation of surface-treated carbon black>
100 parts of a granular product, 4 parts of BL-1, and 3 parts of N-methyl-2-pyrrolidone were charged and treated with a planetary mixer for 30 minutes to obtain surface-treated carbon black A.

<カーボンブラック分散体の調製>
実施例、比較例で得られたカーボンブラック分散体の評価は、粘度、分散粒径の測定により行った。粘度の測定にはB型粘度計(東機産業社製「BL」)を用いて、25℃、60rpmで行った。分散粒径の測定は、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)を用いて平均粒子径(D50の値)を測定した。測定時の希釈溶剤としてはN−メチル−2−ピロリドンを用いた。貯蔵安定性の評価は、カーボンブラック分散体を40℃で10日間保存した後の粒径の変化から評価した。
<Preparation of carbon black dispersion>
The carbon black dispersions obtained in the examples and comparative examples were evaluated by measuring the viscosity and the dispersed particle size. The viscosity was measured using a B-type viscometer (“BL” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 60 rpm. The dispersion particle size was measured by measuring the average particle size (D50 value) using a dynamic light scattering particle size distribution meter (“MICROTRACK UPA” manufactured by Nikkiso Co., Ltd.). N-methyl-2-pyrrolidone was used as a diluent solvent at the time of measurement. The storage stability was evaluated from the change in particle size after the carbon black dispersion was stored at 40 ° C. for 10 days.

[実施例1〜実施例9]
表1に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと各種ポリビニルアセタール樹脂を仕込み、混合溶解した後、各種カーボンブラックを加え、ジルコニアビーズをメディアとして、ペイントシェーカーで2時間分散し、各種カーボンブラック分散体を得た。いずれも低粘度かつ分散粒度が小さく、貯蔵安定性も良好であった。また、実施例3の分散体の水分を電量法水分計(三菱化学アナリテック社製「CA100」)を用いて測定したところ、0.09%であった。
[Example 1 to Example 9]
In accordance with the composition shown in Table 1, N-methyl-2-pyrrolidone and various polyvinyl acetal resins were charged into a glass bottle, mixed and dissolved, then various carbon blacks were added, and dispersed in a paint shaker for 2 hours using zirconia beads as a medium. A carbon black dispersion was obtained. All of them had low viscosity, a small dispersed particle size, and good storage stability. Moreover, it was 0.09% when the water | moisture content of the dispersion of Example 3 was measured using the coulometric moisture meter ("CA100" by Mitsubishi Chemical Analytech Co., Ltd.).

[実施例10]
表1に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと先に調製した表面処理カーボンブラックAを仕込み、ジルコニアビーズをメディアとして、ペイントシェーカーで2時間分散し、カーボンブラック分散体を得た。低粘度かつ分散粒度が小さく、貯蔵安定性も良好であった。
[Example 10]
According to the composition shown in Table 1, N-methyl-2-pyrrolidone and the previously prepared surface-treated carbon black A were charged in a glass bottle, and dispersed for 2 hours with a paint shaker using zirconia beads as a medium to obtain a carbon black dispersion. . Low viscosity, small dispersion particle size, and good storage stability.

Figure 2011184664
Figure 2011184664

[比較例1〜比較例4]
表2に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと各種カーボンブラックとを仕込み、ジルコニアビーズをメディアとして、ペイントシェーカーで2時間分散したが、分散体はいずれも著しく凝集していた。カーボンブラックは凝集性が強く、単独でN−メチル−2−ピロリドンに分散するのは困難である。また、比較例3の分散体の水分を電量法水分計(三菱化学アナリテック社製「CA100」)を用いて測定したところ、0.08%であった。
[Comparative Examples 1 to 4]
According to the composition shown in Table 2, N-methyl-2-pyrrolidone and various carbon blacks were charged in a glass bottle and dispersed for 2 hours with a paint shaker using zirconia beads as a medium. All of the dispersions were remarkably aggregated. Carbon black is highly cohesive and difficult to disperse in N-methyl-2-pyrrolidone alone. Moreover, it was 0.08% when the water | moisture content of the dispersion of the comparative example 3 was measured using the coulometric method moisture meter ("CA100" by Mitsubishi Chemical Analytech Co., Ltd.).

