JP2010037647A - Method for producing nickel nanoparticle - Google Patents

Method for producing nickel nanoparticle Download PDF

Info

Publication number
JP2010037647A
JP2010037647A JP2008324580A JP2008324580A JP2010037647A JP 2010037647 A JP2010037647 A JP 2010037647A JP 2008324580 A JP2008324580 A JP 2008324580A JP 2008324580 A JP2008324580 A JP 2008324580A JP 2010037647 A JP2010037647 A JP 2010037647A
Authority
JP
Japan
Prior art keywords
nickel
organic solvent
nanoparticles
producing
nickel nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008324580A
Other languages
Japanese (ja)
Inventor
Jung Wook Seo
正 旭 徐
Hyo Seung Nam
孝 昇 南
Ae Sul Im
愛 雪 林
Kyoung-Mi Kim
京 美 金
Saishun Ri
載 濬 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2010037647A publication Critical patent/JP2010037647A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing nickel nanoparticles, which can easily control a size and a shape of the particle and can obtain the nickel nanoparticles in a high yield with an easier process when mass-producing the nanoparticles. <P>SOLUTION: The method for producing the nickel nanoparticles includes preparing a mixture of a nickel precursor and an organic amine by mixing them, and heating the mixture to produce the nickel nanoparticles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はニッケルナノ粒子の製造方法に関するもので、より詳しくは、ニッケルナノ粒子の粒子の大きさ及び形状の制御が容易で、大量生産の際に、より簡単な工程で高歩留まりのニッケルナノ粒子を得ることができるニッケルナノ粒子の製造方法に関する。   The present invention relates to a method for producing nickel nanoparticles, and more particularly, the nickel nanoparticles can be easily controlled in size and shape, and can be produced at a high yield in a simpler process in mass production. The present invention relates to a method for producing nickel nanoparticles.

ニッケルは電極材料であって、または燃料電池の触媒、水素化反応での触媒または種々の化学反応での触媒のように多様な分野に応用可能である。例えばニッケルは積層セラミックコンデンサ(MLCC)の内部電極材料または充填率の向上のための物質として使用されている。また、ニッケルは燃料電池及び有機合成の触媒として使用されており、最近は白金のような貴金属物質の代替材料としてニッケル粒子に対する研究が活発に行われている。積層セラミックコンデンサの場合、最近の薄型化・小型化・高容量化の傾向によって内部に使用されるニッケル粒子の大きさも減っており、ニッケル粒子をナノサイズに製造するため試みられている。   Nickel is an electrode material or can be applied to various fields such as fuel cell catalysts, catalysts in hydrogenation reactions or catalysts in various chemical reactions. For example, nickel is used as an internal electrode material of a multilayer ceramic capacitor (MLCC) or a substance for improving the filling rate. Nickel has been used as a catalyst for fuel cells and organic synthesis. Recently, research on nickel particles has been actively conducted as an alternative material for noble metal substances such as platinum. In the case of multilayer ceramic capacitors, the size of nickel particles used inside has been reduced due to the recent trend of thinning, downsizing, and high capacity, and attempts have been made to produce nickel particles in nano size.

ニッケルナノ粒子は、液相法、気相法、プラズマ及びレーザを用いて製造されることができる。種々の方法のうち、製造コストの安い液相からナノ粒子を製造する方法が最近多く開発された。   Nickel nanoparticles can be produced using liquid phase methods, gas phase methods, plasmas and lasers. Among various methods, many methods have recently been developed for producing nanoparticles from a liquid phase at a low production cost.

水溶液相においてニッケルナノ粒子を製造する方法のうち、塩化ニッケル水和物と還元剤のヒドラジンが含まれた混合液に水酸化ナトリウムを添加してニッケル粒子を製造する方法がある(Choi.J.−Y.et al、J.Am.Ceram.Soc.2005、vol.88、p.3020)。この方法は塩化ニッケルとヒドラジンが反応して錯化合物を形成した後、水酸化ナトリウムによりニッケル粒子が形成される過程で構成されている。特に、塩化ニッケル/ヒドラジン/水酸化ナトリウムの比率によってニッケル粒子の大きさを87nmないし203nmまで制御することができる。しかし、このような方法から得られたニッケル粒子の場合、粒子同士に連結(necking)された状態であるため分散が難しく、粒子表面も滑らかではなく粗いという短所がある。   Among the methods for producing nickel nanoparticles in an aqueous phase, there is a method for producing nickel particles by adding sodium hydroxide to a mixed solution containing nickel chloride hydrate and the reducing agent hydrazine (Choi. -Y. et al, J. Am. Ceram. Soc. 2005, vol. 88, p. This method consists of a process in which nickel chloride and hydrazine react to form a complex compound and then nickel particles are formed with sodium hydroxide. In particular, the size of nickel particles can be controlled from 87 nm to 203 nm by the ratio of nickel chloride / hydrazine / sodium hydroxide. However, the nickel particles obtained by such a method are disadvantageous in that they are difficult to disperse because they are in a state of being connected to each other, and the particle surface is not smooth but rough.

一方、水溶液相においてヒドラジンを還元剤に用いてニッケル粒子を製造する種々の方法のうち、コバルトを微量添加してニッケル粒子の大きさを制御する方法がある(Kim、K.−M.et al、J.Electroceram.2006、vol.17、p.339.)。この方法では塩化ニッケルや酢酸ニッケル水和物をニッケル前駆物質として使用した。ニッケル前駆物質とヒドラジンを混合した後、水酸化ナトリウムを混合液に添加してニッケル粒子を製造した。ニッケル前駆物質とヒドラジン混合液に塩化コバルトを微量添加してニッケル粒子の大きさを制御することができる。この方法で合成されたニッケル粒子の大きさは150nmないし450nmであり、添加したコバルトの量が多いほどニッケル粒子の大きさは減少する。コバルトの添加で核の生成数を増加させ、粒子の大きさを制御することができるが、得られた粒子の表面との連結(necking)現象は依然として先の方式と類似する。   On the other hand, among various methods for producing nickel particles using hydrazine as a reducing agent in an aqueous phase, there is a method for controlling the size of nickel particles by adding a small amount of cobalt (Kim, K.-M. et al J. Electroceram. 2006, vol. 17, p. 339.). In this method, nickel chloride or nickel acetate hydrate was used as a nickel precursor. After mixing the nickel precursor and hydrazine, sodium hydroxide was added to the mixture to produce nickel particles. The nickel particle size can be controlled by adding a small amount of cobalt chloride to the nickel precursor and hydrazine mixture. The size of the nickel particles synthesized by this method is 150 nm to 450 nm, and the size of the nickel particles decreases as the amount of added cobalt increases. The addition of cobalt can increase the number of nuclei produced and control the size of the particles, but the phenomenon of necking with the surface of the obtained particles is still similar to the previous method.

