JP2010105505A - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP2010105505A
JP2010105505A JP2008278749A JP2008278749A JP2010105505A JP 2010105505 A JP2010105505 A JP 2010105505A JP 2008278749 A JP2008278749 A JP 2008278749A JP 2008278749 A JP2008278749 A JP 2008278749A JP 2010105505 A JP2010105505 A JP 2010105505A
Authority
JP
Japan
Prior art keywords
air
temperature
water temperature
heater
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278749A
Other languages
English (en)
Inventor
Tetsuo Kodama
哲男 児玉
Hiroshi Ishikawa
石川  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008278749A priority Critical patent/JP2010105505A/ja
Publication of JP2010105505A publication Critical patent/JP2010105505A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】ヒータの出力を急に減少させる必要がある場合であっても、水温の変動を抑制することができるヒータ回路を有する車両用空調装置を提供する。
【解決手段】車両用空調装置1は、電気ヒータ15を備えるヒータ回路3を有する。エアコンECU25は、ブロアレベルが低下すると、電気ヒータ15の出力を必要能力下限値となるように制御する。これによってブロアレベルが低下してヒータコア13の放熱量を急激に減少させる場合であっても、実水温の下降速度を小さくすることができる。実水温の下降速度が小さいので、実水温を目標水温にゆっくりと到達させることができ、実水温を目標水温で安定させることができる。
【選択図】図6

Description

本発明は、車室内の空調に用いられるヒータを制御する車両用空調装置に関する。
従来技術の車両用空調装置として、水が循環するヒータ回路を備え、循環する水を電気ヒータによって加熱し、暖房時の熱源とする装置が知られている。電気ヒータは、バッテリからの電力にて駆動される。電気ヒータの出力は、ヒータ回路を循環する水が目標水温となるように、エアコンECUによってPI制御される(たとえば特許文献1参照)。
特開2002−264629号公報
図8は、従来技術におけるヒータ回路の水温の変化を示すグラフである。グラフの縦軸は水温を示し、横軸は時間を示す。前述の従来技術では、電気ヒータの水温制御に関して、電気ヒータの出力の変化に対して水温変化の遅れが大きい。したがって図8に示すように、水温が時刻t01までは目標水温T01に維持されている状態で、時刻t01に送風機の送風量がHiレベルからLoレベルになると、送風量が低下するので水温が急上昇する。そして時刻t01から、新たな目標水温T02を満足させようPI制御するため、ヒータを一度停止して水温を下げて、目標水温T02を下回ったあとに、ヒータを起動するので、目標水温T02に対してオーバーシュート量またはアンダーシュート量が大きくなる。したがって図8に示すように、時刻t01から時刻t02まで水温の安定性が悪い。このように送風機の急な送風量の変化に水温制御が対応することができないので、空調風の吹き出し温度に変動が生じ、乗員のフィーリングが悪化するという問題がある。
そこで、本発明は前述の問題点を鑑みてなされたものであり、ヒータの出力を急に減少させる必要がある場合であっても、水温の変動を抑制することができるヒータ回路を有する車両用空調装置を提供することを目的とする。
本発明は前述の目的を達成するために以下の技術的手段を採用する。
請求項1に記載の発明では、空気を送風する送風機(11)と、
送風機によって送風される空気が流れる空気通路(9)を形成する空調ケース(6)と、
水が循環する循環流路を構成するヒータ回路(3)と、
ヒータ回路に設けられ、ヒータ回路を循環する水を加熱するヒータ(15)と、
ヒータ回路に設けられ、循環する水を熱源として、送風機によって送風される空気を加熱する加熱用熱交換器(13)と、
車室内の空調要求に基づいて、ヒータの出力を制御する制御手段(25)と、を含み、
制御手段は、空調要求を満足するために要求される加熱用熱交換器の放熱量が単位時間あたり予め定める変化量を超えて減少した場合、ヒータの出力を減少前よりも低減した一定の値である制限値で動作させるように制御することを特徴とする車両用空調装置である。
請求項1に記載の発明に従えば、加熱用熱交換器の放熱量が単位時間あたり変化量を超えて減少すると、減少前より低減した一定の値の制限値となるように、制御手段によってヒータの出力を制御する。これによってたとえば暖房負荷が急激に減少して、放熱量を急激に減少させる必要があったとしても、実水温の下降速度を小さくすることができる。実水温の下降速度が小さいので、実水温を目標水温にゆっくりと到達させることができ、実水温を目標水温で安定させることができる。このように本発明では、放熱量が急に減少した場合であっても、実水温の変動を抑制することができる。したがって吹出温度の変動を抑制することができる。