[比較例5〜比較例11]
表2に示す組成に従い、ガラス瓶にN−メチル−2−ピロリドンと各種分散剤とを仕込み、混合溶解した後、各種カーボンブラックを加え、ジルコニアビーズをメディアとして、ペイントシェーカーで2時間分散し、各種カーボンブラック分散体を得た。いずれも実施例の分散体よりも高粘度かつ分散粒度が大きかった。また、50μmゲージで評価した比較例10の分散体の分散度は25μmであり、経時で凝集傾向であった。また、比較例7および比較例11の分散体の水分を電量法水分計(三菱化学アナリテック社製「CA100」)を用いて測定したところ、それぞれ0.12%、0.34%であった。
[Comparative Examples 5 to 11]
In accordance with the composition shown in Table 2, N-methyl-2-pyrrolidone and various dispersants were charged into a glass bottle, mixed and dissolved, then various carbon blacks were added, and dispersed in a paint shaker for 2 hours using zirconia beads as a medium. A carbon black dispersion was obtained. In any case, the viscosity and the dispersion particle size were larger than those of the dispersions of Examples. Further, the degree of dispersion of the dispersion of Comparative Example 10 evaluated with a 50 μm gauge was 25 μm and tended to aggregate over time. Moreover, when the water content of the dispersions of Comparative Example 7 and Comparative Example 11 was measured using a coulometric moisture meter (“CA100” manufactured by Mitsubishi Chemical Analytech Co., Ltd.), they were 0.12% and 0.34%, respectively. .

Figure 2011184664
Figure 2011184664

表1および表2より、実施例の分散体は比較例の分散体に比べて、低粘度かつ分散粒度が小さく、貯蔵安定性も良好であった。また、分散体の水分はポリビニルアセタール樹脂を使用した場合と分散剤を使用しない場合とでは大差ないが、ポリビニルピロリドンを使用した場合に増加する傾向が見られた。   From Tables 1 and 2, the dispersions of the examples had a low viscosity, a small dispersion particle size, and good storage stability compared to the dispersions of the comparative examples. Further, the water content of the dispersion was not significantly different between the case where the polyvinyl acetal resin was used and the case where the dispersant was not used, but a tendency to increase when the polyvinyl pyrrolidone was used was observed.

<電池電極用合材の調製>
実施例、比較例で得られた電池電極用合材の評価は、PETフィルム上にドクターブレードを用いて塗布した後、乾燥し、塗膜の表面抵抗と外観により行った。表面抵抗の測定にはロレスタ−GP(三菱化学アナリテック社製)を用いた(JISK7194に準ず)。塗膜外観は目視で○:問題なし、△:斑模様あり、×:粗粒の筋引きあり、とした。
<Preparation of battery electrode composite>
Evaluation of the battery electrode composites obtained in Examples and Comparative Examples was performed on a PET film using a doctor blade and then dried, and was performed based on the surface resistance and appearance of the coating film. Loresta-GP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) was used for measuring the surface resistance (according to JISK7194). The appearance of the coating film was visually evaluated as ◯: no problem, Δ: spotted pattern, x: coarse graining.

[実施例11、実施例12、比較例12〜比較例15]
表3に示す組成に従い、LCOまたはMFCと、実施例または比較例で調製した各種分散体、およびPVDFをディスパーにて混合し、各種電池電極用合材を得た。評価結果を表3に示した。
[Example 11, Example 12, Comparative Examples 12 to 15]
According to the composition shown in Table 3, LCO or MFC, various dispersions prepared in Examples or Comparative Examples, and PVDF were mixed with a disper to obtain various battery electrode composites. The evaluation results are shown in Table 3.

Figure 2011184664
Figure 2011184664

表3より、本発明の分散体を使用した実施例11、実施例12の電池電極用合材は、カーボンブラックとN−メチル−2−ピロリドンのみの分散体を使用した比較例12、比較例13に比べて塗膜の表面抵抗、外観ともに優れ、一般的な分散剤を使用した比較例14、比較例15に比べて塗膜の表面抵抗が優れることがわかる。   From Table 3, the battery electrode composites of Example 11 and Example 12 using the dispersion of the present invention were Comparative Example 12 and Comparative Example using a dispersion of only carbon black and N-methyl-2-pyrrolidone. It can be seen that the surface resistance and appearance of the coating film are excellent compared to 13, and the surface resistance of the coating film is superior to Comparative Examples 14 and 15 using a general dispersant.