核の生成を制御して粒子の大きさを制御するさらに他の従来技術として、ニッケル前駆物質と界面活性剤が含まれた溶液に核の生成を促進するパラジウムまたは銀イオンを添加した後、還元剤のヒドラジンとアンモニアを注入してニッケル粒子を製造する方法がある(Chou、K.−S.et al、J.Nanoparticle Res.2001、vol.3、p.127.)。このような方法で製造されたニッケル粒子の大きさは10nmないし25nmと既存の方法よりニッケル粒子の大きさが画期的に減っている。しかし、合成されたニッケル粒子は純粋なニッケルだけでなく水酸化ニッケルが一部含まれており、反応濃度も非常に低いため大量にニッケル粒子を製造することができないという短所がある。   Yet another conventional technique for controlling nucleation to control particle size is to add palladium or silver ions that promote nucleation to a solution containing nickel precursors and surfactants, followed by reduction. There is a method for producing nickel particles by injecting hydrazine and ammonia as agents (Chou, K.-S. et al, J. Nanoparticle Res. 2001, vol. 3, p. 127.). The size of the nickel particles manufactured by such a method is 10 nm to 25 nm, and the size of the nickel particles is dramatically reduced from the existing method. However, the synthesized nickel particles contain not only pure nickel but also part of nickel hydroxide, and the reaction concentration is very low, so that there is a disadvantage that nickel particles cannot be produced in large quantities.

ニッケル前駆物質と還元剤のヒドラジンを使用してニッケル粒子を製造する方法の他にニッケルアルコキシド前駆物質を熱分解させニッケル粒子を製造する技術も知られている。この方法ではニッケル−アミノアルコキシ金属錯化合物を合成した後、トルエンのような有機溶媒に該錯化合物を溶かし加熱して錯化合物を熱分解させニッケル粒子を製造する方法である。ここで合成されたニッケル粒子の大きさは3nmないし5nmと非常に小さいが、粒子の形が球形の他に棒のような多様な種類の模様が混在しており、粒子が相互固まっている。このような製造方法は金属錯化合物を別途に製造する追加工程が必要で、金属錯化合物を大量に合成することが難しく、セラミックコンデンサの内部電極物質として使用するには粒子の大きさが小さ過ぎるという短所がある。   In addition to a method for producing nickel particles using a nickel precursor and a reducing agent hydrazine, a technique for producing nickel particles by thermally decomposing a nickel alkoxide precursor is also known. In this method, after synthesizing a nickel-aminoalkoxy metal complex compound, the complex compound is dissolved in an organic solvent such as toluene and heated to thermally decompose the complex compound to produce nickel particles. The size of the nickel particles synthesized here is very small, 3 nm to 5 nm, but the shape of the particles is not only spherical but also various kinds of patterns such as bars are mixed together, and the particles are solidified. Such a manufacturing method requires an additional step of separately manufacturing the metal complex compound, and it is difficult to synthesize a large amount of the metal complex compound, and the particle size is too small to be used as an internal electrode material of a ceramic capacitor. There are disadvantages.

従って、より低コストで簡単かつ大量にニッケルナノ粒子を製造することができ、またニッケルナノ粒子の大きさ及び形状の制御がより容易な製造方法の開発が求め続けられてきた。   Accordingly, there has been a continuing demand for the development of a production method that can produce nickel nanoparticles easily and in large quantities at a lower cost, and that allows easier control of the size and shape of the nickel nanoparticles.

本発明は上述の問題を解決するためのもので、本発明の目的は、ニッケルナノ粒子の粒子の大きさ及び形状の制御が容易で、大量生産の際に、より簡単な工程で高歩留まりのニッケルナノ粒子を得ることができるニッケルナノ粒子の製造方法を提供することにある。   The present invention is for solving the above-mentioned problems, and the object of the present invention is to easily control the size and shape of the nickel nanoparticles, and to achieve a high yield with a simpler process in mass production. It is providing the manufacturing method of the nickel nanoparticle which can obtain a nickel nanoparticle.

以上のような目的を達成すべく、本発明の一側面によるニッケルナノ粒子の製造方法は、ニッケル前駆物質、有機アミン、及び還元剤を混合して混合物を用意する段階と、混合物を加熱する段階とを含む。混合物には、有機溶媒がさらに混合されることができる。   In order to achieve the above object, a method for producing nickel nanoparticles according to one aspect of the present invention includes a step of preparing a mixture by mixing a nickel precursor, an organic amine, and a reducing agent, and a step of heating the mixture. Including. An organic solvent can be further mixed into the mixture.

ニッケル前駆物質は、塩化ニッケル(NiCl)、硫酸ニッケル(NiSO)、酢酸ニッケル(Ni(OCOCH)、ニッケルアセチルアセトネート(Ni(C)、ハロゲン化ニッケル(NiX、ここで、XはF、Br、またはI)、炭酸ニッケル(NiCO)、ニッケルシクロヘキサンブチレート([C11(CHCONi)、硝酸ニッケル(Ni(NO)、シュウ酸ニッケル(NiC)、ステアリン酸ニッケル(Ni(HC(CH16CO)、オクタン酸ニッケル([CH(CHCONi)及びこれらの水和物の少なくとも一つであることができる。 Nickel precursors are nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ), nickel acetate (Ni (OCOCH 3 ) 2 ), nickel acetylacetonate (Ni (C 5 H 7 O 2 ) 2 ), nickel halide (NiX 2 , where X is F, Br, or I), nickel carbonate (NiCO 3 ), nickel cyclohexane butyrate ([C 6 H 11 (CH 2 ) 3 CO 2 ] 2 Ni), nickel nitrate (Ni (NO 3 ) 2 ), nickel oxalate (NiC 2 O 4 ), nickel stearate (Ni (H 3 C (CH 2 ) 16 CO 2 ) 2 ), nickel octoate ([CH 3 (CH 2 ) 6 CO 2] 2 Ni) and can be at least one of their hydrates.

有機アミンはCNH(ここで、nは4≦n≦30)で表現され得るが、例えば、有機アミンはオレイルアミン(oleyl amine)、ドデシルアミン(dodecyl amine)、ラウリルアミン(lauryl amine)、オクチルアミン(octyl amine)、トリオクチルアミン(trioctyl amine)、ジオクチルアミン(dioctyl amine)及びヘキサデシルアミン(hexadecyl amine)の一つであることができる。 The organic amine may be represented by C n NH 2 (where n is 4 ≦ n ≦ 30). For example, the organic amine may be oleyl amine, dodecyl amine, lauryl amine, It can be one of octylamine, trioctylamine, dioctylamine, and hexadecylamine.

還元剤は、例えば、ホウ化水素ナトリウム(NaBH)、テトラブチルアンモニウムホウ化水素((CHCHCHCHN(BH))、水素化アルミニウムリチウム(LiAlH)、水素化ナトリウム(NaH)、ボラン−ジメチルアミン錯体((CHNH・BH)、及びアルカンジオール(HO(CHOH、ここで、nは5≦n≦30)の少なくとも一つであることができる。 Examples of the reducing agent include sodium borohydride (NaBH 4 ), tetrabutylammonium borohydride ((CH 3 CH 2 CH 2 CH 2 ) 4 N (BH 4 )), lithium aluminum hydride (LiAlH 4 ), hydrogen At least one of sodium hydride (NaH), borane-dimethylamine complex ((CH 3 ) 2 NH · BH 3 ), and alkanediol (HO (CH 2 ) n OH, where n is 5 ≦ n ≦ 30) Can be.