また請求項2に記載の発明では、制御手段は、空調要求を満足するために必要な熱量を演算し、演算した熱量が得られるように制限値を設定することを特徴とする。
請求項2に記載の発明に従えば、制御手段によって空調要求を満足するために必要な熱量が演算される。これによって必要な熱量を用いて循環する水を加熱することができるので、実水温が目標水温を下回ることを抑制し、目標水温に近づけることができる。
さらに請求項3に記載の発明では、制御手段は、演算された熱量に、予め定める補正量を減じた熱量が得られるように制限値を設定することを特徴とする。
請求項3に記載の発明に従えば、演算された熱量に、補正量を減じた熱量が得られるように、ヒータの出力が制御される。したがって実水温を目標水温よりもやや下回らせるようにヒータ出力を補正することができるので、短時間で目標水温に近づけることができる。
さらに請求項4に記載の発明では、空調ケース内に設けられ、送風機によって送風される空気を冷却する冷却用熱交換器(12)と、
冷却用熱交換器を通過した空気の温度を検出する温度検出手段(32)と、をさらに含み、
制御手段は、空調要求を満足するために必要な熱量を、空調要求を満足するための目標吹出温度と温度検出手段によって検出された空気温度とを用いて演算することを特徴とする。
請求項4に記載の発明に従えば、必要な熱量を、目標吹出温度と空気温度とを用いて演算するので、高精度に必要な熱量を演算することができる。
さらに請求項5に記載の発明では、ヒータ回路を循環する水の温度であって、加熱用熱交換器の出口における温度を検出する水温検出手段(30)をさらに含み、
制御手段は、空調要求を満足するために必要な熱量を、空調要求を満足するための目標水温と水温検出手段によって検出された実水温とを用いて演算することを特徴とする。
請求項5に記載の発明に従えば、必要な熱量を、目標水温と実水温とを用いて演算するので、高精度に必要な熱量を演算することができる。
なお、前述の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
以下、図面を参照しながら本発明を実施するための形態を、複数の形態について説明する。各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する場合がある。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
(第1実施形態)
本発明の第1実施形態に関して、図1〜図7を用いて説明する。図1は、第1実施形態の車両用空調装置1の全体構成を示す模式図である。車両用空調装置1は、走行用電動モータ(図示せず)を走行用の駆動源とする車両に搭載される。車両用空調装置1は、冷凍サイクル2、ヒータ回路3、室内ユニット4および制御装置5を含む。車両用空調装置1は、たとえば車両の車室内前部の計器盤下部に設置される。
室内ユニット4を構成する空調ケース6は、一端側に空気の吸入口7,8を有し、他端側に車室内への吹出口(図示せず)を有し、吸入口7,8から吹出口へ空調空気を導く空調空気通路9を構成している。空調ケース6の一端側には内気を吸入する内気吸入口7、および外気を吸入する外気吸入口8が設けられている。内気吸入口7と外気吸入口8は内外気切替ドア10により切替および開閉される。
吸入口7,8に隣接して、空調ケース6内に空気を送風する送風機11が設置される。送風機11は、遠心ファン11aとその駆動用のブロアモータ11bとを含む。ブロアモータ11bに印加されるブロア電圧は、制御装置5によって制御される。
空調ケース6の他端側には車室内へ通ずる複数の吹出口(図示せず)が形成されている。これらの吹出口は吹出モード切替ドア(図示せず)によりそれぞれ切替および開閉され、たとえばフェイス、バイレベル、フット、およびデフロスタ等の吹出モードが設定される。
送風機11より空気下流側における空調ケース6内には冷凍サイクル2の室内器12が設けられている。室内器12は、冷凍サイクル2の低圧冷媒が空気から吸熱して、空気を冷却するものである。室内器12より空気下流側にはヒータ回路3のヒータコア13が設けられている。ヒータコア13は、温水を加熱源として自身を流通する空調空気を加熱する熱交換器である。室内器12およびヒータコア13によって温度調節された空調空気は、選択された吹出口から車室内に吹出される。
ヒータ回路3は、温水(水)が循環する循環流路を構成する。ヒータ回路3には、温水を循環させる電動式のウォーターポンプ14、温水を加熱する電気ヒータ15、循環する温水の温度を検出する水温センサ30,31、およびヒータコア13が設けられる。したがって電気ヒータ15は、車室内に送風される空気を加熱して空調風を提供するときに、熱源として用いられる。ヒータコア13は、電気ヒータ15によって加熱された温水が、内部に流通するように構成される。
水温センサ30,31は、ヒータ回路3を循環する水の温度を検出する水温検出手段である。水温センサ30,31は、電気ヒータ15を通過後、ヒータコア13に流入前の温水の温度を検出する入口水温センサ31と、ヒータコア13を通過後、電気ヒータ15を通過する前の温水の温度を検出する出口水温センサ30とが設けられる。水温センサ30,31は、検出した温度情報を、制御装置5を構成するエアコンECU25に与える。