<リチウムイオン二次電池正極評価用セルの組み立て>
[実施例13、比較例16、比較例17]
先に調製した電池電極用合材(実施例11、比較例12、比較例14)を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧下120℃で加熱乾燥した後、ローラープレス機にて圧延処理し、厚さ100μmの正極合材層を作製した。これを直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製#2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝仙社製HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行った。
<Assembly of lithium ion secondary battery positive electrode evaluation cell>
[Example 13, Comparative Example 16, Comparative Example 17]
The previously prepared battery electrode mixture (Example 11, Comparative Example 12, and Comparative Example 14) was applied onto a 20 μm thick aluminum foil serving as a current collector using a doctor blade, and then subjected to 120 ° C. under reduced pressure. After heating and drying at, a rolling process was performed with a roller press to produce a positive electrode mixture layer having a thickness of 100 μm. This is a punching working electrode with a diameter of 9 mm, a metallic lithium foil (thickness 0.15 mm) as a counter electrode, and a separator made of a porous polypropylene film (# 2400 manufactured by Celgard) is inserted and laminated between the working electrode and the counter electrode, An electrolyte solution (non-aqueous electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate in a ratio of 1: 1) is filled, and a bipolar electrode type metal cell (HS flat cell manufactured by Hosensha) ) Was assembled. The cell was assembled in a glove box substituted with argon gas.

<リチウムイオン二次電池負極評価用セルの組み立て>
[実施例14、比較例18、比較例19]
先に調製した電池電極用合材(実施例12、比較例13、比較例15)を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧下120℃で加熱乾燥した後、ローラープレス機にて圧延処理し、厚さ100μmの負極合材層を作製した。これを直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製#2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝仙社製HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行った。
<Assembly of lithium ion secondary battery negative electrode evaluation cell>
[Example 14, Comparative Example 18, Comparative Example 19]
The previously prepared battery electrode mixture (Example 12, Comparative Example 13, and Comparative Example 15) was applied onto a 20 μm-thick aluminum foil serving as a current collector using a doctor blade, and then subjected to 120 ° C. under reduced pressure. After being heated and dried at, a rolling process was performed with a roller press to produce a negative electrode mixture layer having a thickness of 100 μm. This is a punching working electrode with a diameter of 9 mm, a metallic lithium foil (thickness 0.15 mm) as a counter electrode, and a separator made of a porous polypropylene film (# 2400 manufactured by Celgard) is inserted and laminated between the working electrode and the counter electrode, An electrolyte solution (non-aqueous electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate in a ratio of 1: 1) is filled, and a bipolar electrode type metal cell (HS flat cell manufactured by Hosensha) ) Was assembled. The cell was assembled in a glove box substituted with argon gas.

<リチウムイオン二次電池正極特性評価>
作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧4.2V)で満充電とし、充電時と同じレートの定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM−8)を行った。また、評価後のセルを分解し、電極塗膜の外観を目視にて確認し、部分的に合材が集電体より剥がれているのが確認された場合に×とした。評価結果を表4に示した。
<Characteristic evaluation of lithium ion secondary battery positive electrode>
The produced battery evaluation cell was fully charged at a constant current and constant voltage charge (upper limit voltage 4.2 V) at a room temperature (25 ° C.) with a charge rate of 0.2 C and 1.0 C, and at a constant current at the same rate as during charging. Charge / discharge for discharging to a discharge lower limit voltage of 3.0V is defined as one cycle (charge / discharge interval rest time 30 minutes), and this cycle is performed for a total of 20 cycles to evaluate charge / discharge cycle characteristics (Evaluation apparatus: SM-8 manufactured by Hokuto Denko Co. ) Moreover, the cell after evaluation was decomposed | disassembled, the external appearance of the electrode coating film was confirmed visually, and it was set as x when it was confirmed that the composite material has partially peeled from the electrical power collector. The evaluation results are shown in Table 4.

Figure 2011184664
Figure 2011184664

表4より、本発明の電極を使用した実施例13は、比較例に比べて電池容量、20サイクル容量維持率において良好な結果が得られた。比較例16は評価後、集電体から合材が剥落していた。   From Table 4, in Example 13 using the electrode of the present invention, better results were obtained in battery capacity and 20 cycle capacity maintenance ratio than in the comparative example. In Comparative Example 16, the composite material was peeled off from the current collector after evaluation.

<リチウムイオン二次電池負極特性評価>
作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧0.5V)で満充電とし、充電時と同じレートの定電流で電圧が1.5Vになるまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工製SM−8)を行った。また、評価後のセルを分解し、電極塗膜不良の有無を目視にて確認し、部分的に合材が集電体より剥がれているのが確認された場合に×とした。評価結果を表5に示した。
<Evaluation of lithium ion secondary battery negative electrode characteristics>
The produced battery evaluation cell was fully charged at a constant current and constant voltage charge (upper limit voltage 0.5 V) at a room temperature (25 ° C.) and at a charge rate of 0.2 C and 1.0 C, and at a constant current at the same rate as the charge Charging / discharging for discharging until the voltage reaches 1.5 V is defined as one cycle (charging / discharging interval rest time 30 minutes), and this cycle is performed for a total of 20 cycles to evaluate charging / discharging cycle characteristics (Evaluation apparatus: SM-8 manufactured by Hokuto Denko) ) Moreover, the cell after evaluation was decomposed | disassembled, the presence or absence of the electrode coating film defect was confirmed visually, and it was set as x when it was confirmed that the composite material has partially peeled from the electrical power collector. The evaluation results are shown in Table 5.