有機溶媒は、エーテル系有機溶媒(COC、ここで、nは4≦n≦30)、飽和炭化水素系有機溶媒(C2n+2、ここで、nは7≦n≦30)、不飽和炭化水素系有機溶媒(C2n、ここで、nは7≦n≦30)、及び有機酸系有機溶媒(CCOOH、ここでnは5≦n≦30)の少なくとも一つを含むことができるが、エーテル系有機溶媒は、例えば、トリオクチルホスフィンオキシド、アルキルホスフィン、オクチルエーテル、ベンジルエーテル、及びフェニルエーテルのいずれか一つであることができ、飽和炭化水素系有機溶媒はヘキサデカン、ヘプタデカン及びオクタデカンのいずれか一つであることができる。また、不飽和炭化水素系有機溶媒は、オクテン(octene)、ヘプタデセン(heptadecene)及びオクタデセン(octadecene)のいずれか一つであることができ、有機酸系有機溶媒は、オレイン酸、ラウリン酸、ステアリン酸、ミステリン酸及びヘキサデカン酸のいずれか一つであることができる。 The organic solvent is an ether-based organic solvent (C n OC n , where n is 4 ≦ n ≦ 30), a saturated hydrocarbon-based organic solvent (C n H 2n + 2 , where n is 7 ≦ n ≦ 30), At least one of an unsaturated hydrocarbon organic solvent (C n H 2n , where n is 7 ≦ n ≦ 30), and an organic acid organic solvent (C n COOH, where n is 5 ≦ n ≦ 30) The ether organic solvent can be, for example, any one of trioctyl phosphine oxide, alkyl phosphine, octyl ether, benzyl ether, and phenyl ether, and the saturated hydrocarbon organic solvent is It can be any one of hexadecane, heptadecane and octadecane. The unsaturated hydrocarbon organic solvent may be any one of octene, heptadecene, and octadecene, and the organic acid organic solvent includes oleic acid, lauric acid, stearin It can be any one of acid, mysteric acid and hexadecanoic acid.

混合物を加熱する段階において、混合物は50℃ないし450℃に加熱することができるが、その加熱時間は1分ないし8時間行われることができる。   In the step of heating the mixture, the mixture can be heated to 50 ° C. to 450 ° C., and the heating time can be 1 minute to 8 hours.

本発明によるニッケルナノ粒子の製造方法において混合物を加熱する段階の後に、加熱された混合物からニッケルナノ粒子を分離する段階をさらに含むことができる。分離する段階は、加熱された混合物にエタノールまたはアセトンを添加してニッケルナノ粒子を沈殿させ、これを分離して行われることができる。   In the method for producing nickel nanoparticles according to the present invention, after the step of heating the mixture, the method may further include separating the nickel nanoparticles from the heated mixture. The separating step can be performed by adding ethanol or acetone to the heated mixture to precipitate nickel nanoparticles, which are separated.

本発明によるニッケルナノ粒子の製造方法を用いてニッケルナノ粒子を製造すると、ニッケルナノ粒子の粒子の大きさ及び形状の制御が容易で、大きさの分布が均一な100nm以下のニッケルナノ粒子を高歩留まりで大量生産できる効果がある。   When nickel nanoparticles are produced using the method for producing nickel nanoparticles according to the present invention, the size and shape of the nickel nanoparticles can be easily controlled, and nickel nanoparticles having a size distribution of 100 nm or less can be increased. There is an effect of mass production with yield.

本発明によると、有機アミンを使用してニッケルナノ粒子を製造することにより製造されたニッケルナノ粒子は有機アミンでコーティングされており、これによりニッケルナノ粒子の使用時に他の有機溶媒に分散性に優れる。従って、ニッケルナノ粒子を適用するとき、他の溶媒に分散させるための追加工程が不要で、工程が単純になる効果がある。   According to the present invention, nickel nanoparticles produced by producing nickel nanoparticles using organic amines are coated with organic amines, which makes them dispersible in other organic solvents when nickel nanoparticles are used. Excellent. Therefore, when applying nickel nanoparticles, there is no need for an additional step for dispersing in other solvents, which has the effect of simplifying the steps.

また、ニッケル前駆物質の濃度、還元剤の濃度及び種類、反応温度によってニッケルナノ粒子の大きさを制御して製造することができ、より効率的にニッケルナノ粒子を所望の大きさを有するよう製造できる効果がある。   In addition, the size of nickel nanoparticles can be controlled according to the concentration of the nickel precursor, the concentration and type of the reducing agent, and the reaction temperature, and the nickel nanoparticles can be more efficiently manufactured to have the desired size. There is an effect that can be done.

以下、具体的な実施例及び添付の図面を参照に本発明の実施形態を説明する。しかし、本発明の実施形態は様々な他の形態に変形することができ、本発明の範囲が以下に説明する実施形態に限定されるものではない。本発明の実施形態は当業界において通常の知識を有した者に本発明をより完全に説明するため提供される。   Hereinafter, embodiments of the present invention will be described with reference to specific examples and the accompanying drawings. However, the embodiment of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiment described below. The embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

本発明によるニッケルナノ粒子の製造方法では、先ず、ニッケル前駆物質及び有機アミンを混合してニッケル前駆物質の混合物を用意し、これを加熱して熱分解してニッケルナノ粒子を製造する。   In the method for producing nickel nanoparticles according to the present invention, first, a nickel precursor and an organic amine are mixed to prepare a mixture of nickel precursors, which are heated and thermally decomposed to produce nickel nanoparticles.

本発明で使用できるニッケル前駆物質は、塩化ニッケル(NiCl)、硫酸ニッケル(NiSO)、酢酸ニッケル(Ni(OCOCH)、ニッケルアセチルアセトネート(Ni(C)、ハロゲン化ニッケル(NiX、ここで、XはF、Br、またはI)、炭酸ニッケル(NiCO)、ニッケルシクロヘキサンブチレート([C11(CHCONi)、硝酸ニッケル(Ni(NO)、シュウ酸ニッケル(NiC)、ステアリン酸ニッケル(Ni(HC(CH16CO)、オクタン酸ニッケル([CH(CHCONi)及びこれらの水和物で構成された群から選択された少なくとも一つであることができるが、必ずこれに限定されるのではなく、ニッケルの源泉物質(source)として使用できる化合物であれば如何なるものも本発明のニッケルナノ粒子の製造方法でニッケル前駆物質として使用されることができる。 Nickel precursors that can be used in the present invention are nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ), nickel acetate (Ni (OCOCH 3 ) 2 ), nickel acetylacetonate (Ni (C 5 H 7 O 2 ) 2 ), Nickel halide (NiX 2 , where X is F, Br, or I), nickel carbonate (NiCO 3 ), nickel cyclohexane butyrate ([C 6 H 11 (CH 2 ) 3 CO 2 ] 2 Ni) , Nickel nitrate (Ni (NO 3 ) 2 ), nickel oxalate (NiC 2 O 4 ), nickel stearate (Ni (H 3 C (CH 2 ) 16 CO 2 ) 2 ), nickel octoate ([CH 3 ( CH 2) 6 CO 2] 2 Ni) and can be at least one selected from a group consisting of these hydrates, Not rather than being limited thereto, it is possible as long as it is a compound that can be used as the nickel sources material (source) to any intended to be used as a nickel precursor by the production method of the nickel nanoparticles of the present invention.

本発明によるニッケルナノ粒子の製造方法では、従来のニッケルナノ粒子の製造方法とは異なって有機アミンを添加する。有機アミンは有機溶媒および/または還元剤として作用することができる。有機アミンが添加されるためニッケルナノ粒子との混合物に溶媒が別途に追加で使用される場合、水溶性溶媒ではなく有機溶媒が使用されることができる。   Unlike the conventional method for producing nickel nanoparticles, the method for producing nickel nanoparticles according to the present invention adds an organic amine. Organic amines can act as organic solvents and / or reducing agents. When an organic amine is added and a solvent is additionally used in the mixture with the nickel nanoparticles, an organic solvent can be used instead of a water-soluble solvent.

