JP2010123627A - 真空処理装置 - Google Patents

真空処理装置 Download PDF

Info

Publication number
JP2010123627A
JP2010123627A JP2008293663A JP2008293663A JP2010123627A JP 2010123627 A JP2010123627 A JP 2010123627A JP 2008293663 A JP2008293663 A JP 2008293663A JP 2008293663 A JP2008293663 A JP 2008293663A JP 2010123627 A JP2010123627 A JP 2010123627A
Authority
JP
Japan
Prior art keywords
substrate
gas
electrode
ground electrode
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008293663A
Other languages
English (en)
Other versions
JP4929270B2 (ja
Inventor
Keisuke Kawamura
啓介 川村
Eishiro Sasagawa
英四郎 笹川
Naoyuki Miyazono
直之 宮園
Yoshiaki Takeuchi
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008293663A priority Critical patent/JP4929270B2/ja
Publication of JP2010123627A publication Critical patent/JP2010123627A/ja
Application granted granted Critical
Publication of JP4929270B2 publication Critical patent/JP4929270B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】製膜されたシリコン膜に発生する膜質分布を抑制し、製品の性能向上をはかり得るとともに放電電極の構造を簡素化しコストを低減し得る真空処理装置を提供することを目的とする。
【解決手段】基板側面33に原料ガスを放出する複数のガス供給孔35を有するとともに接地されている接地電極5と、それぞれ高周波電力が供給される複数の分割電極3a〜3hが接地電極5の基板側面33に対向するように並列されて形成され、接地電極5に対向する表面に基板8を保持する放電電極3と、分割電極3a〜3hの裏面側に取り付けられ、分割電極3a〜3hをインダクタンス成分を介して接地させるアースバー6と、が備えられていることを特徴とする。
【選択図】図3