Figure 2011184664
Figure 2011184664

表5より、本発明の電極を使用した実施例14は、比較例に比べて電池容量、20サイクル容量維持率において良好な結果が得られた。比較例18は評価後、集電体から合材が剥落していた。   From Table 5, in Example 14 using the electrode of the present invention, better results were obtained in battery capacity and 20 cycle capacity maintenance ratio than in the comparative example. In Comparative Example 18, the composite material was peeled off from the current collector after evaluation.

<電子写真用シームレスベルトの作製>
実施例、比較例で得られたシームレスベルトの評価は体積抵抗、引き裂き強度、および耐折強度の測定により行った。体積抵抗はハイレスタ−UP(三菱化学アナリテック社製)を用いて測定し(JISC2170に準ず)、100V/10秒印加時の体積抵抗を10点測定し、その最大値の対数値と最小値の対数値の差を「体積抵抗ばらつき」として求めた。この値が、0.5以下に収まることが好ましい。引き裂き強度はオートグラフAG−IS(島津製作所製)を用いて測定した(JISK7128に準ず)。引き裂き速度は100mm/分、強度として5N/mm以上が好ましい。耐折強度はMIT耐揉試験機DA(東洋精機製)を用いて測定し(JISP8115に準ず)、その際折り曲げ角度を135度、曲げ速度を175回/分、錘を1kg、サンプル幅を15mmとした。破断までの耐折回数としては、2000回以上が好ましい。
<Preparation of seamless belt for electrophotography>
The seamless belts obtained in Examples and Comparative Examples were evaluated by measuring volume resistance, tear strength, and bending strength. The volume resistance is measured using Hiresta UP (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) (according to JISC2170), and the volume resistance at the time of application of 100 V / 10 seconds is measured at 10 points. The difference in logarithmic value was determined as “volume resistance variation”. This value is preferably within 0.5 or less. The tear strength was measured using Autograph AG-IS (manufactured by Shimadzu Corporation) (according to JISK7128). The tearing speed is preferably 100 mm / min and the strength is preferably 5 N / mm or more. Folding strength was measured using a MIT weather resistance tester DA (manufactured by Toyo Seiki) (according to JISP8115). At that time, the bending angle was 135 degrees, the bending speed was 175 times / minute, the weight was 1 kg, and the sample width was 15 mm. It was. The folding endurance until breakage is preferably 2000 times or more.

[実施例15]
先に調整した実施例2の分散体40部と、Uワニス59.5部とポリエーテル変性シリコーン(FZ2105;東レダウコーニング社製)のN−メチル−2−ピロリドン1%溶液0.5部を遠心式攪拌脱泡機(あわとり練太郎AR500)にて1000rpmで2分間攪拌し、1000rpmで30sec脱泡し、塗工液Aを調整した。さらに、内径100mm、長さ300mmの内面を鏡面仕上げした金属製円筒を型として用い、この円筒型を50rpm(回/分)で回転させながら、上記で作製した塗工液を円筒内面に均一に流延するように流して塗布した。所定の全量を流し終えて塗膜が満遍なく広がった時点で、回転数を100rpmに上げ、熱風循環乾燥機に投入して、110℃まで徐々に昇温して60分加熱した。さらに昇温して200℃で20分加熱、次いで、300℃で30分加熱し、回転を停止、徐冷して取り出し、形成された塗膜を円筒内面から剥離し、膜厚65μmのシームレスベルトAを得た。
[Example 15]
40 parts of the dispersion of Example 2 prepared above, 59.5 parts of U varnish, and 0.5 part of an N-methyl-2-pyrrolidone 1% solution of polyether-modified silicone (FZ2105; manufactured by Toray Dow Corning) were added. The mixture was stirred at 1000 rpm for 2 minutes with a centrifugal stirring deaerator (Awatori Nertaro AR500), defoamed at 1000 rpm for 30 sec, and coating solution A was prepared. Further, a metal cylinder having an inner diameter of 100 mm and a length of 300 mm having a mirror-finished inner surface is used as a mold, and while rotating this cylinder mold at 50 rpm (times / minute), the coating liquid prepared above is uniformly applied to the inner surface of the cylinder. The solution was applied by casting. When the predetermined amount was completely poured and the coating film spread evenly, the number of revolutions was increased to 100 rpm, the hot air circulating dryer was introduced, and the temperature was gradually raised to 110 ° C. and heated for 60 minutes. Further heated and heated at 200 ° C. for 20 minutes, then heated at 300 ° C. for 30 minutes, stopped rotating, slowly cooled and taken out, the formed coating film was peeled off from the inner surface of the cylinder, and a seamless belt with a film thickness of 65 μm A was obtained.