電気ヒータ15には、車載のバッテリ17から得た直流電力が、制御装置5を構成するインバータ部18によって個別にデューティ制御されて供給される。電気ヒータ15は、電力が供給されている状態での消費電力は一定であり、たとえばニクロム線を利用したシーズヒータである。
冷凍サイクル2は、電動圧縮機19、膨張弁20、室外器21および室内器12が環状のサイクル流路22に順次接続される。冷凍サイクル2内を循環する冷媒としては、二酸化炭素(CO2)を用いており、高圧側の冷媒圧力が臨界圧力よりも高い状態で使用される場合を有している。
電動圧縮機19は、交流モータ(図示せず)によって駆動されて、空気を冷却して空調風を提供するときに用いられる冷媒を高温高圧に圧縮して室外器21へ吐出する流体機械である。電動圧縮機19は、作動回転数によって冷媒の吐出量を可変可能としている。電動圧縮機19は、制御装置5によってその作動および冷媒吐出量が制御される。電動圧縮機19の交流モータには、車載のバッテリ17(本実施形態では定格電圧300Vの直流電源)から得た直流電力がインバータ部18によって交流電力に変換されて供給される。電動圧縮機19の吐出側であって、たとえば電動圧縮機19と室外器21との間には、冷媒の状態量を検出する冷媒状態検出手段(図示せず)が設けられる。冷媒状態検出手段は、吐出された冷媒の温度を検出する温度センサおよび冷媒の圧力を検出する圧力センサによって実現される。各センサは、検出した温度情報および圧力情報を制御装置5に与える。
室外器21は、凝縮器であって、電動圧縮機19から吐出された冷媒とエンジンルーム内に流入する外気との間で熱交換する熱交換器である。室外器21は、車両のエンジンルームの前方、たとえばグリルの後方に配置される。室外器21の冷媒流出側であって、たとえば室外器21と膨張弁20との間には室外器21から流出される冷媒の温度を検出する温度センサ(図示せず)が設けられる。温度センサは、検出した温度情報を制御装置5に与える。
膨張弁20は、室外器21から流出される冷媒を減圧する(低温低圧にする)減圧手段である。膨張弁20には感温部(図示せず)およびキャピラリ(図示せず)が接続されており、室外器21から流出される冷媒の温度に応じて膨張弁20の弁開度が調節される機械式膨張弁としている。具体的には、感温部での冷媒温度が高いと弁開度が小さい側に可変されて室外器21における冷媒圧力が高い側に維持され、逆に感温部での冷媒温度が低くなると弁開度が大きい側に可変されて室外器21における冷媒圧力が低い側に維持される。
室内器12は、室内ユニット4の空調ケース6内で空調空気通路9全体を横断するように配設される。室内器12は、蒸発器であって、膨張弁20で減圧された冷媒と空調ケース6内を流通する空調空気との間で熱交換して、空調空気を冷却する熱交換器である。室内器12から流出された冷媒は、電動圧縮機19に与えられる。室内器12の空調空気流れの下流側には、冷却された空気温度(エバ後空気温度)を検出する室内器温度センサ32が設けられる。室内器温度センサ32は、検出した温度情報をエアコンECU25に与える。
空調ケース6内には、室内器12に加えて、暖房器としてのヒータコア13が配設されている。ヒータコア13は、室内器12に対して空調空気流れ下流側に配置されている。ヒータコア13と空調ケース6との間にはヒータコア13をバイパスして空調空気が流通するバイパス流路23が形成されている。
ヒータコア13の近傍には通過する空調空気量を調節するエアミックスドア24が設けられている。エアミックスドア24は、ヒータコア13の空調空気流通部を開閉する回動式のドアである。エアミックスドア24の開度に応じて、ヒータコア13を流通する加熱空気とバイパス流路23を流通する冷却空気との流量割合が調節されて、ヒータコア13の下流側の空調空気温度が調節される。エアミックスドア24の開度は、制御装置5によって制御される。
制御装置5は、エアコン電子制御装置(Electronic Control Unit:略称ECU)25とインバータ部18を含む。エアコンECU25は、マイクロコンピュータとその周辺回路から構成される。エアコンECU25には、前述したセンサの他に、外気温を検出する外気温度センサ33、内気温度を検出する内気温度センサ34および日射量を検出する日射センサ35からの情報が与えられる。エアコンECU25は、予め設定されたプログラムに従って各種センサから与えられる情報および操作パネル(図示せず)で乗員が設定する設定情報に対する演算処理を行う。エアコンECU25は、空調要求に基づいて、たとえばエアミックスドア24、電動圧縮機19、電気ヒータ15およびブロアモータ11bなどを制御する。したがってエアコンECU25は、ブロアモータ11bのブロア電圧が既知であるので、ブロアモータ11bのブロア電圧を検出する手段としての機能を有する。
インバータ部18は、エアコンECU25からの指令によって電動圧縮機19および電気ヒータ15の作動を制御する。したがってインバータ部18とエアコンECU25は、電気負荷である電動圧縮機19および電気ヒータ15への電力の供給を制御する制御手段を構成する。インバータ部18には、バッテリ17の直流電力がヒューズ29を介して供給されている。バッテリ17は、電源であって、たとえば水素と酸素との化学反応を利用して電力を発生する燃料電池(図示せず)にて充電される蓄電手段である。インバータ部18は、電気ヒータ用インバータ26および電動圧縮機用インバータ28を含む。各インバータ26,28は、バッテリ17およびヒューズ29に対して並列に接続される。