本発明によると、有機アミンを使用してニッケルナノ粒子を製造することにより、製造されたニッケルナノ粒子は有機アミンでコーティングされていることができ、これによりニッケルナノ粒子の使用の際に他の有機溶媒に分散性に優れる。従って、ニッケルナノ粒子を例えば、積層セラミックコンデンサの内部電極として使用するとき有機溶媒に分散させて使用する場合、分散による追加工程が不要という長所がある。   According to the present invention, by producing nickel nanoparticles using an organic amine, the produced nickel nanoparticles can be coated with an organic amine, so that other nickel nanoparticles can be used in the use of the nickel nanoparticles. Excellent dispersibility in organic solvents. Therefore, when nickel nanoparticles are used as an internal electrode of a multilayer ceramic capacitor, for example, when dispersed in an organic solvent, there is an advantage that an additional step due to dispersion is unnecessary.

有機アミンはCNH(ここで、nは4≦n≦30)で表現されることができる。本発明において使用できる有機アミンは、例えば、オレイルアミン(oleyl amine)、ドデシルアミン(dodecyl amine)、ラウリルアミン(lauryl amine)、オクチルアミン(octyl amine)、トリオクチルアミン(trioctyl amine)、ジオクチルアミン(dioctyl amine)またはヘキサデシルアミン(hexadecyl amine)があるが、必ずこれに限定されるものではない。 The organic amine can be represented by C n NH 2 (where n is 4 ≦ n ≦ 30). Examples of the organic amine that can be used in the present invention include oleylamine, dodecylamine, laurylamine, octylamine, trioctylamine, dioctylamine, and dioctylamine. amine) or hexadecylamine, but is not necessarily limited thereto.

ニッケル前駆物質混合物において、有機アミン以外に溶媒をさらに使用する場合、有機溶媒をさらに使用することができる。   In the nickel precursor mixture, when a solvent is further used in addition to the organic amine, an organic solvent can be further used.

有機溶媒としては、エーテル系有機溶媒(COC、ここで、nは4≦n≦30)、飽和炭化水素系有機溶媒(C2n+2、ここで、nは7≦n≦30)、不飽和炭化水素系有機溶媒(C2n、ここで、nは7≦n≦30)、または有機酸系有機溶媒(CCOOH、ここで、nは5≦n≦30)を一つまたはそれ以上使用することができる。 Examples of the organic solvent include ether-based organic solvents (C n OC n , where n is 4 ≦ n ≦ 30), saturated hydrocarbon-based organic solvents (C n H 2n + 2 , where n is 7 ≦ n ≦ 30), unsaturated hydrocarbon organic solvent (C n H 2n , where n is 7 ≦ n ≦ 30), or organic acid organic solvent (C n COOH, where n is 5 ≦ n ≦ 30) One or more can be used.

本発明において使用できるエーテル系有機溶媒は、例えば、トリオクチルホスフィンオキシド(Trioctylphosphine oxide、TOPO)、アルキルホスフィン(alkylphosphine)、オクチルエーテル(octyl ether)、ベンジルエーテル(benzyl ether)、及びフェニルエーテル(phenyl ether)のいずれか一つであることができるが、必ずこれに限定されるものではない。   Examples of the ether-based organic solvent that can be used in the present invention include trioctylphosphine oxide (TOPO), alkylphosphine, octyl ether, benzyl ether, and phenyl ether. ), But is not necessarily limited to this.

本発明に使用できるエーテル系有機溶媒は、例えば、飽和炭化水素系有機溶媒は、ヘキサデカン、ヘプタデカン及びオクタデカンのいずれか一つであることができるが、必ずこれに限定されるものではない。また、不飽和炭化水素系有機溶媒は、オクテン(octene)、ヘプタデセン(heptadecene)及びオクタデセン(octadecene)のいずれか一つであることができるが、必ずこれに限定されるものではない。   The ether organic solvent that can be used in the present invention can be, for example, one of hexadecane, heptadecane, and octadecane, but is not necessarily limited thereto. Also, the unsaturated hydrocarbon organic solvent may be any one of octene, heptadecene, and octadecene, but is not limited thereto.

本発明に使用できる有機酸系有機溶媒は、オレイン酸(oleic acid)、ラウリン酸(lauric acid)、ステアリン酸(stearic acid)、ミステリン酸(mysteric acid)及びヘキサデカン酸(hexadecanoic acid)のいずれか一つであることができるが、必ずこれに限定されるものではない。   The organic acid organic solvent that can be used in the present invention is any one of oleic acid, lauric acid, stearic acid, mysteric acid, and hexadecanoic acid. However, the present invention is not limited to this.

ニッケル前駆物質混合物には、還元剤が混合される。本発明に使用できる還元剤は、例えば、ホウ素水素ナトリウム(Sodium borohydride、NaBH)、テトラブチルアンモニウムホウ化水素(Tetrabutyammonium borohydride、TBAB)((CHCHCHCHN(BH))、水素化アルミニウムリチウム(Lithium Aluminum hydride、LiAlH)、水素化ナトリウム(Sodium hydride、NaH)、ボラン−ジメチルアミン錯体(Borane dimethylamine complex、(CHNH・BH)、及びアルカンジオール(Alkanediol、HO(CHOH、ここで、nは5≦n≦30)のいずれか一つであることができるが、必ずこれに限定されるものではない。 A reducing agent is mixed in the nickel precursor mixture. Examples of the reducing agent that can be used in the present invention include sodium borohydride (Sodium boronhydride, NaBH 4 ), tetrabutylammonium borohydride (TBAB) ((CH 3 CH 2 CH 2 CH 2 ) 4 N (BH 4 )), Lithium aluminum hydride (Lidium Aluminum, LiAlH 4 ), sodium hydride (Sodium hydride, NaH), borane-dimethylamine complex (Borane dimethylamine complex, (CH 3 ) 2 NH · BH 3 diol) (Alkanediol, HO (CH 2) n OH, where, n is 5 ≦ n ≦ 30) can be any one of, Not the present invention is not limited to this.

ニッケル前駆物質混合物は加熱して熱分解される。ニッケル前駆物質混合物を加熱する温度は50℃ないし450℃であることができ、好ましくは60℃ないし400℃、より好ましくは80℃ないし350℃であることができる。加熱時間は1分ないし8時間行われることができる。   The nickel precursor mixture is heated and pyrolyzed. The temperature for heating the nickel precursor mixture can be 50 ° C. to 450 ° C., preferably 60 ° C. to 400 ° C., more preferably 80 ° C. to 350 ° C. The heating time can be from 1 minute to 8 hours.

本発明によるニッケルナノ粒子の製造方法において、ニッケル前駆物質混合物を加熱して熱分解するとニッケルナノ粒子が製造される。製造されたニッケルナノ粒子は、例えば、加熱されたニッケル前駆物質混合物にエタノールまたはアセトンを添加してニッケルナノ粒子を沈殿させた後、遠心分離機を用いて分離することができる。   In the method for producing nickel nanoparticles according to the present invention, nickel nanoparticles are produced when the nickel precursor mixture is heated and thermally decomposed. The produced nickel nanoparticles can be separated using, for example, a centrifuge after ethanol or acetone is added to the heated nickel precursor mixture to precipitate the nickel nanoparticles.