[比較例20]
塗工液Aの作製に使用する分散体を比較例2の分散体と代える他は同様にして、シームレスベルトBを得た。
[Comparative Example 20]
A seamless belt B was obtained in the same manner except that the dispersion used in the preparation of the coating liquid A was replaced with the dispersion of Comparative Example 2.

[比較例21]
塗工液Aの作製に使用する分散体を比較例6の分散体と代える他は同様にして、シームレスベルトCを得た。
[Comparative Example 21]
A seamless belt C was obtained in the same manner except that the dispersion used in the preparation of the coating liquid A was replaced with the dispersion of Comparative Example 6.

各シームレスベルトについて、体積抵抗のばらつき、引き裂き強度、耐折強度を評価した。評価結果を表6に示した。   Each seamless belt was evaluated for variation in volume resistance, tear strength, and folding strength. The evaluation results are shown in Table 6.

Figure 2011184664
Figure 2011184664

表6より、本発明の分散体を使用した実施例15のシームレスベルトは、比較例に比べて体積抵抗ばらつきが小さく、強度に優れていることが分かる。   From Table 6, it can be seen that the seamless belt of Example 15 using the dispersion of the present invention has less variation in volume resistance and is superior in strength compared to the comparative example.

Claims (5)

カーボンブラックと、分散剤としてのポリビニルアセタール樹脂と、N−メチル−2−ピロリドンとを含む、カーボンブラック分散体。   A carbon black dispersion comprising carbon black, a polyvinyl acetal resin as a dispersant, and N-methyl-2-pyrrolidone. カーボンブラックの分散粒径(D50)が0.1〜2μmである請求項1記載のカーボンブラック分散体。   The carbon black dispersion according to claim 1, wherein the carbon black has a dispersed particle diameter (D50) of 0.1 to 2 µm. 請求項1または2記載の分散体を使用して電極合材層が形成された電池用電極。   A battery electrode in which an electrode mixture layer is formed using the dispersion according to claim 1. 集電体上に正極合材層を有する正極と、集電体上に負極合材層を有する負極と、リチウムを含む電解質とを具備するリチウムイオン二次電池であって、正極および負極の少なくとも一方が、請求項3記載の電池用電極であるリチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode having a positive electrode mixture layer on a current collector, a negative electrode having a negative electrode mixture layer on the current collector, and an electrolyte containing lithium, wherein the positive electrode and the negative electrode are at least A lithium ion secondary battery, one of which is the battery electrode according to claim 3. 請求項1または2記載の分散体を使用して形成された電子写真用シームレスベルト。   An electrophotographic seamless belt formed using the dispersion according to claim 1.
JP2010054665A 2010-03-11 2010-03-11 Carbon black dispersion Active JP5533057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054665A JP5533057B2 (en) 2010-03-11 2010-03-11 Carbon black dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054665A JP5533057B2 (en) 2010-03-11 2010-03-11 Carbon black dispersion

Publications (2)

Publication Number Publication Date
JP2011184664A true JP2011184664A (en) 2011-09-22
JP5533057B2 JP5533057B2 (en) 2014-06-25

Family

ID=44791317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054665A Active JP5533057B2 (en) 2010-03-11 2010-03-11 Carbon black dispersion

Country Status (1)