ヒューズ29は、ヒューズ許容電流が予め設定され、ヒューズ許容電流以上となるとヒューズ29が断線し、過電流がバッテリ17から電気負荷に流れないように動作する。ヒューズ29の許容電流は、負荷の起動電流と定格電流とに基づいて設定され、負荷の定格電流がヒューズ29の許容電流以上になるとヒューズ29が断線する。
電動圧縮機用インバータ28は、直流電力をスイッチングして可変周波数の交流出力(交流電力)を作りだし、その交流出力によって電動圧縮機19の回転数を可変制御する。電気ヒータ用インバータ26は、直流電力をスイッチングして、電気ヒータ15に供給される電力をデューティ制御する。デューティ制御は、電気ヒータなどの負荷への通電を短い周期で繰り返しオン/オフさせ、1周期当たりのオン時間(通電パルスの幅)の比率(デューティ比)を制御することで、負荷電流や負荷電圧を制御することである。このデューティ制御によって、電気ヒータ15にはバッテリ17の電圧と等しい電圧が電気ヒータ用インバータ26を介して印加される。各インバータ26,28のスイッチング素子としては、たとえば絶縁ゲートバイポーラトランジスタが用いられる。
次に、エアコンECU25の電気ヒータ用インバータ26の制御処理に関して説明する。図2は、エアコンECU25における電気ヒータ用インバータ26のデューティ比の決定手順を示すフローチャートである。エアコンECU25は、図2の制御処理が実行される以前に電動圧縮機19の動作状態、たとえば運転および停止を決定している。またエアコンECU25は、図2に示す処理を短時間に繰返す。
ステップa1では、ヒータ回路を循環する温水の目標水温を決定し、ステップa2に移る。目標水温は、たとえば次式(1)によって演算される。
TWO(n)={TAO(n)−TE(n)}/φ+TE(n) …(1)
ここで、nは本フローの処理回数を示し、TWO(n)は目標水温を示し、TE(n)は室内器12を通過した空気の温度を示し、TAO(n)は目標吹出温度を示し、φはヒータコア13の温度効率を示す。このように式(1)では、目標吹出温度TWO(n)とエバ後温度TE(n)との温度差からヒータコア13にて必要な熱量を演算して、目標水温TWO(n)を求めている。
ステップa2では、電気ヒータ15の出力を決定し、ステップa3に移る。電気ヒータ15の出力は、たとえば次式(2)および式(3)によって演算される。
E(n)=TW(n)−TWO(n) …(2)
W(n)=W(n−1)+Kp{E(n)−E(n−1)}+(θ/Ti)×E(n)
…(3)
ここで、W(n)は電気ヒータ15の出力を示し、TWは現在の水温(実水温)を示し、
W(n−1)が電気ヒータ15の出力の前回値を示し、Kpは比例定数を示し、θはサンプリング周期を示し、Tiは積分定数を示す。式(3)に示すように、電気ヒータ15の出力がPI制御によって決定される。
ステップa3では、ヒータ出力の決定処理を実行し、ステップa4に移る。ヒータ出力の決定処理は、ブロア電圧がHiレベルからLoレベルになった場合に、ヒータコア13に要求される放熱量が単位時間あたり予め定める変化量を超えて減少したときと判断して、電気ヒータ15の出力をHiレベルのときよりも低減した一定の値の制限値に決定する処理である。またHiレベルまたはLoレベルが維持されている場合には、前述のステップa2で演算したヒータ出力に決定する処理である。ブロア電圧がHiレベルからLoレベルになる原因として、たとえば乗員が手動操作によって風量を低下させた場合、および乗員が設定温度を大幅に変更した場合がある。
ステップa4では、ステップa2およびステップa3で決定されたヒータ出力と電気ヒータ最大出力(Wmax)から、電気ヒータ15のデューティ比(Duty)は、次式(4)によって演算される。
Duty=W(n)/Wmax …(4)
ステップa5では、ステップa4にて算出されたデューティ比(Duty)を電気ヒータ用インバータ26へ出力し、本フローを終了する。これによってデューティ比が与えられた電気ヒータ用インバータ26は、電気ヒータ15を与えられたデューティ比でデューティ制御する。
このようにエアコンECU25は、ステップa2にて目標水温に基づいて電気ヒータ15の出力を仮決定する。エアコンECU25は、ステップa2にて仮決定した電気ヒータ15の出力が大きすぎて目標水温を上回るような場合は、ステップa3にて出力を小さくするように制御し、最終的なヒータ出力を決定する。
次に、ステップa3のヒータ出力の決定処理に関してさらに説明する。図3は、エアコンECU25におけるヒータ出力の決定処理を示すフローチャートである。エアコンECU25は、図2のステップa2の処理がなされると、本フローを開始する。
ステップb1では、送風機11のブロア電圧がHiレベルからLoレベルに低下したか否かを判断し、低下した場合、ステップb2に移り、低下していない場合、本フローを終了する。
ステップb2では、ブロア電圧が低下して風量が低下したので、電気ヒータ15の出力の制限値である必要能力下限値(Wlower)を演算し、ステップb3に移る。必要能力下限値は、たとえば次式(5)によって演算される。
Wlower={TAO(n)−TE(n)}×C×ρ×Va−α …(5)