Description

本発明は、真空処理装置に関し、プラズマを用いて基板に処理を行う真空処理装置に関する。
従来、半導体、薄型ディスプレイ、太陽電池等における薄膜形成等は、プラズマを用いて基板に処理を行う真空処理装置が利用されている。
このような真空処理装置としては、熱CVD(Chemical Vapor Deposition)装置、プラズマCVD(Chemical Vapor Deposition)装置、ドライエッチング装置、スパッタリング装置等がある。
これらの真空処理装置においては、生産性を向上させるために基板の大型化が図られている。特に、1mを越える大面積基板を用いる場合、膜質分布に不均一が生じて製品性能が低下するため、膜厚、膜質が均一となるよう製膜できることが強く求められている。
このような大型基板を用いるものとして、例えば、特許文献1に示されるものが提案されている。
これは、真空容器である製膜室内に、基板を保持する対向電極(接地電極)と、基板に対向するように配置された放電電極と、が備えられている。対向電極は接地され、製膜室に固定されている。
放電電極は、給電方向に対して直角方向に複数に分割されており、分割された電極(分割電極)の給電方向の両端に独立した高周波電源が接続されている。放電電極は、製膜室にセラミックス製の絶縁棒によって対向電極との間隔を調整できるように支持されている。
放電電極には、各分割電極の表面から原料ガスを放出するガス供給部が備えられ、供給された原料ガスは分割電極間から製膜雰囲気(基板の表面)に排出するようにされている。
放電電極を覆うように配置された防着板が、対向電極に接離可能に取り付けられている。防着板は、放電電極を覆う構造となっており、かつ電気的に接地されるので、電磁シールドの役割を果たすため、プラズマが対向電極と放電電極との間の空間から外側に拡散するのを防止している。
このように、放電電極が分割電極で構成されているので、分割電極の長手方向(給電方向)に沿って高周波電力が流れ、隣り合う電極の方向に流れ難い。このため、プラズマが給電方向に整流されるので、個々の高周波電力の供給を調整することによってプラズマの均一化をはかることができる。
また、高速に緻密なシリコン膜を形成するために、例えば、特許文献2に示されるように高周波電源に接続された放電電極に基板を保持させた、いわゆるカソードCVD装置というものが提案されている。
これは、接地電極と放電電極との間に生成されたプラズマのうち、電子は軽量であるため高速で運動し、短時間でプラズマから抜け出して装置壁などに衝突し、消滅する。一方、正イオンは電子に比べて遙かに質量が大きく、移動速度が遅いため、プラズマ中に長時間存在し続ける。このため、プラズマは全体として正の電荷を帯びるようになる。この現象は、特に高周波投入電極である放電電極近傍において著しい。この正電荷に誘引されて放電電極には負電荷が蓄積され、負の自己バイアス電圧が発生する。プラズマ中の正イオンは、この負の自己バイアス電圧によって加速され、放電電極上に載置された基板に衝突する。このイオン加速による物理的な力が化学反応に加わることにより、高速に緻密な膜が形成される。
特開2007−150151号公報 特開2007−96051号公報
ところで、特許文献1に開示されているものでは、隣り合う分割電極間で電気的な干渉が発生し、これにより供給される原料ガスの分解に不均一が生じシリコン膜特性の段差(膜厚、膜質)が発生する恐れがある。
放電電極への供給電力が大きい場合には、生成されるプラズマに放電電極の局所構造(ガス供給・排気)に起因する局所分布が発生し易くなるので、製膜されたシリコン膜に膜質分布が生じて製品の性能低下を招くことがある。これは、特に、性能調整の過程でガス条件が変わると膜質分布が増大する傾向がある。
放電電極は、ガス供給部、ガスの温度を調整する熱媒、高周波電力の供給部等が備えられているので、構造が複雑となり、コストが高くなる。
また、放電電極はそれを支持するセラミック絶縁棒の支持部分を調整して放電電極の位置が微調整されているので、位置決めが難しく時間を要する。
一方、特許文献2に示されるカソードCVD装置では、基板上に生成されるシリコン膜の特性を向上させるために供給高周波電力を増加させてプラズマ密度を高め、成膜ガスの分解を促進させると、自己バイアス電圧が増加するので、基板に入射するイオンのエネルギーが大きくなり、基板温度の設定を上回る上昇を招き膜質が変わることがある。さらに入射イオンのエネルギーが増加すると、基板上の製膜内での膜応力が大きくなり、基板の反りや膜剥離の原因となる。
特許文献2に示されるものは、放電電極への高周波電力の供給の仕方を工夫して高周波電力と自己バイアス電圧とを独立して制御することにより、基板の温度上昇を低減し、膜特性の向上と膜応力の低下をはかろうとしているが、1m或いは1m角を越える大面積基板を用いる場合、放電電極への高周波電力の分布が生じて膜厚と膜質分布に不均一が生じて製品性能の低下につながる。
本発明は、上記の点に鑑み、製膜されたシリコン膜に発生する膜質分布を抑制し、製品の性能向上をはかり得るとともに放電電極の構造を簡素化しコストを低減し得る真空処理装置を提供することを目的とする。
上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明にかかる真空処理装置は、一面に原料ガスを放出する複数の供給孔を有するとともに接地されている接地電極と、それぞれ高周波電力が供給される複数の分割電極が前記接地電極の前記一面に対向するように並列されて形成され、前記接地電極に対向する表面に基板を保持する放電電極と、前記分割電極の裏面側に取り付けられ、前記分割電極をインダクタンス成分を介して接地させる接地部と、が備えられていることを特徴とする。
本発明によれば、放電電極に基板を保持させ、放電電極(基板)と接地電極との間隔を調整する。放電電極の各分割電極に同軸給電管の内部導体によって調整された高周波電力を供給するとともに接地電極の一面に設けられた複数の供給孔からプラズマの原料となるガスを供給すると、分割電極の放電によって接地された接地電極と基板との間に供給された原料ガスがイオン化し、プラズマが形成される。このイオン化された原料ガスが基板に飛散して付着することによって製膜される。
このとき、放電電極は分割された分割電極で構成されているので、分割電極内で給電方向に高周波電力が流れ、隣り合う電極の方向に流れ難い。このため、プラズマが給電方向に整流されるので、個々の放電電極への高周波電力の供給を調整することによってプラズマの均一化を容易にはかることができる。
このように、放電電極によってプラズマの整流が行えるので、接地電極側にその機能を持たせる必要がなくなる。このため、接地電極は、例えば、平面構造とすることができるので、供給孔は略均等に分散するように配置することができる。このように略均等に分散配置された供給孔からガスを供給するので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず製品の性能向上を図ることができる。