Country Link
JP (1) JP5533057B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036172A1 (en) * 2010-09-13 2012-03-22 保土谷化学工業株式会社 Carbon microfiber dispersion liquid
JP2013089575A (en) * 2011-10-21 2013-05-13 Toyota Motor Corp Lithium secondary battery and method for manufacturing the same
JP2013093109A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2013171816A (en) * 2012-02-23 2013-09-02 Toyota Motor Corp Method for manufacturing positive electrode plate for secondary battery
JP2014025850A (en) * 2012-07-27 2014-02-06 Toyota Motor Corp Method of inspecting electrode and use thereof
JP5454725B1 (en) * 2013-02-27 2014-03-26 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2014143000A (en) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, electrode for secondary battery and secondary battery
WO2014132809A1 (en) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP5601416B1 (en) * 2013-11-22 2014-10-08 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2014212022A (en) * 2013-04-18 2014-11-13 積水化学工業株式会社 Method for manufacturing all-solid battery
JP2014225446A (en) * 2013-04-22 2014-12-04 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, electrode for secondary battery, and secondary battery
JP2015030777A (en) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 Carbon black dispersion and application of the same
WO2015034064A1 (en) * 2013-09-06 2015-03-12 日本合成化学工業株式会社 Binder for lithium ion secondary battery electrode, production method for lithium ion secondary battery electrode, lithium ion secondary battery electrode, and lithium ion secondary battery
KR20150083831A (en) * 2012-09-14 2015-07-20 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
JP2015141883A (en) * 2014-01-30 2015-08-03 積水化学工業株式会社 Composition for lithium secondary battery electrode
CN105073915A (en) * 2013-02-27 2015-11-18 东洋油墨Sc控股株式会社 Carbon black dispersion and use thereof
JP2015219964A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Positive electrode paste and method of manufacturing the same
JP2016042461A (en) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
JP2016145308A (en) * 2014-02-21 2016-08-12 東京応化工業株式会社 Carbon black dispersion
JP2016149313A (en) * 2015-02-13 2016-08-18 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery and lithium ion secondary battery
KR20170037509A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon black dispersed solution and method for preparing the same
KR20170037458A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
KR20170037454A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
KR20170081840A (en) * 2016-01-05 2017-07-13 주식회사 엘지화학 Preparation method of positive eletrode slurry for lithium secondary battery
JP2017215358A (en) * 2016-05-30 2017-12-07 住友理工株式会社 Conductive roll for electrophotographic apparatus
JP2018060774A (en) * 2016-09-30 2018-04-12 積水化学工業株式会社 Composition for secondary battery electrode
KR20180075106A (en) * 2016-12-26 2018-07-04 주식회사 엘지화학 conductive composition, and positive electrode slurry including the same
WO2020194385A1 (en) * 2019-03-22 2020-10-01 株式会社 東芝 Electrode, battery and battery pack
WO2021182362A1 (en) 2020-03-09 2021-09-16 御国色素株式会社 Conductive material dispersion, and methods for manufacturing positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
US11352511B2 (en) 2017-05-12 2022-06-07 Toyo Ink Sc Holdings Co., Ltd. Dispersant, dispersant composition, dispersion composition for batteries, electrode and battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102143953B1 (en) 2016-03-24 2020-08-12 주식회사 엘지화학 Composition for preparing positive electrode of secondary battery, and positive electrode of secondary battery and secondary battery prepared using the same
WO2017164701A1 (en) * 2016-03-24 2017-09-28 주식회사 엘지화학 Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167655A (en) * 1982-03-26 1983-10-03 Mitsui Toatsu Chem Inc Carbon paste
JPH04249586A (en) * 1990-05-17 1992-09-04 Monsanto Co Pigment dispersion and its use in colored thermoplastic resin sheet
JPH0931402A (en) * 1995-07-17 1997-02-04 Hitachi Powdered Metals Co Ltd Production of carbon-based conductive paste
JPH09274919A (en) * 1996-04-03 1997-10-21 Toyo Takasago Kandenchi Kk Nonaqueous electrolyte secondary battery
JP2002275406A (en) * 2001-03-19 2002-09-25 Mitsubishi Pencil Co Ltd Ink composition for oil-based ball-point pen and ball- point pen
JP2003268289A (en) * 2002-03-20 2003-09-25 Nitto Denko Corp Carbon black dispersion, polyamic acid solution containing the same, and polyimide resin composition
JP2003311174A (en) * 2002-04-25 2003-11-05 Nippon Shokubai Co Ltd Method for manufacturing solid fine particle dispersion liquid
JP2007204531A (en) * 2006-01-31 2007-08-16 Ricoh Co Ltd Carbon black dispersion, film forming fluid, and image formation apparatus using the same
JP2010049874A (en) * 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167655A (en) * 1982-03-26 1983-10-03 Mitsui Toatsu Chem Inc Carbon paste
JPH04249586A (en) * 1990-05-17 1992-09-04 Monsanto Co Pigment dispersion and its use in colored thermoplastic resin sheet
JPH0931402A (en) * 1995-07-17 1997-02-04 Hitachi Powdered Metals Co Ltd Production of carbon-based conductive paste
JPH09274919A (en) * 1996-04-03 1997-10-21 Toyo Takasago Kandenchi Kk Nonaqueous electrolyte secondary battery
JP2002275406A (en) * 2001-03-19 2002-09-25 Mitsubishi Pencil Co Ltd Ink composition for oil-based ball-point pen and ball- point pen
JP2003268289A (en) * 2002-03-20 2003-09-25 Nitto Denko Corp Carbon black dispersion, polyamic acid solution containing the same, and polyimide resin composition
JP2003311174A (en) * 2002-04-25 2003-11-05 Nippon Shokubai Co Ltd Method for manufacturing solid fine particle dispersion liquid
JP2007204531A (en) * 2006-01-31 2007-08-16 Ricoh Co Ltd Carbon black dispersion, film forming fluid, and image formation apparatus using the same
JP2010049874A (en) * 2008-08-20 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036172A1 (en) * 2010-09-13 2012-03-22 保土谷化学工業株式会社 Carbon microfiber dispersion liquid