本発明によると、製造されたニッケルナノ粒子の大きさは、反応条件によってより効果的に制御されることができる。以下の実施例では、このようなニッケルナノ粒子の大きさを制御することができるようニッケル前駆物質の濃度、還元剤の濃度及び種類、または反応温度をそれぞれ異なるようにしてニッケルナノ粒子を製造する。   According to the present invention, the size of the produced nickel nanoparticles can be more effectively controlled by the reaction conditions. In the following examples, nickel nanoparticles are produced with different nickel precursor concentrations, reducing agent concentrations and types, or reaction temperatures so that the size of the nickel nanoparticles can be controlled. .

以下、本発明による実施例を参照して本発明をより詳しく説明する。実施例1ないし8では本発明によってニッケルナノ粒子を製造した。 Hereinafter, the present invention will be described in more detail with reference to examples according to the present invention. In Examples 1 to 8, nickel nanoparticles were produced according to the present invention.

実施例1:ニッケルナノ粒子の製造
アルゴン雰囲気下でニッケル前駆物質として13gの塩化ニッケルと、有機アミンとして200mLのオレイルアミン、及び還元剤として0.5gのテトラブチルアンモニウムホウ化水素(TBAB)をフラスコに入れて混合した後100℃に加熱した。この温度で1時間維持する。混合液を160℃に昇温した後1時間以上維持する。1時間以上過ぎた後、フラスコを常温に冷却させ300mLのエタノールを添加してナノ粒子を沈殿させ、遠心分離機で沈殿されたナノ粒子6.1gを回収する。反応歩留まりは99%以上である。
Example 1: Preparation of nickel nanoparticles 13 g of nickel chloride as a nickel precursor, 200 mL of oleylamine as an organic amine, and 0.5 g of tetrabutylammonium borohydride (TBAB) as a reducing agent under argon atmosphere in a flask After mixing, the mixture was heated to 100 ° C. Maintain at this temperature for 1 hour. The mixture is heated to 160 ° C. and maintained for 1 hour or longer. After 1 hour or more, the flask is cooled to room temperature, 300 mL of ethanol is added to precipitate the nanoparticles, and 6.1 g of nanoparticles precipitated by a centrifuge are collected. The reaction yield is 99% or more.

このように合成されたニッケルナノ粒子10mgをアルコールまたはトルエンのような溶媒に分散させる。ニッケルナノ粒子が含まれた溶液20μlを炭素膜がコーティングされたTEM grid(Ted Pella Inc.社製)に落として約20分間乾燥させた後、透過電子顕微鏡(HRTEM、Philips社製、加速電圧200kV)で観察した。図1は実施例1によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。図1を参照すると、本実施例によって製造されたニッケルナノ粒子は、その大きさが均一で粒子形状が丸い形状を表すことが分かる。透過電子顕微鏡で観察された粒子の大きさを測定して、その分布を図2に示した。ニッケルナノ粒子の平均粒径は50.8±10nmであった。   10 mg of the nickel nanoparticles thus synthesized are dispersed in a solvent such as alcohol or toluene. After dropping 20 μl of a solution containing nickel nanoparticles onto a TEM grid (manufactured by Ted Pella Inc.) coated with a carbon film and drying for about 20 minutes, a transmission electron microscope (HRTEM, manufactured by Philips, acceleration voltage 200 kV) ). FIG. 1 is a drawing showing the results of observation of nickel nanoparticles produced in Example 1 with a transmission electron microscope. Referring to FIG. 1, it can be seen that the nickel nanoparticles produced according to the present example have a uniform size and a round particle shape. The particle size observed with a transmission electron microscope was measured, and the distribution was shown in FIG. The average particle diameter of the nickel nanoparticles was 50.8 ± 10 nm.

また、粒子の結晶構造を透過電子顕微鏡の電子回折分析(Electron Diffraction)を利用して観察した。図3は実施例1によって製造されたニッケルナノ粒子の電子回折分析結果を表した図面である。観察結果得られたニッケルナノ粒子は、正方晶(cubic)の結晶構造を有していることが確認された。尚、X線回折分析機(Rikagu社製)を用いてニッケルナノ粒子の結晶構造を分析した。図4は実施例1によって製造されたニッケルナノ粒子のX線回折パターン分析結果を表した図面である。X線回折分析結果もニッケルナノ粒子の構造が電子回折分析結果と同様に正方晶の結晶構造であることが分かる。 In addition, the crystal structure of the particles was observed using electron diffraction analysis of a transmission electron microscope. FIG. 3 is a diagram showing the results of electron diffraction analysis of the nickel nanoparticles produced in Example 1. It was confirmed that the nickel nanoparticles obtained as a result of the observation have a tetragonal (cubic) crystal structure. In addition, the crystal structure of the nickel nanoparticles was analyzed using an X-ray diffraction analyzer (manufactured by Rikagu). FIG. 4 is a drawing showing the results of X-ray diffraction pattern analysis of nickel nanoparticles produced according to Example 1. The X-ray diffraction analysis result also shows that the structure of the nickel nanoparticles is a tetragonal crystal structure similar to the electron diffraction analysis result.

実施例2
ニッケル前駆物質の量を調節すべく、塩化ニッケルの量を6.5g使用したことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図5は実施例2によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは38.3±11nmと実施例1によるニッケルナノ粒子の大きさより小さくなったことが分かる。
Example 2
Nickel nanoparticles were prepared in the same manner as in Example 1 except that 6.5 g of nickel chloride was used to adjust the amount of nickel precursor. FIG. 5 is a drawing showing the results of observation of the nickel nanoparticles produced in Example 2 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles was 38.3 ± 11 nm, which was smaller than the size of the nickel nanoparticles according to Example 1.

実施例3
ニッケル前駆物質の量を調節すべく、塩化ニッケルの量を26g使用したことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図6は実施例3によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは94±22nmと実施例1によるニッケルナノ粒子より大きくなったことが分かる。
Example 3
Nickel nanoparticles were prepared in the same manner as in Example 1 except that 26 g of nickel chloride was used to adjust the amount of nickel precursor. FIG. 6 is a drawing showing the results of observation of the nickel nanoparticles produced in Example 3 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles was 94 ± 22 nm, which was larger than the nickel nanoparticles according to Example 1.

実施例4
反応温度を調節すべく、ニッケルナノ粒子を180℃で製造したことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図7は実施例4によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは、実施例1によるニッケルナノ粒子より大きくなったことが分かる。
Example 4
Nickel nanoparticles were produced in the same manner as in Example 1 except that the nickel nanoparticles were produced at 180 ° C. in order to adjust the reaction temperature. FIG. 7 is a drawing showing the results of observation of nickel nanoparticles produced in Example 4 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles is larger than that of the nickel nanoparticles according to Example 1.

実施例5
反応温度を調節すべく、ニッケルナノ粒子を200℃で製造したことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図8は実施例5によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは、実施例1によるニッケルナノ粒子より大きくなったことが分かる。
Example 5
Nickel nanoparticles were produced in the same manner as in Example 1 except that the nickel nanoparticles were produced at 200 ° C. in order to adjust the reaction temperature. FIG. 8 is a drawing showing the result of observation of the nickel nanoparticles produced in Example 5 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles is larger than that of the nickel nanoparticles according to Example 1.