ここでCは空気比熱を示し、ρは空気密度を示し、Vaは風量を示し、αは補正量を示す。またVaは、ブロア電圧と吹出モードとに依存する値である。このように式(5)では、目標吹出温度TAOとエバ後空気温度TEとの差に、単位時間当たりの空気通過量を乗算して目標吹出温度TAOに必要な熱量を演算し、この必要な熱量に補正量αを減じた値が必要能力下限値Wlowerとして演算される。したがって必要能力下限値は、空調要求(目標吹出温度)を満足するために必要な熱量である。また必要能力下限値は、式(5)に示すように、実水温に依存しないので、目標吹出温度TAO(n)が変化しない限り、一定の値となる。
ステップb3では、ステップa2にて演算した出力W(n)と、ステップb2にて演算した必要能力下限値Wlowerとを比較し、出力W(n)が小さい場合、ステップb4に移り、小さくない場合、本フローを終了する。ステップb4では、出力W(n)が必要能力下限値Wlowerよりも小さいので、出力W(n)を必要能力下限値Wlowerに値を書き換え、本フローを終了する。
このようにエアコンECU25は、ステップb2にて必要能力下限値を演算する。必要能力下限値は、前述したように目標吹出温度を達成するためにヒータ回路3によって確保すべき熱量に、補正量を減算したものである。補正量によって、実水温が目標温度に無限に近づくことを防止することができる。このようにエアコンECU25は、ブロア電圧が急に減少した場合、電気ヒータ15の出力を必要能力下限値に制御する。
次に、図3に示す決定処理を実行することによる効果に関して説明する。図4は、ブロアレベルの変化を示すグラフである。図4の縦軸はブロアレベルを示し、横軸は時間を示す。図5は、ヒータ回路3を循環する水の水温の変化を示すグラフである。図5の縦軸は水温を示し、横軸は時間を示す。図6は、電気ヒータ15の出力の変化を示すグラフである。図6の縦軸は電気ヒータ15の出力を示し、横軸は時間を示す。図7は、吹出温度の変化を示すグラフである。図7の縦軸は吹出温度を示し、横軸は時間を示す。また図5〜図7では、エアコンECU25の処理による波形を実線で示し、従来技術の制御部による処理(以下、単に「従来制御」ということがある)の波形を破線で示す。従来制御は、図2のステップa3を除いた、ステップa1、ステップa2、ステップa4、およびステップa5を順次実行する処理である。
図4に示すように、時刻t0から時刻t1までは、ブロアレベルはHiレベルであり、時刻t1以降にLoレベルとなる。ブロアレベルがHiレベルの場合は、ブロア電圧が高く(たとえば11V)、風量が多い。またブロアレベルがLoレベルの場合は、ブロア電圧が低く(たとえば4V)、風量が少ない。このようにブロアレベルが2段階であるので、時刻t1にブロアレベルがHiレベルからLoレベルになると、送風機11によって送風される風量が突然、低下する。これによってヒータコア13に要求される放熱量を急激に小さくする必要がある。したがって電気ヒータ15の出力を小さくする必要がある。換言すると、送風機11のブロアレベルの低下を検出することによって、ヒータコア13の放熱量が、単位時間あたり予め定める変化量を超えて減少した場合を検出したこととなる。送風機11のブロアレベルは、HiレベルとLoレベルで段階的に変化する値であるので、そのHiレベルからLoレベルへの変化時間における変化量は、単位時間あたり予め定める変化量を超えて減少したものであると判断される。
図5〜図7に示すように、時刻t0から時刻t1までは、ブロアレベルはHiレベルで一定であるので、実水温TWが第1の目標水温TWO1で維持されている状態である。したがって時刻t0から時刻t1までのエアコンECU25の処理では、ステップb1の判断処理にてブロア電圧が安定しているので、ステップa4に移る。このように時刻t0から時刻t1までは、エアコンECU25の処理と従来制御とは、同様の処理となる。これによって時刻t0からブロアレベルが低下する時刻t1までの波形(実線と破線)は、互いに等しい。
ブロアレベルが低下することによって、目標水温が時刻t1まで第1の目標水温TWO1より低い、第2の目標水温TWO2にステップa1にて設定されている。そして時刻t1では、前述したようにブロアレベルが低下するので、エアコンECU25のステップb1の判断処理にてステップb2に移る。またステップb2にて、PI制御のヒータ出力W(n)では、電気ヒータ15を停止し、出力W(n)は必要能力下限値Wlowerより小さいので、ステップb3からステップb4に移り、ステップb4にて、ヒータ出力が必要能力下限値に決定される。したがって図6に示すように、時刻t2にてヒータ出力が現在の値から必要能力下限値まで下げられる。これに対して従来制御では、前述の式(3)に基づくPI制御によってヒータ出力が停止するので、図5に示すように、時刻t3にて目標水温を達し、その後、ヒータ出力を上昇させるが、水温の低下がすぐに止まらないので、目標水温を大きく下回る。
これに対してエアコンECU25は、ヒータ出力を早めの段階(時刻t2)で必要能力下限値に制御しているので、一端、実水温が上昇するが、その後ゆるかか下降し、時刻t4にて第2の目標水温TWO2に達する。実水温が第2の目標水温TWO2に達した時刻t4以降は、ステップb3における判断で、ステップa4に移るので、前述の式(3)に基づくPI制御に再び戻り、目標水温が維持される。したがって図5に示すように、従来制御では水温の温度変化の波形が大きく波打っているが、エアコンECU25による処理では、ゆるやかな曲線で目標水温に達して、維持される。また図7に示すように、吹出温度は水温と同様に変化するので、従来制御では吹出温度の温度変化の波形が大きく波打っているが、エアコンECU25による処理では、ゆるやかな曲線で目標水温に達して、維持される。また目標水温に達するまでの時間は、従来制御と大きくかわらないので、短時間で目標水温にすることができる。