JP2013089575A (en) * 2011-10-21 2013-05-13 Toyota Motor Corp Lithium secondary battery and method for manufacturing the same
JP2013093109A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2013171816A (en) * 2012-02-23 2013-09-02 Toyota Motor Corp Method for manufacturing positive electrode plate for secondary battery
JP2014025850A (en) * 2012-07-27 2014-02-06 Toyota Motor Corp Method of inspecting electrode and use thereof
KR20150083831A (en) * 2012-09-14 2015-07-20 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
US20150311533A1 (en) * 2012-09-14 2015-10-29 Mikuni Shikiso Kabushiki Kaisha Slurry containing dispersed acetylene black, and lithium-ion secondary battery
KR102357030B1 (en) * 2012-09-14 2022-02-08 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
JP2018200898A (en) * 2012-09-14 2018-12-20 御国色素株式会社 Acetylene black dispersion slurry and lithium ion secondary battery
JPWO2014042266A1 (en) * 2012-09-14 2016-08-18 御国色素株式会社 Acetylene black dispersion slurry and lithium ion secondary battery
KR102188630B1 (en) * 2012-09-14 2020-12-08 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
KR20200100205A (en) * 2012-09-14 2020-08-25 미꾸니 시끼소 가부시키가이샤 Slurry containing dispersed acetylene black, and lithium-ion secondary battery
JP2014143000A (en) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, electrode for secondary battery and secondary battery
JP2014193986A (en) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd Carbon black dispersion and use thereof
CN105073915B (en) * 2013-02-27 2017-09-26 东洋油墨Sc控股株式会社 Carbon black dispersion liquid and its utilization
CN105073915A (en) * 2013-02-27 2015-11-18 东洋油墨Sc控股株式会社 Carbon black dispersion and use thereof
JP2014194001A (en) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd Carbon black dispersion and use thereof
WO2014132809A1 (en) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP5454725B1 (en) * 2013-02-27 2014-03-26 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2014212022A (en) * 2013-04-18 2014-11-13 積水化学工業株式会社 Method for manufacturing all-solid battery
JP2014225446A (en) * 2013-04-22 2014-12-04 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, electrode for secondary battery, and secondary battery
JP2015030777A (en) * 2013-08-01 2015-02-16 東洋インキScホールディングス株式会社 Carbon black dispersion and application of the same
WO2015034064A1 (en) * 2013-09-06 2015-03-12 日本合成化学工業株式会社 Binder for lithium ion secondary battery electrode, production method for lithium ion secondary battery electrode, lithium ion secondary battery electrode, and lithium ion secondary battery
JP2015101615A (en) * 2013-11-22 2015-06-04 東洋インキScホールディングス株式会社 Carbon black dispersion liquid and use of the same
JP5601416B1 (en) * 2013-11-22 2014-10-08 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2015141883A (en) * 2014-01-30 2015-08-03 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2016145308A (en) * 2014-02-21 2016-08-12 東京応化工業株式会社 Carbon black dispersion
JP2015219964A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Positive electrode paste and method of manufacturing the same
JP2016042461A (en) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
JP2016149313A (en) * 2015-02-13 2016-08-18 日本ゼオン株式会社 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery and lithium ion secondary battery
KR20170037458A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
KR20170037509A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon black dispersed solution and method for preparing the same
CN108028091A (en) * 2015-09-25 2018-05-11 株式会社Lg化学 Carbon black dispersion liquid and its manufacture method
KR20170037454A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
EP3340255A4 (en) * 2015-09-25 2018-08-01 LG Chem, Ltd. Carbon black dispersion solution and manufacturing method therefor
US10822498B2 (en) 2015-09-25 2020-11-03 Lg Chem, Ltd. Carbon black dispersion solution and manufacturing method therefor
KR101968221B1 (en) 2015-09-25 2019-04-11 주식회사 엘지화학 Carbon black dispersed solution and method for preparing the same
KR101997054B1 (en) * 2015-09-25 2019-07-05 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
KR101999707B1 (en) * 2015-09-25 2019-07-12 주식회사 엘지화학 Carbon nanotube dispersed solution and method for preparing the same
CN108028091B (en) * 2015-09-25 2019-08-13 株式会社Lg化学 Carbon black dispersion liquid and its manufacturing method
EP3340255B1 (en) 2015-09-25 2020-02-12 LG Chem, Ltd. Carbon black dispersion solution and manufacturing method thereof
KR20170081840A (en) * 2016-01-05 2017-07-13 주식회사 엘지화학 Preparation method of positive eletrode slurry for lithium secondary battery
JP2017215358A (en) * 2016-05-30 2017-12-07 住友理工株式会社 Conductive roll for electrophotographic apparatus
WO2017208695A1 (en) * 2016-05-30 2017-12-07 住友理工株式会社 Conductive roll for electrophotographic apparatuses
JP2021193676A (en) * 2016-09-30 2021-12-23 積水化学工業株式会社 Composition for secondary battery electrode
JP2018060774A (en) * 2016-09-30 2018-04-12 積水化学工業株式会社 Composition for secondary battery electrode
JP7269295B2 (en) 2016-09-30 2023-05-08 積水化学工業株式会社 Composition for secondary battery electrode
KR20180075106A (en) * 2016-12-26 2018-07-04 주식회사 엘지화학 conductive composition, and positive electrode slurry including the same
KR102256489B1 (en) 2016-12-26 2021-05-27 주식회사 엘지에너지솔루션 conductive composition, and positive electrode slurry including the same
US11352511B2 (en) 2017-05-12 2022-06-07 Toyo Ink Sc Holdings Co., Ltd. Dispersant, dispersant composition, dispersion composition for batteries, electrode and battery
WO2020194385A1 (en) * 2019-03-22 2020-10-01 株式会社 東芝 Electrode, battery and battery pack
JPWO2020194385A1 (en) * 2019-03-22 2021-10-21 株式会社東芝 Electrodes, batteries and battery packs
JP7106748B2 (en) 2019-03-22 2022-07-26 株式会社東芝 Electrodes, batteries and battery packs
WO2021182362A1 (en) 2020-03-09 2021-09-16 御国色素株式会社 Conductive material dispersion, and methods for manufacturing positive electrode for lithium ion secondary battery and lithium ion secondary battery using same