実施例6
還元剤の添加を調節すべく、TBABを使用しないことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図9は実施例6によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは、実施例1によるニッケルナノ粒子より大きくなり、その形状が丸い形状ではない形状のニッケルナノ粒子も製造されたことが分かる。
Example 6
Nickel nanoparticles were produced in the same manner as in Example 1 except that TBAB was not used to adjust the addition of the reducing agent. FIG. 9 is a drawing showing the results of observation of the nickel nanoparticles produced in Example 6 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles is larger than that of the nickel nanoparticles according to Example 1, and nickel nanoparticles having a shape other than a round shape are also produced.

実施例7
還元剤の添加量を調節すべく、TBABを0.25g使用したことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図10は実施例7によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは、実施例1によるニッケルナノ粒子より大きくなったことが分かる。
Example 7
Nickel nanoparticles were produced in the same manner as in Example 1 except that 0.25 g of TBAB was used to adjust the amount of reducing agent added. FIG. 10 is a drawing showing the results of observation of the nickel nanoparticles produced in Example 7 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles is larger than that of the nickel nanoparticles according to Example 1.

実施例8
TBABの代わりに1,2−ヘキサデカンジオール(1,2−hexadecanediol)を2.6g使用したことを除き、実施例1と同じ方法でニッケルナノ粒子を製造した。図11は実施例8によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。ニッケルナノ粒子の大きさは、実施例1によるニッケルナノ粒子より大きくなったことが分かる。
Example 8
Nickel nanoparticles were produced in the same manner as in Example 1, except that 2.6 g of 1,2-hexadecandiol was used instead of TBAB. FIG. 11 is a drawing showing the results of observation of the nickel nanoparticles produced in Example 8 with a transmission electron microscope. It can be seen that the size of the nickel nanoparticles is larger than that of the nickel nanoparticles according to Example 1.

実施例1ないし実施例8によって製造されたニッケルナノ粒子は、それぞれ反応条件及び還元剤の有無などの条件によって相互異なる粒子の大きさを表した。従って、本発明により、より簡単な方法でナノサイズを有する粒子の大きさ及び形状を制御してニッケルナノ粒子を製造することが可能だということが分かる。   The nickel nanoparticles prepared according to Examples 1 to 8 exhibited different particle sizes depending on the reaction conditions and the presence or absence of a reducing agent. Therefore, according to the present invention, it can be seen that nickel nanoparticles can be produced by controlling the size and shape of the nano-sized particles by a simpler method.

本発明は上述の実施形態及び添付の図面により限定されず、添付の請求範囲により解釈されるべきである。また、本発明について請求範囲に記載された本発明の技術的思想を外れない範囲内で多様な形態の置換、変形及び変更が可能というのは当該技術分野の通常の知識を有している者には自明である。   The present invention should not be limited by the above-described embodiments and the accompanying drawings, but should be interpreted by the appended claims. In addition, those who have ordinary knowledge in the technical field that various forms of substitutions, modifications and changes can be made without departing from the technical idea of the present invention described in the claims of the present invention. It is self-evident.

実施例1によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。1 is a drawing showing the result of observation of nickel nanoparticles produced in Example 1 with a transmission electron microscope. ニッケルナノ粒子の粒度分布を表した図面である。It is drawing which represented the particle size distribution of the nickel nanoparticle. ニッケルナノ粒子の電子回折分析結果を表した図面である。It is drawing which showed the electron diffraction analysis result of the nickel nanoparticle. ニッケルナノ粒子のX線回折パターン分析結果を表した図面である。It is drawing which showed the X-ray-diffraction pattern analysis result of the nickel nanoparticle. 実施例2によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。4 is a drawing showing the results of observation of nickel nanoparticles produced in Example 2 with a transmission electron microscope. 実施例3によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。6 is a drawing showing the result of observation of nickel nanoparticles produced in Example 3 with a transmission electron microscope. 実施例4によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。It is drawing which showed the result of having observed the nickel nanoparticle manufactured by Example 4 with the transmission electron microscope. 実施例5によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。It is drawing which showed the result of having observed the nickel nanoparticle manufactured by Example 5 with the transmission electron microscope. 実施例6によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。It is drawing which showed the result of having observed the nickel nanoparticle manufactured by Example 6 with the transmission electron microscope. 実施例7によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。It is drawing which showed the result of having observed the nickel nanoparticle manufactured by Example 7 with the transmission electron microscope. 実施例8によって製造されたニッケルナノ粒子を透過電子顕微鏡で観察した結果を表した図面である。It is drawing which showed the result of having observed the nickel nanoparticle manufactured by Example 8 with the transmission electron microscope.

Claims (15)