また、分割電極は、その裏面側に取り付けられた接地部によってインダクタンス成分を介して高周波では短絡することなく接地されているので、プラズマの正の帯電によって分割電極の表面に発生する負の自己バイアス電圧は接地部を通って放散される。したがって、自己バイアス電圧の帯電が抑制されるので、放電電極に保持された基板に対するイオン衝撃を低減させることができる。
これらにより、製品の性能向上をはかることができる。
従来の基板と対向する位置に配設していた放電電極の内部にはガス供給用の構成を備えたことで、ガスの均一な吹き出しと限られた領域内でプラズマによる原料ガス分解が必要とされたため、ある程度複雑な構造をしていたが、本発明の該放電電極は、内部にガス供給用構成を持たないので、その構造を簡素化でき、コストを低減することができる。
また、本発明にかかる真空処理装置では、前記接地部は、前記分割電極を支持する構造部材であることを特徴とする。
このように、接地部は、分割電極を支持する構造部材であるので、接地部を接地できる構造体、例えば、製膜室、防着板等に取り付ければ放電電極を強固に保持することができる。例えば、接地部を防着板に取り付ければ、放電電極は防着板の移動機構を用いて移動させられるので、独自に絶縁材料を介して放電電極を移動させる構造とすることが不要となる。これによって、従来放電電極を支持していた、例えば、セラミック棒を省略することができるので、コストを低減することができる。
また、防着板を移動させることによって防着板及び放電電極の位置を設定できるので、作業が簡素化され、作業性を向上させることができる。
また、本発明にかかる真空処理装置では、前記供給孔は、前記基板の周縁部に対応する部分の配置密度が前記基板の中央部に対応する部分の配置密度よりも密にされていることを特徴とする。
基板の中央部に供給された原料ガスは、基板の周縁部に向けて流れ、排出される。言い換えると、基板の中央部で分解された原料ガスが周縁に向かって流れることになる。したがって、基板の周縁部では、この分解された原料ガスが混ざることによって有効な原料ガスのガス濃度が低下することになる。
本発明によると、供給孔は、基板の周縁部に対応する部分の配置密度が基板の中央部に対応する部分の配置密度よりも密にされているので、ガス濃度が低下する周縁部に中央部よりも多くの原料ガスを供給することができる。これにより、基板面内で略均一なガス濃度分布が得られるので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず、製品の性能向上を図ることができる。
また、本発明にかかる真空処理装置では、前記接地電極と前記基板とによって形成される空間の周囲に、該空間に向かって前記ガスを供給する供給部が備えられていることを特徴とする。
基板の中央部に供給されたガスは、基板の周縁部に向けて流れ、排出される。言い換えると、基板の中央部で分解されたガスが周縁に向かって流れることになる。したがって、基板の周縁部では、この分解されたガスが混ざることによって有効なガスのガス濃度が低下することになる。
本発明によると、接地電極と基板とによって形成される空間の周囲に、該空間に向かってガスを供給する供給部が備えられているので、ガス濃度が低下する周縁部に供給部によってガスを供給することができる。これにより、基板面内で略均一なガス濃度分布が得られるので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず、製品の性能向上を図ることができる。
また、本発明にかかる真空処理装置では、前記接地電極の前記一面には、前記ガスを排気する複数の排気部が備えられていることを特徴とする。
このように、接地電極の一面には、ガスを排気する複数の排気部が備えられているので、分解されたガスをその近傍から排気することができる。
したがって、基板面内で略均一なガス濃度分布が得られるので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、膜質分布が均一なシリコン膜を製膜することができ、太陽電池モジュールなどの製品の性能向上を図ることができる。
また、接地電極は高周波給電が不要なため、ガスを排気する複数の排気部を設けることは容易である。
本発明の真空処理装置によれば、放電電極は分割された分割電極で構成されているので、個々の高周波電力の供給を調整することによってプラズマの均一化をはかることができる。
また、放電電極によってプラズマの整流が行えるので、接地電極の供給孔は略均等に分散するように配置することができる。これにより、生成されるプラズマに局所分布が発生するのを抑制できるので、製膜されたシリコン膜に膜質分布が生じず製品の性能向上を図ることができる。
さらに、分割電極は、その裏面側に取り付けられた接地部によって接地されているので、放電電極に保持された基板に対するイオン衝撃を低減させることができる。
これらにより、製品の性能向上をはかることができる。
もともとある程度複雑な構造をした放電電極の内部にガス供給用の構成を備えることがないので、放電電極の構造を簡素化でき、コストを低減することができる。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
〔第一実施形態〕
本発明の第一実施形態にかかる薄膜製造装置(真空処理装置)1について図1〜図5に基づいて説明する。
図1は、薄膜製造装置1の概略構成を示すブロック図である。図2は、図1のX−X断面図である。図3は、図1のY−Y断面図である。図4は、図3のA部を拡大して示す拡大断面図である。図5は、図4のB視図である。
薄膜製造装置1は、真空容器である製膜室2と、放電電極3と、防着板4と、接地電極5と、アースバー(接地部)6と、ループ伝送路7と、高周波給電伝送路14と、接地線9と、ガス供給管10と、整合器13と、高周波電源12とを具備する。図中に矢印でXYZ方向を示す。なお、本図において、ガス排気に関する構成は省略している。
放電電極3は、X方向に複数、例えば、8個の分割電極3a〜3hに分割されている。分割電極3a〜3hはY方向に伸びた各棒状の縦電極(図示省略)を略平行に組み合わせて構成されている。
放電電極3の表面側(接地電極5に対向する面側)には、基板8を保持可能な保持手段(図示省略)が備えられている。分割電極3a〜3h間には隙間があるため放電電極の表面は均一な板面ではなく、基板8との間の電位分布が局部的に不均一になる場合がある。このときには、基板8より同等もしくは少し大きなサイズの誘電体(ガラス質材やセラミックス材)、もしくは誘電体で表面を被覆した金属板を設けると更に好ましい。