Also Published As

Publication number Publication date
JP5533057B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5533057B2 (en) Carbon black dispersion
JP6244923B2 (en) Carbon black dispersion and use thereof
JP6709586B2 (en) Carbon black dispersion and its use
JP6590034B1 (en) Carbon nanotube dispersion and use thereof
JP6524479B1 (en) Compound, dispersant, dispersion composition for battery, electrode, battery
JP5446178B2 (en) Positive electrode mixture paste for lithium secondary battery
JP5273274B1 (en) Lithium secondary battery electrode forming composition, secondary battery electrode
JP5470780B2 (en) Battery composition
JP5369550B2 (en) Battery composition
JP5601416B1 (en) Carbon black dispersion and use thereof
WO2019230820A1 (en) Carbon nanotube, carbon nanotube liquid dispersion, and use thereof
WO2014132809A1 (en) Carbon black dispersion and use thereof
JP2011162698A (en) Method for producing carbon material dispersion
JP6303832B2 (en) Carbon black dispersion and use thereof
JP2019061916A (en) Auxiliary conductive agent dispersion, application thereof and manufacturing method therefor
JP2010061934A (en) Negative electrode mixture, and lithium secondary battery using the same
JP2024045445A (en) Carbon nanotube dispersion and its use
JP2014135198A (en) Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP7059858B2 (en) Carbon black dispersion composition and its use
JP2020021629A (en) Carbon black dispersion composition for battery and use thereof
WO2023248980A1 (en) Carbon nanotube dispersed liquid, electrode mixture slurry, electrode film, and secondary battery
JP7109632B1 (en) Resin composition for secondary battery electrode, method for producing mixture slurry for secondary battery electrode, method for producing electrode film, and method for producing secondary battery
JP5764958B2 (en) Method for producing conductive carbon material dispersion in which polyvinylidene fluoride resin is dissolved
JP2016170891A (en) Composition for forming power storage device electrode, power storage device electrode, and power storage device
JP2023069017A (en) Carbon nanotube dispersion composition, and resin composition using the same, electrode film, secondary battery, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5533057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250