ニッケル前駆物質、有機アミン及び還元剤を混合して混合物を用意する段階と、
前記混合物を加熱する段階と、
を含む、ニッケルナノ粒子の製造方法。
Mixing a nickel precursor, an organic amine and a reducing agent to prepare a mixture;
Heating the mixture;
A method for producing nickel nanoparticles, comprising:
前記混合物には有機溶媒がさらに混合されることを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。   The method of claim 1, wherein an organic solvent is further mixed in the mixture. 前記ニッケル前駆物質は、塩化ニッケル(NiCl)、硫酸ニッケル(NiSO)、酢酸ニッケル(Ni(OCOCH)、ニッケルアセチルアセトネート(Ni(C)、ハロゲン化ニッケル(NiX、ここで、XはF、Br、またはI)、炭酸ニッケル(NiCO)、ニッケルシクロヘキサンブチレート([C11(CHCONi)、硝酸ニッケル(Ni(NO)、シュウ酸ニッケル(NiC)、ステアリン酸ニッケル(Ni(HC(CH16CO)、オクタン酸ニッケル([CH(CHCONi)及びこれらの水和物からなる群から選ばれる少なくとも一つであることを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。 The nickel precursor is nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ), nickel acetate (Ni (OCOCH 3 ) 2 ), nickel acetylacetonate (Ni (C 5 H 7 O 2 ) 2 ), halogenated Nickel (NiX 2 , where X is F, Br, or I), nickel carbonate (NiCO 3 ), nickel cyclohexane butyrate ([C 6 H 11 (CH 2 ) 3 CO 2 ] 2 Ni), nickel nitrate ( Ni (NO 3 ) 2 ), nickel oxalate (NiC 2 O 4 ), nickel stearate (Ni (H 3 C (CH 2 ) 16 CO 2 ) 2 ), nickel octoate ([CH 3 (CH 2 ) 6 ) wherein the CO 2] is at least one selected from 2 Ni) and the group consisting of hydrates, two of claim 1 Method of manufacturing a Kerunano particles. 前記有機アミンは、CNH(ここで、nは4≦n≦30)で表されることを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。 2. The method for producing nickel nanoparticles according to claim 1, wherein the organic amine is represented by C n NH 2 (where n is 4 ≦ n ≦ 30). 前記有機アミンは、オレイルアミン、ドデシルアミン、ラウリルアミン、オクチルアミン、トリオクチルアミン、ジオクチルアミン及びヘキサデシルアミンからなる群から選ばれる少なくとも一つを含むことを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。   The nickel according to claim 1, wherein the organic amine comprises at least one selected from the group consisting of oleylamine, dodecylamine, laurylamine, octylamine, trioctylamine, dioctylamine and hexadecylamine. A method for producing nanoparticles. 前記還元剤は、ホウ化水素ナトリウム(NaBH)、テトラブチルアンモニウムホウ化水素((CHCHCHCHN(BH))、水素化アルミニウムリチウム(LiAlH)、水素化ナトリウム(NaH)、ボラン−ジメチルアミン錯体((CHNH・BH)、及びアルカンジオール(HO(CHOH、ここで、nは5≦n≦30)からなる群から選ばれる少なくとも一つを含むことを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。 The reducing agent includes sodium borohydride (NaBH 4 ), tetrabutylammonium borohydride ((CH 3 CH 2 CH 2 CH 2 ) 4 N (BH 4 )), lithium aluminum hydride (LiAlH 4 ), hydrogenation Selected from the group consisting of sodium (NaH), borane-dimethylamine complex ((CH 3 ) 2 NH · BH 3 ), and alkanediol (HO (CH 2 ) n OH, where n is 5 ≦ n ≦ 30) The method for producing nickel nanoparticles according to claim 1, comprising at least one of the above. 前記有機溶媒は、エーテル系有機溶媒(COC、ここで、nは4≦n≦30)、飽和炭化水素系有機溶媒(C2n+2、ここで、nは7≦n≦30)、不飽和炭化水素系有機溶媒(C2n、ここで、nは7≦n≦30)、及び有機酸系有機溶媒(CCOOH、ここで、nは5≦n≦30)からなる群から選ばれる少なくとも一つを含むことを特徴とする、請求項2に記載のニッケルナノ粒子の製造方法。 The organic solvent is an ether organic solvent (C n OC n , where n is 4 ≦ n ≦ 30), a saturated hydrocarbon organic solvent (C n H 2n + 2 , where n is 7 ≦ n ≦ 30), unsaturated hydrocarbon organic solvent (C n H 2n , where n is 7 ≦ n ≦ 30), and organic acid organic solvent (C n COOH, where n is 5 ≦ n ≦ 30) The method for producing nickel nanoparticles according to claim 2, comprising at least one selected from the group consisting of: 前記エーテル系有機溶媒は、トリオクチルホスフィンオキシド、アルキルホスフィン、オクチルエーテル、ベンジルエーテル、及びフェニルエーテルからなる群から選ばれるいずれか一つであることを特徴とする、請求項7に記載のニッケルナノ粒子の製造方法。   The nickel-based organic solvent according to claim 7, wherein the ether-based organic solvent is any one selected from the group consisting of trioctylphosphine oxide, alkylphosphine, octyl ether, benzyl ether, and phenyl ether. Particle production method. 前記飽和炭化水素系有機溶媒は、ヘキサデカン、ヘプタデカン及びオクタデカンからなる群から選ばれるいずれか一つであることを特徴とする、請求項7に記載のニッケルナノ粒子の製造方法。   The method for producing nickel nanoparticles according to claim 7, wherein the saturated hydrocarbon organic solvent is any one selected from the group consisting of hexadecane, heptadecane, and octadecane. 前記不飽和炭化水素系有機溶媒は、オクテン、ヘプタデセン及びオクタデセンからなる群から選ばれるいずれか一つであることを特徴とする、請求項7に記載のニッケルナノ粒子の製造方法。   The method for producing nickel nanoparticles according to claim 7, wherein the unsaturated hydrocarbon organic solvent is any one selected from the group consisting of octene, heptadecene and octadecene. 前記有機酸系有機溶媒は、オレイン酸、ラウリン酸、ステアリン酸、ミステリン酸及びヘキサデカン酸からなる群から選ばれるいずれか一つであることを特徴とする、請求項7に記載のニッケルナノ粒子の製造方法。   8. The nickel nanoparticle according to claim 7, wherein the organic acid-based organic solvent is any one selected from the group consisting of oleic acid, lauric acid, stearic acid, mysteric acid, and hexadecanoic acid. Production method. 前記加熱する段階は、50℃ないし450℃に加熱することを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。   The method of claim 1, wherein the heating is performed at 50 ° C. to 450 ° C. 前記加熱する段階は、1分ないし8時間行われることを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。   The method of claim 1, wherein the heating is performed for 1 minute to 8 hours. 加熱された前記混合物からニッケルナノ粒子を分離する段階をさらに含むことを特徴とする、請求項1に記載のニッケルナノ粒子の製造方法。   The method of claim 1, further comprising separating the nickel nanoparticles from the heated mixture. 前記分離する段階は、加熱された前記混合物にエタノールまたはアセトンを添加してニッケルナノ粒子を沈殿させる段階を含むことを特徴とする、請求項14に記載のニッケルナノ粒子の製造方法。   The method of claim 14, wherein the separating includes adding ethanol or acetone to the heated mixture to precipitate nickel nanoparticles.
JP2008324580A 2008-08-05 2008-12-19 Method for producing nickel nanoparticle Pending JP2010037647A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080076448A KR20100016821A (en) 2008-08-05 2008-08-05 Preparing method of nickel nanoparticles

Publications (1)

Publication Number Publication Date
JP2010037647A true JP2010037647A (en) 2010-02-18

Family

ID=41651698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324580A Pending JP2010037647A (en) 2008-08-05 2008-12-19 Method for producing nickel nanoparticle

Country Status (4)

Country Link
US (1) US20100031775A1 (en)
JP (1) JP2010037647A (en)
KR (1) KR20100016821A (en)
CN (1) CN101642818A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195951A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same
JP2012193418A (en) * 2011-03-17 2012-10-11 Nippon Steel Chem Co Ltd Method for producing ferrioxide-containing metal composite nickel nanoparticles, and ferrioxide-containing metal composite nickel nanoparticle
KR20120135403A (en) 2010-03-17 2012-12-13 신닛테츠 수미킨 가가쿠 가부시키가이샤 Process for production of nickel nanoparticles
JP2014029018A (en) * 2012-06-28 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Method for producing dispersive nickel fine particle slurry
JP2014029010A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle and method for producing the same
JP2015131982A (en) * 2014-01-09 2015-07-23 株式会社村田製作所 Composite powder and production method of the same, as well as conductive paste using the same, and laminated ceramic electronic component using the conductive paste
WO2016052067A1 (en) * 2014-09-30 2016-04-07 新日鉄住金化学株式会社 Method for producing nickel particles
JP2016172917A (en) * 2015-03-18 2016-09-29 新日鉄住金化学株式会社 Nickel fin particle-containing composition and manufacturing method therefor
JP2020041197A (en) * 2018-09-12 2020-03-19 住友金属鉱山株式会社 Nickel powder, and method for producing nickel powder