以上説明したように本実施の形態のエアコンECU25は、ブロアレベルが低下すると、電気ヒータ15の出力を必要能力下限値となるように制御する(図6参照)。これによってブロアレベルが低下して、ヒータコア13の放熱量を急激に減少させる必要がある場合であっても、実水温の下降速度を小さくすることができる。実水温の下降速度が小さいので、実水温を目標水温にゆっくりと到達させることができ、実水温を目標水温で安定させることができる。このように本実施形態では、電気ヒータ15の出力を急に減少させる必要がある場合であっても、水温の変動を抑制することができる。したがって乗員のフィーリングが悪化することなく、快適な空調空間を提供することができる。
また本実施の形態では、ブロアレベルが低下すると、エアコンECU25によって空調要求を満足するために必要な熱量が式(5)によって演算される。これによって必要な熱量を用いて循環する水を加熱することができるので、実水温が目標水温を下回ることを抑制し、目標水温に近づけることができる。
さらに本実施の形態では、式(5)では補正量αが減算されているので、実水温が目標水温をやや下回らせるようにヒータ出力を補正することができる。したがって短時間で目標水温に近づけることができる。また補正量αが小さすぎると、実水温が無限に目標水温に近づくような制御となるので、補正量αは確実に目標水温に達することができる値に設定される。このように補正量αは、必要な熱量を補正する効果も有する。
(第2実施形態)
次に、本発明の第2実施形態に関して説明する。前述の第1実施形態では熱量の演算は式(5)を用いていたが、本実施の形態では、次式(6)によって演算される点に特徴を有する。
Wlower={TAO(n)−TWout(n)}×Cw×ρw×Gw−α …(6)
ここでTWout(n)は出口水温センサ30によって検出される出口水温を示し、Cwはヒータ回路3を循環する温水の比熱を示し、ρwは温水の密度を示し、Gwは温水の流量を示し、αは補正量を示す。このように式(6)では、目標吹出温度TAOと出口水温TWoutとの差に、単位時間当たりの流量を乗算して目標吹出温度に必要な熱量を演算し、この必要な熱量に補正量αを減算した値が必要能力下限値として演算している。したがって必要能力下限値は、空調要求(目標吹出温度)を満足するために必要な熱量となる。このように前述の式(5)に換えて式(6)を用いても、前述の第1実施形態と同様の作用および効果を達成することができる。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
前述の第1実施形態では、放熱量が急激に低下する場合は、ブロアレベルがHiレベルからLoレベルに低下した場合であったが、このような場合に限ることはなく、放熱量が急激に低下する場合として、たとえば外気温が急激に上昇した場合、日射量が急激に上昇した場合であってもよい。したがって放熱量の変化を検出する手段は、ブロアレベルの状態を検出する手段に限ることはなく、外気温を検出する外気温度センサ、日射量を検出する日射センサなどであってもよい。たとえば外気温度が単位時間として数秒の間に、予め定める変化量として5度上昇した場合に、単位時間あたり予め定める変化量を超えて放熱量を減少させる必要がある場合と判断する。またたとえば日射量が単位時間として数秒の間に、予め定める変化量として1.5倍以上上昇した場合に、単位時間あたりに予め定める変化量を超えて放熱量を減少させる必要がある場合と判断する。換言すると、ヒータコア13の放熱量が急激に減少して、電気ヒータ15を従来制御では急遽出力を大幅に低下させる必要がある場合に、必要能力下限値によって、電気ヒータ15の出力を制御することによって、前述の第1実施形態と同様の効果を達成することができる。
また前述の第1実施形態では、エアコンECU25は、ブロア電圧が低下した場合を、ヒータコア13に要求される放熱量が、単位時間あたり予め定める変化量を超えて減少した場合として制御しているが、このような単位時間当たりの変化量は空調負荷の種類によって個別に設定される。単位時間あたりの変化量は、必要能力下限値によってヒータ出力を制御しないと、実水温が大きく変動するような値に設定される。したがって、たとえばブロア電圧がHiレベルとLoレベルの2段階の制御でなく、多段階の制御である場合、単に1段階だけブロア電圧が低下しただけでは、放熱量が大きく変動しないと判断して、従来制御を継続するように制御してもよい。
前述の第1実施形態では、電気ヒータ15はヒータ回路3に1つだけ設けられていたが、1つに限ることはなく、2つ以上であってもよい。
また空調要求を満足するために必要な熱量は、前述の第1実施形態では式(5)を用いて演算し、前述の第2実施形態では式(6)を用いて演算しているが、この2つの式に限ることはなく、他のパラメータから必要な熱量を演算してもよく、また予め設定される制御マップなどから熱量を決定してもよい。
また前述の第1実施形態では、電気ヒータ15をデューティ制御しているが、デューティ制御に限ることはなく、デューティ比に依存することなく通電状態と非通電状態を単に切り替えるように制御してもよい。