各分割電極3a〜3hのY方向(給電方向)両端部には、製膜室2の壁を貫通する同軸給電管15の端部が接続されるとともに同軸給電管15の内部に挿通されている高周波給電伝送路14bが接続されている。高周波給電伝送路14bが接続されている部分は、高周波電力が供給される給電点21を構成する。高周波電力は13MHzから100MHzの高高周波までが対象になるが、本発明における分割電極3a〜3hは、特に30MHz以上の高高周波においても均一なプラズマを形成するのに適している。
分割電極3a〜3hは、内部に温度制御された熱媒体23が循環されるようにされている。これは温度制御されたヒータを組み込むようにしてもよい。
これにより、分割電極3a〜3h自身の温度を制御して、放電電極3の全体が概ね均一な温度を有するようにし、かつ、保持している基板8の温度を均一化する。
熱媒体23は、非導電性媒体であり、水素やヘリウムなどの高熱伝導性ガス、フッ素系不活性液体、不活性オイル、及び純水等が使用でき、中でも150℃〜250℃の範囲でも圧力が上がらずに制御が容易であることから、フッ素系不活性液体(例えば商品名:ガルデン、F05など)の使用が好適である。
このように、分割電極3a〜3hでは、従来の放電電極で必要であったガス供給用の構成をその内部に備えることがないので、分割電極3a〜3hの構造を簡素化でき、製造コストを低減することができる。
防着板4は、一面が開放された箱形をしており、放電電極3をその裏面側から覆うように配置され、製膜室2に接地電極5に対して接離可能なように支持されている。防着板4の接地電極5側端部は、接地電極5と接触して接地され、プラズマの広がる範囲を抑えて、シリコン膜が製膜される範囲を制限する。
アースバー6は、各分割電極3a〜3hの接地電極5と反対側となる裏面側に接続され、各分割電極3a〜3hの放電を調整し、より均一化するように設けられている。
アースバー6は、接地部材6aと、インダクタンス成分を含む接続部材6bとを備える。接地部材6aは、分割電極3a〜3hの裏側の面に略平行に設けられた、厚く細長い板状の導電体である。接地部材6aの厚さは、例えば、10〜50mmとされ、幅は例えば、50〜100mmとされる。なお、厚さと幅とが略同等の大きさとなる棒状や角材状とされてもよい。接地部材6aはその両端が防着板4に接続され、防着板4を介して接地されている。
接続部材6bは、各分割電極3a〜3hと接地部材6aとの間に並列に略垂直に接続された、略棒状の中実あるいは中空の導電体である。接続部材6bは、インダクタンス成分を含むことで、高周波成分に対するインピーダンス低下を抑制し、高周波電圧低下を防止する。すなわち接続部材6bは、直流的には導体であるが、高周波にとっては大きな抵抗体と見なすことができる。接続部材6bは、例えば、その径が3〜50mmの丸棒が用いられる。これら複数の接続部材6bは、分割電極3a〜3hに対して略等間隔に配置されているが、本発明はその例に限定されるものではない。接地部材6a及び接続部材6bは、放電に磁気的な影響を与えず、クリーニングガスに対して耐食性を有する必要があることから、非磁性の金属であることが好ましい。例えば、SUS304やSUS316製の棒である。
このように、アースバー6は、寸法の大きな、言い換えると強度の高い強固な構造をしているので、構造部材として分割電極3a〜3hを強固に支持することができる。
アースバー6は、防着板4に取り付けられているので、防着板4を介して製膜室2に強固に支持される。
防着板4は接地電極5に対して接離可能なように支持されているので、防着板4を移動させることによってアースバー6を介して放電電極3は接地電極5に対して接離することができる。すなわち、製膜時は、防着板4、放電電極3及び基板8を、接地電極5へ近づける。それにより、放電電極3に高周波電力を供給すると、基板8と接地電極5との間にプラズマ生成空間が形成される。プラズマ生成空間の厚さ、基板8と接地電極5との距離は、例えば、3mm〜20mmとすることができる。
したがって、放電電極3を接地電極5に対して接離させる構造とすることが不要となるので、従来放電電極を絶縁するように支持していた、例えば、セラミック棒を省略することができることもあいまって、製造コストを低減することができる。
また、防着板4を移動させることによって防着板4及び放電電極3の位置を設定できるので、作業が簡素化し作業性を向上させることができる。
接地電極5は、非磁性材料の導電性の材料で中空の箱形に形成されている。この材料としてはセルフクリーニングを行う場合は耐フッ素ラジカル性からニッケル合金やアルミやアルミ合金の使用が望ましい。
接地電極5は、接地線9で接地された製膜室2に支持されているので、電気的には接地されており、放電電極3に対向する電極となる。
接地電極5は、製膜室2の壁として利用する、すなわち、製膜室2の壁面と共用することもできる。
接地電極5には、図4に示されるように、厚さ方向の略中間位置に厚さ方向に延在するオリフィス25を形成する複数のオリフィス部材27が配置されている。複数のオリフィス部材27によってそれを挟んでガス供給管10からの原料ガス(ガス)が導入されるガス導入空間29と基板8側に原料ガスを供給するガス供給空間31とが形成されている。
接地電極5の基板8に面する基板側面33は、略平面状とされている。基板側面33には、多数のガス供給孔(供給孔)35が設けられている。
ガス供給管10からガス導入空間29に導入されたプラズマ生成用の原料ガスは、オリフィス25を通ってガス供給空間31に流入し、ガス供給孔35から基板8に向けて略均一な流量で噴出される。
各ガス供給孔35は、図4に示されるように基板側面33における基板8に略対応する範囲に配置されている。
ガス供給孔35は、図5に示されるように全範囲に亘り略均等な配置密度となるように正方配置とされている。
ガス供給孔35は、正方配置に限定されるものではなく、千鳥状配置等適宜な配置とされてよい。
オリフィス部材27は、内部に温度制御された熱媒体37が循環されるようにされている。これにより、オリフィス部材27自身の温度を制御して、接地電極5の全体が概ね均一な温度を有するようし、対向する基板8の温度を制御するとともに製膜室2内のヒートバランスを適切に保つ。
熱媒体37は、非導電性媒体であり、水素やヘリウムなどの高熱伝導性ガス、フッ素系不活性液体、不活性オイル、及び純水等が使用でき、中でも150℃〜250℃の範囲でも圧力が上がらずに制御が容易であることから、フッ素系不活性液体(例えば商品名:ガルデン、F05など)の使用が好適である。
整合器13は、出力側のインピーダンスを整合(調整)する。そして、高周波電源12から高周波給電伝送路14aを介して高周波電力を供給され、高周波給電伝送路14bを介して分割電極3a〜3hへ送電する。
ループ伝送路7は、分割電極3a〜3hで反射された高周波電力のみを高周波電源12に戻さずに、反射電力を最小化する。