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830523B (en) * 2010-06-09 2011-12-28 华中科技大学 Method for preparing nickel-based oxide nano structure
US9051180B2 (en) * 2010-08-27 2015-06-09 Iowa State University Research Foundation, Inc. Method of controlling shape of synthesized ferroelectric oxide nanocrystal particles
CN102133644B (en) * 2011-03-01 2012-12-19 宁波大学 Method for preparing nickel nano particles
CN102327806B (en) * 2011-06-20 2014-03-26 宁波广博纳米新材料股份有限公司 Method taking organic solvent as medium for grading nano-nickel powder for MLCC (multilayer ceramic capacitor)
CN102430760A (en) * 2011-09-18 2012-05-02 西北大学 Preparation method of metal nickel
CN102989576B (en) * 2012-11-07 2015-04-08 宁波广博纳米新材料股份有限公司 Method for grading silver powder for solar battery
CN103170649A (en) * 2013-04-15 2013-06-26 南京理工大学 Preparation method of magnetic nickel nano material
CN103357891B (en) * 2013-05-25 2015-02-04 北京化工大学 Preparation method and application of nickel and cobalt multi-level branching structure
JP5828923B2 (en) * 2014-01-30 2015-12-09 国立大学法人高知大学 Method for producing nickel powder
JP5811376B2 (en) * 2014-02-17 2015-11-11 住友金属鉱山株式会社 Method for producing seed crystal used for producing hydrogen reduced nickel powder
US10508360B2 (en) * 2015-01-20 2019-12-17 United Technologies Corporation Multifunctional nanocellular single crystal nickel for turbine applications
CN106077698B (en) * 2016-06-22 2018-04-06 西北师范大学 The method that microwave method liquid phase prepares 10 ~ 20 nm Cd nanometer sheets
CN111065716A (en) 2017-09-29 2020-04-24 研究三角协会 Method and apparatus for producing hydrogen
CA3065687C (en) * 2018-01-30 2021-03-02 Tekna Plasma Systems Inc. Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
CN114686210A (en) * 2020-12-30 2022-07-01 Tcl科技集团股份有限公司 Quantum dot material, preparation method thereof and photoelectric device
KR102395400B1 (en) * 2021-07-01 2022-05-09 한국생산기술연구원 Method for manufacturing micro nickel powder using wet reduction method
CN114433864A (en) * 2022-01-17 2022-05-06 淮安中顺环保科技有限公司 Preparation method of nano nickel powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329419A (en) * 2001-04-27 2002-11-15 Namics Corp Metal element containing organic compound paste, its manufacturing method and its use
JP2006328532A (en) * 2005-05-10 2006-12-07 Samsung Electro-Mechanics Co Ltd Metal nano particle, method for manufacturing and conductive ink
JP2007084879A (en) * 2005-09-22 2007-04-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticles, and colloid of particles obtained by the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081501A (en) * 2003-09-09 2005-03-31 Ulvac Japan Ltd Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
US20060189113A1 (en) * 2005-01-14 2006-08-24 Cabot Corporation Metal nanoparticle compositions
US20090214764A1 (en) * 2008-02-26 2009-08-27 Xerox Corporation Metal nanoparticles stabilized with a bident amine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329419A (en) * 2001-04-27 2002-11-15 Namics Corp Metal element containing organic compound paste, its manufacturing method and its use
JP2006328532A (en) * 2005-05-10 2006-12-07 Samsung Electro-Mechanics Co Ltd Metal nano particle, method for manufacturing and conductive ink
JP2007084879A (en) * 2005-09-22 2007-04-05 Nippon Shokubai Co Ltd Method for producing metallic nanoparticles, and colloid of particles obtained by the method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120135403A (en) 2010-03-17 2012-12-13 신닛테츠 수미킨 가가쿠 가부시키가이샤 Process for production of nickel nanoparticles
US8986422B2 (en) 2010-03-17 2015-03-24 Nippon Steel & Sumikin Chemical Co., Ltd. Method for producing nickel nanoparticles
JP5706881B2 (en) * 2010-03-17 2015-04-22 新日鉄住金化学株式会社 Method for producing nickel nanoparticles
JP2011195951A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
US8728350B2 (en) 2010-03-23 2014-05-20 Samsung Electro-Mechanics Co., Ltd. Method for producing metal nanoparticles, ink composition using the same and method for producing the same
JP5883433B2 (en) * 2011-03-17 2016-03-15 新日鉄住金化学株式会社 Composite nickel nanoparticles and method for producing the same
WO2012124625A1 (en) * 2011-03-17 2012-09-20 新日鐵化学株式会社 Composite nickel nanoparticles and method for producing same
JP2012193418A (en) * 2011-03-17 2012-10-11 Nippon Steel Chem Co Ltd Method for producing ferrioxide-containing metal composite nickel nanoparticles, and ferrioxide-containing metal composite nickel nanoparticle
KR20140027935A (en) 2011-03-17 2014-03-07 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same
KR101718584B1 (en) 2011-03-17 2017-03-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same
JP2014029010A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle and method for producing the same
JP2014029018A (en) * 2012-06-28 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Method for producing dispersive nickel fine particle slurry
JP2015131982A (en) * 2014-01-09 2015-07-23 株式会社村田製作所 Composite powder and production method of the same, as well as conductive paste using the same, and laminated ceramic electronic component using the conductive paste
WO2016052067A1 (en) * 2014-09-30 2016-04-07 新日鉄住金化学株式会社 Method for producing nickel particles
JPWO2016052067A1 (en) * 2014-09-30 2017-07-20 新日鉄住金化学株式会社 Method for producing nickel particles
JP2016172917A (en) * 2015-03-18 2016-09-29 新日鉄住金化学株式会社 Nickel fin particle-containing composition and manufacturing method therefor
JP2020041197A (en) * 2018-09-12 2020-03-19 住友金属鉱山株式会社 Nickel powder, and method for producing nickel powder
JP7293591B2 (en) 2018-09-12 2023-06-20 住友金属鉱山株式会社 Nickel powder and method for producing nickel powder

Also Published As

Publication number Publication date
CN101642818A (en) 2010-02-10
KR20100016821A (en) 2010-02-16
US20100031775A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
JP2010037647A (en) Method for producing nickel nanoparticle
Farhadi et al. Simple preparation of ferromagnetic Co 3 O 4 nanoparticles by thermal dissociation of the [Co II (NH 3) 6](NO 3) 2 complex at low temperature
US7329398B2 (en) Preparation of carbon nanotubes
Liu et al. Synthesis of carbon‐nanotube composites using supercritical fluids and their potential applications
JP5070138B2 (en) Method for producing metal nanoparticles
JP2008075181A (en) Method for manufacturing copper nanoparticle using microwave
Deng et al. Preparation of magnetic Ni-P amorphous alloy microspheres and their catalytic performance towards thermal decomposition of ammonium perchlorate
JP2009155197A (en) Method for production of lamella-structure nanoparticle
JP4809384B2 (en) Method for producing copper-based nanoparticles
WO2014058767A1 (en) METHODS TO SYNTHESIZE NiPt BIMETALLIC NANOPARTICLES BY A REVERSED-PHASE MICROEMULSION, DEPOSITION OF NiPt BIMETALLIC NANOPARTICLES ON A SUPPORT, AND APPLICATION OF THE SUPPORTED CATALYST FOR CO2 REFORMING OF METHANE
US20050214190A1 (en) Method of synthesizing nanorods by reaction of metal-surfactant complexes injected using a syringe pump
Liu Cu 2 O microcrystals: a versatile class of self-templates for the synthesis of porous Au nanocages with various morphologies
KR102118428B1 (en) Methods for fabricating cerium boride powder
CN112452315A (en) Application of high-temperature sintering-resistant catalyst
CN103789834B (en) Micrometer/nanometer level gallic acid zinc crystal, Its Preparation Method And Use
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
KR20150143359A (en) Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method
KR20150142755A (en) Method for manufacturing metal or metal oxide having micro-nano sizes using ultra-wave and metal or metal oxide thereby
JP2012036489A (en) Method for manufacturing metal nanoparticle powder, and metal nanoparticle powder
KR101094454B1 (en) Method of fabricating catalysts and synthesizing carbon nanotubes
JP2015078423A (en) Nickel nano powder and production method thereof
Mollamahaleh et al. Surfactant-free production of Ni-based nanostructures
JP2005281786A (en) Magnetic metal particle and production method therefor
CN110102773B (en) Preparation method of ordered mesoporous Ni nanoparticles with controllable particle size
KR20140148193A (en) Manufacturing method of nickel nanopowder and thereby made nickel nanopowder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612