第1実施形態の車両用空調装置1の全体構成を示す模式図である。図である。 エアコンECU25における電気ヒータ用インバータ26のデューティ比の決定手順を示すフローチャートである。 エアコンECU25におけるヒータ出力の決定処理を示すフローチャートである。 ブロアレベルの変化を示すグラフである。 ヒータ回路3を循環する水の水温の変化を示すグラフである。 電気ヒータ15の出力の変化を示すグラフである。 吹出温度の変化を示すグラフである。 従来技術におけるヒータ回路の水温の変化を示すグラフである。
符号の説明
1…車両用空調装置
3…ヒータ回路
5…制御装置(制御手段)
9…空調空気通路(空気通路)
11…送風機
12…室内器(冷却用熱交換器)
13…ヒータコア(加熱用熱交換器)
15…電気ヒータ(ヒータ)
17…バッテリ
18…インバータ部
19…電動圧縮機
25…エアコンECU(制御手段)
26…電気ヒータ用インバータ
28…電動圧縮機用インバータ
29…ヒューズ
30…出口水温センサ
31…入口水温センサ
32…室内器温度センサ

Claims (5)

  1. 空気を送風する送風機(11)と、
    前記送風機によって送風される空気が流れる空気通路(9)を形成する空調ケース(6)と、
    水が循環する循環流路を構成するヒータ回路(3)と、
    前記ヒータ回路に設けられ、前記ヒータ回路を循環する水を加熱するヒータ(15)と、
    前記ヒータ回路に設けられ、前記循環する水を熱源として、前記送風機によって送風される空気を加熱する加熱用熱交換器(13)と、
    車室内の空調要求に基づいて、前記ヒータの出力を制御する制御手段(25)と、を含み、
    前記制御手段は、前記空調要求を満足するために要求される前記加熱用熱交換器の放熱量が単位時間あたり予め定める変化量を超えて減少した場合、前記ヒータの出力を前記減少前よりも低減した一定の値である制限値で動作させるように制御することを特徴とする車両用空調装置。
  2. 前記制御手段は、前記空調要求を満足するために必要な熱量を演算し、前記演算した熱量が得られるように前記制限値を設定することを特徴とする請求項1に記載の車両用空調装置。
  3. 前記制御手段は、前記演算された熱量に、予め定める補正量を減じた熱量が得られるように前記制限値を設定することを特徴とする請求項2に記載の車両用空調装置。
  4. 前記空調ケース内に設けられ、前記送風機によって送風される空気を冷却する冷却用熱交換器(12)と、
    前記冷却用熱交換器を通過した空気の温度を検出する温度検出手段(32)と、をさらに含み、
    前記制御手段は、前記空調要求を満足するために必要な熱量を、前記空調要求を満足するための目標吹出温度と前記温度検出手段によって検出された空気温度とを用いて演算することを特徴とする請求項2または3に記載の車両用空調装置。
  5. 前記ヒータ回路を循環する水の温度であって、前記加熱用熱交換器の出口における温度を検出する水温検出手段(30)をさらに含み、
    前記制御手段は、前記空調要求を満足するために必要な熱量を、前記空調要求を満足するための目標水温と前記水温検出手段によって検出された実水温とを用いて演算することを特徴とする請求項2または3に記載の車両用空調装置。
JP2008278749A 2008-10-29 2008-10-29 車両用空調装置 Pending JP2010105505A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278749A JP2010105505A (ja) 2008-10-29 2008-10-29 車両用空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278749A JP2010105505A (ja) 2008-10-29 2008-10-29 車両用空調装置

Publications (1)

Publication Number Publication Date
JP2010105505A true JP2010105505A (ja) 2010-05-13

Family

ID=42295373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278749A Pending JP2010105505A (ja) 2008-10-29 2008-10-29 車両用空調装置

Country Status (1)

Country Link
JP (1) JP2010105505A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342939B1 (ko) 2010-11-03 2013-12-18 한라비스테온공조 주식회사 차량용 공조장치 및 그 제어방법
JP2014000911A (ja) * 2012-06-20 2014-01-09 Mitsubishi Motors Corp 電動車両に搭載されるヒータ装置
CN103950365A (zh) * 2014-04-30 2014-07-30 广西柳工机械股份有限公司 一种驾驶室取暖***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071954A (ja) * 1993-04-23 1995-01-06 Nippondenso Co Ltd 電気自動車用空気調和装置