すなわち、当該ループ回路の端部において、反射電力が互いに逆位相となっている当該ループ回路の両端部からそれぞれ反射されてきた反射電力どうしを相殺させて、反射電力を最小化する。
ループ伝送路7は、製膜室2の外において、高周波給電伝送路14b同士を接続している。この接続位置は、それぞれ高周波給電伝送路14b上の任意位置でよい。
ループ伝送路7は、高周波電源12から出力される高周波電力の波長の整数倍の長さ(電気的な長さ)を有する。ただし、ループ伝送路7と接続位置との間に、それぞれインダクタンス成分としてのインダクタ(図示省略)又はキャパシタンス成分としてのコンデンサ(図示省略)を接続していても良い。更に、高周波給電伝送路14b上の任意位置に、スタブ(図示省略)が並列に接続されていてもよい。スタブには、インダクタ、又はコンデンサ、任意のインピーダンスを形成することができるインダクタとコンデンサと同軸ケーブルとの組み合わせ等が適用される。スタブにおける高周波給電伝送路14bに接続されていない方の端部は接地される。
分割電極3a〜3hの各々に対して、整合器13、高周波給電伝送路14a、高周波給電伝送路14b及びループ伝送路7が設けられている。
ただし、図1では、分割電極3aに関する整合器13、高周波給電伝送路14a及び高周波給電伝送路14bについてのみ示している。
なお、分割電極3a〜3hへの電力供給を、8個を超えるまたは8個未満の整合器13及び高周波給電伝送路14a、14bとの組みで行うことも可能である。
また各々個別の高周波電源部12から電力を供給しても良い。
これらの場合、その組の数に対応するように、分割電極3a〜3hを加減して組み分けるのが好ましい。
以上のように構成された本実施形態にかかる薄膜製造装置1の製膜動作について説明する。
薄膜製造装置1の放電電極3に基板8をセットする。基板8は1mを越える大面積基板であり、たとえば、1.4m×1.1m×板厚3.5mm〜4.5mmを例示できる。
ついで、放電電極3及び防着板4を接地電極5に向けて移動させる。防着板4の先端が接地電極5に当接したら接地電極5の移動を停止させる。このとき、基板8の表面と放電電極3との間隔は3mm〜20mmが例示される。
製膜室2を密封し、図示しない真空排気用ポンプを作動させ、製膜室2を所定の真空度、例えば、10−6Paにする。
原料ガス配管10から接地電極5に供給される原料ガスは、接地電極5のガス導入空間29に導入される。ガス導入空間29に導入された原料ガスは、オリフィス25を通ってガス供給空間31に供給される。この原料ガスは基板側面33の複数のガス供給孔35からシャワー状に噴出され、設置電極5と基板8との間に供給される。原料ガスは、例えば、SiH+Hである。
整合器13の出力側のインピーダンスの整合をとりながら、出力側に接続された高周波給電伝送路14bを介して分割電極3a〜3hへ所定の高周波電力を供給する。高周波電力は、例えば60MHzを好適に使用することができる。
これにより、放電電極3と接地電極5との間に原料ガスのプラズマが発生し、基板8上にシリコン膜が製膜される。
なお、この製膜時に、分割電極3a〜3hの内部に熱媒体23を、オリフィス部材27の内部に熱媒体37を流通させ、放電電極3及び接地電極5の温度を制御し、基板8の温度を制御する。
このとき、放電電極3は分割された分割電極3a〜3hで構成されているので、分割電極3a〜3h内で給電方向に高周波電力が流れ、隣り合う電極の方向に流れ難い。このため、プラズマがY方向に整流されるので、個々の高周波電力の供給を調整することによってプラズマの均一化をはかることができる。
このように、放電電極3によってプラズマの整流が行えるので、接地電極5側にその機能を持たせる必要がなくなる。このため、接地電極5は、本実施形態の基板側面33のように平面構造とすることができるので、ガス供給孔35は略均等に分散するように配置することができる。
このように略均等に分散配置されたガス供給孔35から原料ガスをシャワー状に供給するので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず製品の性能向上を図ることができる。
また、分割電極3a〜3hは、その裏面側に取り付けられたアースバー6によって接地されているので、プラズマの正の帯電によって分割電極3a〜3hの表面に発生する負の自己バイアス電圧はアースバー6を通って放散・除去される。
したがって、自己バイアス電圧の帯電が抑制されるので、放電電極3に保持された基板8に対するイオン衝撃を低減させることができる。薄膜シリコン太陽電池においては、イオン衝撃は一般に膜質を悪化させると考えられており、分割電極3a〜3hと接地電極5の双方が直流的に設置(インダクタンスを介して接地されていること)は、薄膜シリコン太陽電池の製造装置として好都合である。
よって、本装置構成により、製品の性能向上をはかることができる。
これらは、大面積の基板8(例えば、基板サイズが1m角以上のもの)に対して製膜する場合に、特に、有効である。更には放電電極8へ大電力を供給して高速製膜する場合においても、分割電極の電圧分布があっても、インダクタンスを介して帯電粒子(電子)が拡散・除去されることから、電圧分布によらず基板8に対するイオン衝撃を本質的に低減し高品質膜を形成し、製品の性能向上をはかることができるので、有効である。
〔第二実施形態〕
次に、本発明の第二実施形態に係る薄膜製造装置1について、図6を用いて説明する。
本実施形態は、ガス供給孔35の配置が第一実施形態のものと異なるので、ここではこの異なる部分について主として説明し、前述した第一実施形態のものと同じ部分については重複した説明を省略する。
なお、第一実施形態と同じ部材には同じ符号を付している。
図6は、本実施形態にかかる薄膜製造装置1の図3と同様部分を示す横断面図である。
本実施形態では、ガス供給孔35は、図6に示されるように基板8の周縁部に対応する部分の配置密度が基板8の中央部に対応する部分の配置密度よりも密になるように配置されている。
ガス供給孔35の配置密度は、中央部から周縁部に向けて複数の階段状に変化させてもよいし、順次漸増するように変化させてもよい。
これにより、ガス供給孔35から供給される原料ガスの供給量は、基板8の周縁部に対する供給量が、基板8の中央部に対するそれよりも多くなる。
このように構成された本実施形態にかかる薄膜製造装置1の製膜動作については第一実施形態と同様であるので、それについては重複した説明を省略する。
本実施形態では、ガス供給孔35からの原料ガスの供給状態が変わるので、それについて説明する。
基板8の中央部に供給された原料ガスは、基板8の周縁部に向けて流れ、排出される。言い換えると、基板8の中央部で分解されたガスが周縁に向かって流れることになる。したがって、基板8の周縁部では、ガス供給孔35から供給される原料ガスに中央部で分解されたガスが混ざるとともに製膜に取り込まれて消費されてゆくので、原料ガスのガス濃度、特にシリコン膜の主原料のSiHガス濃度が低下することになる。