JPH07186706A (ja) * 1993-12-27 1995-07-25 Zexel Corp 電気自動車用空調装置の制御装置
JPH10226219A (ja) * 1997-02-14 1998-08-25 Denso Corp 車両用空調装置
JP2001171335A (ja) * 1999-12-20 2001-06-26 Denso Corp 車両用暖房装置
JP2002036860A (ja) * 2000-05-19 2002-02-06 Denso Corp 暖房用ヒータ装置
JP2002264629A (ja) * 2001-03-12 2002-09-18 Denso Corp 電気負荷制御装置および車両用空調装置
JP2003025832A (ja) * 2001-07-12 2003-01-29 Denso Corp 車両用空調装置
JP2004131033A (ja) * 2002-10-15 2004-04-30 Denso Corp 空調装置
JP2006027386A (ja) * 2004-07-14 2006-02-02 Honda Motor Co Ltd 車両用発熱機器の冷却装置及び冷却方法
JP3979181B2 (ja) * 2002-05-22 2007-09-19 株式会社デンソー 車両用電気機器制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071954A (ja) * 1993-04-23 1995-01-06 Nippondenso Co Ltd 電気自動車用空気調和装置
JPH07186706A (ja) * 1993-12-27 1995-07-25 Zexel Corp 電気自動車用空調装置の制御装置
JPH10226219A (ja) * 1997-02-14 1998-08-25 Denso Corp 車両用空調装置
JP2001171335A (ja) * 1999-12-20 2001-06-26 Denso Corp 車両用暖房装置
JP2002036860A (ja) * 2000-05-19 2002-02-06 Denso Corp 暖房用ヒータ装置
JP2002264629A (ja) * 2001-03-12 2002-09-18 Denso Corp 電気負荷制御装置および車両用空調装置
JP2003025832A (ja) * 2001-07-12 2003-01-29 Denso Corp 車両用空調装置
JP3979181B2 (ja) * 2002-05-22 2007-09-19 株式会社デンソー 車両用電気機器制御装置
JP2004131033A (ja) * 2002-10-15 2004-04-30 Denso Corp 空調装置
JP2006027386A (ja) * 2004-07-14 2006-02-02 Honda Motor Co Ltd 車両用発熱機器の冷却装置及び冷却方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342939B1 (ko) 2010-11-03 2013-12-18 한라비스테온공조 주식회사 차량용 공조장치 및 그 제어방법
JP2014000911A (ja) * 2012-06-20 2014-01-09 Mitsubishi Motors Corp 電動車両に搭載されるヒータ装置
CN103950365A (zh) * 2014-04-30 2014-07-30 广西柳工机械股份有限公司 一种驾驶室取暖***
CN103950365B (zh) * 2014-04-30 2016-07-06 广西柳工机械股份有限公司 一种驾驶室取暖***

Similar Documents

Publication Publication Date Title
JP6278214B2 (ja) 車両用空調装置
JP6723137B2 (ja) 車両用空気調和装置
JP2003025832A (ja) 車両用空調装置
JP6105225B2 (ja) 車両用空調装置
JP2011068154A (ja) 車両用空調装置
JP2003127634A (ja) 車両用空調装置
JP5098948B2 (ja) 車両用空調装置
JP6459714B2 (ja) 制御装置及び車両用空調装置
JP2005262948A (ja) 車両用空調装置
JP2012131264A (ja) 車両用空調装置
JP2012076710A (ja) 車両用空調装置
JP6020264B2 (ja) 冷凍サイクル装置
JP2017165142A (ja) 空調装置
US10933719B2 (en) Vehicle air-conditioning apparatus
JP2009166629A (ja) 車両用空調装置
JP5960458B2 (ja) 車両用空調装置
JP2010083456A (ja) 車両用空調装置
JP2010105505A (ja) 車両用空調装置
JP2011068152A (ja) 車両用空調装置
JP2011063247A (ja) 車両用空調装置
JP5526675B2 (ja) 車両用空調装置
JP5972084B2 (ja) 車両用空調装置
JP2015189422A (ja) 車両用冷房装置
JP2011068153A (ja) 車両用空調装置
JP2011063248A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821