本実施形態によると、ガス供給孔35は、基板8の周縁部に対応する部分の配置密度が基板8の中央部に対応する部分の配置密度よりも密にされているので、原料ガスのガス濃度が低下する周縁部に中央部よりも多くの原料ガスを供給することができる。
これにより、中央部で分解されたガスと混ざっても原料ガスの濃度を中央部と略同程度に維持することができる。
したがって、基板面内で略均一なガス濃度分布が得られるので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず製品の性能向上を図ることができる。
〔第三実施形態〕
次に、本発明の第三実施形態にかかる薄膜製造装置1について、図7及び図8を用いて説明する。
本実施形態は、ガス供給の構成が第一実施形態のものと異なるので、ここではこの異なる部分について主として説明し、前述した第一実施形態のものと同じ部分については重複した説明を省略する。なお、第一実施形態と同じ部材には同じ符号を付している。
図7は、本実施形態にかかる薄膜製造装置1の図3と同様部分を示す横断面図である。図8は、位置における原料ガスの濃度を示すグラフである。
本実施形態では、製膜時に形成されるプラズマ生成空間(接地電極5と基板8とによって形成される空間)の周囲に、この空間に向かって原料ガスを供給するガス供給部材(供給部)41が備えられている。
ガス供給部材41は、プラズマ生成空間の周囲を覆うように矩形状に配置された管材であり、プラズマ生成空間に向いた管壁に間隔を空けて複数のガス供給孔43が設けられている。ガス供給孔43は、スリットとされていてもよい。
ガス供給部材41は、位置が変動しないように接地電極5に取り付けられている。なお、ガス供給部材41は防着板4に取り付けるようにしてもよい。
このように構成された本実施形態にかかる薄膜製造装置1の製膜動作については第一実施形態と同様であるので、それについては重複した説明を省略する。
本実施形態では、原料ガスの供給状態が変わるので、それについて説明する。
ガス供給孔35から基板8の中央部に供給された原料ガスは、基板8の周縁部に向けて流れ、排出される。言い換えると、基板8の中央部で分解されたガスが周縁に向かって流れることになる。したがって、基板8の周縁部では、ガス供給孔35から供給される原料ガスに中央部で分解されたガスが混ざるとともに製膜に取り込まれて消費されてゆくので、原料ガスのガス濃度、特にシリコン膜主成分のSiHガス濃度が低下することになる。したがって、原料ガスのガス濃度は、図8の濃度変化線45に示されるように、中央部でガス濃度が高く、周囲に行くに連れてガス濃度が低下する。
本実施形態によると、ガス供給部材41が、基板8の周縁部のプラズマ生成空間に向けて原料ガスを供給している。
このガス供給部材41により供給される原料ガスのガス濃度は、たとえば、シリコン膜主成分のSiHガス濃度で説明すると、図8の濃度変化線47に示されるように、周縁部でシリコン膜主成分のSiHガス濃度が高く、中央部に行くに連れてシリコン膜主成分のSiHガス濃度が低下する。言い換えると、原料ガスのガス濃度が低下する周縁部に中央部よりも多くの原料ガスを供給することができる。
ガス供給孔35から供給される原料ガスと、ガス供給部材41から供給される原料ガスとを合わせると、原料ガスのガス濃度は、図8の濃度変化線49に示されるように、基板面内で略均一なガス濃度分布が得られる。
このように、原料ガスは基板面内で略均一なガス濃度分布が得られるので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず製品の性能向上を図ることができる。
なお、製膜されたシリコン膜の膜物性(シリコン膜厚等)をみて、ガス供給部材41から供給する原料ガスの供給量を調整するのが好ましい。
〔第四実施形態〕
次に、本発明の第四実施形態に係る薄膜製造装置1について、図9及び図10を用いて説明する。
本実施形態は、接地電極5の構成が第一実施形態のものと異なるので、ここではこの異なる部分について主として説明し、前述した第一実施形態のものと同じ部分については重複した説明を省略する。なお、第一実施形態と同じ部材には同じ符号を付している。
図9は、本実施形態にかかる薄膜製造装置1の図4と同様部分を示す拡大断面図である。図10は、図9のC視図である。
本実施形態では、接地電極5に複数の排気スリット51が設けられている。排気スリット51は、オリフィス25の位置に、Z方向(厚さ方向)に貫通し、Y方向に延在するように形成されている。
排気スリット51とオリフィス25とは、交互に、すなわち、隣り合う排気スリット51の間にオリフィス25が1列存在するように配置されている。
排気スリット51は、隣り合う排気スリット51の間にオリフィス25が複数列存在するように配置されていてもよい。また、Z方向(厚さ方向)に貫通した孔がY方向とX方向へ適当なピッチで形成されていてもよい。
このように構成された本実施形態にかかる薄膜製造装置1の製膜動作については第一実施形態と同様であるので、それについては重複した説明を省略する。
排気スリット51の一端は、基板側面33でプラズマ生成空間に開口し、他端は、接地電極5の他方の面(裏面)に開口しているので、圧力差によってプラズマ生成空間のガスは排気スリット51を通って接地電極5の裏面側に排気される。
このように、排気スリット51がプラズマ生成空間に存在する、例えば、分解されたガス等をその近傍から排気することができるので、基板8面内の領域で原料ガスの濃度に影響することを抑制できる。
したがって、基板面内で略均一なガス濃度分布が得られるので、生成されるプラズマに局所分布が発生するのを抑制できる。これにより、製膜されたシリコン膜に膜質分布が生じず製品の性能向上を図ることができる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
また、原料ガスは、SiH+Hに限定されることは無く、シリコン系薄膜全般を含めた各種薄膜を形成する原料ガスに有効である。
本発明の第一実施形態にかかる薄膜製造装置の概略構成を示すブロック図である。 図1のX−X断面図である。 図1のY−Y断面図である。 図3のA部を拡大して示す拡大断面図である。 図4のB視図である。 本発明の第二実施形態にかかる薄膜製造装置の図3と同様部分を示す横断面図である。 本発明の第三実施形態にかかる薄膜製造装置の図3と同様部分を示す横断面図である。 本発明の第三実施形態にかかる製膜製造装置の位置における原料ガスの濃度を示すグラフである。 本発明の第四実施形態にかかる薄膜製造装置の図4と同様部分を示す拡大断面図である。 図9のC視図である。
符号の説明
1 薄膜製造装置
3 放電電極
3a〜3h 分割電極
5 接地電極
6 アースバー
8 基板
33 基板側面
35 ガス供給孔
41 ガス供給部材
51 排気スリット

Claims (5)

  1. 一面に原料ガスを放出する複数の供給孔を有するとともに接地されている接地電極と、
    それぞれ高周波電力が供給される複数の分割電極が前記接地電極の前記一面に対向するように並列されて形成され、前記接地電極に対向する表面に基板を保持する放電電極と、
    前記分割電極の裏面側に取り付けられ、前記分割電極をインダクタンス成分を介して接地させる接地部と、
    が備えられていることを特徴とする真空処理装置。
  2. 前記接地部は、前記分割電極を支持する構造部材であることを特徴とする請求項1に記載された真空処理装置。
  3. 前記供給孔は、前記基板の周縁部に対応する部分の配置密度が前記基板の中央部に対応する部分の配置密度よりも密にされていることを特徴とする請求項1または請求項2に記載された真空処理装置。
  4. 前記接地電極と前記基板とによって形成される空間の周囲に、該空間に向かって前記ガスを供給する供給部が備えられていることを特徴とする請求項1から請求項3のいずれか1項に記載された真空処理装置。
  5. 前記接地電極の前記一面には、前記ガスを排気する複数の排気部が備えられていることを特徴とする請求項1から請求項4のいずれか1項に記載された真空処理装置。
JP2008293663A 2008-11-17 2008-11-17 真空処理装置 Expired - Fee Related JP4929270B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293663A JP4929270B2 (ja) 2008-11-17 2008-11-17 真空処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293663A JP4929270B2 (ja) 2008-11-17 2008-11-17 真空処理装置

Publications (2)

Publication Number Publication Date
JP2010123627A true JP2010123627A (ja) 2010-06-03
JP4929270B2 JP4929270B2 (ja) 2012-05-09

Family

ID=42324743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293663A Expired - Fee Related JP4929270B2 (ja) 2008-11-17 2008-11-17 真空処理装置

Country Status (1)

Country Link
JP (1) JP4929270B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124898A1 (ja) * 2012-02-23 2013-08-29 国立大学法人東北大学 プラズマ処理装置およびプラズマ処理方法
JPWO2017068900A1 (ja) * 2015-10-20 2018-02-15 三菱電機株式会社 太陽電池の製造方法、太陽電池および太陽電池製造装置
WO2022202420A1 (ja) * 2021-03-24 2022-09-29 株式会社Screenホールディングス 基板処理方法、プラズマ発生装置およびプラズマ発生装置の設計方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236425A (ja) * 1991-01-21 1992-08-25 Toshiba Corp プラズマ処理装置
JPH0778699A (ja) * 1993-09-08 1995-03-20 Anelva Corp プラズマ処理装置
JPH08306683A (ja) * 1995-04-28 1996-11-22 Sony Corp 半導体装置の製造方法
JP2007096051A (ja) * 2005-09-29 2007-04-12 Samco Inc カソードカップリング型プラズマcvd装置及びそれによる薄膜製造方法
JP2007115757A (ja) * 2005-10-18 2007-05-10 Mitsubishi Heavy Ind Ltd 放電電極、薄膜製造装置及び太陽電池の製造方法
JP2007150151A (ja) * 2005-11-30 2007-06-14 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法
JP2008047915A (ja) * 2006-08-14 2008-02-28 Oxford Instruments Plasma Technology Ltd 表面処理装置
JP2008056998A (ja) * 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd 薄膜製造装置及び太陽電池の製造方法
JP2008078355A (ja) * 2006-09-21 2008-04-03 Mitsubishi Heavy Ind Ltd 薄膜製造装置及び太陽電池の製造方法
WO2008102738A1 (ja) * 2007-02-19 2008-08-28 Mitsubishi Heavy Industries, Ltd. 真空処理装置および真空処理装置を用いた製膜方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236425A (ja) * 1991-01-21 1992-08-25 Toshiba Corp プラズマ処理装置
JPH0778699A (ja) * 1993-09-08 1995-03-20 Anelva Corp プラズマ処理装置
JPH08306683A (ja) * 1995-04-28 1996-11-22 Sony Corp 半導体装置の製造方法
JP2007096051A (ja) * 2005-09-29 2007-04-12 Samco Inc カソードカップリング型プラズマcvd装置及びそれによる薄膜製造方法
JP2007115757A (ja) * 2005-10-18 2007-05-10 Mitsubishi Heavy Ind Ltd 放電電極、薄膜製造装置及び太陽電池の製造方法
JP2007150151A (ja) * 2005-11-30 2007-06-14 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法
JP2008047915A (ja) * 2006-08-14 2008-02-28 Oxford Instruments Plasma Technology Ltd 表面処理装置
JP2008056998A (ja) * 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd 薄膜製造装置及び太陽電池の製造方法
JP2008078355A (ja) * 2006-09-21 2008-04-03 Mitsubishi Heavy Ind Ltd 薄膜製造装置及び太陽電池の製造方法
WO2008102738A1 (ja) * 2007-02-19 2008-08-28 Mitsubishi Heavy Industries, Ltd. 真空処理装置および真空処理装置を用いた製膜方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124898A1 (ja) * 2012-02-23 2013-08-29 国立大学法人東北大学 プラズマ処理装置およびプラズマ処理方法
CN103503580A (zh) * 2012-02-23 2014-01-08 国立大学法人东北大学 等离子处理装置和等离子处理方法
JPWO2017068900A1 (ja) * 2015-10-20 2018-02-15 三菱電機株式会社 太陽電池の製造方法、太陽電池および太陽電池製造装置
US11447869B2 (en) 2015-10-20 2022-09-20 Mitsubishi Electric Corporation Manufacturing method for solar cell, solar cell, and solar cell manufacturing apparatus
WO2022202420A1 (ja) * 2021-03-24 2022-09-29 株式会社Screenホールディングス 基板処理方法、プラズマ発生装置およびプラズマ発生装置の設計方法

Also Published As

Publication number Publication date
JP4929270B2 (ja) 2012-05-09

Similar Documents

Publication Publication Date Title
JP7206286B2 (ja) 線形化されたエネルギーの無線周波数プラズマイオン供給源、薄膜堆積装置、およびプラズマイオンビーム発生方法
JP5747231B2 (ja) プラズマ生成装置およびプラズマ処理装置
US20110272099A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
JP5749769B2 (ja) 高周波アンテナユニット及びプラズマ処理装置
KR20080015364A (ko) 표면 프로세싱 장치들
JP2010103455A (ja) プラズマ処理装置
WO2007038256A2 (en) Apparatus for the removal of a metal oxide from a substrate and methods therefor
JP2008182081A (ja) プラズマ処理装置
JP2007149639A (ja) プラズマ生成方法及び装置並びにプラズマ処理装置
JP5377749B2 (ja) プラズマ生成装置
JP4584572B2 (ja) プラズマ処理装置および処理方法
JP4929270B2 (ja) 真空処理装置
US20150294866A1 (en) Plasma processing device, and plasma processing method
US9673062B1 (en) Plasma processing method
KR20060056972A (ko) 플라즈마 처리 장치에서 회귀 전류의 균형을 이루는 방법
JP2012133899A (ja) プラズマ処理装置
JP6474076B2 (ja) 薄膜製造方法および薄膜製造装置
JP2005260186A (ja) プラズマプロセス装置
JP4875527B2 (ja) プラズマ発生装置およびこれを用いた薄膜形成装置
JP2006054334A (ja) 半導体製造装置、スパッタリング装置、ドライエッチング装置及び半導体装置の製造方法
CN114883229A (zh) 晶舟及半导体设备
JP2009123906A (ja) プラズマ処理装置
KR101138609B1 (ko) 효율적인 라디칼 생성을 위한 플라즈마 발생장치
JP5563502B2 (ja) 薄膜形成装置
JP2012177174A (ja) 薄膜形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees